
A Hybrid Model for Case Indexing
and Retrieval in Building Design

Zeyno Aygen

Submitted to the School of Architecture of
Carnegie Mellon University in fulfillment of the requirements

for the degree of Doctor of Philosophy

School of Architecture and
Institute of Complex Engineered Systems (ICES)

Carnegie Mellon University

Advisory Committee

Ulrich Flemming [Chair]
Professor

School of Architecture and
Institute of Complex Engineered Systems (ICES)

Carnegie Mellon University

Steven J. Fenves
University Professor

Department of Civil and Environmental Engineering and
Institute of Complex Engineered Systems (ICES)

Carnegie Mellon University

Omer Akin
Professor

School of Architecture
Carnegie Mellon University

I hereby declare that I am the author of this dissertation.

I authorize Carnegie Mellon University to lend this dissertation to other
institutions or individuals for the purpose of scholarly research.

I further authorize Carnegie Mellon University to reproduce this dissertation by
photocopying or by other means, in total or in part, at the request of other

institutions or individuals for the purpose of scholarly research.

Zeyno Aygen

Copyright © 1998 by Zeyno Aygen
All rights reserved

Abstract

Precedents are commonly used as a means of investigation and inspiration in
architectural design. Designers often refer to past solutions when they are con-
fronted with a similar problem context. This offers a promising application domain
for recent research in AI that introduces the technique of case-base reasoning
(CBR) to the design domain. The computational support in a case-based design
(CBD) system involves the recall and re-use of past solutions in new problem situ-
ations. An efficient indexing of past solutions is crucial to computational design
systems performing complex retrieval on large case-bases. This research sug-
gests an hybrid approach to the indexing and retrieval of design precedents. The
suggested approach accounts for the issues of classification manifested in archi-
tectural discussions on type and CBD literature. The indexing scheme integrates
description-logic based representation for classification and an object-based rep-
resentation for precedents. The hybrid scheme constitutes a basis for the imple-
mentation of a generic case indexing and retrieval mechanism for SEED: a
Software Environment to support the Early phases of building Design. The sug-
gested classification and case-base functionalities are supported by two distinct
engines: SEED-KBC (SEED - Classification Knowledge-Base) and SEED-CBD
(SEED - Design Case-Base), and accessed through engine specific APIs.
iii

Abstract
Phd Thesis - Fall 98

Acknowledgment

I wish to express my gratitude to my advisor and mentor Ulrich Flemming, for his
support and contributions. I have learned a lot from his working style: promoting
self confidence and autonomy. I am also grateful to my thesis committee Omer
Akin and Steven Fenves for their patience, valuable suggestions and knowledge. I
wish to extend my thanks to all the seedlings for the inspiring discussions and pos-
itive criticisms. I am also thankful to my friends in Pittsburgh for making this adven-
ture a delightful one. Most of all, I would like to thank my parents, Sezar and
Aynur, and my sister Artemis, for their unreserved love and support. Their encour-
agement has been the most important driving force for my work.
v

Acknowledgment
Phd Thesis - Fall 98

Table of Contents

List of Figures xi
List of Tables xiii

I Introduction 1
1 Overview 1

2 Motivation 2

3 Research objective and approach 3

4 Scope 4

II Background 5
1 Type and classification 5

1.1 Types 5

1.2 Sources of PT 6

1.3 Smith and Medin’s survey 7

1.3.1 Classical View 7

1.3.2 Probabilistic View 9

1.3.3 Exemplar View 12

1.4 Using the framework - A hybrid representation 14

2 Type and typology in architecture 15

2.1 Analytical vs generative typologies 15

2.2 Linguistic analogy 17
viiPhd Thesis - Fall 98

Table of Contents
2.3 A priori vs. a posteriori 19

2.4 Multiplicity of groupings 21

3 Indexing and retrieval in CBD 23

3.1 CBR in design 24

3.2 Memory organization and Indexing 25

3.3 Retrieval strategies 27

III Conceptual Model 31
1 Memory organization 31

1.1 Distinct schemes 31

1.2 Trade-offs 33

2 Requirements 34

2.1 Generic requirements 34

2.2 SEED specific requirements 35

3 Hybrid model 37

IV Software Architecture 41
1 Software requirements 41

1.1 Object databases 42

1.2 Description logic-based classification 42

1.3 Platform-independant runtime systems 42

2 Overview 42

3 Components 43

3.1 Component architecture overview 41

3.2 SEED-KBC 45

3.3 SEED-CBD 46

3.4 Retrieval and matching 46

V SEED’s Classification Knowledge-Base 49
1 Overview 49

2 Classification 51

2.1 KB instance 51

2.2 Primitive 51

2.3 Host type 52
Phd Thesis - Fall 98

Table of Contents
2.4 Classification and description 50

2.5 Host individual 53

2.6 KB organization 53

2.7 Subsumption inference 53

2.8 Normalization and classification 54

2.9 Conflicts 54

3 System architecture 54

VI SEED’s Case-Based Design Engine 57
1 Case-base 57

1.1 SEED-CBD concepts 58

1.1.1 CB 58

1.1.2 Case 59

1.1.3 Target 59

1.1.4 Proxy 60

1.1.5 Match operator 60

1.2 Organization 61

2 System architecture 62

VII Retrieval 65
1 A demo classification knowledge-base 65

1.1 Primitives 66

1.2 Host types 66

1.3 Host individuals 68

1.4 Classifications 69

1.4.1 Told information 69

1.4.2 Derived information 70

1.5 Classification assignments 72

2 A demo case-base 74

2.1 Proxies 74

2.2 Cases 75

2.3 Match operators 75

2.4 Targets 76

3 Sample retrieval sessions 76

3.1 Retrieval by matching 76
Phd Thesis - Fall 98 ix

Table of Contents
3.2 Retrieval by classification 81

3.3 Retrieval by annotation 81

VIII Conclusions 83
1 Contributions 83

2 Future research directions 85

2.1 Classifications with roles 85

2.2 UI for case-base and classification KB 87

2.3 Matching strategies 87

2.4 Combining match operators 87

References 89
Appendix A Using SEED-KBC and SEED-CBD APIs 95
Appendix B SEED-KBC API specifications 99
Appendix C SEED-CBD API specifications 115
Appendix D Database representations 135
Phd Thesis - Fall 98

List of Figures

FIGURE 1. Tracing the separation between semantic and episodic memory 33

FIGURE 2. Data models for SPROUT database, SEED-CBD, SEED-KBC 44

FIGURE 3. Component architecture 45

FIGURE 4. SEED-KBC 50

FIGURE 5. A sample primitive hierarchy 52

FIGURE 6. System architecture 55

FIGURE 7. Data models and inference engines 58

FIGURE 8. Case decomposition 59

FIGURE 9. Target description and match operator 60

FIGURE 10. Case-base organization 61

FIGURE 11. SEED-CBD system architecture 62

FIGURE 12. Sample primitive hierarchy 67

FIGURE 13. Proxy object configurations 77
xiPhd Thesis - Fall 98

List of Figures
Phd Thesis - Fall 98

List of Tables

TABLE 1. Cases, prototypes and classifications 38

TABLE 2. Retrieval types and engines involved 47

TABLE 3. Comparison between the suggested and existing systems 86
xiiiPhd Thesis - Fall 98

List of Tables
Phd Thesis - Fall 98

CHAPTER I
 Introduction

Designers often refer to a previous design solution when they find a fit between
the existing problem situation and previously encountered problems. This use of
precedents is common in traditional design practice, and hence constitutes a
major motivation for a new generation of computational design systems. This
study provides a computable model for the recall and re-use of precedents. In this
introductory chapter, I outline the major characteristics of the re-use of precedents
in traditional design practice and identify where and how the currently available
computational support fails to conserve these characteristics. I set the scope for
developing a computational model which addresses this shortcoming and
conclude this section with an overview of the thesis contents.

I . 1 Overview

Recent developments in computational design have extended the case-based
design (CBD) approach, a design specific application of the AI paradigm of case-
based reasoning (CBR), to the context of architectural design. CBD can be con-
ceived as a continuation of the use of precedents in design. The term precedent,
introduced to the computational design literature by Oxman (1994), refers to a rep-
resentation of the knowledge about a past design in a form that makes it “re-
usable” in new, but similar problem situations. The use of the term in this study,
however, does not inherit Oxman’s knowledge organization scheme.

CBD approaches differ from other design methods in the way they make use
of specific knowledge about previously encountered problems instead of relying
on generic knowledge represented by rules or grammars. The specific knowledge
is structured in the form of cases, which - taken together - constitute a case-base
or case library. CBD systems recall these cases to use in new problem situations.
A CBD system uses a case-base with special retrieval capabilities instead of a
generic database as a means of storing past problem solving episodes. These epi-
sodes are retrieved based on their similarity to the current problem situation,
1Phd Thesis - Fall 98

Introduction
where the assessment of similarity often involves more than a purely syntax-
driven matching between attributes.

I . 2 Motivation

SEED requires that the case-base indexing and retrieval capabilities make use of
the information available in the computational representation of a design case as
well as the thematic information which may have to reside outside the case-base
scheme. Currently available case-base design systems do not offer an indexing
and retrieval mechanism with the capability to issue and combine structural que-
ries with queries based on classification. At the same time, SEED provides a rich
context to address general issues that arise for CBD in building design.

The key characteristics of the reuse of design precedents can be identified
as the representational and recalling flexibility. These two characteristics have a
major impact on the representation and classification schemes of a computable
memory model.

• Representational flexibility: The reuse of a design solution is not limited to
a specific level of abstraction. A precedent could be as specific as a window
detail or as abstract as a circulation diagram1.

• Recalling flexibility: The recalling of a precedent may be based on a piece
of information which may not be available at the time the precedent is
registered as a solution. As the designer’s memory acquires relevant
information, it dynamically re-registers the existing problem episodes to
reflect the changes2.

The majority of CBD systems has already attempted to address the former
characteristic, yet has remained indifferent to the latter. One of the major motiva-
tions for this study is the lack of an efficient, yet expressive modeling approach
that is flexible in both representing and classifying precedents. For many CBD sys-
tems, indexing is considered within the context of case representation. The range
of modifications that can be applied to classifications in this approach is, therefore,
bounded by the scheme used to represent cases. This causes these indexing
mechanisms to be inflexible. In the following chapters, I argue with respect to
architectural typology and CBD (Aygen, Z. et.al., 1998) that

• classifications in a case-base must allow for modifications if the CBD system
is expected to incorporate new information on cases. Therefore, case
retrieval mechanisms may have to cope with partial index descriptions and
multiple classifications, which appears to be true for architectural design.

1. Different levels of abstractions are typological levels which can be defined as scales
of planning in which the design decisions present a unified system of choices (Leupen, B.
et.al., 1997)
2. Dynamic memory (Kolodner, 1991).
Phd Thesis - Fall 982

Research objective and approach
• classifications may have to incorporate thematic features and features
reflecting subjective judgements on cases. Often these features cannot be
derived from the symbolic representation of a design precedent.

• classifications speed up the retrieval of cases by allowing the system to
perform needed matches only on a subset of the case-base. Indexing and
classifications are particularly important for CBD systems where the retrieval
of complex design representations often introduces computational
inefficiencies.

The second motivation is the parallel relation between the issues related to
indexing in CBD and the notion of type and classification in the architectural litera-
ture. The study of type in architecture is beneficial for this study when the empha-
sis is given to the cognitive aspects of architectural type (i.e. how a group of
persons would recognize the likeness between architectural precedents and con-
ceptually subsume these as being of the same type1). The typological discussion
hints at the complexities involved in dealing with the categorization of precedents
and accounts for some of the issues that need to be addressed in order to build
flexible indexing schemes. The study of architectural type provides insights to
refine the case indexing and retrieval mechanisms.

I . 3 Research objective and approach

This research is an attempt to provide computational support for the reuse and
recall of precedents as part of a case-base design system. In order to address the
previously outlined flexibility issues, this approach decouples precedent represen-
tation and classification in its data modeling and retrieval techniques. More specif-
ically, it suggests a hybrid memory consisting of

• an object model with object attributes and relations persistently stored in a
object oriented database (OODB), and

• a knowledge-base of classifications supporting subsumption inference.

The Software Environment to Support Early Building Design, SEED, pro-
vides the first implementation environment and testing ground for the hybrid mem-
ory model (Flemming & Woodbury 1995). SEED requires the persistent storage of
design precedents and their retrieval for re-use in a multi-functional, multi-user,
and distributed design environment. The memory model outlined above has been
implemented to realize a case-base design capability in SEED.

1. The account on the cognitive aspects of architectural type (Tezar, P. 1991).
Phd Thesis - Fall 98 3

Introduction
I . 4 Scope

This research concentrates on the recalling of the precedents. Classification, as
an inherent mechanism of the proposed model, is one of the major determinants
of the thesis scope. Consequently, it has also been the focus for studying

• Architectural typology: The account of the typology literature has been
limited by the view of classification found in AI’s and Cognitive Science. The
emphasis has been on the understanding of type as a classificatory device in
architectural theory.

• CBD: In the CBD literature and research projects, the emphasis has been on
the representation, indexing and retrieval of cases. Issues of case adaptation
and the problem of creativity in CBD are of considerable significance, but
have been ignored for the purposes of this study.

The thesis scope includes the implementation of the hybrid modeling scheme
as part of SEED’s case-based design engine. However, the choice of CBD tech-
niques is not based solely on SEED’s implementation requirements. CBD consti-
tutes a natural implementation environment for demonstrating the suggested
model’s capabilities in indexing and retrieving precedents. This proposal assumes
that the CBD paradigm serves as ‘a partial model’ for processes involved in
design; it does not seek to provide a comprehensive model of the architectural
design process. Moreover, the association between architectural typology and
CBD does not imply any procedural similarity between case-based design and any
typological methodology.

The implementation is in the form of specific APIs (Application Programming
Interface) which access distinct databases to build and query classification knowl-
edge-bases (SEED-KBC - SEED’s classification knowledge base), and case-
bases (SEED-CBD - SEED’s case-base design engine). Therefore, the issues
pertaining to the design of user interfaces for interacting with these engines are
not within the scope of this research. The APIs provide the basic database func-
tionality on which module-specific user interfaces can be build to create and main-
tain classification knowledge-bases and case-bases.

Chapter II provides a literature survey covering material from architectural
typology, cognitive psychology and AI. Chapter III introduces the hybrid model
based on the literature survey. Chapter IV elaborates the model and then outlines
the implementation of the classification and the case-base engines for SEED.
Chapter V describes the SEED-KBC engine, i.e. the classification knowledge-
base. Chapter VI introduces SEED’s case-base indexing and retrieval capabilities,
i.e. SEED_CBD. Chapter VII provides an example of retrieval performed on a
demo classification knowledge-base and a sample case-base. Finally, Chapter
VIII provides a summary and outlines the contributions and future research areas
that can be explored, based on this research.
Phd Thesis - Fall 984

CHAPTER II
 Background

This section provides a reference framework for a comparative study of the
architectural literature on type and the CBR literature on indexing and retrieval.
The framework is largely based on Smith and Medin’s (1981) work on concept
acquisition and categorization and borrows from their terminology. The framework
will be used to outline a hybrid model for representation and classification of
precedents in the next chapter.

II . 1 Type and classification

Types, in the most generic sense, are categories of thought that can be organized
in generalization hierarchies. In a generalization type hierarchy, the descriptive
features of a type are inherited by its subtypes. The lower levels of the hierarchy
contain tokens which denote specific instances of the type concepts1. Both types
and tokens can be represented at the same hierarchy level, provided that the rela-
tionship between a type and its subtype (i.e. is-included-in association) is distin-
guished from the one between a type and a token (i.e. is-instance-of association).

1.1 Types

Jackendoff (1994), in his theory of types, defines a type concept as a finite set of
conditions that can be used to categorize novel tokens. Since one can generate
new types at will on the basis of encountered tokens, the total set of possible types
is infinitely large. Jackendoff argues that the set of possible types can be charac-
terized by a finite set of conceptual formation rules. This constitutes a conceptual
formation scheme which is used to select or construct new type concepts. When
various type hierarchies need to be integrated in a knowledge representation for-
malism, a type lattice is used instead of a hierarchy tree to organize the type con-

1. Jackendoff’s definitions for type, token, and hierarchy (1994).
5Phd Thesis - Fall 98

Background
cepts. The two other important issues, often addressed when dealing with type
hierarchies, are exceptions and multiple inheritance related problems. The first
issue arises when a subtype fails to possess all the features of its supertype. The
latter happens when a particular subtype, by having more than one supertype,
inherits conflicting features. In the following section I introduce Prototype Theory
(PT), which argues that incorporating prototypes (or exemplars) in a representa-
tion scheme may prove to be useful in handling the problems of exceptions and
multiple inheritance. The hybrid model which I propose extends the prototype the-
ory by introducing a layer of abstraction for the categorization of prototypes.
Section 1.2 reviews some of the influences of prototype theory (PT). Section 1.3
introduces PT through Smith and Medin’s framework. FInally Section 1.4 sketches
the proposed hybrid approach.

1.2 Sources of PT

Before introducing PT through Smith and Medin’s framework, I will consider
motives behind the provision of distinct models for episodic (exemplar-based
knowledge) and generic knowledge. Tulving’s comparative analysis of generic and
episodic memory (Tulving, E., 1972), along with various accounts of intensions
and extensions in knowledge representation, is essential to the understanding of
PT and related AI paradigms like CBR.

The majority of knowledge bases assisting CBR problem solvers follow Tulv-
ing’s model of memory, where the semantic aspects of human memory are distin-
guished from the episodic ones. The distinction, however, does not deny the
overlap between the semantic and episodic information processing systems. Epi-
sodic memory deals with personal experiences and their simple temporal rela-
tions, whereas semantic memory deals with language faculties that receive, retain
and transmit information about meaning and classification of concepts.

The memory systems differ from each other in the following aspects:

• Nature of stored information: Episodic memory deals with the perceptual
properties and temporal-spatial relations of the information. Semantic
memory, on the other hand, is directly related to thought processes and not
to perception. Perceptual features are encoded in the semantic memory only
if they uniquely identify the semantic information.

• Denotative reference of input events: The reference in the episodic
memory is autobiographical, i.e. it goes back to the rememberer’s knowledge
of accumulated episodes. Inputs to the semantic memory, on the other hand,
have cognitive references, which are detached from the autobiographical
references. The semantic information is contained in cognitive structures
such as concepts (varying in their generality and complexity), relations,
quantities and propositions. Consequently, the recording of information in the
episodic memory is direct, whereas it is indirect and organized within
cognitive structures in the semantic memory.
Phd Thesis - Fall 986

Type and classification
• Conditions and consequences of retrieval: The episodic memory
necessitates the direct entry of particular episodes; it cannot infer or
generalize. Inference, deduction, generalization, rule application and the use
of algorithms are methods used by semantic memory. On the other hand,
retrieval operations may not have any effect on the structure of semantic
memory, whereas each retrieval operation is entered into the episodic
memory as another episode. Retrieval, by providing feedback through these
retrieval episodes, may lead to changes in the contents of the episodic
memory.

• Susceptibility to interference and erasure of stored information:
Forgetting is more typical of the episodic memory. The loss of information
has been claimed to be caused by an interference in the temporal encoding:
episodes, being encoded temporally, are accessible only if an accurate time
reference is provided. Almost nothing has been said about the loss of
information in the semantic memory.

When Sowa comments on Tulving’s categorization (Sowa, J. F., 1984), he
bases the distinction between the semantic and episodic memory not on the
mechanisms of each memory but on the nature of what is stored. The episodic
memory stores detailed facts about individual things and events in the form of epi-
sodes (e.g. historical and biographical knowledge). Whereas the information held
in the semantic memory, or the universal principles in Sowa’s account, is more
abstract and generic (e.g. knowledge contained in a dictionary). The suggested
distinction can be considered in connection with Quine’s account of intentions and
extensions with respect to the meaning of words (Quine, W. V., 1961). The inten-
sion of a word meaning follows from the general principles in semantic memory
and the extension of a word is the set of all existing things to which the word
applies (i.e. the intension of a word is its definition, and the extension is the set of
things in the world to which it applies).

1.3 Smith and Medin’s survey

When Smith and Medin attempted to provide a ‘systematic’ review of the psychol-
ogy literature on concept acquisition and categorization, they were both stimulated
and challenged by what they called the ‘muddled’ state of the literature. The
authors cite a particular instance of such confusion in which no two researchers
seem to mean the same thing by the term prototype. Their effort in trying to
straighten out some of the issues in knowledge representation is a major contribu-
tion to the literature. Many researchers refer to their survey of existing views and
the corresponding processing models in locating their approach with respect to a
framework. In this section, I summarize Smith and Medin’s systematic analysis of
various approaches to represent concepts and categories.

1.3.1 The classical view

Smith and Medin collect the common assumptions of the philosophically oriented
studies of language (e.g. Katza, 1972, 1977, Fodor, 1975), linguistic studies
(Lyons, 1968, Bierwisch, 1970, Bolinger, 1975), psycholinguistics (Fodor, Bever,
Phd Thesis - Fall 98 7

Background
Garrett, 1974, Miller and Johnson-Laird, 1976, Anglin, 1977, Clark and Clark,
1977) and the psychological studies of concept attainment (Bruner, Goodnow and
Austin, 1956, Bourne, 1966, Hunt, Marin, and Stone, 1966)1 under the classical
view. In this approach, all instances of a concept share common properties, and
these properties are necessary and sufficient to define the concept.

Assumptions

• Summary representation: The representation of concepts is the result of
an abstraction process; it does not need to correspond to specific instances
and applies to all possible test instances.

• Necessary and sufficient features: The features of a concept are
necessary and sufficient for its definition. Therefore, disjunctive features are
not allowed to reside in a concept definition because if an object can either
have A or B as a feature set, then none of the features in A and B are
necessary.

• Nesting features in subsets: A concept A is subsumed by a more general
concept B, if A’s features are subsumed by B’s.

Criticism

• Exclusion of functional features: A common criticism is that the classical
view deals only with the structural features of concepts. There are, however,
concepts that are defined by functional features which are necessary and
sufficient. For instance, the classical view would describe a cup by its fixed
property of concavity and would prohibit a property such as being used to
hold something. Since the classical view cannot incorporate the functional
features, it cannot handle all concepts. Smith and Medin object to this
criticism by indicating that there is no assumption in the classical view to
prohibit the use of functional properties in a concept definition.

• Exclusion of disjunctive features: This criticism responds to the second
assumption of the classical view (i.e. the use of necessary and sufficient
features to describe concepts). There are cases where people describe
concepts by making use of disjunctive features, and the classical view
cannot handle concepts described in this fashion. For instance, the material
property for a cup can be enumerated by disjunctive features like made-of-
glass, made-of-ceramics, made-of-metal and so on. None of these properties
is necessary and sufficient alone to define a cup. In the classical view,
material would not be part of concept description. Smith and Medin consider
these criticisms controversial by arguing that there are not many instances of
disjunctive concepts in the domain of natural concepts. However, this
criticism is still valid for concepts representing artifacts.

1. For a complete listing of these sources refer to Smith, E. E. and Medin, D. L. (1981).
Phd Thesis - Fall 988

Type and classification
• Unclear cases: The classical view assumes that if a concept A is a subset of
concept B, the defining features of B are nested in those of A. Given this, it is
relatively easy to determine a subset relation. Nevertheless, people are
unclear about particular subset relations, or even do not have the same
answer to an is-a-subset question when asked at different occasions. The
classical view cannot account for such unclear cases. One reason for this is
the incompleteness of some concept definitions through missing features.
For instance, the reason why many people are not sure about the particular
subset relation entailed by the question ‘Is a tomato a fruit?’ is that they are
missing some of the defining features of the concept of fruit. Another reason
for unclear cases is the possibility of concepts with multiple definitions (e.g.
technical vs. common definition examples). Consider the following quote
from Smith and Medin’s example of an unclear case caused by multiple
definitions:

... Thus one might be unsure about what concept a tomato belongs to
because a tomato meets the technical definition of a fruit (for example, it has
seeds) but <also> the common definition of a vegetable (it plays a particular
role in meals).

• Failure to specify defining features: This criticism is based on an empirical
argument (i.e. concepts may not be expressible in terms of necessary and
sufficient features) which contradicts the assumption underlying the
summary description. Consider the following quote from Smith and Medin’s
example of the concept ‘game’:

One of Wittgenstein’s (1953) most famous examples was that of the concept
of games, and we can use it to illustrate the flavor of this argument. What is a
necessary feature of the concept of games? It cannot be the competition
between teams, or even the stipulation that there must be at least two indi-
viduals involved, for solitaire is a game that has neither feature. Similarly, a
game cannot be defined as something that must have a winner, for the
child’s game of ring-around-the-rosy has no such feature. Or let us try a more
abstract feature - say that anything is a game if it provides amusement or
diversion. Football is clearly a game, but it is doubtful that the professional
football players consider their Sunday endeavors as amusing or diverting.
And even if they do, and if amusement is a necessary feature of a game, that
alone cannot be sufficient, for whistling can also be amusement and no one
would consider it a game. This is the kind of analysis that led Wittgenstein to
his disillusionment with the classical view.

1.3.2 The probabilistic view

Smith and Medin group the spreading activation model of Collins and Loftus,
1975, the property comparison model of McCloskey and Glucksberg, 1979, the
simple distance model implicitly used by Hyman and Frost, 1975, and some other
models in research on both artificial and natural concepts under the probabilistic
view1. The common claim of these specific models is that the instances of a con-
Phd Thesis - Fall 98 9

Background
cept vary in the degree to which they share certain properties, and consequently
vary in the degree to which they represent the concept.

The following two assumptions are accepted by the majority of these models,
and characterize the probabilistic view:

• The representation of a concept is a summary description of an entire class.

• The representation of a concept cannot be restricted to a set of necessary
and sufficient conditions (it is a measure of central tendency instead).

The authors identify various approaches under the probabilistic view: the fea-
tural, dimensional and holistic views. In the dimensional approach, each concept
depicts the average or mean dimension values of a class. In the featural
approach, each concept represents the modal features of its class. The holistic
approach uses templates (an isomorphic and unanalyzable representation of a
holistic property1) in representing concepts of concrete objects. This section pro-
vides a review of the featural approach, which is the most representative of the
probabilistic view.

Assumptions

• Summary representation: The summary representation is an abstraction
and may not be realizable as an instance. It is used to decide whether an
instance is a member of a concept.

• Non-necessary features: The features that represent a concept are salient
ones that have a substantial probability of occurring in the instances of a
concept. The probability of a feature to be salient is updated with each
encountered concept instance. The features that seem to appear in most of
the instances are likely to be considered salient features. One important
aspect of the featural representation is that continuous properties like size
are represented discretely by either defining a set of possible sizes (e.g.
{small, large, medium}) or by introducing nested features that provide
preciseness to the roughly defined feature (e.g. a small size feature is nested
in a medium size feature which is in turn nested in a large size feature). With
this assumption, non-necessary features are now permissible in
categorization.

• General processing: In order to determine whether an instance belongs to
a particular concept or a concept is a subset of another concept, features are
compared and the matched feature weights are added to a weight counter,
which is checked against a membership threshold value.

1. For a complete listing of these sources refer to Smith, E. E. and Medin, D. L. (1981).
1. A detailed description of the concept template can be found in Smith, E. E. and Medin,
D. L. (1981).
Phd Thesis - Fall 9810

Type and classification
Based on the assumptions stated above, the authors reconsider the prob-
lematic aspects of the classical view:

• Disjunctive concepts: Since the category membership is based on a
weighted sum of features, and not on sufficient and necessary features, in
the general featural model the same sum can be obtained by different
combinations of features and feature weights. For example, the probabilistic
view allows the concept ‘furniture’ to be a disjunctive one, since different
combinations of features for ‘rug’ and ‘table’ can match those of ‘furniture’.
Yet, the degree of disjunctiveness is considerably small.

• Unclear cases: The classical view’s subsumption algorithm, which is used
to test for concept membership, fails to account for unclear cases. The
probabilistic view, on the other hand, offers two explanations for this
situation: the accumulation of a membership value very close but less than
the membership criteria threshold; and accumulating close or equal
membership values for the same membership test.

• Failure to specify defining features: This problem is naturally avoided
because necessary and sufficient features are not assumed to define a
concept.

• Simple typicality effect: Typical members are categorized faster than
atypical members. This effect doesn’t challenge the classical view, but it has
been given a natural explanation through the probabilistic view by an
additional assumption: The typicality of a concept can be measured by the
weighted sum accumulated through a match with the parent concept.
Consider, for instance, the concepts ‘robin’ and ‘chicken’ as candidates for
being typical of the concept ‘bird’. The accumulated weight of non-necessary
(e.g. flies and sings) and necessary features (e.g. feathered and winged) for
‘robin’ is higher than for ‘chicken’. ‘Robin’ is, therefore, more typical of ‘bird’
than ‘chicken’.

• Determinants of typicality: Following the typicality assumption stated in the
previous item, the probabilistic model also gives an account for typicality (an
item is a typical member of a concept to the extent that it contains features
shared by many other members). The typical member inherits the largest set
of features from the parent concept. Since all concept members inherit the
parent concept’s features, the typical concept is likely to contain the largest
number of features shared by other members.

• Use of non-necessary features: Non necessary features are allowed in the
concept definition; therefore, the problem is avoided from the beginning.

• Nested concepts: The probabilistic model is more consistent with the data
on the distinction between usual and exceptional concept members. For
instance, a usual concept member ‘robin’ is categorized as ‘bird’ faster than it
is categorized as ‘animal’, with ‘bird’ being nested in ‘animal’. The weighted
membership value provides an explanation by suggesting that more features
Phd Thesis - Fall 98 11

Background
are matched between ‘robin’ and ‘bird’ than between ‘robin’ and ‘animal’. An
exception concept member ‘chicken’ is matched faster to ‘animal’ although it
is closer to ‘bird’, which is nested in ‘animal’. The authors propose to include
a feature found-on-farms within the concept definitions of ‘animal’ and
‘chicken’ (and not in ‘bird’) to enforce a faster match between ‘chicken’ and
‘animal’. Nevertheless, it is not guaranteed to find discriminating features like
found-on-farms in all such cases.

Criticism

• Correlated features: A listing of features may not be sufficient to define a
concept. The featural approach doesn’t have any mechanism to represent
relations between features like dependencies. For example, the features
sings and small seem to be correlated for ‘bird’ in the sense that the small
birds are more likely to sing. Smith and Medin cite more evidence in the
domain of artificial concepts because categorizations are more efficient for
instances that contain correlated features. The authors suggest the use of
conjunctive features to represent correlated features as in sings-and-small.
Yet this would not only violate the generality constraint on features, but also
suggests a presumed decomposition. In addition to correlation, there may be
other kinds of relation such as embedding of features. For example the
feature wings may have in turn the feature large to form the feature large
wings. For cases, where the conjunction may not be expressive enough, the
authors suggest to differentiate between types and tokens of features and to
introduce feature-to-feature links. Consequently, they suggest a feature
network for representing concepts.

• Lack of a constraining mechanism: The featural approach, by relaxing the
classical view’s constraint of necessity and sufficiency, offers too much of
freedom. The authors argue that the approach should not allow any feature
to be part of a concept definition. This can be achieved by imposing relaxed
constraints such as necessary-but-not-sufficient or sufficient-but-not
necessary on features. For instance, being-animate for a person seems to be
a necessary-but-not-sufficient feature since it appears in most of the
instances. Similarly, the feature set feathered, animate, flies seems to be
sufficient to define the concept bird, where flies is clearly a non-necessary
feature. The problem with the latter provision is that too many features can
meet the sufficiency-but-non-necessity constraint.

1.3.3 The exemplar view

The exemplar view suggests that there is no single representation of an entire
class, but only a set of specific representations of the class’s exemplars. The defi-
nition of exemplar in this approach is rather ambiguous. An exemplar can be an
subset or an instance of a concept. In the first case, the definition allows for some
level of abstraction. Most of the models adopting the exemplar view allow sum-
mary descriptions in the concept definitions, but use them less intensively than the
exemplars during the categorization process. The basic premise of this approach
Phd Thesis - Fall 9812

Type and classification
is rooted in the results of experimental studies revealing that people make exten-
sive use of examples when they categorize.

Concept representation and categorization

The representation of a concept consists of separate descriptions of some of its
exemplars. An exemplar may be a subset, which in turn may be defined in terms
of its own exemplars, or a summary description or both; it may also be an instance
of the defined concept. The representation is explicitly disjunctive and therefore, is
likely to be a better approach to represent artificial concepts. The approaches
based on the exemplar view show less abstraction than representations based on
the probabilistic and the classical view. The exemplar view challenges the follow-
ing assumptions made by the previous views:

• Summary description is the result of an abstraction process: A concept
definition in the exemplar view collects separate descriptions of its exemplars
rather than providing an abstract description that would hold for all the
instances.

• Summary description does not need to correspond to a specific
instance: A concept definition may consist of multiple instances.

• Summary description is used every time a category membership is
determined: This assumption is not violated by all the exemplar models.
Some still use the summary description to determine concept membership;
nevertheless, they rely more on exemplars.

Benefits

Exemplar models can deal with disjunctive concepts since their representation is
explicitly disjunctive. They can also provide an account for unclear cases, which
occur if the number of a concept’s exemplars that match with a particular instance
is less than the membership threshold, or if an equal number of exemplars for two
concepts match the same instance. For the exemplar view, there is no reason to
specify defining features for a concept since it works with exemplars instead of a
set of necessary and sufficient features. The simple typicality effect is explained by
assessing a similarity between a typical test instance and a best-example since
the typicality condition (i.e. a typical instance sharing more features with other con-
cept members) is presupposed in this model. Finally, the exemplar view allows for
the use of non-necessary features.

To illustrate the exemplar view’s account of similarity ratings of regular con-
cepts and exceptions with respect to nesting, consider the following model:
assuming that we represent ‘robin’ as an exemplar of the concept ‘bird’ and nest
‘bird’ under the concept ‘animal’, a usual concept member ‘robin’ is categorized as
‘bird’ faster than as ‘animal’. In the case of exceptions, assuming that ‘chicken’ is
an exemplar of ‘animal’ instead of ‘bird’, ‘chicken’ has faster access to ‘animal’
than to ‘bird’ during categorization.
Phd Thesis - Fall 98 13

Background
Weaknesses

• Representing more knowledge in concepts: The exemplar models do not
provide any mechanism to relate exemplars of a concept since exemplars
are represented separately.

• Lack of constraining mechanisms: The lack of constraints on exemplar
properties results in a large degree of disjunctiveness and causes
computational inefficiency in determining class membership. Therefore some
of the properties of exemplars in a concept should be specified as necessary
or sufficient.

• Defining a relation between disjunctive exemplars: A collection of
exemplars may point to the same concept but may not meet any theoretical
notion of concept; there should be some principled constraints on the
relations between exemplars that can be joined in a representation (consider
for instance, an artificial concept ‘furds’ exemplified by chair, table, robin and
eagle). Those principled constraints may be represented as a set of
necessary and sufficient conditions which would apply to all the exemplars of
the concept. This set, in fact, would summarize all the exemplars. Another
reason for having a summarized information is the need to deal with generic
propositions such as ‘all birds lay eggs’ etc., without going into each instance
and adding a new property.

1.4 Using the framework - A hybrid representation

Smith and Medin’s survey identifies the following questions as the point of depar-
ture for the classical, probabilistic and exemplar views:

• Is there a single or unitary description for all the members of a concept?

• Are the properties specified in a unitary description true of all members of a
class?

The classical view has its limitations in terms of defining a unified description
for the perceptual features of its instances; however it offers a reliable inference
mechanism to determine class membership since it deals with concept properties
that are necessary and sufficient. The probabilistic and especially exemplar views,
on the other hand, provide better models to represent artificial concepts by allow-
ing the use of disjunctive features and non-necessary features in the categoriza-
tion. Nevertheless, the mechanisms employed by these views do not yield an
absolute true or false result of a class membership test; they provide a probabilis-
tic inference or a degree of membership. A concept in the classical view is stabi-
lized for its individuals, whereas in the probabilistic and the exemplar views, it is
relative with respect to the encountered instances. This comparison hints at the
possibility of using the best of both worlds in a hybrid representation. As Smith and
Medin pointed out in relation to the criticism directed towards the exemplar view,
the inclusion of a summary description can partially eliminate some weaknesses
Phd Thesis - Fall 9814

Type and typology in architecture
of an exemplar model. Consider the following quote from the authors’ account of
the mixed representations:

We cannot ignore the possibility that the representation of a single concept
can contain both probabilistic and exemplar components, that is, both a sum-
mary representation and exemplars. Earlier we suggested that such a mixed
representation might be needed for superordinate concepts such as furni-
ture. Now we wish to point out that there is a good reason to think that mixed
representations may be needed with other kinds of concepts as well.

Tulving’s model of memory, which consists of semantic and episodic compo-
nents reflects, to a certain extent, the structure of the proposed hybrid model. In
connection with the previously considered relation between the intensions and the
type lattice, Sowa considers the use of concept primitives (Sowa, J. F., 1984). Yet,
he admits that there is no evidence of a truly universal set of primitives that would
generate all possible concepts through simple logical operations like conjunction.
Moreover, since most of the everyday concepts can hardly be defined through the
use of primitives, people make use of family resemblances to determine class
membership. Sowa concludes that a realistic theory should not reduce every con-
cept definition to a combination of primitives and could allow for the use of exem-
plars (‘prototypes’ in Sowa’s terms) in determining class membership.

II . 2 Type and typology in architecture

The architectural discourse on type is one of the richest in design theory. It very
often derives its effectiveness and power from a confused agreement or a cultural
consensus on a vague definition of type (Bandini, M., 1989). Nevertheless, It is
particularly important for this study to reduce the ambiguities inherent in the typo-
logical discussion since the study of type is beneficial only to the extent that it is
congruent to a mathematically well-founded and applicable framework of repre-
sentation.

2.1 Analytical vs. generative typologies

Vidler, in his study of the transformation of type in 18th and 19th centuries (1976),
identified two traditions in which the notion of type influenced the production of
architecture. The first was the justification of architectural designs through the
rooting of architecture in types as first principles, e.g. principles derived from
nature (Laugier’s primitive hut) or industrial production (a typology of mass pro-
duction objects). The second tradition associated the notion of type with other the-
ories of classification (e.g. theories dealing with the classification of natural kinds
in the 19th century) in order to develop a taxonomy of architectural artifacts and to
suggest a basis for the creation of new types. Vidler’s observation about the first
group also applies to the Neo-rationalists, who propose an ontology of the city in
order to justify their approach to architectural design. Neo-rationalists argue that
the architectural product reveals its past and present through a type-form that
resides in its physical structure. By incorporating the forms of the traditional city,
Phd Thesis - Fall 98 15

Background
their typology provided means to maintain the continuity of forms and history
(Vidler, A., 1977).

The same distinction is interpreted by Leupen (Leupen, et.al. 1997) as one
between analytical and generative typologies. The analytical typology is confined
to naming various architectural elements and describing how these elements fit
together in a composition. The generative typology, on the other hand, provides
the designer with solutions, where type is the bearer of design experiences per-
taining to a similar issue. Researchers making use of analytical typology are con-
cerned with different classifications, whereas designers are concerned with the
principles of classification. It is however, difficult to imagine a theory of classifica-
tion which does not become involved in the principles of classification. Moreover,
the process in which the designer discovers design experiences pertaining to a
similar problem may in itself be of interest to researchers, even more so if we
extend Vidler’s second influence of type to include theories of classification deal-
ing with artificial kinds. In Herbert Simon’s terms (1969), artificial kinds are distin-
guished from the natural kinds in the following aspects:

• Artificial things are synthesized (though not always with full forethought) by
man.

• Artificial things may imitate appearances in nature while lacking, in one or
many respects, the reality of the latter.

• Artificial things can be characterized in terms of functions, goals, adaptation.

• Artificial things are often discussed, particularly when they are being
designed, in terms of imperatives as well as descriptives.

Simon’s conception of artificial kinds provides a basis for studying the classif-
icatory use of type. For the purposes of the present study, the focus is on issues
related to representation of concepts and categories for the classification of archi-
tectural precedents. The notion of type is considered independent of any typology.
Typologies imply a particular view of the design process and are often associated
with specific design methodologies1. The review, therefore, excludes the study on
particular typologies from its scope, unless they adopt a fairly generic conception
of type. There are two major areas of interest within our scope: conception of type
within a linguistic analogy and the questions concerning the a priori vs. a posteriori
nature of type with respect to representational issues.

1. Bandini (1989) associates the acceptance of a formal framework or any attempt to
systematize knowledge in architecture with what is operational rather than theoretical and
her distinction is often associated with the one between type and typology. Here, however,
the distinction between type and typology is not between an operational level discussion
dealing with typology and a theoretical discussion dealing with type.
Phd Thesis - Fall 9816

Type and typology in architecture
2.2 Linguistic analogy

The motivation behind suggesting an analogy between architecture and language
is to provide means to read and understand architecture. The linguistic
approaches often rely on the following argument:

• Architecture seems to display some kind of syntax: there is a possibility to
describe rules governing the combination of parts to form an architectural
object.

• An object of architecture is similar to a sentence in its syntactic structure.
Hence, the object has a meaning to be deciphered, and this meaning is
composed of the meanings of its parts.

It is, however, difficult to infer the existence of a grammar, in the linguistic
sense, from a syntactic structure alone. To claim that architecture has a grammar
is to suggest that the meanings of parts of an architectural object determine the
meaning of the whole. When the analogy is taken to this extent several questions
have to be addressed: What constitutes the meaning for an architectural object
and how does this meaning differ from the linguistic meaning? Is there a parallel
between semantic and syntactic unity of a sentence structure and that of an archi-
tectural object?

To examine the validity of the suggested analogy, a comprehensive compar-
ison of architectural and linguistic meanings is required. This, however, can easily
turn into a circular argument, since the reason the suggested analogy is intro-
duced in the first place, is to achieve a better understanding of the architectural
meaning. I will, therefore look into the linguistic counterpart and to Frege’s widely
accepted account on linguistic meaning in particular (1892). Frege suggests that
the meaning in language can be thought out in three levels: words, expressions
and complete sentences. A word, a sign, a sign-compound, an expression desig-
nates or signifies its nominatum and expresses its sense. Hence it is possible to
designate an object with a sign (word, expression) as well as its sense (connota-
tion, meaning) in which the context is contained. A complete declarative sentence,
on the other hand, has a proposition which Frege argues should be regarded as
the sense of the sentence, and a truth value, which is its nominatum. As Frege
rightly points out, the question of truth is irrelevant to the discussions on meaning
in the context of art. Whether an object of architecture has a nominatum is insignif-
icant as long as its conceived as a work of art.

In regard to the words we must note that, owing to the uncertain correlation
of images with words, a difference may exist for one person that another
does not discover... Among the differences possible in this connection we
mention shadings and colorings which poetry seeks to impart to the senses.
These shadings and colorings are not objective. Every listener or reader has
to add them in accordance with the hints of the poet or speaker. Surely art
would be impossible without some kinship among human imageries; but just
how far the intentions of the poet are realized can never be exactly ascer-
tained. We shall henceforth no longer refer to images and pictorizations; they
Phd Thesis - Fall 98 17

Background
were discussed only lest the image evoked by a word be confused with its
sense and nominatum... In listening to an epic, for example, we are fasci-
nated by the euphony of the language, and also by the sense of the sen-
tences and by the images and emotions evoked.

Similarly, in the context of architecture, the sign (or the physical object) itself
is essential to the understanding of architecture through the imagery and emotions
it evokes, which is clearly distinguished from the sense and nominatum. Moreover,
the definition of connotation (sense, meaning) and denotation (nominatum) for an
architectural object is highly controversial. For instance, Eco suggests that the
understanding of architecture is the reading of various meanings from an architec-
tural sign through the ideas it connotes and the functions it denotes according to
its use1 (e.g. the gothic style connotes the idea of religiosity and may denote vari-
ous functions). Colquhoun suggests that type has a communicative value based
on the analogy between structural linguistics and art (1969). He proposes that
‘intelligible forms of the past’ or ‘typologically fixed entities’ (architectural sign),
convey (connote) artistic meaning within a social context. The reduction of the
communicative value to an iconic one and the type to an architectural image (e.g.
Venturi and his followers) is caused by the forced analogy between structural lin-
guistics and architecture. Yet, as Scruton (1979) points out, the use of the terms
denotation and connotation does not necessarily allow a theory of linguistic mean-
ing to apply to a non-linguistic context. Frege’s account on denotation and conno-
tation in natural language does not justify (and does not even apply) to various
theories concerning meaning in architecture.

In relation to the second question, the truth-value of a complete sentence is
decided based on the truth conditions derived from what its parts, i.e. words,
signs, expressions, refer to. Therefore the syntax derives from this relation to truth.
The existence of a stand-alone syntactic structure (independent of semantics) is
not plausible in natural language. The vagueness of what an architectural sign
denotes causes the syntactic structure of an architectural composition not to have
the same strong semantic correspondence that a sentence structure has. Hence
the analogy cannot support the argument that architectural meaning can be
deduced from the meanings of parts of an architectural object.

The linguistic analogy therefore fails when it is pushed to the extent where
the existence of semantics is denied. This is particularly true when it provides a
basis for typological approaches where type is placed within this analogy for its
role in justification. The use of type in classification, on the other hand, can provide
a different account of denotation and connotation through the use of Quine’s
extension and intension: intension can be characterized by the concepts and
ideas that make up a definition and extension by a set of objects to which the defi-
nition applies. For classification, type is placed within the domain of intension,
hence architectural type becomes simply an artificial kind. As Moneo points out,
the act of identification of an architectural element or of its parts is essential to rep-
resent and describe a particular artifact. This process of recognition (i.e. naming)

1. For an extended criticism of Eco’s argument, on the relevance of associating the func-
tions-use with the nominatum refer to (Scruton, R., 1979).
Phd Thesis - Fall 9818

Type and typology in architecture
implies typification: establishment of common characteristics with a similar class of
things (1982). Therefore the use of type is implicit in the natural language.
Moneo’s account of type is somehow closer to the one in cognitive psychology,
where type as a fundamental conceptual structure is used in the categorization
process, which is an essential aspect of cognition (Jackendoff, R. 1994). Here, the
account of type does not imply any linguistic analogy as it does, for instance, in
Colquhoun’s case (Colquhoun, A., 1969). It simply conceives type as a manifesta-
tion of a generic capability of the human mind: generalization, similar to Tezar who
recognizes this capability as a biological necessity (1991). Tezar argues that the
current debate on architectural type favors a notion of type which is used to study
the meaning assumed to be embodied in architectural objects and often neglects
the more generic ‘human side’:

...the predominant focus on the architectural artifact has left a theoretical
vacuum and considerable confusion on the other, human side of types: Why
and on what basis does human mind classify experiences? Is any classifica-
tion synonymous with a type?... Type simply seems to be a “natural” context
of architectural experience, almost as natural as the actual setting of a build-
ing. Our perception of the world is phenomenally given to us in an already
categorized manner and our memory is “typologically prefigured.” As archi-
tects we are free to choose a theoretical position that opposes the notion of
type, we may choose to design buildings that ignore the notion of type, but
we have no control over “the other side of types.”

2.3 A priori vs. a posteriori

In the beginning of Section II . 2, I set the scope of the literature review to the clas-
sificatory use of type and in Section 2.2, I gave a linguistic account of architectural
types. Another important aspect of typological discussion is the formation of types
since it involves some of the representational issues that have been addressed in
connection with classification. There are two major approaches in looking at the
formation of types. The first suggests that architectural types are the extension of
pre-existing categories (i.e. type is a priori), and the second suggests that they are
defined by the comparison and grouping of the existing architectural artifacts (i.e.
type is a posteriori).

One of the most frequently cited theoreticians, Quatremere de Quincy, is in
the first group with his definition of type as an ideal type, an elementary principle, a
sort of nucleus about which are gathered, and to which are coordinated, in time,
the developments and forms to which the object is susceptible (1825). The ideal
type is neither visible, nor realizable and therefore cannot be copied, unlike the
model that can be endlessly replicated. Vidler1 points out that Quatremere de
Quincy’s definition is too abstract and is unlikely to be a working principle in
design. Quatremere de Quincy, realizing the difficulties implied by his definition of
ideal type, proposes another type concept: relative type, as in types of building, or
designed objects. Relative type is based on the need, use and custom. When

1. More on Vidler’s account on Quatremere de Quincy can be found in (Vidler, A. 1978).
Phd Thesis - Fall 98 19

Background
Quatremere de Quincy writes ‘Who does not believe that the shape of a man’s
back must provide the type of the back of a chair?’ he clearly refers to the latter
and not to the ideal type. Other than the difficulty of laying out a priori categories
which would constitute the elementary principles governing the design of objects,
there is also the problem of explaining the creation of new types. If we assume
that we could identify these elementary principles, ideas, categories that coordi-
nate the developments and forms of existing architectural objects, then we should
be able to, in a sense, predict the future of forms and developments. However,
there are many outside factors that are involved in the creation of new types. For
instance, according to Sullivan, the conditions and needs lead the architect to
seek a true normal type as a solution to the design of tall office building (1947).
From these conditions, the architect identifies a new design problem, which
requires the use of a new type. Consequently, the tall office building took its place
among the other architectural types as opposed to being derived from them.

In the second group we can cite Argan who avoids the problems of Quatrem-
ere De Quincy’s definition by defining the type as being deduced from reality
through an a posteriori operation which involves a comparison and overlapping of
formal regularities (1963). Type therefore is a schema of form through which
series of buildings are related to each other and not an to an a priori form. While
Argan agrees with Quatremere de Quincy’s on the vagueness or generality of type
he opposes the idea of the a priori formulation of type:

It [type] is never formulated a priori, but always deduced from a series of
instances... The birth of type is therefore dependent on the existence of a
series of buildings having between them an obvious formal and functional
analogy. In other words when a type is determined in the practice or theory of
architecture, it already has an existence as an answer to a complex of ideo-
logical, religious or practical demands which arise in a given historical condi-
tion of whatever culture.

The latter approach is more likely to provide a satisfactory explanation for the
emergence of types and has much more to offer in terms of workability. However,
it is important to realize that Argan’s understanding of type and his argument of
typology imply more than classification and get into the realm of justification by
attributing the use of type to the creative process of design. Nevertheless, his
emphasis on the a posteriori nature of type and his attempt to clarify the concept
of the building series are fairly important for the purposes of this study. Before
elaborating Argan’s views on building series it is important to refer to his account
on the distinction between model and type. Much as the type is identified as an
outline object by Argan, the model is a specific example or mechanical reproduc-
tion of an object. In this sense type is similar to a type-concept, and a model can
be conceived as a prototypical instance of the type-concept. Argan refers to a
series of formal variants, more precisely, to a group of buildings exhibiting formal
and functional analogy, by using both terms building series and typological series.

The type therefore, is formed through a process of reducing a complex of for-
mal variants to a common root form. [...] It is not, in fact necessary to demon-
strate that if the final form of a building is a variant deduced from a
Phd Thesis - Fall 9820

Type and typology in architecture
proceeding formal series, the addition of another variant to the series will
necessarily determine a more or less considerable change of the whole type.

In this definition a formal variant is an instance that exhibits the characteris-
tics of the type governing the series simply because the type itself is deduced from
these instances, and hence the definition of type itself is dependent of the
instances. In the hybrid representation scheme, these instances or variants are
exemplars, and the dependency is maintained through the type-concept’s encap-
sulation of both the necessary and sufficient conditions which apply to all the
exemplars.

2.4 Multiplicity of groupings

If we consider type as a conceptual structure and assume that classification is an
essential mechanism of human cognition, there is a use for type as a classificatory
device in the understanding and production of architectural artifacts. We also sug-
gested that types are a posteriori by nature. Types are defined through the com-
parative analysis of existing architectural objects. This involves the extraction of
common characteristics to form types and the grouping of architectural objects
based on these characteristics. For the natural kinds, the common characteristics
can be organized by the use of a relatively small number of categories such as for-
mal and organizational ones. On the other hand, type categories are more numer-
ous for artificial kinds based on the fact that artificial kinds differ from the natural
counterparts by being characterized in terms of functions and goals. Hence the
classification of artifacts involves types characterizing the function, goal, behavior
and structure of the artifact.

This point is supported by the architectural discussion on type, where a fairly
large number of typologies are proposed to account for functional, institutional, for-
mal, compositional, structural, historical aspects of architectural artifacts. Some of
these classifications can be merged, whereas some remain orthogonal. In the lit-
erature, the multiplicity of classifications is often implied by an opposition between
typologies favoring either one of the formal/geometric or use-related/functional
groupings/classifications (e.g. Durand ‘s formal classification1, Purves’ organiza-
tional patterns (1982) vs. Pevsner’s functional building classification (1976)).
Aymonino2 in his neo-rationalist attempt to describe an ontology of the city, identi-
fied two levels in which type finds its definition: formal and functional levels. The
former suggests an independent typology which is used to classify architectural
objects based on formal differences as in Rossi’s analysis of city (1982). The latter
is favored by Aymonino, who seeks to trace the persistence of certain types with
respect to their use in the city. Aymonino’s functional type has much in common
with Tezar’s use-related type; however by bringing the discussion into the city
scale, Aymonino proposes more of an institutional classification. Tezar suggests
that architectural types are primarily defined on the basis of use since these types

1. More on Durand’s approach to classification appears in (Vidler, A., 1976).
2. An extended account on Aymonino’s conception of type can be found in (Bandini, M.,
1989).
Phd Thesis - Fall 98 21

Background
constitute a shared framework of reference unlike some other classifications such
as the ones based on a compositional principle or constructional system:

It is interesting to note that the common names of most buildings refer to
them as functional types: house, school, grocery store, library, church, court-
house. This seems to indicate that the use of buildings has primacy as a col-
lective distinction and the buildings are socially predominantly remembered,
anticipated, recognized and thought about on that level. In other words,
architectural types, on the building level, are functional building types.

Argan, on the other hand, argues that the fundamental type for architecture is
formal and is not deduced from physical functions of the artifact. He limits the
number of categories for formal classification to three and associates each with a
particular stage of the design process. The three main categories are: the com-
plete building configuration guiding the planning phase; major structural configura-
tion for the design of the structural system and, finally, a typology of decorative
elements guiding the design of the ornamental elements. It is important to recog-
nize the change of the kind of classification with respect to the tasks encountered
in various stages of design process; however, Argan would still need to justify:

• a design process model suggesting a particular decomposition in terms of
design stages where each stage involves a set of design tasks.

• an association between a specified design task in a specified stage and a
particular classification.

Argan’s argument relies on strong assumptions about the design process in
favor of his proposed typology and disregards the fact that the conceptualization
and classification of an architectural artifact is closely related to the intention
behind its production, the medium by which its produced in addition to its formal
characteristics. This is why Moneo1’s understanding of type seems to be more
comprehensive for the purpose of this study.

What then is type? It can most simply be defined as a concept which
describes a group of objects characterized by the same formal structure.
It’s neither a spatial diagram nor the average of a serial list. It is fundamen-
tally based on the possibility of grouping objects by certain inherent structural
similarities. It might even be said that type means the act of thinking in
groups [...] But what is precisely a formal structure? One could attempt a
series of opposing definitions. First the aspects of Gestalt could be empha-
sized. This would mean speaking about centrality or linearity, clusters or
grids, trying to characterize form in terms of a deeper geometry. [...] This
however reduces the idea of type as inner structure to simple abstract geom-
etry. But type as a formal structure is, in contrast, intimately connected with
reality - with a vast hierarchy of concerns running from social activity to build-
ing construction. Ultimately, the group defining a type must be rooted in this
reality as well as in an abstract geometry.

1. More on Moneo’s account on type can be found in (Moneo, R., 1982).
Phd Thesis - Fall 9822

Indexing and retrieval in CBD
Moneo recognizes that the use of type in architecture cannot be reduced to a
mere formal classification, nor to a functional one. It is necessary to provide a
framework for type definition that would support multiplicity in the groupings or
classifications of architectural artifacts. For instance, in the initial stages, a
designer may be interested in using a courtyard layout for climatic reasons or for
some other consideration concerning the formal characteristics of courtyard lay-
outs. At a later stage, in specifying the room layouts he may use a functional clas-
sification. In short, the same artifact may be grouped over and over under different
types depending on the design stage and the particular goals identified for the
design problem at hand. The use of type provides a mechanism to group artifacts
based on the similarity in terms of a set of characteristics. These characteristics
form an open set which is subject to change in relation to the context of a particu-
lar design task. The context may be conceived in terms of the level of the design
task as well as the goals to be achieved by solving the particular design problem.

Based on the above, the need to combine various concepts to form classifi-
cations is inevitable. An architectural object can be multiply classified by a mecha-
nism referred to earlier as conceptual combination. For the suggested hybrid
representation scheme, a conceptual combination is performed through multiple
inheritance, where a classification concept inherits the summary descriptions of
more than one classification concept.

II . 3 Indexing and retrieval in CBD

Falling under the more general category of reasoning by analogy, CBR suggests a
computational model for the use of analogy in problem solving. CBR approaches
are different from other approaches in AI in that they make use of specific knowl-
edge of previously encountered problem situations instead of relying on generic
knowledge of a problem domain. The specific knowledge is structured in the form
of cases as part of a case-base. CBR systems recall these cases to use in new
problem situations. Another difference of CBR approaches is that a system build
on the premises of CBR evolves in time since it learns from each problem that has
been encountered and solved1. CBR uses a case-base instead of a database as a
means of storing data as past problem solving episodes and retrieving these epi-
sodes based on similarity and not solely on a direct syntactic value matching. CBR
systems typically have to deal with the representation of the case content, the
organization of the case memory, strategies for recalling cases, and mechanisms
to modify cases to fit new problem situations. The following subsections elaborate
on these issues of indexing, memory organization and retrieval in the context of
case-based design (CBD).

1. For an introduction to the case-based reasoning paradigm refer to (Aadmodt, A. and
Plaza, E., 1993).
Phd Thesis - Fall 98 23

Background
3.1 CBR in design

CBD is the application of CBR technology to solve problems in the domain of
design. In architecture, CBD is often considered in connection with precedent-
based design (PBD), which has been introduced to the computational design liter-
ature by Oxman1 as the process of selecting relevant ideas from prior designs in
current design situations. CBD differs from PBD in its support for systematic stor-
age and adaptation of cases. In CBD systems, the use of a case-base is not lim-
ited to a browsing activity; it involves the recalling of past designs, ideally in a form
that immediately enables their adaptation to meet the requirements of a new prob-
lem.

Prototype-based design is an alternative to CBD where design prototypes
encapsulate more generalized knowledge about design solutions2. The prototype-
based approach is preferred in situations where design generation and refinement
cannot directly benefit from specific design instances. The case-based approach,
on the other hand, utilizes specific knowledge encapsulated in detailed instances
that are retrieved when a sufficiently close problem situation arises. The differ-
ence, however, is rather vague and depends mainly on the level of abstraction of
the representation envisioned for a design case and prototype. Similar issues
arise for the indexing and retrieval of both cases and prototype.

Design in a CBR model is a description or a set of descriptions generated to
satisfy requirements specified as part of a design problem. The processes
involved in generating designs have to deal with relations between topological,
physical and geometric properties. The aspects of design process affecting the
use of CBR technology in problem solving are identified by Maher (1995) as fol-
lows:

• Real world design problems are large and complex.

• The design case representation is composed of various modes of
representation such as text, graphics, equations, and drawings.

• In design, there is no predefined mapping between a set of requirements and
a design solution, and in some cases an initial specification cannot be
predefined either.

• Different types of knowledge may have to be integrated in the design
process.

• Often the design solution is found by merging various parts of various old
solutions.

1. More on precedent-based design in architecture can be found in (Oxman, R., 1994).
2. A detailed account on the prototype-based design appears in (Rosenman, M. A. et.al.
1992).
Phd Thesis - Fall 9824

Indexing and retrieval in CBD
• CBR should take into account other computer-based representations and
processes since the design practice already makes use of computer
programs.

By implication, design cases often have complex representations that inte-
grate various kinds of information (e.g. geometry, function, compositional aspects
etc.) expressed in different levels of abstraction. The representational complexity
constitutes a burden on the searching and matching mechanisms in terms of effi-
ciency and effectiveness. Consequently, the organization of the case memory and
indexing of cases for effective retrieval and reuse are vital for CBD systems. The
first four items, because of their impact on the indexing and retrieval of design
cases, are among the determinants of the classification scheme proposed in this
study.

3.2 Memory organization and Indexing

In recalling a previous design for the generation of a new design solution, the
appropriateness of the selections is one of the most important criteria in determin-
ing how useful a CBD approach can be. The computational support for finding the
relevant cases in a CBD system hinges on an efficient indexing mechanism inte-
grated with a case memory. For some case-base actions such as making a diag-
nosis, assessing a situation etc., the indexing may be insignificant for retrieval
since case selection is supposed to rely primarily on surface and contextual fea-
tures (Waltz, D., 1991). Nevertheless, in design, the case selection cannot be lim-
ited to an attribute-by-attribute matching of surface and contextual features. The
retrieval is likely to involve lengthy comparisons of compositional and geometric
properties of the cases. An efficient indexing makes the retrieval a tractable com-
putational problem and speeds up the process by partitioning the memory so that
the matching is performed only on a subset of the case-base. Moreover, in com-
plex problem solving activities such as design, the retrieval may require the use of
thematic features (e.g. goal, function, behavior etc.) which may not be inferred
from the case structure. These thematic features, referred to as deeper features in
the CBR literature, are obtained through an elaboration and interpretation of gen-
eralized models of the design domain. Indexing supports the organization of cases
based on these deep features1 without overloading the case content.

The process of indexing is often described as assigning labels to cases to
ensure their retrieval in relevant situations. An indexing vocabulary is defined to be
a subset of the vocabulary used for symbolic representation of cases (Kolodner,
J., 1993). Kolodner lists the following aspects of a good indexing vocabulary:

• Prediction: Indices should be case aspects that tend to predict solutions
and outcomes of cases.

1. Similar to the previously discussed type concepts, case indices may have feature-
based or dimensional representation. In CBD literature, a case index is generally described
as a collection of labels suggesting a feature-based representation.
Phd Thesis - Fall 98 25

Background
• Specificity: Indices should be specific enough to allow for all the useful
discriminations in the case memory.

• Generality: Indices should be general enough to capture relevant
similarities among the cases.

• Usefulness: The use of indices during retrieval should produce useful
results.

The solutions and outcomes of design problems are not always predictable.
The aspects that are critical in generating a design solution may change with the
encountered problem situation or with a designer’s perspective. Nevertheless a
small subset of features may be assumed to be more critical than others, and used
as a starting point for retrieval. The specificity and generality aspects suggest a
hierarchical structuring for indices where a CBD system can make use of different
levels of specificity during retrieval. The ‘useful’ aspects, like the critical ones, are
hard to predetermine and can only be apparent to the designer using the system.
Hence it may be beneficial to adopt an indexing scheme that would allow the user
to extend or modify the indexing vocabulary.

Another reason for adopting an extendable indexing vocabulary is related to
the use of deep features in retrieval. When a subset of case features is used to
define an indexing vocabulary, it becomes the basis for determining the relevance
of cases to the current problem situation. However, as stated earlier, the selection
of relevant design cases may require the use of deep features during retrieval.
Very often, these deep features do not belong to the previously defined set of case
features. CBD systems can allow for the use of deep features during retrieval by
providing the functionality to add these features into the indexing vocabulary as a
means to organize and re-organize the case memory.

An indexing scheme is a structured indexing vocabulary to organize cases.
One of the major concerns in designing indexing schemes is flexibility. A flexible
scheme provides:

• an extendable indexing vocabulary which is not limited to surface features,

• means to extend and modify the model of case memory and indexing
scheme, along with mechanisms to ensure soundness and,

• multiple paths to cases.

Maher groups the computational indexing schemes as descriptive schemes
and relational schemes (1995). Descriptive schemes often employ a fixed set of
surface features to serve as pointers to various cases. Computationally, these fea-
tures use a list or tree structure. In a list, each element indicates the set of cases
labeled by it. In a tree hierarchy each node points at cases carrying the feature
defining the node. Hence cases are represented in a generalization hierarchy.
Descriptive schemes are fairly easy to implement. However they often fail to sat-
isfy the flexibility requirement for the reasons stated earlier in connection with the
Phd Thesis - Fall 9826

Indexing and retrieval in CBD
use of deep features in retrieval. Design specifications are subject to change
within the design problem solving process, and a fixed set of surface features may
not provide room for these changes.

Relational schemes, on the other hand, capture deeper aspects of cases, i.e.
abstract relationships which can be represented through features, objects or
graphs. The use of objects-based or graph-based representations allows for the
addition and instantiation of relationships within a dynamic model of case memory.
Therefore the indexing scheme can be interactively extended provided that there
are mechanisms to perform consistency checking. Relational schemes are consid-
ered to be more efficient since the retrieval doesn’t require an exhaustive search
of all cases. With the help of the scheme only the cases in the category of interest
are accessed. Referring back to the definition of a flexible indexing scheme, rela-
tional schemes are potentially more flexible than descriptional ones.

3.3 Retrieval strategies

Retrieval is the act of selecting the most similar cases to a given problem descrip-
tion. In retrieval, the use of indices narrows down the search scope and provides a
shortcut to relevant cases. Once the case-memory is partitioned based on rele-
vance to the current problem situation, matching is performed on the candidate
cases. Unlike some CBR systems that employ parallel search techniques, CBD
systems are likely to make use of indices by build-in heuristics or user interaction
during case-base partitioning.

A search strategy can be regarded as a collection of methods employed dur-
ing the search of a case memory. Maher groups various retrieval strategies under
the following categories:

• List checking: This strategy uses a feature list, where each item points to a
number of relevant cases to be retrieved. A case can be retrieved as a whole
or in parts using the indexed features.

• Concept refinement: This strategy uses a hierarchical tree where each
node points to a number of relevant cases to be retrieved. Refinement begins
at a more general concept and proceeds downward until a match is reached.
If no match is found at a specific level, the problem description can be
redefined to match a higher level in the hierarchy. Both whole and parts of
cases can be stored organized in the index tree.

• Associative recall: This strategy is used in relational indexing schemes.
Case indices are graphs incorporating concepts, relationships (deep and
surface features) defining a generalized model of a particular domain. The
problem description is converted to a graph, and graph-matching is
performed to retrieve relevant cases.

Maher’s grouping of case retrieval strategies should be considered in con-
nection with the previously referred indexing schemes and case representation.
For instance, a descriptive indexing scheme can hardly provide a base structure
Phd Thesis - Fall 98 27

Background
for the concept refinement and associative recall strategies. In addition to the
strategies listed above, there are various techniques used to lead a case-base
reasoner to previously inaccessible cases during retrieval. Index elaboration and
revision are two techniques that Maher considers in connection with associative
recall. Below are brief descriptions of these along with some other techniques
mentioned in the CBR literature:

• Index elaboration: Index elaboration is an incremental process launched
after the retrieval of a initial set of cases. Based on an analysis of these
cases, critical or discriminative features which were not part of the initial
problem specifications are identified. Index elaboration occurs by either
adding more discriminative features to the problem specification (index
expansion) or identifying the critical features (index reduction). Using the
elaborated specifications, the case-base reasoner retrieves cases that are
more relevant. The modification of problem specifications requires extensive
use of domain knowledge, which should be made explicit in the memory
organization. User interaction maybe a more flexible and viable alternative to
the use of domain knowledge for the identification of discriminative or critical
features.

• Index revision: By the influence of an initial set of retrieve cases, a problem
specification is revised to access more appropriate cases. Index revision is
characterized as a change in the index description. Unlike index elaboration,
the change is not necessarily one of reduction or expansion. It provides a
means to case-memory exploration by adding or dropping indices to create a
new problem specification.

• Relaxation: When the problem description introduces too many constraints
and the retriever fails to select a relevant case, some operators may be used
to relax the boundary imposed on the solution space. Relaxation operators
work in two ways: they either eliminate some of the constraints or weaken
them in order to access a wider range of candidates. For instance,
elimination of some index feature or widening the range indicated by an
index dimension are means of relaxing the boundary around the solution
space.

• Index transformation and mutation: This technique uses heuristics to
activate domain specific mutation operators on indices during retrieval.
Navichandra argues that mutation is particularly useful as an innovative
design strategy, provided that the case-based reasoner is constrained to
produce semantically correct alternatives (1990). He cites the CYCLOPS
program as a case-base reasoner which uses a restricted representation
scheme (CLP) to circumvent the semantic correctness issue. The program
performs mutations on the constraints defining the solution space. For
example, house-on-stilts, stilts-on-house are among the mutated alternatives
for a constraint house-on-site in CYCLOPS.

The retrieval of design cases starts with a partitioning of the case-base in
order to access potential matches for a given problem specification. The partition-
Phd Thesis - Fall 9828

Indexing and retrieval in CBD
ing is done through a target index definition by adopting one or more retrieval
strategies or techniques described above. The process of defining the target index
can be automated in a design process model or can be performed through user
interaction. Upon the retrieval of a set of potential matches (or their parts), the
case-base reasoner selects and ranks the best cases. This additional assessment
of the retrieved cases involves a comparison based on usefulness and similarity to
the given problem specification.

Maher groups the existing CBD approaches to matching and ranking based
on their choice of similarity metrics and ranking scheme. The first group defines
the best match in terms of the maximum number of matched properties (features
or attribute-value pairs). The second group uses the weighted sum of matched
properties to rank the cases. In both of these approaches, the current problem
specification provides the similarity metrics for ranking. The third group uses the
context as the similarity metrics to select the case with most potential to satisfy the
goal in the current problem situation. CBD systems may benefit from a combina-
tion of these approaches in defining their similarity metrics. For instance, SEED
adopts a similarity metric which incorporates the context and the current problem
specification within the target index. SEED ranks the cases based on the weighted
sum of attribute-value pairs, and performs matching on both context and problem
specification (Flemming, U., et.al. 1996).
Phd Thesis - Fall 98 29

Background
Phd Thesis - Fall 9830

CHAPTER III
Conceptual Model

This chapter introduces a hybrid memory scheme based on the salient issues
discussed in the literature survey. The scheme constitutes the basis of the
computable model which underlies SEED’s case indexing and retrieval engines.
The section also provides a requirement analysis for the suggested
implementation environment.

III . 1 Memory organization

This section describes the implications of the literature survey on the design of the
computable model and discusses the major design decisions and compromises.

1.1 Distinct schemes

The conceptual model behind this work traces the distinction between episodic
and semantic components for a memory model (Figure 1) in:

• Cognitive Psychology,

• Knowledge Representation,

• AI, and

• Architectural Typology.

Tulving introduced the distinction to the Cognitive Psychology literature and
focused on the distinct information processing mechanisms for episodic and
semantic memories (Tulving, E., 1972). In Knowledge Representation, the separa-
tion is considered in the context of the information processed by these mecha-
nisms. Episodic knowledge is expressed in terms of exemplars (or prototypes) and
31Phd Thesis - Fall 98

Conceptual Model
the semantic knowledge in terms of generic descriptions that summarize these
exemplars. Various forms of analogy-based reasoning paradigms (e.g. CBR) bor-
row from the Prototype Theory1 and focus on the use of episodic knowledge in
problem solving. Computational design systems modeled after these paradigms
(e.g. Case-Base Design systems) store exemplars/prototypes as solutions and
recall them in similar problem contexts.

On a similar track, the literature on Architectural typology identifies the
notions of type and building series, which reflect the separation between exem-
plars and summary descriptions. More importantly, the literature describes the for-
mation of type as an a-posteriori process2. As an implication, any attempt to
represent architectural type computationaly should take in to account that types
cannot be modeled in a deterministic fashion. Their definitions are subject to
change as long as there is a possibility of introducing new buildings or defining
new ways of grouping. Another important finding of the typological discussion is
that buildings can belong to multiple groupings accounting for different typologies
(functional, compositional etc.).

The literature survey identifies the following issues as the major determinants
of the conceptual model behind the hybrid approach described in Section III . 3:

• the separation of information captured in precedents and classifications in
terms of representation and processing

• classifications incorporating multiple groupings

• an evolving classification vocabulary.

In the hybrid approach, a classification may be a primitive concept or a com-
plex concept composed of a conjunction of other concepts. Each classification has
a set of necessary and sufficient concepts which apply to all of the precedents that
it describes. The scheme should ensure consistency within the set of necessary
and sufficient concepts defining a classification. Using Smith and Medin’s terms,
the hybrid approach incorporates the classical, the exemplar and the probabilistic
view in one model. The precedents are treated as exemplars or specific instances
of design solutions. These instances are grouped based on classifications captur-
ing orthogonal and multiple classifications, similar in content to a summary
description. The classifications, however, contain more information with respect to
the relationships between the features defining the concept. The assessment of
similarity for individual exemplars requires a probabilistic inference to determine
the closeness in fit.

1. Refer to Section 1.2 for more on PT.
2. Note that there is no consensus on the a posteriori nature of type in the typological
discussion. The reference here is to those who argue that the types are not extended from
pre-existing categories.
Phd Thesis - Fall 9832

Memory organization
FIGURE 1. Tracing the separation between semantic and episodic memory

1.2 Trade-offs

In the suggested computable model, distinct representation schemes for prece-
dents and classification are used in order to reflect the separation between
semantic and episodic components of the memory model. Accordingly, distinct
inference mechanisms are used for the retrieval of cases and comparison of clas-
sifications. This way, the scheme used to represent the precedents does not have
to be modified every time new thematic information is introduced to the system.
This information, on the other hand, can be represented in terms of classifications.
The classification vocabulary can be augmented with new concepts, or the exist-
ing concepts can be dropped when they are no longer relevant to the design con-
text. The grouping of precedents is a meta-level operation which does not
necessarily require any change in the representation of these precedents. Having
a separate engine for classifications and groupings brings high flexibility to the
retrieval mechanism and more expressiveness to the representation scheme.

On the other hand, the hybrid approach has potential weaknesses in com-
parison to a unified system of representation and retrieval:

• Redundancies: Since there are two distinct schemes for representing
design information, extra modeling effort is required to reduce redundancies.
It is important to decide on the nature of the information before assigning it to
the classification or precedent domain. The consistency between the two
domains will become an issue, if information is replicated in both domains.

episodic
memory

semantic
memory

exemplar summary
description

building
series

type

case
prototype

classification

Cognitive

Knowledge

Psychology

Representation

Architectural
Typology

AI
CBD
Phd Thesis - Fall 98 33

Conceptual Model
For instance, if the precedent representation comprises a constituent
hierarchy, the classification does not have to introduce concepts which will
be used to group precedents based on a part-of/consists-of relationship.

• Ambiguities: Efforts to reduce the redundancies may encounter concepts
that can be equally represented as part of the classification or precedent
scheme. Similarly, in some situations, classifications may have to combine
the concepts that belong to the precedent scheme with classification
concepts in their description. The modeling of the design information will
have to consider such ambiguities.

• Expensive maintenance: Reducing redundancy and preserving
consistency between the classification and precedent engines require
additional mechanisms for data maintenance.

Consequently, the hybrid approach adds some level of complexity to the
modeling process and causes the maintenance of the system to be relatively
expensive. The design decisions for the suggested computable model have been
finalized based on the issues identified in the literature survey as well as by the
requirements for building a CBD system as part of the SEED project. The following
sections identify these requirements.

III . 2 Requirements

The generic requirements are based on some of the prominent issues I addressed
in the survey of architectural typology and case-base design. I also identify imple-
mentation-specific requirements within the context of the SEED system.

2.1 Generic requirements

Conforming with the discussion on classification vocabularies and architectural
types, the generic requirements for indexing and retrieving precedents within a
case-base design system can be stated as below:

• Flexibility, extensibility: designing in an “open world” (Hinrich, 1992):
When a CBD system performs tasks in an open world, it is likely to deal with
incomplete knowledge in the form of incomplete knowledge of categories
(1), incomplete domain theories(2) or under-specified problems (3). The
indexing is affected by the first and third type of incompleteness. The design
domain includes open categories or unbounded sets which are widely used
in classifying design precedents. Their classifications in a case memory do
not form a closed set. New classification concepts may be added to the
system, and existing classification instances may be modified. These two
form of incompleteness necessitate the use of a flexible/extendible scheme
for case indexing and retrieval.
Phd Thesis - Fall 9834

Requirements
• Use of deep features: In complex problem solving activities such as design,
the retrieval may require the use of thematic features (e.g. goal, function,
behavior etc.) which may not be inferred from a case structure. These
thematic features, or deep features in the CBR literature, are obtained
through an elaboration and interpretation of generalized models of the design
domain. Indexing should support the organization of cases based on these
deep features without overloading the case content.

• Allowing for multiple groupings of cases, multiple paths to cases: The
classification of a design precedent may incorporate orthogonal taxonomies
representing functional, spatial, organizational concept hierarchies as in the
description: private-office-for-chief-executive.

• Computational efficiency: In design, case selection cannot be limited to an
attribute-by-attribute matching of surface and contextual features. The
retrieval is likely to involve lengthy comparisons of compositional and
geometric properties. An efficient indexing makes the retrieval a tractable
computational problem and speeds up the process.

2.2 SEED specific requirements

The implementation context for the hybrid model is the indexing and retrieval
capabilities for SEED’s CBD engine. SEED's architecture is based on a division of
the preliminary design process into phases. SEED intends to support each phase
by an individual support module based on a shared logic and architecture. Each
module in SEED addresses a specific task within the overall preliminary design
process. A module may use its own internal representation of design problems
and solutions. This allows for the local use of various pieces of existing and possi-
bly heterogeneous software, and the development efforts can be distributed
among several teams and over time. On the other hand, each module should
appear to the user as part of a unified whole. To facilitate this, the information
exchange between SEED modules is centered on a handful of shared concepts
such as (Woodbury, et.al. 1994):

• Specification Unit (SU): A SU is responsible for completely specifying all
information needed to select or develop a spatial program (possibly in the
form of a FU hierarchy as required by the layout module of SEED). At a
minimum, a SU consists of the building type, capacity, and site-context.
Information regarding the budget, names of other special codes/regulations
which are applicable to the current project, and the client's preferences are
also needed (Akin, et.al 1994).

• Functional unit (FU): A FU is an identifiable object intended to perform a
specific function or combination of functions in a building (e.g. a living room,
a load-bearing wall). A FU has associated constraints and criteria on its
shape, size, placement, relations with other FUs etc. A FU can contain other
functional units, which are called its constituents.
Phd Thesis - Fall 98 35

Conceptual Model
• Design unit (DU): A DU is a part of the spatial or physical structure of a
building with an identifiable spatial boundary. In a complete design, each
design unit has a FU associated with it. DUs can contain other DUs so that a
hierarchical decomposition of design units reflects a hierarchical
decomposition of the associated FUs and vice-versa.

The application of the hybrid approach to the design of SEED-CBD’s case
indexing and retrieval capabilities should take into account the following require-
ments (Flemming, 1994):

• Case representation in SEED should be unified to extend case storage and
reuse across tasks or modules and across problem levels within a module.

• Case representation should be structured around the triad problem, solution,
and outcome corresponding to the problem specification, generation and
evaluation components of a SEED module.

These requirements imply that each member of the triad may vary in content
depending on the module or task level. For instance, a solution description in one
module can be conceived as a problem specification for an other. In SEED’s archi-
tectural programming module SP, SUs are conceived as problems and FUs as
solutions. On the other hand, in SEED’s schematic layout design module SEED-
Layout, FUs are part of problem specifications. Since the CBD indexing scheme
should cater to all problem levels and modules, it must provide a common inter-
face to represent a case index on which matching is performed. It is possible that
the case index consists of parts of a problem or parts of a solution depending on
how a case is conceived in a module. For instance, in its current configuration, a
case index for SEED-Layout is a problem that includes the current context and
FUs to be allocated; it is used to retrieve the associated solution when, at a later
time, a similar problem is specified. It is possible that in a future version, SEED-
Layout may decide to retrieve cases based on the geometric properties of solu-
tions. In this case, the geometric representations of DUs, which constitute a solu-
tion in SEED-Layout, may be included in the case index in order to perform case
retrieval based on the geometric properties of the solution.

The classification capabilities are essential to the suggested case indexing
scheme and to the SEED project in general. SEED requires a classification engine
able to:

• define a taxonomy which supports subsumption, multiple inheritance, disjoint
partitioning

• use the classification to retrieve prototype objects with default properties

• to speed up the retrieval of cases in the SEED-CBD engine

The requirements on the indexing scheme guide the design of the retrieval
mechanism. When the case index is treated as an aggregation of objects, the
selection of the matching algorithm used in retrieval depends on the type of object
Phd Thesis - Fall 9836

Hybrid model
specified in the case index. A retrieval based on geometric properties would
require the use of a geometric matching algorithm. Therefore, matching in SEED-
CBD may have to support, for instance, R-Trees1 to index the geometries in DUs,
in order to retrieve layouts that satisfy a specified spatial containment relationship
(e.g. finding the layouts that contains, is-contained-by or overlaps DUs).

It should be possible in SEED to retrieve cases based on their classifications,
on their attribute values, on their structure with respect to their containment hierar-
chies, and these categories can be used alone, or in a combination.

To summarize SEED’s case indexing and retrieval requirements:

• The indexing scheme should provide a common interface to build a case
index incorporating various types of objects which, in turn, have associated
classifications.

• The retrieval mechanism should provide a common interface for specifying a
target that incorporates various matching algorithms and their associated
objects to be matched against the case index components.

III . 3 Hybrid model

The generality and the separation of the classification from the matching inference
are the major criteria in defining the computable model for classifying and recalling
precedents. These criteria distinguish the suggested approach from other
approaches to case indexing and retrieval.

• Generality: Generality is manifested in terms of a simple and common
interface for case-base operations which allows any module in SEED to use
its own semantics to define case components. Each module provides the
content for case index, solution, and outcome, which are merely generic
containers. Accordingly, a module’s account of how the retrieval is performed
and what the result should be, is captured in the content of a generic target.
The common interface also decouples the indexing and retrieval system from
its clients so that the system does not have to go through a major change
when a new sub-system is introduced to SEED.

• Separation of the classification from the matching inference: This
criterion arises from the differences between the two inference engines. The
classification inference yields a TRUE or FALSE to a is-a? query, whereas
the matching yields a degree of similarity. Classifications are represented by
relatively simple data structures (e.g. classification concepts do not have the
notion of equality based on recursive component identity) which nevertheless
allows the engine to make complex inferences. For instance, the system can

1. A R-tree is a self-maintaining data structure for quick searching large amounts of
spatial data. R-trees work well for representations of multi-dimensional objects which span
a range along one or more axes (Guttman, 1984).
Phd Thesis - Fall 98 37

Conceptual Model
infer subsumption relations from the representations of classifications
instead of relying on the direct assertions of these relations. The simplicity of
these representations also allows for a safer use of multiple inheritance. The
matching inference, on the other hand, deals with fairly complex object
structures. To assure polymorphism, SEED modules use single inheritance
in their object-based representation. The matching inference, therefore,
deals with single inheritance hierarchies but possibly complex part-of lattices.
The mechanisms for classification and matching inference can be modeled
separately; however, they need to cooperate during retrieval.

Table 1 summarizes the distinctions between the two engines with respect to
the kind of data they operate on. Precedents and classifications are compared
based on their choice of representation and typing schemes, and on their corre-
sponding inference mechanisms.

TABLE 1. Cases, prototypes and classifications

The precedents in an object model are persistently stored as part of cases or
prototypes in a case-base. Precedents have object-based representations and

Conceptual
model

Precedents Classification

Entities cases: solutions generated
by the system
prototypes: object prototypes
with standard or default
properties

concepts, individual
descriptions

Representation

object-based representation:
complex object
configurations with behavior

description-logic based
representation:
design descriptions
incorporating thematic
features

Typing scheme explicit naming using a rigid
type lattice

subsumption relations
inferred from flexible design
descriptions

Inheritance single inheritance to assure
polymorphism

multiple inheritance to
support multiple
classification

Strategy structural matching yielding
a degree of similarity

subsumption based infer-
ence yielding TRUE or
FALSE
Phd Thesis - Fall 9838

Hybrid model
reside in an object-oriented database. These data objects are accessed at runtime
for indexing and retrieval applications. The classifications, on the other hand, are
persistently stored in parallel knowledge-bases as descriptions. The knowledge-
base supports subsumption inference and performs consistency checking. The
classifications have a description-logic based representation which allows for mul-
tiple inheritance. The descriptions are interactively generated and queried by a
runtime classification engine.

The objects that are used to represent precedents may be assigned classifi-
cations. During retrieval therefore, the two engines may have to work in coordina-
tion. The similarity between the object configurations are measured by an object-
by-object, and attribute-by-attribute matching. The subsumption relations between
their corresponding classifications are determined by querying a classification
knowledge-base. When both of the engines are active, the classification engine
reduces the number of candidates on which a lengthy comparison will be per-
formed by limiting the search to the objects with compatible classifications.
Phd Thesis - Fall 98 39

Conceptual Model
Phd Thesis - Fall 9840

CHAPTER IV
Software Architecture

This chapter describes the implementation of the hybrid model introduced in
Chapter III. The software requirements are identified within the context of the
SEED development environment. The individual component architecture is
provided along with the outline of the classification knowledge-base and case-
base organization and functionality. The last section describes the case-base
matching and retrieval engine and discusses various retrieval options with respect
to the implementation. The classification knowledge-base and the case-base will
be further elaborated in the chapters dedicated to SEED-KBC and SEED-CBD,
respectively.

IV . 1 Software requirements

SEED’s multi-team development encourages the use of as many commercial soft-
ware as possible and produces software only when it is not commercially avail-
able. SEED’s strategy towards the use of commercial software applies to the
development of the SPROUT modeling environment, the database support envi-
sioned for SEED1. The classification knowledge-base and the case-base engine
are conceived as part of SPROUT functionality. In this section I identify the pack-
ages and programming environments selected for the development of SPROUT.
The integration of SEED-CBD, SEED_KBC and the SPROUT modeling environ-
ment provides an implementation framework based on which the software require-
ments are identified.

1. SEED Project’s Representation of Objects Utilizing Technologies (Snyder, J. et.al.,
1995).
41Phd Thesis - Fall 98

Software Architecture
1.1 Object databases

The modules in SEED make use of object-based representations. Consequently,
for the persistent storage of the information generated by the modules, SPROUT
favors the use of a database which supports object-based representations. More-
over, the suggested object database system should not require the use of a spe-
cific programming language such as C++, for the reasons I introduce when I
discuss the need for platform-independent programming languages. The UNISQL
object/relational database system meets all the requirements specified above. In
addition to the provision of full object implementations, UNISQL supports an
extended version of SQL for complete object management and queries.

1.2 Description logic-based classification

In order to support multiple classification of the persistently stored objects,
SPROUT requires the use of a representation technique which allows for the defi-
nition of orthogonal taxonomies. The CLASSIC knowledge representation system,
developed by AT&T Bell Labs, constitutes a reference implementation model for
SEED-KBC. CLASSIC (Borgida, A. et.al., 1992) uses a description-logic based
representation technique and has algorithms that are known to be tractable.
CLASSIC concentrates on the definition of structured concepts and their organiza-
tion into taxonomies. Subsumption and classification, key inferences supported by
SEED-KBC, are implemented based on CLASSIC’s definitions.

1.3 Platform-independent runtime systems

SEED is a heterogeneous software environment in which multiple hardware plat-
forms can be accommodated. The use of compiled languages such as C/C++ pro-
duce programs which need to be ported to each hardware platform incorporated
within SEED’s development environment. The Java virtual machine, as a platform
independent runtime system, can be used to generate program executables for
multiple hardware platforms. Consequently, through the use of Java, extensive
hardware-specific re-developments can be avoided. Both SEED-KBC and SEED-
CBD provide application programming interfaces written in Java in order to ease
the integration with the Java based server architecture envisioned for SPROUT.

IV . 2 Overview

The complete SPROUT modeling environment incorporates a shared data model,
the classification model and the case-base model (Snyder, J., 1998). The SEED-
KBC implements the classification model as a distinct component in order to allow
for multiple classification models. In this way, each SEED module or agent can
create its own classification knowledge-base. Similarly, the separate implementa-
tion of SEED-CBD allows for the management of multiple case-bases.

Another important integration issue is the notion of workspace suggested by
the SPROUT system architecture. A workspace can be defined as a collection of
Phd Thesis - Fall 9842

Components
active and accessible objects that are defined in a particular representation1. The
SPROUT software architecture suggests that shared object representations be
included into a SPROUT workspace, which in turn can incorporate subsystems
such as the classification and case-base software components. The SPROUT
workspace is a client to the UNISQL server - database management system. Indi-
vidual modules or agents can access the SPROUT facilities (including classifica-
tion and case base retrieval queries) using the application programming interfaces
of their own workspaces, referred to as host workspaces. The agents are required
to provide an implementation of a workspace and maintain the links between their
workspace and the SPROUT workspace.

SEED-KBC and SEED-CBD provide both a C and a Java application pro-
gramming interface. The functionality provided by these APIs can be accessed by
host applications or host workspaces either directly by using the C API, provided
they can open client connections to the UNISQL database server, or through the
Java API, which creates a client connection for each transaction. The APIs can
also be accessed by the agent host workspaces through SPROUT once they are
incorporated to the SPROUT workspace.

The SEED-KBC and SEED-CBD components are implemented as distinct
engines. They reference the objects in the SPROUT data model through global
object identifiers and type signatures. A global object identifier is used to access a
unique SPROUT representation of a data object. A type signature is the name of
the SPROUT class from which a data object is instantiated. In SPROUT specifica-
tions, both global object identifiers and type signatures are represented by strings.
SEED-CBD’s runtime retrieval capabilities require access to SEED-KBC, SEED-
CBD and SPROUT data models during matching, and hence are implemented in
another distinct component (Figure 2). The following section provides a more
detailed description of these components.

IV . 3 Components

Based on the software requirements and SPROUT’s system architecture, SEED-
KBC and SEED-CBD implement classification and case-base capabilities as appli-
cation programming interfaces in C and Java.

3.1 Component architecture overview

The conceived base architecture (Figure 3) is common to both engines; it consists
of the following components:

• Schema: The schema contains the object-based representations of engine-
specific concepts. The classes and objects reside in a UNISQL database file.
The queries that address the SEED-KBC engine trigger specific inferences
that are implemented as object or class methods in the schema.

1. The definition is borrowed from (Snyder, J. 1998)
Phd Thesis - Fall 98 43

Software Architecture
• C - API: The C - API is a direct interface to the engine functionality built using
UNISQL’s C application interface and data structures. The applications or
workspaces (SPROUT or host workspaces) that use the C - API should be
able to do their own database transactions management.

• UNISQL C - API: The UNISQL API is an interface to the database
functionality consisting of a library of C functions and data structures. The
API is supported by UNISQL for complete object management and queries.

• Java Native Interface (JNI): Java comes with hooks for working with
system libraries to make calling of native methods possible. Native methods
are methods that are written in languages other than Java. The Java Native
Interface is a language binding supported by all Java Virtual Machines.

FIGURE 2. Data models for SPROUT database, SEED-CBD, SEED-KBC.

• Java - API: The Java API uses Java’s Native Interface to connect to the
functionality provided by the C -API. While calling a native method, it also
opens a client connection to the target database and closes it upon the
completion of the transaction. In this way, the database is locked to other
client requests only within the duration of the transaction. The Java - API can
be used simply by importing the java-api class into the host application1.

class

object

SEED-CBD Case-Base

SPROUT Data Model

Classification KB

case target

SEED-KBC

classification

SEED - CBD
Retrieval &
Matching Engine
Phd Thesis - Fall 9844

Components
FIGURE 3. Component architecture

3.2 SEED-KBC

The classification knowledge-base is completely independent of the SPROUT
data model in performing its key inferences and conflict checks. The only depen-
dency is manifested in the object references. Objects that are persistently stored
in the SPROUT database can be registered and assigned a classification in the
knowledge-base. The classification knowledge-base schema requires a global
object identifier and a type signature for the registry. Other SEED-KBC specific
concepts that are defined in the knowledge-base schema are

• knowledge bases,

• classifications and other concepts used to define classifications (e.g.
primitives),

• a dictionary of registered host objects (objects that are defined outside the
classification knowledge-base) and the classification they are associated
with.

1. Refer to Appendix A: Using SEED-KBC and SEED-CBD APIs for the use of these
APIs.

UNISQL

UNISQL - C API

SCHEMA

Java - API

C - API

database

open/close
transaction

workspace

module / agent
SPROUT

JNI

client
Phd Thesis - Fall 98 45

Software Architecture
The SEED-KBC engine functionality can be summarized under the following
generic transaction types:

• requests to build knowledge-bases, to create and modify classification
descriptions, to register and classify host objects,

• queries to find out the classification of a particular host object and to
compare various forms of classifications in terms of their subsumption
relationships.

3.3 SEED-CBD

Unlike SEED-KBC, the case-base engine contains a distinct retrieval matching
engine, and hence, performs the majority of its inferences outside the case-base.
The matching inference, which is triggered by the retrieval queries, is implemented
outside the class and object methods that are specified within the case-base
schema. The matching inference depends on the SPROUT data model as well as
the classification knowledge-base. Access to various databases during matching
is coordinated by an outside retrieval engine. Similar to the classification knowl-
edge-base, SEED-CBD depends on the objects that are persistently stored in the
SPROUT database. These objects can be registered as proxies and can be used
to define case and target contents. The schema requires a global object identifier
and a type signature for the registry. Other SEED-CBD specific concepts that are
defined in the case-base schema are

• case bases,

• cases and targets,

• match operators.

The SEED-CBD engine functionality can be summarized under the following
generic transaction types:

• requests to build case-bases, to create and modify case and target
descriptions, to register proxies, to define match operators, to annotate
cases (i.e. to allow the less structured case-specific textual information to be
attached to cases in the form of annotations)

• queries to retrieve cases based on a target description, a classification or an
annotation; and to browse case and target descriptions.

3.4 Retrieval and matching

SEED-CBD’s retrieval capabilities allow for the recall of persistently stored objects
that are organized and indexed as part of cases. In a standard retrieval, recall is
based on the assessment of similarity between a target description representing
the problem situation and cases that reside in the case-base. The comparison
Phd Thesis - Fall 9846

Components
involves matching between objects referenced within the case and target indices.
The type of matching inference can be specified within the target by assigning a
match_operator to the current matching task. The standard SEED-CBD matching
inference requires the following queries to be available in the SPROUT application
programming interface:

• is_subclass/is_superclass: Compare two type signatures to find out whether
one is a subclass/superclass of the other.

• is_instance_of: Given a global object identifier and a type signature,
determine whether the referred object is an instance of the class denoted by
the type signature.

• get_attributes: Given a global object identifier, retrieve the attributes of the
referred object.

• get_attribute_value: Given a global object identifier and an attribute path,
return the specified attribute value for the referred object.

The retrieval capabilities make use of classification inferences through the
following queries provided by the SEED-KBC API: IsClassifiedSpobj(), IsRegis-
teredSpobj(), classificationCompare(), getAllClassified(), getClassification(). The
method specifications for these queries can be found in Chapter V.

Another type of retrieval is classification-based retrieval where cases are
recalled only if their indices reference objects with compatible classifications,
where a compatible classification is either identical, equivalent or subsumed by
the target classification. The last type of retrieval recalls cases solely based on
annotations added by the user who defined the case. Table 2 identifies the
engines that are coordinated in order to perform various types of retrieval in
SEED-CBD. Chapter VII illustrates each retrieval type within a demo case-base
and a sample classification knowledge-base.

TABLE 2. Retrieval types and engines involved

retrieval matching
inference

classification-
based

annotation-
based

SEED-CBD X X X

SEED-KBC X X

SPROUT-DB X
Phd Thesis - Fall 98 47

Software Architecture
Phd Thesis - Fall 9848

CHAPTER V
SEED’s Classification Knowledge-Base

This chapter describes the implementation of SEED’s classification engine in
terms of its database schema and its key inferences: subsumption and
classification. The specifications for the SEED-KBC Java Programming
Application Interface can be found in Appendix B.

V . 1 Overview

SEED modules to capture design information by means of object-oriented repre-
sentations of classes, subclasses and their instances as complex object configura-
tions. A subclass inherits properties (attributes and behavior) from the class it is
derived from. The SEED developers decided early on that the database would
have to support only single inheritance because the anomalies and ambiguities
inherent in multiple inheritance cannot be resolved consistently across different
programming languages and object-based representations. Specifically, modules
use single inheritance carefully in order to take advantage of polymorphism.

However, SEED modules require objects to be multiply classified through
multiple, often orthogonal classification hierarchies. But the database’s single
inheritance representation scheme cannot be used for this type of classification.
Therefore, SEED-KBC is set up as an independent classification engine that pro-
vides the following functionalities to overcome this shortcoming:

• means to build a taxonomy which supports subsumption, multiple
inheritance among classes, partitioning with disjoint primitives for data
objects.

• provision of permanent storage for the classifications along with the
identifiers of the classified objects

• means to query subsumption relations between classifications.
49Phd Thesis - Fall 98

SEED’s Classification Knowledge-Base
• means to issue queries to identify objects classified by a certain
classification and/or by its subsumees.

• means to maintain multiple classification knowledge-bases that allow SEED
modules to operate on distinct taxonomies.

FIGURE 4. SEED-KBC

It is important to understand how classification is conceived in SEED-KBC for
an efficient use of the engine. Classifications should not to be used to build com-
plex data models incorporating geometry, tuples or series. Classifications have no
notion of equivalence based on recursive component identity since they are not
defined in terms of has-a / part-of relationship hierarchies. These structured partial
descriptions are best used to provide thematic categorization support. The sub-
sumption inference employed by the engine is not based on the structural proper-
ties or behavior of the classified objects. Such inferences would require the
replication of the structural rationale and information inherent in the single inherit-
ance representation of the classified objects on the classification knowledge-base
side.

The classification of a data object requires the object to be registered in the
knowledge base. Once the object has been registered, it can be associated with a
previously defined classification. These classifications can be modified by means
of adding or retracting information.

class

object

description

(told description)

Classification Knowledge-BaseData Model

host types primitives

classification

derived
info

combinesrestricted_to

classifies

object-proxy

inherits_from

host individuals

represent
Phd Thesis - Fall 9850

Classification
A classification knowledge-base schema resides in a database file along with
a dynamically linked shared object file for the methods of the inference engine.
SEED-KBC currently consists of Java and a C API incorporating the methods that
access the classification knowledge-base.

V . 2 Classification

This sections describes what constitutes a knowledge-base in SEED-KBC. The
basic structure of the knowledge-base schema, the concept definitions and the
inference mechanisms liberally borrow from the Classic knowledge representation
system (Borgida, A. et.al., 1993). Subsumption is best defined in the Classic con-
text by Woods (1991) as follows:

In traditional semantic networks, the conceptual taxonomy is composed of directly
asserted subsumption relations. In systems in which there are formally structured con-
cepts, as in KL-ONE, subsumption of structured concepts can sometimes be inferred
from the structures of the concepts (together with the subsumption relationships of
their constituents.)

The SEED-KBC engine can maintain multiple kb instances (knowledge-
bases) that are specialized for various SEED modules.

2.1 KB instance

A kb instance maintains a domain of primitives (internally defined types), host
types (class names or type signatures of the host objects) and classifications. It
also maintains a dictionary of global object identifiers for host objects and the
associated classifications. The domain specifications and the dictionary are spe-
cific to the kb instance and hence, cannot be shared between different kb
instances.

2.2 Primitive

A primitive is an internal type or category residing in a single inheritance type hier-
archy. Primitives are combined to form classifications. SEED-KBC recognizes two
types of primitives:

• a simple primitive represents a categorization concept (e.g. types, residential
in (Figure 5)).

• a disjoint primitive represents a disjoint grouping concept (e.g. composition
in (Figure 5)).
Phd Thesis - Fall 98 51

SEED’s Classification Knowledge-Base
FIGURE 5. A sample primitive hierarchy.

A simple primitive is disjunct if it has a disjoint primitive ancestor (e.g. linear,
central). A disjunct primitive conveys a concept together with the information that it
DOES NOT convey any other concept represented by primitives in its disjoint
grouping. Consequently, a disjunct primitive cannot be combined with another
primitive in its disjoint grouping. Note that a primitive can belong to multiple disjoint
groupings. For instance, the primitive peripheral in Figure 5 belongs to two disjoint
groupings by having composition and circulation as its ancestors.

2.3 Host type

Host types (or host concepts) are type signatures of registered and classified
objects in the data model. The classification knowledge-base maintains the host
types to allow the user to restrict the target domain of classification assignments, if
necessary, to subsets of data objects. The class inheritance relations between the
host types, on the other hand, are not maintained in order to avoid replication of
the information existing outside the classification knowledge-base.

2.4 Classification and description

A classification is a told description, which is composed of primitives and a set of
restrictions. A restriction is an allowed host type for objects to be classified. A clas-
sification can in turn inherit from one or more classifications.

A told description may be modified by adding or retracting primitives, restric-
tions or inherited classifications. When a classification is modified, the changes
are propagated to all the classifications that inherit from the altered told descrip-

linear

Composition

courtyard

circulation

Residential

types

simple

disjoint
central peripheral
Phd Thesis - Fall 9852

Classification
tion. As a consequence of the updates, an altered classification may no longer
classify a host individual due to changes in the restriction set.

A derived description is the information derived from a told description1. It
contains new and inherited primitives and restrictions in normalized form. A
description resides in a subsumption graph along with other derived descriptions.

2.5 Host individual

A host individual represents a database object through its unique identifier and
type signature (a host type). A database object must be registered as a host indi-
vidual in the knowledge base before it can be classified. Classifications are thus
linked to data objects through host individuals.

2.6 KB organization

The following properties are true for the structure of the classification knowledge
base:

• a host individual can be associated with at most one told description

• a told description is always associated with one (normalized & classified)
description

• a classification may classify no or many host individuals

• more than one classification can be associated with the same description
(they are called synonyms)

• A classification exists independently of host individuals

• Primitives exist independently of classifications

• When the user attempts to discard a told description, the associated
description is discarded along with it only if the told description has no
synonyms.

2.7 Subsumption inference

A classification C1 subsumes another classification C2, if C1 is equivalent to C2, or
C1 is more generic than C2. More specifically, in order for C1 to subsume C2, for
each primitive used in defining C1 there should be an equivalent or more specific
primitive in C2. Similarly, for the host type restrictions, C1’s set of restrictions

1. See Section 2.8 for the definition of normalization process through which a derived
description is generated.
Phd Thesis - Fall 98 53

SEED’s Classification Knowledge-Base
should be a either an empty set (no restrictions, the most generic form) or a super-
set of C2’s set of restrictions.

2.8 Normalization and classification

Normalization of a told description involves the instantiation of a derived descrip-
tion. The classification engine checks for possible conflicts when it combines the
told primitives and restrictions with the ones derived from the inherited classifica-
tions (e.g. disjoined primitive conflict, inheritance conflict). It also eliminates primi-
tive redundancies by keeping the most specific primitives. Once a derived
description has been created it is inserted in to the subsumption graph after its
subsumees and subsumers are identified.

2.9 Conflicts

A disjoined primitive conflict arises when there is an attempt to combine disjoined
primitives (primitives in different branches of a disjoint grouping).

A restriction conflict arises when there is an attempt to associate a host indi-
vidual with a classification which is restricted to host types other than the current
host individual’s.

An inheritance conflict arises when a classification inherits from two disjoined
classifications. Two classifications C1 and C2 are disjoined if a derived primitive
(an inherited or a told primitive) p1 of C1 and a primitive p2 of C2 are disjoined.

V . 3 System architecture

This section describes the software architecture envisioned for the SEED-CBD
engine in terms of its components and introduces the application programming
interface for the classification functionality. The conceived system architecture for
SEED-KBC (Figure 6) consists of the following components:

• KB schema: The kb schema is implemented using UNISQL’s object-based
representation scheme (Appendix D: Database Representations). The KB
class and instance methods that are used to maintain and query the
knowledge-base are accessed by the database through a dynamically linked
library file: dbmethods.so.

• UNISQL C - API: The UNISQL API is an interface to the database
functionality consisting of a library of C functions and data structures. The
API is supported by UNISQL for complete object management and queries.

• KBAPI: The KBAPI consists of wrapper functions implemented in C to
interface the KB class and instance methods.
Phd Thesis - Fall 9854

System architecture
• KB Java-API: The Java KB API class provides methods to manage a
classification knowledge-base session. A KBWorkspace uses JNI (Java
Native interface) to call the KBAPI functions through a dynamically linked
shared object file: kbapi.so. Java server agents (e.g. the case-base server)
can import the java KB API class to access the SEED-KBC engine.

FIGURE 6. System architecture

Java Server

CB

KB SCHEMA

KB

DB

UNISQL

UNISQL - C API

dbmethods.so

KBAPI kbapi.so

KB-API
Java Class JNI
Phd Thesis - Fall 98 55

SEED’s Classification Knowledge-Base
Phd Thesis - Fall 9856

CHAPTER VI
SEED’s Case-Based Design Engine

This chapter describes the implementation of SEED’s case base design engine in
terms of the database schema, retrieval mechanisms and matching inference. The
specifications for the SEED-CBD Java Programming Application Interface can be
found in Appendix C.

VI . 1 Case-base

SEED’s case-base design engine provides more than a repository for precedents:
it allows individual SEED modules to incorporate their module-specific reasoning
within the case-base. A module’s implementation for the case-base functionality
customizes SEED-CBD’s generic capabilities of case representation, indexing and
retrieval based on the module’s internal logic.

This specialization of the generic functionality happens at three different
stages: the representation, indexing and retrieval. During the representation
stage, the modules organize the objects they generate within a case composition.
In the indexing phase, they decide which object(s) are indispensable in recalling a
case. In the retrieval phase, they provide module/problem-specific matching infer-
ences for the objects they define in the case index. The use of generic containers
in the case definition gives the modules the flexibility to modify the organization,
indexing and matching inference assignments at any point.

The first two layers of functionality are provided inside the case-base and use
the object and class methods that are defined in the schema. The third functional-
ity uses the same schema methods, yet is coordinated from outside the case-
base. Figure 7 provides a more detailed breakdown of the case-base data model,
the retrieval engine and the matching inference with respect to the other data
models they interact with. From SEED-CBD’s point of view, the SPROUT data
model is as abstract as a repository of objects with type signatures (or classes).
These objects are represented via proxies inside the case-base.
57Phd Thesis - Fall 98

SEED’s Case-Based Design Engine
The interaction with the classification engine takes place during retrieval and
matching. The SEED-KBC API is accessed whenever object classifications are
compared in order to decrease the number of matching operations, or when the
retrieval is solely based on a specified classification. The engine interacts more
with the SPROUT data model during matching. The matching inference does not
need to know about the case-base data model, since the comparison occurs
between objects that are persistently stored in the SPROUT database. During
retrieval, on the other hand, objects which belong to the case-base data model are
compared (i.e. case and target).

FIGURE 7. Data models and inference engines.

1.1 SEED-CBD concepts

The SEED-CBD engine can maintain multiple case-bases in which modules define
and populate their cases, targets, match operators and register the objects from
the SPROUT data model as proxies. This section defines and describes the con-
cepts that are introduced as part of a case-base schema.

1.1.1 CB

The SEED-CKB engine stores multiple cb instances (case-bases), which are iden-
tified by their unique name. The concepts that are created within a case-base are

class

object

Case-Base

SPROUT Data Model /

Classification KB

CBD - Retrieval engine

host type

host individual

proxy
 :type signature

CBD - Matchingtarget

case

match
operator

classifications

Database
Phd Thesis - Fall 9858

Case-base
associated with the cb instance through this uniquely identifying name. When a cb
instance is discarded or cleaned up, subsequent discard calls are triggered on var-
ious case-base concepts (e.g. cases, targets) which will be described in the follow-
ing sections.

1.1.2 Case

A case is composed of four containers corresponding to a problem, solution, out-
come and a case descriptor. Each container implements a set of proxy object ref-
erences (Figure 8). In SEED-Layout for example, a case problem is a set
containing references to proxy objects that represent a Functional Unit and a con-
text object from the SPROUT database. In the same example, the solution is
another set which consists of a proxy object reference representing a layout.

A case descriptor is another container of object references which are consid-
ered to be significant in recalling a case. For example, the default descriptor for a
case is its problem for SEED-Layout. However, if the module decides at one point
that the retrieval of a case should consider the geometry of a layout, the case
descriptor (or case index) can be augmented by a layout object reference. The
proxy references contained in a case descriptor are called case matchables. In
addition to the case index, a case can be recalled based on its annotations. This
allows the cases to be distinguished based on unstructured information (substring
match).

FIGURE 8. Case decomposition

1.1.3 Target

A target is similar to a case descriptor both in idea and structure. Targets are used
to describe a particular problem situation; they contain information crucial to
retrieve a case. This information is represented through a target matchables set
(Figure 9). A target matchable differs from a case matchable because it contains

db_collection:imported case_obj
#case_id:const char *
#told_name:const char *

case_descr

outcome

parent_case

index

annotations

problem

solution
Phd Thesis - Fall 98 59

SEED’s Case-Based Design Engine
information about how to perform a match in addition to what to perform the match
on. A target matchable consists of a pair containing a proxy object and a match
operator reference. If the retrieval is to be performed using the case-base’s default
matching mechanism, the match operator is set to default for a matchable pair.

FIGURE 9. Target description and match operator

1.1.4 Proxy

A proxy is a case-base representation of a data object which is persistently stored
in the SPROUT database. The case-base engine requires a proxy to contain
referred object’s global identifier and type signature as information (Figure 7).

As an independent engine, the case-base does not perform any consistency
check for the referred object in order not to replicate the inheritance information
maintained in the SPROUT database. The host workspace or application which
uses the API is responsible of registering the proxies and maintaining the consis-
tency between the data objects in SPROUT and their case-base proxies.

1.1.5 Match operator

A match operator is a matching strategy which is selected for a particular retrieval
session. More specifically, it is a database representation of a C function which is
called to perform matching between a target and a case matchable at runtime.
The function is associated with a match operator class method in the case-base
schema and accessed by the UNISQL database at runtime. Since the creation of
a match operator modifies the case-base schema (unlike the other transactions
which solely operate on the case-base data), an invalid file reference would cause

target_matchable
#matchable_ID:const char *
#match_operator_name:const char *

cb_object

match_operator
#so_location:const char *
#mo_name:const char *
#matchable_type_signature:const char *

host_method

parent_descr

calls

target_descr
Phd Thesis - Fall 9860

Case-base
the match operator class definition to be inconsistent. Therefore, at the creation
time, a match operator should be registered with a valid path to its implementation
file (a shared object file). A match operator instance inherits information about its
implementation function (i.e. c-function name and the shared object file location)
from its parent class: match_operator (Figure 9).

FIGURE 10. Case-base organization

1.2 Organization

The SEED-CBD database maintains multiple case-base instances for various
modules based on the following requirements or facts:

• Modules may define different case contents.

• Modules may record different retrieval information.

• Modules may implement different retrieval strategies.

• Modules need to maintain different sets of proxies depending on their case-
base retrieval scenarios.

Hence, each case-base instance is associated with multiple module-specific
cases, targets, match operators, and proxy objects (Figure 10). These case-base
components cannot be shared among different case-base instances.

cb_component

cb_object
#medhod_file:$SEEDCBD/cbmethods.so

case_obj

case_descr

target_descr

CB
#cb_name:const char *

proxy_obj
#type_signature
#unique(dboid)descr

db_collection:imported

belongs_to

matchables
Phd Thesis - Fall 98 61

SEED’s Case-Based Design Engine
FIGURE 11. SEED-CBD system architecture

VI . 2 System architecture

The SEED-CBD system architecture (Figure 11) consists of the following compo-
nents:

• CB schema: The cb schema is implemented using UNISQL’s object-based
representation scheme (Appendix D: Database Representations). The
case_base, case, proxy, target, cb_component class and instance methods
that are used to maintain and query the knowledge-base are accessed by the
database through a dynamically linked dynamic library file: cbd /
dbmethods.so.

• UNISQL C - API: The UNISQL API is an interface to the database
functionality consisting of a library of C functions and data structures. The
API is supported by UNISQL for complete object management and queries.

• KBAPI: The KBAPI consists of wrapper functions implemented in C to
interface the KB class and instance methods.

Java Server

KB

CB SCHEMA

CB

DB

UNISQL

UNISQL - C API

cbd / dbmethods.so

CB C-API

cbdapi.so

CB Java-API
Java Class JNI

KB SCHEMA
kbc / dbmethods.so

KBAPI
Phd Thesis - Fall 9862

System architecture
• CB C-API: The CB C-API consists of wrapper functions which interface the
case_base, case, proxy, target, cb_component class and instance methods.

• CB Java-API: The CB API is implemented via Java class methods that
manage a case-base session. CB Java-API uses JNI (Java Native Interface)
to call the CB C-API functions via a dynamically linked so file: cbdapi.so.
Phd Thesis - Fall 98 63

SEED’s Case-Based Design Engine
Phd Thesis - Fall 9864

CHAPTER VII
Retrieval

This chapter provides demo retrieval sessions. These retrievals are performed on
a demo case-base and a classification knowledge-base in order to illustrate the
coordination between two distinct inference mechanisms employed by the SEED-
CBD’s retrieval engine: subsumption inference and matching.

VII . 1 A demo classification knowledge-base

This section describes a knowledge-base for thematic descriptions which are used
to classify a number of demo data objects. These data objects are referenced
inside the knowledge-base through their unique object identifiers. In the suggested
knowledge-base, a data object is represented by the concept host individual. A
host individual is defined in terms of a unique identifier and a class reference. In
the classification knowledge-base terminology, a class reference is a host type.
Host type references the class of a data object through the class name (type sig-
nature). Host types and host individuals can be created independent of the other
classification concepts. However, host types must be defined prior to the definition
of host individuals.

In addition to host types and individuals, the demo classification knowledge-
base consists of classifications and a knowledge-base instance they are associ-
ated with. Recall that in knowledge-base terminology, a classification is a told
description. Told descriptions are defined in terms of primitives and restrictions
targeting host types. Hence, before a told description can be created in a knowl-
edge-base, the referenced primitives and host type restrictions must already exist.
Along with these concepts, a knowledge-base instance maintains a subsumption
graph for descriptions, primitive hierarchies and the records of associated host
individuals and the classification pairs. The subsumption graph is derived from the
descriptions, and the descriptions are derived from the told descriptions by the
engine. The definitions for the knowledge-base concepts and the classification
65Phd Thesis - Fall 98

Retrieval
assignments, on the other hand, are provided by the designer-builder of the knowl-
edge-base.

In order to satisfy the precedence constraints while building of a knowledge-
base, the following steps must be performed in order:

1. Define primitives and register host types
2. Register host individuals
3. Define classifications
4. Assign classifications to host individuals

1.1 Primitives

When creating a primitive, the concepts that are declared in its definition must
exist in the knowledge-base. Hence the building of a primitive hierarchy proceeds
from top to bottom-- from the most generic primitive to the most specific primitives.
A sample primitive hierarchy for the knowledge-base “SEED_Layout” is provided
in Figure 12. This sample primitive hierarchy is created in order to define complex
building classifications incorporating orthogonal type hierarchies such as two-com-
pany-headquarter-army-firestation and one-company-satellite-army-firestation.
These building classifications combine functional and organizational concepts with
concepts representing scale and centrality. Each concept category is defined as a
primitive or as a disjoined primitive (e.g. privacy).

The overall context for this example is the design of firestations for Army-
bases. The primitives in Figure 12 provide basis for classifying programmatic and
spatial components in such buildings.

1.2 Host types

Host types are similar to primitives, but they do not reside in a generalization hier-
archy1. Therefore, they can be registered in any order. The data objects which will
be used in the retrieval session later in this chapter have the following types:

Building_FU
Story_FU
Massing_FU
Zone_FU
Room_FU
Building_LAYOUT
FU_Context

Each type signature listed above is represented by a host type in the suggested
demo classification knowledge-base “SEED_Layout”. In the context of SEED-Lay-

1. For the reason explained in Section 2.3 of Chapter V
Phd Thesis - Fall 9866

A demo classification knowledge-base
out, the particular types listed above represent spatial components of buildings
and the requirements they must satisfy.

FIGURE 12. Sample primitive hierarchy

top_primitive

types

function

army

organization

government

scale centrality privacy

company_size public private

satellite headquarter

office daily_activity

living dining
administrative

shift_supervisorchief_executive

laundry_facilitykitchen bathroomhoseapparatus

mechanical dorm service_unit

firestation residentialspatial_generic
health_care

hospital clinic

one_company two_company
Phd Thesis - Fall 98 67

Retrieval
1.3 Host individuals

Host individuals must be registered in the knowledge-base before they are
assigned classifications. The knowledge-base must have a definition of the host
type in order to register the individual. The individuals that are registered in the
test knowledge-base “SEED_Layout” are:

Unique Object
Identifier Type Signature

SPB_1 Building_FU

SPB_2 Building_LAYOUT

SPB_3 Building_FU

SPB_4 Building_LAYOUT

SPC_1 FU_Context

SPC_2 FU_Context

SPC_3 FU_Context

SPM_1 Massing_FU

SPM_2 Massing_FU

SPM_3 Massing_FU

SPM_4 Massing_FU

SPM_5 Massing_FU

SPZ_1 Zone_FU

SPZ_2 Zone_FU

SPZ_3 Zone_FU

SPZ_4 Zone_FU

SPZ_5 Zone_FU

SPR_1 Room_FU

SPR_2 Room_FU

SPR_3 Room_FU

SPR_4 Room_FU

SPR_5 Room_FU

SPR_6 Room_FU

SPR_7 Room_FU

SPR_8 Room_FU

SPR_9 Room_FU

SPR_10 Room_FU

SPR_11 Room_FU

SPR_12 Room_FU

SPR_13 Room_FU

SPR_14 Room_FU
Phd Thesis - Fall 9868

A demo classification knowledge-base
Except for SPB_2 and SPB_4, all objects identified in the above table repre-
sent elements of specific spatial programs for firestations. SEED_Layout is able to
create layouts of these elements by assigning to each a Design Unit in a layout.
SPB_2 and SPB_4 represent such layouts.

1.4 Classifications

Similar to primitives, the knowledge-base must have the definitions of the con-
cepts which are used to define a classification (e.g. primitives, inherited classifica-
tions, allowed host types) at the time of its creation.

The following is a list of the classifications in the demo knowledge-base
“SEED_Layout” accompanied by the classification information derived by the sys-
tem.

1.4.1 Told information

The information required to define a told description consists of a unique told
description name, a list of names for inherited told descriptions, a list of primitive
names representing various concept categories, and a list of host type names for
restricting the classification assignments to particular types of data objects. In the
example below, Basic_Building constitutes a base description through which a set
host type restrictions are identified and passed to all of the inheriting told descrip-
tions. For instance, the classification CL2 inherits from Basic_Building, and hence,
it is restricted to classify objects of type Building_FU or Building_Layout. In addition
to the restrictions inherited from Basic_Building, CL2 contains the primitive head-
quarter. In a similar example, CL17 inherits from the classification CL13 which in
turn is derived from another base classification Spatial_function. CL17 inherits the
restrictions Zone_FU, Massing_FU and Room_FU (from Spatial_function through
CL13), and the primitive mechanical (from CL13) in addition to its own primitive appa-
ratus.

SPR_15 Room_FU

SPR_16 Room_FU

SPR_17 Room_FU

SPR_18 Room_FU

Told description
name

Inherits from Primitives Restrictions

Basic_Building Building_FU
Building_Layout

CL1 firestation,
one_company,
satellite

Building_FU

Unique Object
Identifier Type Signature
Phd Thesis - Fall 98 69

Retrieval
1.4.2 Derived Information

For each told description, the KBC engine generates a derived description unless
there is an equivalent derived description that already exists in the knowledge-
base. The information in a derived description consists of normalized sets of (told
and inherited) primitives and restrictions. Based on this information, the existing
knowledge-base descriptions are re-classified with respect to the new derived
description in order to identify new subsumption relationships. In the
Basic_Building example, the derived description associated with Basic_Building
has no subsumers since it is considered as a base description. The classification
engine infers subsumption relationships that are not explicitly told. For example,
CL5 is told to inherit from the classification CL3, and hence it belongs to CL3’s set
of subsumees by definition. On the other hand, the subsumee/subsumer relation-
ship between CL3 and CL1 is not explicitly stated, yet inferred by the engine based

CL2 Basic_Building headquarter

CL3 Basic_Building satellite

CL4 CL2 one_company

CL5 CL3 one_company

CL6 CL2 two_company

CL7 CL3 two_company

CL8 army, firestation

CL9 government

CL10 army, firestation, gov-
ernment

Spatial_function Zone_FU,
Massing_FU,
Room_FU

Spatial_unit_function Zone_FU,
Room_FU

CL11 Spatial_function dorm

CL12 Spatial_function administrative

CL13 Spatial_function mechanical

CL14 Spatial_unit_function daily_activity

CL15 Spatial_unit_function bathroom

CL16 CL12 private

CL17 CL13 apparatus

CL18 Spatial_unit_function kitchen

CL19 Spatial_unit_function dining

CL20 Spatial_unit_function chief_executive

CL21 Spatial_unit_function shift_supervisor

CL22 CL20 private

Told description
name

Inherits from Primitives Restrictions
Phd Thesis - Fall 9870

A demo classification knowledge-base
on the told information. The engine also eliminates redundancies when it creates
derived descriptions. For instance, the told information for CL17 (as introduced in
Section 1.4.1) contains the primitives mechanical and apparatus. The derived infor-
mation, on the other hand, contains only the most specific primitive apparatus1.

Classification
name

Primitives Restrictions Subsumer Subsumee

Basic_Building Building_FU
Building_Layout

CL2, CL3,
CL4, CL5,
CL6, CL7

CL1 firestation
one_company
satellite

Building_FU Basic_Building
CL3, CL5

CL2 headquarter Building_FU
Building_Layout

Basic_Building CL4, CL6

CL3 satellite Building_FU
Building_Layout

Basic_Building CL1, CL5,

CL7

CL4 one_company,
headquarter

Building_FU
Building_Layout

Basic_Building
CL2

CL5 one_company
satellite

Building_FU
Building_Layout

Basic_Building
CL3

CL1

CL6 two_company,
headquarter

Building_FU
Building_Layout

Basic_Building
CL2

CL7 two_company
satellite

Building_FU
Building_Layout

Basic_Building
CL3

CL8 army, firesta-
tion

CL10

CL9 government CL10

CL10 army
firestation
government

CL9, CL8

Spatial_function Zone_FU
Massing_FU
Room_FU

Spatial_unit_f
unction,

CL11, CL12,
CL13, CL14,
CL15, CL16,
CL17, CL18,
CL19, CL20,
CL21, CL22

Spatial_unit_func
tion

Zone_FU
Room_FU

Spatial_function CL11, CL12,
CL13, CL14,
CL15, CL16,
CL17, CL18,
CL19, CL20,
CL21, CL22
Phd Thesis - Fall 98 71

Retrieval
1.5 Classification assignments

Once the data objects have been registered as host individuals, they can be asso-
ciated with told descriptions through classification assignments. Below are the
classification assignments for the previously listed host individuals. In the sug-

1. The primitive mechanical is more generic than apparatus. (See Figure 12)

CL11 dorm Zone_FU
Massing_FU
Room_FU

Spatial_function

CL12 administrative Zone_FU
Massing_FU
Room_FU

Spatial_function CL16, CL20,
CL21, CL22

CL13 mechanical Zone_FU
Massing_FU
Room_FU

Spatial_function CL17

CL14 daily_activity Zone_FU
Room_FU

Spatial_function,
Spatial_unit_fun
ction

CL19

CL15 bathroom Zone_FU
Room_FU

Spatial_function,
Spatial_unit_fun
ction

CL16 administrative
private

Zone_FU
Massing_FU
Room_FU

Spatial_function,
CL12

CL22

CL17 apparatus Zone_FU
Massing_FU
Room_FU

Spatial_function,
CL13

CL18 kitchen Zone_FU
Room_FU

Spatial_function,
Spatial_unit_fun
ction

CL19 dining Zone_FU
Room_FU

Spatial_function,
Spatial_unit_fun
ction, CL14

CL20 chief_executive Zone_FU
Room_FU

Spatial_function,
Spatial_unit_fun
ction, CL12

CL22

CL21 shift_superviso
r

Zone_FU
Room_FU

Spatial_function,
Spatial_unit_fun
ction, CL12

CL22 chief_executive
private

Zone_FU
Room_FU

Spatial_function,
Spatial_unit_fun
ction, CL16,
CL20, CL12

Classification
name

Primitives Restrictions Subsumer Subsumee
Phd Thesis - Fall 9872

A demo classification knowledge-base
gested knowledge-base, there are two objects of type Building_FUs (SPB_1,
SPB_4) and one Building_Layout (SPB_2) with the same classification (CL5--
one_company, satellite), since the CL5’s restriction set includes both type signa-
tures.

Unique Object
Identifier Type Signature Is Classified By

SPB_1 Building_FU CL5

SPB_2 Building_Layout CL5

SPB_3 Building_FU CL3

SPB_4 Building_Layout CL5

SPC_1 FU_Context CL10

SPC_2 FU_Context CL9

SPC_3 FU_Context CL8

SPM_1 Massing_FU CL11 (dorm)

SPM_2 Massing_FU CL12 (admin)

SPM_3 Massing_FU CL13 (mechanical)

SPM_4 Massing_FU CL12 (admin)

SPM_5 Massing_FU CL11 (dorm)

SPZ_1 Zone_FU CL14 (daily_activities)

SPZ_2 Zone_FU CL12

SPZ_3 Zone_FU CL13

SPZ_4 Zone_FU CL11

SPZ_5 Zone_FU CL15 (bathroom)

SPR_1 Room_FU CL16 (private, admin)

SPR_2 Room_FU CL17 (apparatus)

SPR_3 Room_FU CL14

SPR_4 Room_FU CL18 (kitchen)

SPR_5 Room_FU CL19 (dining)

SPR_6 Room_FU CL15

SPR_7 Room_FU CL12

SPR_8 Room_FU CL20 (chief_executive)

SPR_9 Room_FU CL21 (shift_supervisor)

SPR_10 Room_FU CL12

SPR_11 Room_FU CL14

SPR_12 Room_FU CL18

SPR_13 Room_FU CL19

SPR_14 Room_FU CL20

SPR_15 Room_FU CL22 (private, chief_executive)

SPR_16 Room_FU CL21
Phd Thesis - Fall 98 73

Retrieval
The classifications listed above can also be used to retrieve the associated data-
base objects without having to activate the CBD engine in the process. For exam-
ple, given the classification CL12 (an administrative zone, massing or room unit),
the KBC engine can be queried to retrieve the database objects associated with
CL12 (i.e. SPR_17 and SPR_18). In addition to these directly classified database objects,
KBC engine can also retrieve objects having classifications that are subsumed by CL12
(i.e. SPR_14, SPR_15, SPR_16, and SPR_1).

VII . 2 A demo case-base

A case-base is a collection of cases, targets, match operators, proxies and a case-
base instance they are associated with. The sample case-base described below
consists of four cases, two target objects and one match operator, which consti-
tute the minimum amount of information required to illustrate the three types of
retrieval supported by the SEED-CBD engine.

In order to build a case-base, the system requires that:

1. The registration of proxies precedes the definition of cases and targets.
2. The creation of match operators precedes the definition of targets.

2.1 Proxies

Unlike the host individuals in the classification knowledge-base, proxy types do
not have to be declared in the case-base prior to the creation of proxies, since the
proxy types are not represented as case-base concepts. The proxies that are reg-
istered in the test case-base “SEED_Layout” are the following:

SPR_17 Room_FU CL12

SPR_18 Room_FU CL12

Unique Object
Identifier Type Signature

SPB_1 Building_FU

SPB_2 Building_Layout

SPB_3 Building_FU

SPB_4 Building_Layout

SPC_1 FU_Context

SPC_2 FU_Context

SPC_3 FU_Context

Unique Object
Identifier Type Signature Is Classified By
Phd Thesis - Fall 9874

A demo case-base
2.2 Cases

Following a case declaration, a case object with an empty content is instantiated
and a unique case identifier is provided. The case descriptor, solution, problem,
outcome and annotations can then be populated using this unique identifier. The
case descriptor contains data object references on which matching is performed
during retrieval. For example, the descriptor of CASE_3 consists of one
Building_DU and one Building_FU object reference classified as CL5
(one_company, satellite) and one FU_Context object reference classified as CL10
(army, firestation, government)1. The existing case definitions in the demo case-
base “SEED_Layout” are the following:

2.3 Match operators

The creation of a match operator requires that its implementation as a C proce-
dure exists within a specified shared object file at the time of declaration. The sam-
ple match operator in the case-base “SEED_Layout” is OP_1 is shown below:

Match Operator Name: OP_1
Implementation: cbd_deep_match_retrieval,
Shared Object File Location: “<db methods path>/rmethods.so”
Matchable Type Signature: Building_FU

Match operators are user-defined matching strategies that can be incorpo-
rated within the SEED-CBD’s retrieval engine. Implementation is the name of the
database method which calls the actual C implementation. In the demo case base,
cbd_deep_match_retrieval is a stub representing an external function implement-
ing an alternative retrieval strategy. Shared object file location indicates location of
the method implementation. The UNISQL engine accesses the suggested C func-

1. In SEED-Layout, the context objects are not classified and they are always part of a
problem. The context examples provided in the demo case-base have associated classifi-
cations in order to illustrate how the CBD engine deals with descriptors containing multiple
data object references with classifications.

Case
Name

Descriptor Problem Solution Outcome Annotations

CASE_1 SPB_1,
SPB_2,
SPC_1

SPB_1
SPC_1

SPB_2

CASE_2 SPB_3 SPB_3
SPC_3

SPB_2

CASE_3 SPB_1,
SPC_2

SPB_1,
SPC_2

SPB_4 “odd context”

CASE_4 SPB_4,
SPC_3

SPB_4,
SPC_3

SPB_4 “bad match”
Phd Thesis - Fall 98 75

Retrieval
tion in runtime. The matchable type signature is used for a type checking before
the match operator is launched on matchable candidates.

2.4 Targets

Similar to cases, targets can be declared and instantiated as empty target objects.
The unique target identifier acquired upon the declaration can later be used to set
the content for the matchables. The test case-base “SEED_Layout” contains the
following targets:

The retrieval session described in Section 3.1 uses TARGET_1 as its target
description. TARGET_1 contains a reference to a Building_FU object classified as
CL1 (firestation, one_company, satellite) and another reference to a FU_Context
object classified as CL8 (army, firestation). The DEFAULT keyword indicates that
the default SEED-CBD strategies will be employed during retrieval instead of a
user-defined match operator.

VII . 3 Sample retrieval sessions

This section provides the output of three retrieval sessions for the demo case-
base “SEED_Layout”.

3.1 Retrieval by matching

The retrieval by matching uses a target to rank the cases in the case-base. The
retrieval starts in the case-base. The cases with type signatures that do not match
the type signatures of the target are filtered out. A case has matching type signa-
tures with a target if for every type signature (tt) in the target type signature set
there is one type signature (tc) in the case type signature set such that tt denotes a
class which is the same as or a superclass of the class denoted by tc. Following
the pre-selection, the case descriptors are matched to the target descriptor. In the
following retrieval example, the pre-selection based on type signatures is not
effective since all the cases defined in the demo case-base have matching type
signatures with the target TARGET_1. Consequently the demo retrieval considers
all cases for matching.

The matching between the target and case descriptor compares respective
sets of matchables. If a target matchable is classified in a specified classification

Target Name Matchables

TARGET_1 (SPB_3, DEFAULT),
(SPC_3, DEFAULT)

TARGET_2 (SPB_3, OP_1),
(SPC_3, DEFAULT)
Phd Thesis - Fall 9876

Sample retrieval sessions
knowledge-base, only the case matchables containing compatible classifications
are considered for comparison. A case matchable classification is compatible with
a target classification if it is equal to, a synonym of, or subsumed by the target
classification. The classification-based filtering takes place in the classification
knowledge-base.

FIGURE 13. Proxy object configurations

Finally, the SPROUT object configurations (as represented in Figure 13) denoted
by the target and case matchables are compared. This involves a structural

SPB_3

SPR_1

TARGET

SPB_1

SPM_5

SPZ_3 SPZ_4 SPZ_5SPZ_2

CASE_1

SPM_4SPM_3

SPR_18SPR_15 SPR_16 SPR_17

SPZ_1

SPR_11 SPR_12 SPR_13 SPR_14

SPR_2 SPM_1 SPM_2

SPR_9SPR_8SPR_7SPR_6SPR_5SPR_4SPR_3 SPR_10

SPB_4CASE_3
Phd Thesis - Fall 98 77

Retrieval
matching, which proceeds object-by-object and attribute-by-attribute and returns a
value between 0 and 1, where a 0 would indicate that there has been no match
between the compared objects1. In this phase of matching, both the SPROUT
database and the SEED-KBC are queried.

In the following example, TARGET_1 is used to rank cases: CASE_1, CASE_2,
CASE_3 and CASE_4. TARGET_1’s descriptor contains a Building FU (SPB_3) clas-
sified as CL3 (a basic_building with a satellite primitive) and a Context object classified as
CL8 (army, firestation). SPB_1 (classified as CL5: a one company, satellite
basic_building) and SPB_4 (classified as CL5) are identified as matching candi-
dates since they have classifications that are compatible with CL3. In the structural
matching phase, the target matchable SPB_1 with a constituent SPR_1 (classified
as CL16: a private and administrative spatial function) is compared to the constitu-
ent hierarchies SPB_1 and SPB_4. As a result of the comparison, SPB_1 is ranked
as a better match by having SPR_15 (classified as CL22: a private spatial function
for a chief executive) as a constituent. In this example, the structural matching
between objects SPB_3 - SPB_1, SPB_3 - SPB_4 (Figure 13) and SPC_3 - SPB_1,
SPC_3 - SPC_2 is performed using stubs simulating a SPROUT-database connec-
tion. The output below represents the comparison between the target and case
descriptors.

> cb retrieve TARGET_1 SEED_Layout

*** UniSQL/X Client Release 3.5.3 Patch Level 4 ***
 Generated Nov 18 1997 at 16:15:53
Cases unranked
target id: #TARGET_1#SEED_Layout
Building_FU
FU_Context
potential case ids:
#CASE_1#SEED_Layout
#CASE_2#SEED_Layout
#CASE_3#SEED_Layout
#CASE_4#SEED_Layout

Case matchables for #CASE_1#SEED_Layout: SPB_1
SPB_2
SPC_1
Target matchable op # 0: DEFAULT
Target matchable id # 0: SPB_3
Target: SPB_3 with CL3 and case: SPB_1 with CL5

1. Refer to the matching algorithms deep_match and base_match defined in (Flemming,
U. et.al. 1996).

At the first stage
the potential
matches are identified
through type-signature
filtering.
Phd Thesis - Fall 9878

Sample retrieval sessions
TARGET SUBSUMES
PROCEEDING to structural MATCH...
Max = 1.000000, val = 1.000000
Target: SPB_3 with CL1 and case: SPB_2 with CL5
Max = 1.000000, val = 0.000000
Target: SPB_3 with CL3 and case: SPC_1 with CL10
Max = 1.000000, val = 0.000000
Target_sum = 1.000000
Target matchable op # 1: DEFAULT
Target matchable id # 1: SPC_3
Target: SPC_3 with CL8 and case: SPB_1 with CL5
Max = 0.000000, val = 0.000000
Target: SPC_3 with CL8 and case: SPB_2 with CL5
Max = 0.000000, val = 0.000000
Target: SPC_3 with CL8 and case: SPC_1 with CL10
TARGET SUBSUMES
PROCEEDING to structural MATCH...
Max = 1.000000, val = 1.000000
Target_sum = 2.000000
final_match_value = 1.000000

Case matchables for #CASE_2#SEED_Layout: SPB_3
Target matchable op # 0: DEFAULT
Target matchable id # 0: SPB_3
Max = 1.000000, val = 1.000000
Target_sum = 1.000000
Target matchable op # 1: DEFAULT
Target matchable id # 1: SPC_3
Target: SPC_3 with CL8 and case: SPB_3 with CL3
Max = 0.000000, val = 0.000000
Target_sum = 1.000000
final_match_value = 0.500000

Case matchables for #CASE_3#SEED_Layout: SPB_1
SPC_2
Target matchable op # 0: DEFAULT
Target matchable id # 0: SPB_3
Target: SPB_3 with CL3 and case: SPB_1 with CL5
TARGET SUBSUMES
PROCEEDING to structural MATCH...

The target matchables
SPB_3 and SPC_3
are compared with

SPB_1 and SPC_1
CASE_1’s matchables

(Structural match
between SPB_3 and
SPB_1 -- See Figure 12)

Final match value
for CASE_1

The target matchables
SPB_3 and SPC_3
are compared with

SPB_3
CASE_2’s matchable

Final match value
for CASE_2
Phd Thesis - Fall 98 79

Retrieval
Max = 1.000000, val = 1.000000
Target: SPB_3 with CL3 and case: SPC_2 with CL9
Max = 1.000000, val = 0.000000
Target_sum = 1.000000
Target matchable op # 1: DEFAULT
Target matchable id # 1: SPC_3
Target: SPC_3 with CL8 and case: SPB_1 with CL5
Max = 0.000000, val = 0.000000
Target: SPC_3 with CL8 and case: SPC_2 with CL9
Max = 0.000000, val = 0.000000
Target_sum = 1.000000
final_match_value = 0.500000

Case matchables for #CASE_4#SEED_Layout: SPB_4
SPC_3
Target matchable op # 0: DEFAULT
Target matchable id # 0: SPB_3
Target: SPB_3 with CL3 and case: SPB_4 with CL5
TARGET SUBSUMES
PROCEEDING to structural MATCH...
Max = 0.000000, val = 0.000000
Target: SPB_3 with CL3 and case: SPC_3 with CL8
Max = 0.000000, val = 0.000000
Target_sum = 0.000000
Target matchable op # 1: DEFAULT
Target matchable id # 1: SPC_3
Target: SPC_3 with CL8 and case: SPB_4 with CL5
Max = 0.000000, val = 0.000000
Max = 1.000000, val = 1.000000
Target_sum = 1.000000
final_match_value = 0.500000

RESULT SEQUENCE: {
'#CASE_1#SEED_Layout',
'#CASE_4#SEED_Layout',
'#CASE_3#SEED_Layout',
'#CASE_2#SEED_Layout'}

Final match value
for CASE_3

The target matchables
SPB_3 and SPC_3
are compared with

SPB_1 and SPC_2
CASE_3’s matchables

(Structural match
between SPB_3 and
SPB_1 -- See Figure 12)

The target matchables
SPB_3 and SPC_3
are compared with

SPB_4 and SPC_3
CASE_4’s matchables

(No structural match
between SPB_3 and
SPB_4 -- See Figure 12)

Final match value
for CASE_4
Phd Thesis - Fall 9880

Sample retrieval sessions
3.2 Retrieval by classification

The classification-based retrieval starts in the classification knowledge-base. Tar-
get in this retrieval case is the classification CL8 (army, firestation) which sub-
sumes the classification CL10 and consequently classifies the SPROUT objects
SPC_1 and SPC_3. In the next phase, the SEED-CBD engine retrieves the cases
which contain SPC_1 and SPC_3 in their descriptors. The following output is the
resulting set of the retrieval based on CL8: CASE_1 with SPC_1 and CASE_4 with
SPC_3; that is, CASE_1 and CASE_4 are found.

> cb retrieve_by_classification SEED_Layout SEED_Layout CL8

*** UniSQL/X Client Release 3.5.3 Patch Level 4 ***

 Generated Nov 18 1997 at 16:15:53

set{'#CASE_1#SEED_Layout', '#CASE_4#SEED_Layout'}

3.3 Retrieval by annotation

The last example performs a substring match on case annotations and
returns an unordered set of cases that have annotations containing “odd” as a
substring.

> cb retrieve_by_annotation SEED_Layout “odd”

*** UniSQL/X Client Release 3.5.3 Patch Level 4 ***

 Generated Nov 18 1997 at 16:15:53

set{'#CASE_3#SEED_Layout'}
Phd Thesis - Fall 98 81

Retrieval
Phd Thesis - Fall 9882

CHAPTER VIII
Conclusions

This chapter identifies the contributions of this research and outlines possible
research directions and enhancements based on the work accomplished in
designing and building a case-base engine for building design.

VIII . 1 Contributions

This research investigates classification of architectural precedents and intro-
duces a classification scheme which is of potential use in computational design
systems for a broad range of problems and domains. In generic terms, this study
establishes common principles and patterns in seemingly different knowledge
areas and describes their use in a particular problem domain to improve the
known techniques. At the conceptual modeling level, the contributions can be
summarized under the following categories:

• Precedent classification: the research proposes a general framework of
memory organization borrowed from Tulving (1972), and Smith and Medin’s
review on approaches to the representation of concepts and categories
(1981) and specializes them for the design context. The specialized frame-
work is used to develop a classification and representation scheme for cases
and prototypes as part of a case-base design system. In doing so, the rele-
vance of the generic definitions and mechanisms have been tested in the
implementation of a prototype case indexing and retrieval system.

• Typology: the development of the classification scheme also benefited from
a review of architectural literature on types and typology. The general frame-
work of memory organization provided a base of reference for a structured
survey of known approaches to type and typology. The modeling of SEED-
CBD and SEED-KBC engines depended heavily on the pertinent issues
identified by the typology survey.
83Phd Thesis - Fall 98

Conclusions
• Case-base design: The role of classification in a case indexing mechanism
is identified in order to build a comprehensive model of case-memory. Based
on the prominent issues identified in the context of indexing, a recall mecha-
nism is developed for the suggested case-memory organization. The major
components of this mechanism are the classification inference and matching
engines.

The combination of the following features is novel in the suggested approach
to case-base indexing and retrieval:

• generality: For the indexing mechanism, a case index is merely a container
of objects with classifications. The semantics for a case index that resolves
whether a case is retrieved based on its problem specification, outcome, or
solution is left to individual applications using the CBD, which do not have to
be SEED modules. Similarly, the retrieval mechanism allows the applications
to specify their own matching operations when they need to employ domain
specific reasoning. The suggested functionality will be accessed through a
common interface. Consequently, the indexing and retrieval mechanisms will
not be affected by the addition or removal of sub-systems as clients.

• hybrid approach to model a case memory: The classification is separated
from the matching inference. This enables the applications to modify their
classification knowledge-base without having to modify their domain knowl-
edge for cases.

• extensibility of the classification scheme: As a follow-up to the previous
feature, a common interface to support the functionality to add, remove or
modify the classifications is provided. This way, notions that are new to the
case-base’s knowledge domain can be introduced to extend the existing
classification scheme.

SEED-CBD is assisted by a distinct classification engine and offers numer-
ous advantages when compared to the existing case-base indexing and retrieval
approaches, which can be grouped under heterogeneous and unified representa-
tion systems.

Heterogeneous representation systems often work with loosely-structured
representations in order to incorporate case information in various formats (draw-
ings, multi-media files). This approach is typical of electronic libraries. The case
indexing and retrieval are rarely structured around a problem/solution pair since
the system itself is not a problem solver. These systems use feature lists instead
(or list of attribute value pairs) to describe cases. These features are based on
issues relevant to the design context. A case index is a set of selected attribute/
value pairs, where attributes correspond to the design issues that are identified as
the key issues. The case indices do not reside in a type hierarchy. Heterogeneous
systems are often implemented using relational databases.

Unified representation systems use solutions generated by the system to
solve similar problems, and hence the problem/solution pairing is critical for these
Phd Thesis - Fall 9884

Future research directions
systems. The case information is structured using a unified representation scheme
such as an object-based language. These schemes can incorporate various types
of inheritance (e.g. types and structural inheritance) using class-based and com-
positional hierarchies. Indexing is conceived within the same representation
scheme and often implemented using class-based inheritance. Unified systems
can be implemented using object-relational databases.

None of these implementations offers an indexing and retrieval mechanism
with the capability to examine both structural properties and thematic descriptions
for similarity assessment. Moreover, retrieval focuses on the problem alone,
excluding the possibility to retrieve cases based on a specific structural pattern,
which may only be represented at the solution level. SEED-CBD’s indexing and
retrieval capabilities make use of both types of information:

• the information available in the computational representation of a design
case, and

• the thematic information which may have to reside outside the case-base
scheme.

Both the object-based representation of cases and the thematic classification
scheme are implemented using an object-relational database. The indexing is not
limited to a set of features as in the first group of or to a class-based inheritance as
in the second group. The retrieval coordinates two distinct inference mechanisms
(subsumption and matching) in order to support as many retrieval scenarios as
possible.

In Table 3, existing case-base design systems are compared to the sug-
gested SEED-CBD engine in terms of case content, indexing, use of types and
classifications, and the retrieval capabilities.

VIII . 2 Future research directions

In this section I outline possible enhancements that would benefit this research
and identify future research directions. The enhancements can be conceived in
both the classification and case-base design components of the suggested hybrid
system.

2.1 Classifications with roles

The current implementation of the classification engine works with descriptions
which can inherit from each other. The subsumption relations and the disjoined
classifications are identified by a comparison of the descriptions that are derived
from the user-defined classifications. The descriptions combine multiple primitive
concepts in their definitions. These primitives, in turn, reside in a type hierarchy,
and the inheritance relations between them are directly asserted by the user of
Phd Thesis - Fall 98 85

Conclusions
system. In addition to the type-subtype relations, primitives can also form disjoined
groupings.

TABLE 3.Comparison between the suggested and existing systems

The descriptions, however, do not incorporate roles (in the CLASSIC sense)
which would allow the users to define their own dependencies between classifica-
tions. Roles can be described as relations that are created outside classifications,
and that can be used across classifications. A role can associate classifications
with other classifications or with concepts belonging to a host domain. Using
CLASSIC’s terminology, a host domain, which is limited to the SPROUT type sig-
natures in SEED-KBC, can be augmented to include basic types (e.g. integers,
strings), and accordingly roles can be defined on these new domains. Currently,
SEED-KBC supports only the built-in role: restrict_to. Restrict_to has the host
types as its domain.

Function and
feature

Existing Proposed

case

index 1- Feature list, collection of
attribute-value pairs
2- Object-based

A collection of complex
object configurations

types 1- None
2- Object inheritance
hierarchy (limited to case
vocabulary)

Object inheritance hierarchy
& classification knowledge
base

retrieval 1- Queries a relational
database representation
2- Queries an object-
relational database
representation

Matching complex object
configurations &
subsumption query for the
classifications

OP
index

S OP S

index

D

Phd Thesis - Fall 9886

Future research directions
2.2 User Interface (UI) for case-base and classification knowledge-base

The current interaction with the SEED-KBC and SEED-CBD engines is accommo-
dated at the application programming interface level. This is mainly an attempt to
keep the case-base design and classification support at a generic level so that
each SEED module can build its own user interfaces in order to customize the
offered functionalities according to module-specific needs. There is, on the other
hand, a considerable overlap in the use-cases for module-specific CBD and clas-
sification applications. A set of common use cases can be identified for various
modules and can be implemented as part of a UI application framework. The mod-
ules can benefit from a standard set of classes or libraries for interacting with the
case-base and classification knowledge-base at the UI level.

2.3 Matching strategies

The suggested retrieval engine, by default, operates using two matching strate-
gies: deep_match and base_match1. The SEED-CBD architecture, on the other
hand, allows for the creation and the use of match operators which can implement
various other matching algorithms. The case-bases can be extended to incorpo-
rate a library of matching strategies which would cater to module-specific retrieval
scenarios.

2.4 Combining match operators

SEED-CBD’s current definition of a target description allows for a pairing of one
match operator with one matchable object. The match engine can be enhanced to
allow for association of conjoined and disjoined operators with each matchable in
order to refine or broaden the search. Although there is no direct mechanism to
apply multiple operators to one matchable, it is possible to simulate the disjoined
operator behavior in the current implementation by creating a target containing
multiple matchable-operator pairs with identical matchables. The SEED-CBD
engine will perform the matching using all the specified operators and will only
consider the pair with the highest match value.

1. Refer to the matching algorithms deep_match and base_match defined in (Flemming,
U. et.al. 1996).
Phd Thesis - Fall 98 87

Conclusions
Phd Thesis - Fall 9888

References

Aadmodt, A. and Plaza, E. (1993) “Case-based reasoning: foundational
issues, methodological variations, and system approaches” in AICom: Artificial
Intelligence Communications, 7(1), (url: http://www.iiia.csic.es/People/enric/
AICom_ToC.html, 1997).

Akin, O., Donia, M., and Sen, R. (1994) “SEED-Pro: A framework for com-
puter supported architectural programming”, (url: http://seed.edrc.cmu.edu/SP/
carlsbad.html, 1999).

Akin, O., Donia, M., Sen, R. and Zhang, Y. (1995) “SEED:-Pro: computer
assisted architectural programming in SEED” in Journal of Architectural Engineer-
ing, ASCE, 1(4), pages 153-161.

Argan, G. C. (1963) “On the typology of architecture” in Architectural Design,
December, pages 564-5.

Aygen, Z. and Flemming, U. 1998. “Classification in SEED-CBD: A hybrid
approach for case-indexing and retrieval.” Proceedings of CAADRIA `98: 3rd
Conf. on Computer-Aided Architectural Design Research in Asia. Japan.

Bandini, M. (1984) 'Typology as a form of convention” in AA Files, vol. 6,
pages 73-81.

Borgida, A., Brachman, R. J., McGuiness, D. L. and Resnick, L.A. (1992)
Classic: A Structural Data Model for Objects, tech. rept., AT&T Bell Laboratories,
Murray Hill, NJ.

Borgida, A. and Patel-Schneider, P. (1994) “A semantics and complete algo-
rithm for subsumption in the CLASSIC description logic” in Journal of Artificial
Intelligence Research, vol. 1, pages 277-308.
89

References
Colquhoun, A. (1969) “Typology and design method” in Meaning in Architec-
ture, C. Jencks and G. Baird (eds.), The Cresset Press, London, pages 43-49.

Domeshek, E. and Kolodner, J. (1992) “A case-based design aid for architec-
ture” in Proceedings of the Second International Conference on Artificial Intelli-
gence and Design, J.S. Gero, (ed.), The Netherlands: Kluwer Academic Press,
pages 497-516.

FABEL (1997) F. Gebhardt (ed.), (url: http://nathan.gmd.de/projects/fabel/pro-
totype.html, 1999)

Flemming, U. (1994) “Case-based design In the SEED system” in Knowl-
edge-Based Computer-Aided Architectural Design, G. Carrara and Y.E. Kalay
(ed.s) Amsterdam, Netherlands, Elsevier.

Flemming, U., Aygen, Z., Coyne, R., Snyder, J. (1996) “Case-based design in
a software environment that supports the early phases in building design” in
Issues and Applications of Case-Based Reasoning to Design, Maher, M. L. and
Pu, P. (eds) Lawrence Erlbaum Associates.

Freeston, M. (1995) “A general solution of the n-dimensional B-tree problem”
in Proc. of the 1995 ACM SIGMOD, SIGMOD Record, New York, pages 80-91.

Frege, G. (1892) “On sense and nominatum” in Readings in Philosophical
Analysis, H. Feigl and W. Sellars (eds.), Appleton-Century-Crofts, 1949, pages 85-
102.

Fu, A. L. (1997) Content-Based Image Indexing (url: http://www.cs.cuhk.hk/
~drsam/Index.html, 1999)

Gamma, E., Helm, R., Johnson, R. and Vlissides J. (1994) Design Patterns:
Elements of Reusable Object-Oriented Software, Addison-Wesley, Reading, MA.

Guttman, A.: (1984) “R-trees: a dynamic index structure for spatial searching”
in Proc. of the 1984 ACM SIGMOD, SIGMOD Record, New York, pages 47-57.

Hinrich, T. R. (1992) Problem Solving In Open Worlds, Lawrence Erlbaum
Associates, NJ.

Jackendoff,R. (1994) Consciousness and Computational Mind, Cambridge,
Mass., The MIT Press.

Janetzko, A.D and G. Strube (1991) “Case-based reasoning and model-
based knowledge acquisition“ in Engineering and Cognition, First Joint Workshop
Proceedings, F. Schmalhofer,G. Strube and T. Wetter (ed.s), Berlin, Germany,
Springer-Verlag, pages 99-114.
Phd Thesis - Fall 9890

Kolodner, J., (1984) “Retrieval and Organizational Strategies” in Conceptual
Memory - A Computer Model, Lawrence Erlbaum Associates, Publishers, Hills-
dale, New Jersey.

Kolodner, J., (1993) Case-Based Reasoning, Morgan Kauffman Publishers
Inc., CA.

Kumar, B. and Raphael, B., (1996) “CADREM: A Case-based System for
Conceptual Structural Design” in International Journal of Engineering with Com-
puters, Springer-Verlag,.

Kumar, H. S. and C. S. Krishnamoorthy (1995), “A framework for case-based
reasoning in engineering design” in Artificial Intelligence for Engineering Design,
Analysis and Manufacturing, Cambridge University Press, vol. 9, pages 161-182.

Leupen, B., Grafe, C., Kornig, N., Lampe, M. and Zeeuw, P.D. (1997) “Design
and typology” in Design and Analysis, Van Nostrand Reinhold, Rotterdam, Nether-
lands, pages 132-149.

Maher, M.L, (1994) “Using case-based reasoning for design media manage-
ment” in Computing in Civil Engineering, pages 25-32.

Maher, M.L., and Zhang, D.M. (1993) “CADSYN: a case-based design pro-
cess model” in Artificial Intelligence in Engineering, Design, and Manufacturing,
7(2) 97-110.

Maher, M. L., Balachandran, M. B. and Zhang, D. M. (1995) Case-Based
Reasoning in Design, Lawrence Erlbaum Assoc., New Jersey.

Moneo, R. (1978) “On Typology.” in Oppositions: A Journal for Ideas and Crit-
icism in Architecture, vol. 13, pages 22-45.

Navichandra, D. (1990) Innovative Design Systems: Where are we, and
where do we go from here, Robotics Institute Technical Report, CMU, Pgh. PA.

Oechslin, W. (1986) “Premises for the resumption of the discussion on typol-
ogy” in Assemblage, MIT Press, vol. 1, pages 37-53.

Oxman, R. (1994) “A computational model for the organization of case knowl-
edge of a design precedent” in Design Studies, 15 (2).

Papadias, D., Sellis, T., Theodoridis, Y. and Egenhofer, M. J. (1995) “Topo-
logical relations in the world of minimum bounding rectangles: a study with R-
trees” in Proc. of the 1995 ACM SIGMOD, SIGMOD Record, New York, pages 92-
103.

Pevsner, N. (1976) A History of Building Types, Princeton University Press,
Princeton, New Jersey.
Phd Thesis - Fall 98 91

References
Purves, A. (1982) “The persistence of formal patterns” in Perspecta: The Yale
Architectural Journal, vol. 19, pages 138-163.

Quine, W. V. (1961) “Two dogmas of empiricism” in From a Logical Point of
View, Harvard University Press, Cambridge.

Quatremere de Quincy, A. C., [1825] (1977) “Type with an introduction by A.
Vidler” in Oppositions 8 (Spring), pages 148-150.

Ramaswamy, S. and Kanellakis P. C. (1995) “OODB indexing by class-divi-
sion” in Proc. of the 1995 ACM SIGMOD, SIGMOD Record, New York, pages 139-
50.

Raphael, B. and B. Kumar (1996) “Indexing and retrieval of cases in a case-
based design system” in Artificial Intelligence for Engineering Design, Analysis
and Manufacturing, Cambridge University Press, pages 47-63.

Reich, Y. and Fenves, S. J. (1995) “A system that learns to design cable-
stayed bridges” in Journal of Structural Engineering, ASCE, July.

Resnick, L. A., Borgida, A., Brachman, R. J., McGuiness, D. L., Patel-
Schneider, P. and Zalondek, K.C. (1993) CLASSIC Description and Reference
Manual For the COMMON LISP Implementation Version 2.1.

Rosenman, M. A., Gero, J. S. and Oxman, R. E. (1992) “What’s in a case: the
use of case bases, and databases in design” in Proc. CAAD Futures 91, G.
Schmitt (ed.), Wiesbaden.

Rossi, A. (1982) “Typological questions” in The Architecture of the City, MIT
Press, pages 35-45.

Scruton, R. (1979) “The language of architecture” in The Aesthetics of Archi-
tecture, Princeton University Press, Princeton, New Jersey.

Simon, A. H. (1969) Sciences of The Artificial, MIT Press, Cambridge, MA.

Smith, I.F., D. Kurmann and G. Schmitt (1994) “Case combination and adap-
tation of buildingspaces” in Computing in Civil Engineering, pages 155-162.

Smith, E. E. and Medin, D. L. (1981) Categories and Concepts, Cambridge,
Mass., Harvard University Press.

Snyder, J., Aygen, Z., Flemming, U. and Tsai, J. (1995) “SPROUT - a model-
ing language for SEED” in Journal of Architectural Engineering, ASCE, 1(4),
pages 195-203.
Phd Thesis - Fall 9892

Synder, J., (1998) Conceptual Modeling and Application Integration in CAD:
The Essential Elements. Ph.D. Thesis, Department of Architecture, Carnegie Mel-
lon University, Pittsburgh, PA.

Sowa, J. F. (1984) Conceptual Structures: Information Processing in Mind
and Machine, Reading, Mass., Addison-Wesley.

Sullivan, L. H. (1947) “The tall office building artistically considered” in Kinder-
garten Chats and other Writings, NY, Shultz, pages 202-13.

Tezar, P. (1991) “The other side of types” in Type and the (Im)Possibilities of
Convention, G. Rockcastle (ed.), Princeton Architectural Press, New York, NY,
pages 165-175.

Tulving, E. (1972) “Episodic and semantic memory” in Organization of Mem-
ory, Tulving, E. and W. Donaldson (eds.), NY, Academic Press, pages 381-403.

Vidler, A. (1977) “The third typology” in Oppositions, MIT Press, vol. 7, pages
1-4.

Vidler, A. (1976): “Introduction: a note on the idea of type in architecture” in
The Building Of A Club: Social Institution and Architectural Type, 1870 - 1905,
Princeton University Press, Princeton, New Jersey.

Waltz D., (1991) “Is indexing Used for Retrieval?” in Proceedings: Workshop
on Case-Based Reasoning (DARPA), Washington, D.C. San Mateo, CA: Morgan
Kaufmann.

Way, E. C. (1991) Knowledge Representation and Metaphor, Kluwer Aca-
demic Publishers, Boston.

Woods (1991), “Understanding Subsumption and Taxonomy: A Framework
for Progress” in Principles of Semantic Networks: Explorations in the Representa-
tion of Knowledge, Sowa, J. F. (ed), Kauffman, San Mateo, pages 45-94.

Woodbury, R., Chang, T.W., Chiou, S.C., Coyne, R., Fenves, S., Flemming,
U., and Gomez, N. (1994) SEED Config Requirements, (url: http://
seed.edrc.cmu.edu/SC/requirements-new/SC-req-new.book.html, 1999).
Phd Thesis - Fall 98 93

References
Phd Thesis - Fall 9894

Appendix A: Using SEED-KBC and SEED-CBD APIs

This section contains the sample code segments and requirements for
incorporating the SEED-KBC and SEED-CBD (both Java and C-APIs) within a
host application.

1. SEED-KBC

The classification functionality provided by the SEED-KBC engine requires several
changes in terms of the creation and modification of various environment vari-
ables. This section identifies these changes and provides information about the
file locations for the Java and C APIs.

1.1. Environment variable

The following environment variable should be set prior to using the classification
engine. This path is necessary for the UNISQL database to access the schema
specific method implementations.

KBCLITE: /usr/users/zeyno/seed_kbc/dbmethods

1.2. Database

The SEED-KBC schema and methods are defined in the database named
KBCLite. The classification schema can be browsed using any UNISQL interface.
For instance, the following command-line can be used to access KBCLite via the
isqlx (interactive-sql):

> isqlx KBCLite

Appendix A: Using SEED-KBC and SEED-CBD APIs
1.3. C - API

The C-API (*.c and *.h files) for SEED-KBC is located at:

/usr/users/zeyno/seed_kbc/kblite_api.

The SEED-KBC static library libkbliteapi.a in the same directory, can be linked to
other C/C++ applications.

1.4. Java API

Before using the SEED-KBC Java API, the following path needs to be added to
the CLASSPATH environment variable.

/usr/users/zeyno/seed_kbc/javaimpl/classes

Additionally, to enable the Java-API’s JNI connection (through the shared
object file: libkbcapi.so) the following path needs to be added to the
LD_LIBRARY_PATH environment variable.

/usr/users/zeyno/seed_kbc/middleware/jniimpl

The SEED-KBC API is implemented as the class: DBWorkspace. In order to
use the Java-API as part of a Java application the following code segment can be used.

public class MyJavaApplication extends AnApplication {
...
protected DBWorkspace workspace;
...

 public MyJavaApplication() {
 // workspace connection
 workspace = new DBWorkspace("KBCLite");

 ...
}
...

}

In SEED-KBC’s Java API, sets are represented by Java strings. Below is a
sample code segment for processing set String s:
Phd Thesis - Fall 9896

String s = null;
...
StringTokenizer t = new StringTokenizer(s, ":");
int nItems = t.countTokens();
for (int i=0; i < nItems; i++) {

s = t.nextToken();
...

 }

2. SEED-CBD

The case-base functionality provided by the SEED-CBD engine requires several
changes in terms of the creation and modification of various environment vari-
ables. This section identifies these changes and provides information about the
file locations for the Java and C APIs.

2.1. Environment variable

The following environment variable should be set prior to using the case-base
engine. This path is necessary for the UNISQL database to access the schema
specific method implementations.

SEEDCBD: /usr/users/zeyno/seed_cbd/dbmethods

2.2. Database

The SEED-CBD schema and methods are defined in the database named CBD-
Seed. The case-base schema can be browsed using any UNISQL interface. For
instance, the following command-line can be used to access CBDSeed via the
isqlx (interactive-sql):

> isqlx CBDSeed

2.3. C - API

The C-API (*.c and *.h files) for SEED-CBD is located at:

/usr/users/zeyno/seed_cbd/cbdapi.

The SEED-CBD static library libcbdapi.a in the same directory, can be linked to
other C/C++ applications.

2.4. Java API
Phd Thesis - Fall 98 97

Appendix A: Using SEED-KBC and SEED-CBD APIs
Before using the SEED-CBD Java API, the following path needs to be added to
the CLASSPATH environment variable.

/usr/users/zeyno/seed_cbd/javaimpl/classes

Additionally, to enable the Java-API’s JNI connection (through the shared
object file: libcbdapi.so) the following path needs to be added to the
LD_LIBRARY_PATH environment variable.

/usr/users/zeyno/seed_cbd/javaimpl/jnimpl

The SEED-CBD API is implemented as the class: CBWorkspace. In order to
use the Java-API as part of a Java application the following code segment can be
used. Similar to SEED-KBC, sets are represented by Java strings in SEED-CBD’s
Java API1.

public class MyJavaApplication extends AnApplication {
...
protected CBWorkspace workspace;
...

 public MyJavaApplication() {
 // workspace connection
 workspace = new CBWorkspace("CBDSeed");

 ...
}
...

}

1. Refer to Section 1.4 for a sample Java code for string-set manipulation.
Phd Thesis - Fall 9898

Appendix B: SEED-KBC API specifications

Based on the software requirements and SPROUT’s system architecture, SEED-
KBC implements classification capabilities as application programming interfaces
in C and Java. This section contains the specifications for the SEED-KBC Java
API.

1. Constant values

The following are the type constants employed by the SEED-KBC API.

Primitive creation
constants

PRIMITIVE
DISJOINT_PRIMITIVES

Retrieval constants
SUBSUMEE
SUBSUMER
EQUIVALENT

Update constants
SUPERS
PRIMITIVES
RESTRICTIONS

Appendix B: SEED-KBC API specifications
2. Return values

The following are the constants representing values returned by the SEED-KBC
API methods.

3. KB class methods

SEED-KBC maintains multiple classification knowledge-bases that are repre-
sented via distinct kb instances. These instances are all instantiated from a kb
class which holds the generic definition of a classification knowledge-base. The
following methods access this generic definition instead of a specific kb instance.

Error status
KBAPI_OK
KBAPI_ERROR

Boolean constants
KBAPI_TRUE
KBAPI_FALSE

Conflict constants
INHERITANCE_CONFLICT
DISJOINED_PRIMITIVES
RESTRICTION_CONFLICT

Comparison constants
EQUAL
EQUIVALENT
SUBSUMEE
SUBSUMER
DISJOINED
DISTINCT

String
Return value String can denote a string or a set of
strings concatenated in to one string with ‘:’. Java
class StringTokenizer can be used to identify set
members (refer to Appendix A: Using SEED-KBC
and SEED-CBD APIs for a sample code segment
processing a Java set string).

getKBNames() String getKBNames (void)

Arguments none
Phd Thesis - Fall 98100

4. KB instance methods

The following methods are called on a specific kb instance to maintain and query
its components: primitives, host types, classifications and host objects (individu-
als).

Return value A non-null string if there is no error
Description This function finds the kb instances that currently

exist in the classification knowledge-base and
returns their names.

createKB() int createKB (String kbname)

Arguments a string denoting a name which uniquely identifies
the new kb instance.

Return value an error status
Description This function instantiates a new kb instance.

discardKB() int discardKB (String kbname)

Arguments a string denoting a name which uniquely identi-
fies a kb instance

Return value an error status
Description This function discards the specified kb instance

along with the primitives, host types, host individ-
uals and classifications associated with it.

cleanupKB() int cleanupKB (String kbName)

Arguments a string denoting a name which uniquely identi-
fies a kb instance

Return value an error status
Description This function discards the primitives, host types,

host individuals and classifications associated
with the specified kb instance.
Phd Thesis - Fall 98 101

Appendix B: SEED-KBC API specifications
compare() int compare (String kbName, String sSet,
String primSet, String restrSet, String
tdName)

Arguments name of a kb instance, a string denoting a set of
classification names, a string denoting a set of
primitive names, a string denoting a set of host
type names, and a name of a classification.

Return value a comparison type a conflict type or
KBAPI_ERROR

Description This function creates and normalizes a temporary
description which inherits from the specified clas-
sifications and contains the specified primitives
and restrictions. The temporary description is
then compared to the specified classification.
The result of the comparison is DISJOINED if the
temporary description and the derived description
of the specified classification are disjoined.
The result of the comparison is EQUIVALENT if
the temporary description matches in content the
derived description of the specified classification.
The result of the comparison is SUBSUMEE if
the temporary description is subsumed by the
derived description of the specified classification.
The result of the comparison is SUBSUMER if
the temporary description subsumes the derived
description of the specified classification.
The result of the comparison is DISTINCT other-
wise.
If a conflict is detected during normalization of the
temporary classification, the function will be
aborted and a conflict type will be returned as
result.

retrieve() String retrieve (String kbName, int retrieval-
Type, String sSet, String primSet, String restr-
Set)

Arguments name of a kb instance, an int constant denoting
the type of retrieval, a string denoting a set of
classification names, a string denoting a set of
primitive names, and a string denoting a set of
host type names
Phd Thesis - Fall 98102

Return value a string denoting the names of the requested
classifications or null in case of error

Description This function creates and normalizes a temporary
description which inherits from the specified clas-
sifications and contains the specified primitives
and restrictions. The temporary description is
then used to retrieve the requested classifica-
tions in the specified kb instance.

If the retrieval flag is SUBSUMEE, the result of
the comparison is a set of names of classifica-
tions subsumed by the temporary description.
If the retrieval flag is SUBSUMER, the result of
the comparison is a set of names of classifica-
tions that subsume the temporary description.
If the retrieval flag is EQUIVALENT, the result of
the comparison is a set of names of classifica-
tions with derived descriptions matching the tem-
porary description in content.

If a conflict is detected during normalization of the
temporary classification, the function will be
aborted and null will be returned as result.

getClassifiedSpobjs() String getClassifiedSpobjs (String kbName,
String sSet, String primSet, String restrSet)

Arguments name of a kb instance, a string denoting a set of
classification names, a string denoting a set of
primitive names, and a string denoting a set of
host type names

Return value a string denoting the unique identifiers of host
individuals or null in case of error

Description This function creates and normalizes a temporary
description which inherits from the specified clas-
sifications, and contains the specified primitives
and restrictions. The temporary description is
then used to retrieve the host individuals having
associated classifications that are equivalent or
subsumed by the temporary description.
 If a conflict is detected during normalization of
the temporary classification, the function will be
aborted and null will be returned as result.
Phd Thesis - Fall 98 103

Appendix B: SEED-KBC API specifications
createPrimitive() int createPrimitive (String kbName, String
primName, String superName, int primType)

Arguments name of a kb instance in which the primitive will
be created, a string denoting a name which
uniquely identifies the new primitive, name of the
super primitive or null if the primitive is a top prim-
itive, and an integer primitive type constant

Return value an error status
Description This function creates a simple or disjoint primitive

and places it in the primitive hierarchy under the
specified super primitive.

IsADisjointPrimitive() int IsADisjointPrimitive (String kbName,
String primName)

Arguments name of a kb instance which contains the speci-
fied primitive and the primitive’s name

Return value a boolean type or KBAPI_ERROR
Description This function finds out whether the specified

primitive is a disjoint primitive.

IsADisjunctPrimitive() int IsADisjunctPrimitive (String kbName,
String primName)

Arguments name of a kb instance which contains the speci-
fied primitive and the primitive’s name

Return value a boolean type or KBAPI_ERROR
Description This function finds out whether the specified

primitive has a disjoint primitive ancestor.

AreDisjoinedPrimitives() int AreDisjoinedPrimitives (String kbName,
String primName1, String primName2)

Arguments name of a kb instance which contains the speci-
fied primitive and the names of the primitives to
be compared

Return value a boolean type or KBAPI_ERROR
Description This function finds out whether the specified

primitives are disjoined from each other.
Phd Thesis - Fall 98104

getSuperPrimitive() String getSuperPrimitive (String kbName,
String primName)

Arguments name of a kb instance which contains the speci-
fied primitive and the primitive’s name

Return value a string denoting the name of a primitive or null in
case of error

Description This function returns the name of the super primi-
tive or an empty string if the specified primitive is
a top primitive.

getSubPrimitives() String getSubPrimitives (String kbName,
String primName)

Arguments name of a kb instance which contains the speci-
fied primitive and the primitive’s name

Return value a string denoting primitive names or null in case
of error

Description This function returns the names of the sub primi-
tives of the specified primitive.

getPrimitives() String getSubPrimitives (String kbName)

Arguments name of a kb instance
Return value a string denoting primitive names or null in case

of error
Description This function returns the names of all the primi-

tives that belong to the specified kb instance.

createHostConcept() int createHostConcept (String kbName, String
hcName)

Arguments name of a kb instance in which the host type will
be created, and a string denoting a name which
uniquely identifies the new host type

Return value an error status
Description This function creates a simple or disjoint primitive

and places it in the primitive hierarchy under the
specified super primitive.
Phd Thesis - Fall 98 105

Appendix B: SEED-KBC API specifications
getHostConcepts() String getHostConcepts (String kbName)

Arguments name of a kb instance
Return value a string denoting host type names or null in case

of error
Description This function returns the names of all the host

types that belong to the specified kb instance.

registerSpobj() int registerSpobj (String kbName, String
hiName, String hcName)

Arguments name of a kb instance in which the host individual
will be registered, a string denoting a name which
uniquely identifies the new host individual, and
name of a host type denoting its type

Return value an error status
Description This function registers a host individual of the

given type in the specified kb instance.

unregisterSpobj() int unregisterSpobj (String kbName, String
hiName)

Arguments name of a kb instance, and name of a host indi-
vidual

Return value an error status
Description The host individual is removed from the specified

kb instance.

classifySpobj() int classifySpobj (String kbName, String
hiName, String tdName)

Arguments name of a kb instance, name of a host individual,
and a name denoting an existing classification

Return value an error status or RESTRICTION_CONFLICT
Description This function associates a host individual with the

specified classification.
Phd Thesis - Fall 98106

IsClassifiedSpobj() int IsClassifiedSpobj (String kbName, String
hiName)

Arguments name of a kb instance, and name of a host indi-
vidual

Return value a boolean type or KBAPI_ERROR
Description This function finds out whether a host individual

is classified in the specified kb instance.

IsRegisteredSpobj() int IsRegisteredSpobj (String kbName, String
hiName)

Arguments name of a kb instance, and name of a host indi-
vidual

Return value a boolean type or KBAPI_ERROR
Description This function finds out whether a host individual

is registered in the specified kb instance.

getClassificationSpobj() String getClassificationSpobj (String
kbName, String hiName)

Arguments name of a kb instance, and name of a host indi-
vidual

Return value a string denoting a classification name or null in
case of error

Description This function returns the classification of the
specified host individual.

getSpobjs() String getSpobjs (String kbName)

Arguments name of a kb instance
Return value a string denoting host individual names or null in

case of error
Description This function returns the names of all the host

individuals that belong to the specified kb
instance.
Phd Thesis - Fall 98 107

Appendix B: SEED-KBC API specifications
createClassification() int createClassification (String kbName,
String tdName, String superSet, String prim-
Set, String restrSet)

Arguments name of a kb instance in which the classification
will be created, a string denoting a name which
uniquely identifies the new classification, a
string denoting a set of classification names, a
string denoting a set of primitive names, and a
string denoting a set of host type names

Return value an error status or a conflict type
Description This function creates and normalizes a told

description which inherits from the specified clas-
sifications, and contains the specified primitives
and restrictions. The told description is then clas-
sified to reflect the changes upon acquisition.
 If a conflict is detected during normalization of
the new classification, the function will be aborted
and a conflict type will be returned as result.

discardAllClassifications() int discardAllClassifications (String kbName)

Arguments name of a kb instance
Return value an error status

Description This function discards all the classifications in the
specified kb instance.
All the host individuals are unclassified as a con-
sequence of this function.

addToClassification() int addToClassification (String kbName,
String tdName, int type, String itemSet)

Arguments name of a kb instance, name of the classification
to be modified, an constant int denoting the type
of the set items, and a string denoting a set of
item names

Return value an error status or a conflict type
Phd Thesis - Fall 98108

Description This function modifies the content of the given
classification by adding the items of the specified
type. The modified told description is then nor-
malized and the change is propagated to the
effected classifications. The told description and
effected told descriptions are re-classified to
reflect the changes.
If the item type is SUPER, the specified classifi-
cation is added new inherited parents.
If the item type is PRIMITIVE, the specified clas-
sification is added new primitives.
If the item type is RESTRICTION, the specified
classification is restricted to additional host types
The associated host individuals are unclassified if
their effected by the modification.
If a conflict is detected during normalization of the
modified classification, the function will be
aborted and a conflict type will be returned as
result.

retractFromClassification() int retractFromClassification (String kbName,
String tdName, int type, String itemSet)

Arguments name of a kb instance, name of the classification
to be modified, a constant int denoting the item
type, and a string denoting a set of item names

Return value an error status or a conflict type
Description This function modifies the content of the given

classification by retracting the items of the speci-
fied type. The modified told description is then
normalized and the change is propagated to the
effected classifications. The told description and
effected told descriptions are re-classified to
reflect the changes.
If the item type is SUPER, items will be retracted
from the classification’s set of inherited parents.
If the item type is PRIMITIVE, items will be
retracted from the classification’s set of primi-
tives.
If the item type is RESTRICTION, items will be
retracted from the classification’s set of restric-
tions.
Phd Thesis - Fall 98 109

Appendix B: SEED-KBC API specifications
The associated host individuals are unclassified if
their effected by the modification.
If a conflict is detected during normalization of the
modified classification, the function will be
aborted and a conflict type will be returned as
result.

discardClassification() int discardClassification (String kbName,
String tdName)

Arguments name of a kb instance, and name of the classifi-
cation to be discarded

Return value an error status
Description This function discards the given classification and

propagates the change the effected classifica-
tions. The effected told descriptions are re-classi-
fied to reflect the changes.
The associated host individuals are unclassified.

printToldDescription() int printToldDescription (String kbName,
String tdName)

Arguments name of a kb instance, and a classification name
Return value an error status

Description This function prints the told information about the
specified classification to the standard output
device.

printDescription() int printDescription (String kbName, String
tdName)

Arguments name of a kb instance, and a classification name
Return value an error status

Description This function prints the derived information about
the specified classification to the standard output
device.

getToldSupers() String getToldSupers (String kbName, String
tdName)

Arguments name of a kb instance, and a classification name
Phd Thesis - Fall 98110

Return value a string denoting a set of names or null in case of
error

Description This function returns the names of the parent told
descriptions for the specified classification.

getToldPrimitives() String getToldPrimitives (String kbName,
String tdName)

Arguments name of a kb instance, and a classification name
Return value a string denoting a set of names or null in case of

error
Description This function returns the names of the told primi-

tives for the specified classification.

getToldRestrictions() String getToldRestrictions (String kbName,
String tdName)

Arguments name of a kb instance, and a classification name
Return value a string denoting a set of names or null in case of

error
Description This function returns the names of the host types

to which the specified classification is told to be
restricted.

getDerivedPrimitives() String getDerivedPrimitives (String kbName,
String tdName)

Arguments name of a kb instance, and a classification name
Return value a string denoting a set of names or null in case of

error
Description This function returns the names of the derived

primitives for the specified classification.

getDerivedRestrictions() String getDerivedRestrictions (String
kbName, String tdName)

Arguments name of a kb instance, and a classification name
Return value a string denoting a set of names or null in case of

error
Phd Thesis - Fall 98 111

Appendix B: SEED-KBC API specifications
Description This function returns the names of the host types
to which the specified classification is restricted.

getSubsumers() String getSubsumers (String kbName, String
tdName)

Arguments name of a kb instance, and a classification name
Return value a string denoting a set of names or null in case of

error
Description This function returns the names of the classifica-

tions that subsume the specified classification.

getSubsumees() String getSubsumees (String kbName, String
tdName)

Arguments name of a kb instance, and a classification name
Return value a string denoting a set of names or null in case of

error
Description This function returns the names of the classifica-

tions that are subsumed by the specified classifi-
cation.

getSynonyms() String getSynonyms (String kbName, String
tdName)

Arguments name of a kb instance, and a classification name
Return value a string denoting a set of names or null in case of

error
Description This function returns the names of the classifica-

tions that are equivalent to the specified classifi-
cation.

getClassifications() String getClassifications (String kbName)

Arguments name of a kb instance
Return value a string denoting classification names or null in

case of error
Description This function returns the names of all the classifi-

cations that belong to the specified kb instance.
Phd Thesis - Fall 98112

classificationCompare() int classificationCompare (String kbName,
String tdName1, String tdName)

Arguments name of a kb instance, and two strings denoting
the names of the classifications to be compared

Return value a comparison type or KBAPI_ERROR
Description This function compares the specified classifica-

tions: tdName1 and tdName2.
The result of the comparison is EQUAL if
tdName1 and tdName2 have the same identifier.
The result of the comparison is DISJOINED if
tdName1 and tdName2 are disjoined.
The result of the comparison is EQUIVALENT if
tdName1 and tdName2 have the same derived
description.
The result of the comparison is SUBSUMEE if
tdName1 is subsumed by tdName2.
The result of the comparison is SUBSUMER if
tdName1 is subsumes tdName2.
The result of the comparison is DISTINCT other-
wise.

getToldClassified() String getToldClassified (String kbName,
String tdName)

Arguments name of a kb instance, and a classification name
Return value a string denoting a set of host individual names or

null in case of error
Description This function returns the names of the host indi-

vidual classifications that are told to be classified
by the specified classification.

getAllClassified() String getAllClassified (String kbName, String
tdName)

Arguments name of a kb instance, and a classification name
Return value a string denoting a set of host individual names or

null in case of error
Description This function returns the names of the host indi-

viduals that are classified by the specified classi-
fication.
Phd Thesis - Fall 98 113

Appendix B: SEED-KBC API specifications
5. Database transactions

The following methods are used to handle some of the generic database transac-
tions.

commit() void commit (void)

Arguments none
Return value none

Description This function is called if the changes to the classi-
fication knowledge base are needed to be made
permanent.

connect() void connect (void)

Arguments none
Return value none

Description This function is called to connect to the classifica-
tion knowledge base.

disconnect() void disconnect (void)

Arguments none
Return value none

Description This function is called to disconnect from the
classification knowledge base.
Phd Thesis - Fall 98114

Appendix C: SEED-CBD API specifications

Based on the software requirements and SPROUT’s system architecture, SEED-
CBD implements case-base capabilities as application programming interfaces in
C and Java. This section contains the specifications for the SEED-CBD API.

1. Constant values

The following are the type constants employed by the SEED-CBD API.

Case-base concepts
CBAPI_CASE
CBAPI_CASE_DESCRIPTOR
CBAPI_TARGET
CBAPI_CASE_BASE
CBAPI_MATCH_OPERATOR
CBAPI_PROXY_OBJ

Case info container types
CASE_PROBLEM
CASE_SOLUTION
CASE_CASE_OUTCOME

Boolean types
CBAPI_TRUE
CBAPI_FALSE

Appendix C: SEED-CBD API specifications
2. Return values

The following are the constants representing values returned by the SEED-CBD
API methods.

3. CB object

The following method is called to query cb_object: the base class. If the specified
case-base name is not valid, the method returns CBAPI_ERROR_VALUE.

4. CB

The following methods are called to query the cb class and instances. If the speci-
fied case-base name is not valid, the methods return CBAPI_ERROR_VALUE.

Error status
CBAPI_ERROR_VALUE
CBAPI_OK

String
Return value String can denote a string or a
set of strings concatenated in to one string
with ‘:’. Java class StringTokenizer can be
used to identify set members (refer to Appen-
dix A: Using SEED-KBC and SEED-CBD APIs
for a sample code segment processing a Java
set string).

existsObject() int existsObject (int type, String objname,
String cbname)

Arguments an integer denoting a case-base concept type,
a string denoting the name of the object, and
the name of the case-base to which the object
belongs.

Return value a boolean type or CBAPI_ERROR_VALUE.
Description This function looks at the specified case-base

and returns CBAPI_TRUE if it finds the object.

getCBs() String getCBs ()

Arguments none
Phd Thesis - Fall 98116

5. Case

The following methods are called to query the case class and instances. If the
specified case-base name, case object identifiers, or container types are not valid,
the methods return CBAPI_ERROR_VALUE.

Return value a string denoting case-base instance names or
null in case of error

Description This function retrieves names of the existing
case-base instances.

createCB() String createCB (String cbname)

Arguments a string for the new case-base name
Return value an error status

Description This function creates a new case-base
instance and assigns it a unique name.

discardCB() String discardCB (String cbname)

Arguments a string denoting an existing case-base
instance

Return value an error status
Description This function discards the specified case-base

instance and all the associated case-base
components.

cleanupCB() String discardCB (String cbname)

Arguments a string denoting an existing case-base
instance

Return value an error status
Description This function discards all the cases, target

objects, match operators and proxies that are
associated with the specified case-base
instance.
Phd Thesis - Fall 98 117

Appendix C: SEED-CBD API specifications

caseCreate() String caseCreate (String cbname, String
casename)

Arguments a string for the new case name and a string
denoting an existing case-base instance

Return value a string denoting a unique identifier or null in
case of error

Description This function creates an empty case in the
specified case-base and assigns it a unique
identifier.

getCases() String getCases (String cbname)

Arguments a string denoting an existing case-base
instance

Return value a string denoting a set of case names or null
Description This function retrieves the names of the cases

associated with the specified case-base
instance.

getCaseIDs() String getCaseIDs (String cbname)

Arguments a string denoting an existing case-base
instance

Return value a string denoting a set of case identifiers or
null

Description This function retrieves the unique identifiers of
the cases associated with the specified case-
base instance.

caseDiscardAll() int caseDiscardAll (String cbname)

Arguments a string denoting an existing case-base
instance

Return value an error status
Description This function discards all the cases associated

with the specified case-base instance.
Phd Thesis - Fall 98118

caseDiscard() int caseDiscard (String caseid)

Arguments a string denoting a unique case identifier
Return value an error status

Description This function discards the specified case.

caseGetRank() double caseGetRank (String caseid)

Arguments a string denoting a unique case identifier
Return value a double positive rank value between 1 and 0

or a negative value in case of error
Description This function finds out the rank of the specified

case with respect to the most recent retrieval
by matching request.

caseSetToldName() String caseSetToldName (String caseid,
String casename)

Arguments a string denoting a unique case identifier, and
a string denoting a new case name

Return value a string denoting a new case identifier or null
in case of error

Description This function renames the specified case and
returns the new unique identifier.

caseGetToldName() String caseGetToldName (String caseid)

Arguments a string denoting a unique case identifier
Return value a string denoting a case name or null in case

of error
Description This function returns the name of the specified

case.

caseAnnotate() int caseAnnotate (String caseid, String
annotation)

Arguments a string denoting a unique case identifier, and
a new annotation string
Phd Thesis - Fall 98 119

Appendix C: SEED-CBD API specifications
Return value an error status
Description This function adds the new annotation to the

annotations set of the specified case.

caseDropAnnotation() int caseDropAnnotation (String caseid,
String annotation)

Arguments a string denoting a unique case identifier, and
an annotation string

Return value an error status
Description This function performs a substring match on

the specified case annotations, and drops the
ones that match the given annotation.

caseFindAnnotation() String caseFindAnnotation (String caseid,
String annotation)

Arguments a string denoting a unique case identifier, and
an annotation string

Return value a string denoting a set of annotations or null in
case of error

Description This function performs a substring match on
the specified case annotations, and returns the
ones that match the given annotation.

caseAddTo() int caseAddTo (String caseid, int container-
Type, String proxyid)

Arguments a string denoting a unique case identifier, an
integer denoting a case info container type,
and a string denoting a unique proxy object
identifier

Return value an error status
Description This function adds a new proxy object refer-

ence to the specified case. The new object ref-
erence can be added to the problem, solution
or the outcome of the case.

caseDropFrom() int caseDropFrom (String caseid, int con-
tainerType, String proxyid)
Phd Thesis - Fall 98120

Arguments a string denoting a unique case identifier, an
integer denoting a case info container type,
and a string denoting a unique proxy object
identifier

Return value an error status
Description This function removes the specified proxy

object reference from the case. The new
object reference can be removed from the
problem, solution or the outcome of the case.

caseGet() String caseGet (String caseid, int contain-
erType)

Arguments a string denoting a unique case identifier, and
an integer denoting a case info container type

Return value a string denoting a set of proxy object identifi-
ers

Description This function returns the content of the speci-
fied case container i.e. the problem, solution or
the outcome of the case.

caseAddMatchable() int caseAddMatchable (String caseid,
String matchableid)

Arguments a string denoting a unique case identifier, and
a string denoting a unique proxy object identi-
fier

Return value an error status
Description This function adds a new proxy object refer-

ence to the matchables set of the specified
case.

caseDropMatchable() int caseDropMatchable (String caseid,
String matchableid)

Arguments a string denoting a unique case identifier, and
a string denoting a unique proxy object identi-
fier

Return value an error status
Phd Thesis - Fall 98 121

Appendix C: SEED-CBD API specifications
6. Proxy

The following methods are called to query the proxy class and instances. If the
specified case-base name or proxy object identifiers are not valid, the methods
return CBAPI_ERROR_VALUE.

Description This function removes the proxy object refer-
ence from the matchables set of the specified
case.

caseGetMatchables() String caseGetMatchables (String caseid,
String matchabletype)

Arguments a string denoting a unique case identifier, and
a string denoting a proxy object type

Return value a string denoting a set of proxy object identifi-
ers

Description This function returns the matchable set for the
specified case. If the matchabletype string is
the keyword all, proxy object identifiers of all
types are returned; if it is a proxy object type
signature, only the matchables of the specified
type are returned.

caseGetTypeSignatures() String caseGetTypeSignatures (String
caseid)

Arguments a string denoting a unique case identifier
Return value a string denoting a set of proxy object type sig-

natures
Description This function returns a set of type signatures

for the matchables that belong to the specified
case.

proxyRegister() String proxyRegister (String cbname,
String proxyname, String proxytype)

Arguments a SPROUT object identifier and type signature,
and a string denoting an existing case-base
instance

Return value a string denoting a unique identifier or null in
case of error
Phd Thesis - Fall 98122

Description This function creates a proxy of a SPROUT
object in the specified case-base and assigns it
a type signature and a unique identifier for the
case-base it belongs to.

getProxies() String getProxies (String cbname)

Arguments a string denoting an existing case-base
instance

Return value a string denoting a set of SPROUT object iden-
tifiers or null

Description This function returns the SPROUT object iden-
tifiers from the proxy objects that are associ-
ated with the specified case-base instance.

getProxyIDs() String getProxyIDs (String cbname)

Arguments a string denoting an existing case-base
instance

Return value a string denoting a set of proxy object identifi-
ers or null

Description This function returns the unique proxy object
identifiers that are associated with the speci-
fied case-base instance.

proxyDiscardAll() int proxyDiscardAll (String cbname)

Arguments a string denoting an existing case-base
instance

Return value Return value: an error status
Description This function discards all the proxy objects

associated with the specified case-base
instance. As a consequence, all the case and
target matchables that reference the discarded
proxy objects are updated to reflect the
changes.

proxyIsRegistered() int proxyIsRegistered (String cbname,
String proxyname)

Arguments a string denoting an existing case-base
instance and a SPROUT object identifier.
Phd Thesis - Fall 98 123

Appendix C: SEED-CBD API specifications
7. Match operator

The following methods are called to query the match operator class and instances.
If the provided case-base name, match operator identifiers, shared object file loca-

Return value a boolean type or CBAPI_ERROR_VALUE
Description This function looks at the specified case-base

and returns CBAPI_TRUE if it finds a proxy
object for the specified SPROUT object.

proxyUnregister() int proxyUnregister (String proxyid)

Arguments a string denoting a proxy object identifier
Return value an error status

Description This function unregisters the proxy objects
associated with the specified case-base
instance. As a consequence, all the case and
target matchables that reference the unregis-
tered proxy object are updated to reflect the
changes.

getProxyTypeSignature() String getProxyTypeSignatures (String pId)

Arguments a string denoting an existing case-base
instance

Return value a string denoting a set of proxy object type sig-
natures or null

Description This function returns the proxy object type sig-
natures that are associated with the specified
case-base instance.

getProxyDBOID() String getProxyTypeSignatures (String pId)

Arguments a string denoting an existing case-base
instance

Return value a string denoting a set of proxy object identifi-
ers or null

Description This function returns the unique proxy object
identifiers that are associated with the speci-
fied case-base instance.
Phd Thesis - Fall 98124

tion, or the implementation function name are not valid, the methods return
CBAPI_ERROR_VALUE.

matchOperatorCreate() String matchOperatorCreate (String
moname, String cbname, String cfunction,
String solocation, String matchtypesign)

Arguments a match operator name, a C implementation
function name, a shared object file location, a
type signature, and a string denoting an exist-
ing case-base instance

Return value a string denoting a unique identifier or null in
case of error

Description This function creates a match operator
instance and adds a class method to the
match operator schema. Since the changes
are made at the schema level, the implemen-
tation function and the shared object file
should exist at the time of creation, otherwise
the match operator class will be considered
undefined. Upon successful completion the
match operator instance is assigned a unique
identifier for the case-base it belongs to.

getMatchOperators() String getMatchOperators (String
cbname)

Arguments a string denoting an existing case-base
instance

Return value a string denoting a set of match operator
names or null

Description This function returns the names of the match
operators that are associated with the speci-
fied case-base instance.

getMatchOperatorIDs() String getMatchOperatorIDs (String
cbname)

Arguments a string denoting an existing case-base
instance

Return value a string denoting a set of match operator
identifiers or null
Phd Thesis - Fall 98 125

Appendix C: SEED-CBD API specifications
Description This function returns the unique identifiers of
the match operators that are associated with
the specified case-base instance.

matchOperatorDiscardAll() int matchOperatorDiscardAll (String
cbname)

Arguments a string denoting an existing case-base
instance

Return value an error status
Description This function discards all the match operators

associated with the specified case-base
instance. As a consequence, all the target
matchables that reference the discarded
match operators are updated to reflect the
changes.

matchOperatorSetName() String matchOperatorSetName (String
moid, String moname)

Arguments a string denoting a unique match operator
identifier, and a string denoting a new match
operator name

Return value a string denoting a new match operator iden-
tifier or null in case of error

Description This function renames the specified match
operator and returns the new unique identi-
fier.

matchOperatorGetName() String matchOperatorGetName (String
moid)

Arguments a string denoting a unique match operator
identifier

Return value a string denoting a match operator name or
null in case of error

Description This function returns the name of the speci-
fied match operator.
Phd Thesis - Fall 98126

matchOperatorDiscard() int matchOperatorDiscard (String moid)

Arguments a string denoting a unique match operator
identifier

Return value an error status
Description This function discards the specified match

operator. As a consequence, all the target
matchables that reference the discarded
match operator are updated to reflect the
changes.

matchOperatorSetSoLocation() int matchOperatorSetSoLocation (String
moid, String solocation)

Arguments a string denoting a unique match operator
identifier, and a string denoting a new shared
object file location

Return value an error status
Description This function sets the specified match opera-

tor’s shared object file location to the pro-
vided path string.

matchOperatorGetSoLoca-
tion()

String matchOperatorGetSoLocation
(String moid)

Arguments a string denoting a unique match operator
identifier

Return value a string denoting a path for a shared object
file or null in case of error

Description This function returns the location of the
shared object location file for the specified
match operator.

matchOperatorSetMatchable-
TypeSign()

int matchOperatorSetMatchableTypeSign
(String moid, String matchtypesign)

Arguments a string denoting a unique match operator
identifier, and a string denoting a type signa-
ture

Return value an error status
Phd Thesis - Fall 98 127

Appendix C: SEED-CBD API specifications
Description This function sets the type signature for the
specified match operator to the provided type
signature. The match operator compares
objects of the specified type.

matchOperatorGetMatchable-
TypeSign()

String matchOperatorGetMatchableType-
Sign (String moid)

Arguments a string denoting a unique match operator
identifier

Return value a string denoting a type signature or null in
case of error

Description This function returns the required type signa-
ture for the specified match operator.

matchOperatorSetImpl() int matchOperatorSetImpl (String moid,
String moimpl)

Arguments a string denoting a unique match operator
identifier, and a string denoting an implemen-
tation function name

Return value an error status
Description This function sets the implementation for the

specified match operator to the provided C
function name. The function must be accessi-
ble from the match operator’s shared object
file.

matchOperatorGetImpl() String matchOperatorGetImpl (String
moid)

Arguments a string denoting a unique match operator
identifier

Return value a string denoting an implementation function
name or null in case of error

Description This function returns the C function name
which implements the match method for the
specified match operator.
Phd Thesis - Fall 98128

8. Target

The following methods are called to query the target class and instances. If the
provided case-base name, target object identifiers, match operator or proxy object
names are not valid, the methods return CBAPI_ERROR_VALUE.

targetCreate() String targetCreate (String cbname, String
targetname)

Arguments a string for the new target name and a string
denoting an existing case-base instance

Return value a string denoting a unique identifier or null in
case of error

Description This function creates an empty target object
in the specified case-base and assigns it a
unique identifier.

getTargets() String getTargets (String cbname)

Arguments a string denoting an existing case-base
instance

Return value a string denoting a set of target object names
or null

Description This function retrieves the names of the tar-
get objects associated with the specified
case-base instance.

getTargetIDs() String getTargetIDs (String cbname)

Arguments a string denoting an existing case-base
instance

Return value a string denoting a set of target object identifi-
ers or null

Description This function retrieves the unique target
object identifiers associated with the speci-
fied case-base instance.

targetDiscardAll() int caseDiscardAll (String cbname)

Arguments a string denoting an existing case-base
instance

Return value an error status
Phd Thesis - Fall 98 129

Appendix C: SEED-CBD API specifications
Description This function discards all the target objects
associated with the specified case-base
instance.

targetDiscard() int targetDiscard (String targetid)

Arguments a string denoting a unique target object iden-
tifier

Return value an error status
Description This function discards the specified target

object.

targetSetName() String targetSetName (String targetid,
String targetname)

Arguments a string denoting a unique target object iden-
tifier, and a string denoting a new case name

Return value a string denoting a new target identifier or null
in case of error

Description This function renames the specified target
object and returns the new unique identifier.

targetGetName() String targetGetName (String targetid)

Arguments a string denoting a unique target object iden-
tifier

Return value a string denoting a target object name or null
in case of error

Description This function returns the name of the speci-
fied target object.

targetAddMatchable() int targetAddMatchable (String targetid,
String matchablename, String matchop-
name)

Arguments a string denoting a unique target object iden-
tifier, a match operator name and a proxy
object name

Return value an error status
Phd Thesis - Fall 98130

Description This function adds a new proxy object, match
operator reference pair to the matchables set
of the specified target object.

targetDropMatchable() int targetDropMatchable (String targetid,
String matchablename, String matchop-
name)

Arguments a string denoting a unique target object iden-
tifier, a match operator name and a proxy
object name

Return value an error status
Description This function removes the specified proxy

object, match operator reference pair from
the target object matchable set.

targetNMatchables() int targetNMatchables (String targetid)

Arguments a string denoting a unique target object iden-
tifier

Return value an integer count or CBAPI_ERROR_VALUE
Description This function returns the count of matchables

for the specified target object.

targetGetMatchOperatorAt() String targetGetMatchOperatorAt (String
targetid, int matchableindex)

Arguments a string denoting a unique target object iden-
tifier, and an integer index value

Return value a string denoting a match operator identifier
or null in case of error

Description This function retrieves the match operator
identifier of a matchable pair located at the
specified index. If the index is out of bounds
of the target object matchable set, the func-
tion returns null.

targetGetMatchableIDAt() String targetGetMatchableIDAt (String tar-
getid, int matchableindex)

Arguments a string denoting a unique target object iden-
tifier, and an integer index value
Phd Thesis - Fall 98 131

Appendix C: SEED-CBD API specifications
9. Retrieval

The following methods are called to retrieve cases in the specified case-base. If
the provided case-base name, classification knowledge-base name, classification
name, or the target object identifiers are not valid, retrieval methods return
CBAPI_ERROR_VALUE.

Return value a string denoting a proxy object identifier or
null in case of error

Description This function retrieves the proxy object identi-
fier of a matchable pair located at the speci-
fied index. If the index is out of bounds of the
target object matchable set, the function
returns null.

targetGetTypeSignatures() String targetGetTypeSignatures (String
targetid)

Arguments a string denoting a unique target object iden-
tifier

Return value a string denoting a set of proxy object type
signatures

Description This function returns a set of type signatures
for the matchables that belong to the speci-
fied target object.

retrieve() String targetGetMatchableIDAt (String tar-
getname, String cbname, String kbname,
String relattrname)

Arguments a string denoting a target name, name of a
existing case-base instance, a classification
knowledge-base name and a string denoting
a SPROUT object relation attribute name

Return value a string denoting a sequence of case identifi-
ers or null in case of error
Phd Thesis - Fall 98132

Description This function ranks the cases associated with
the specified case-base. The ranking is
based on the matchables and match opera-
tors specified in the provided target. The
knowledge-base name is used to issue sub-
sumption queries on a SEED-KBC knowl-
edge-base. The relation attribute name
argument allows the matching engine to per-
form a transitive subgraph match on the
specified relational hierarchy, if not specified
a base match is performed on SPROUT
objects (for more about transitive match and base
match refer to Flemming et. al. (1996)). Upon the
successful completion of the retrieval, cases
are ranked based on a value between 0 and
1, and the identifiers of the ranked are
returned in descending order.

retrieveByClassification() String retrieveByClassification (String
cbname, String kbname, String clname)

Arguments a string denoting the name of a existing case-
base instance, a classification knowledge-
base name and a string denoting a SEED-
KBC classification name

Return value a string denoting a set of case identifiers or
null in case of error

Description This function retrieves cases which contain
descriptor objects having classifications com-
patible with the target classification. A
descriptor object classification is compatible if
it is equal, equivalent to, or is subsumed by
the target classification. The knowledge-base
name is used to issue the necessary sub-
sumption query on a SEED-KBC knowledge-
base. Upon successful completion of
retrieval, the function returns a set of case
identifiers associated with the specified case-
base instance.

retrieveByAnnotation() String retrieveByClassification (String
cbname, String matchstring)

Arguments a string denoting the name of a existing case-
base instance, and a match string
Phd Thesis - Fall 98 133

Appendix C: SEED-CBD API specifications
10. Database transactions
The following methods are used to handle some of the generic database transac-
tions.

Return value a string denoting a set of case identifiers or
null in case of error

Description This function retrieves cases which contain
annotations matching the target annotation.
Upon successful completion of a series of
substring matches, the function returns a set
of case identifiers associated with the speci-
fied case-base instance.

commit() void commit ()

Arguments none
Return value none

Description This function is called to commit the transac-
tions made in the case-base.

connect() void connect ()

Arguments none
Return value none

Description This function is called to connect to the case-
base.

disconnect() void disconnect ()

Arguments none
Return value none

Description This function is called to disconnect from the
case-base.
Phd Thesis - Fall 98134

Appendix D: Database Representations

This section contains the schema specifications for the SEED-CBD and SEED_KBC
engines.

1. SEED-KBC schema

CREATE CLASS kb_object;

CREATE CLASS kb;

CREATE CLASS role_restriction;

CREATE CLASS told_description;

CREATE CLASS kb_role;

CREATE CLASS individual;

CREATE CLASS concept;

CREATE CLASS kb_individual;

CREATE CLASS host_individual;

CREATE CLASS kb_concept;

CREATE CLASS host_concept;

CREATE CLASS description;

CREATE CLASS primitive;

CREATE CLASS tmp_description;

ALTER CLASS kb ADD SUPERCLASS kb_object;

ALTER CLASS role_restriction ADD SUPERCLASS kb_object;

ALTER CLASS told_description ADD SUPERCLASS kb_object;

ALTER CLASS kb_role ADD SUPERCLASS kb_object;

ALTER CLASS individual ADD SUPERCLASS kb_object;
135

Appendix D: Database Representations
ALTER CLASS concept ADD SUPERCLASS kb_object;

ALTER CLASS kb_individual ADD SUPERCLASS individual;

ALTER CLASS host_individual ADD SUPERCLASS individual;

ALTER CLASS kb_concept ADD SUPERCLASS concept;

ALTER CLASS host_concept ADD SUPERCLASS concept;

ALTER CLASS description ADD SUPERCLASS kb_concept;

ALTER CLASS primitive ADD SUPERCLASS kb_concept;

ALTER CLASS classifier ADD SUPERCLASS kb_object;

ALTER CLASS tmp_description ADD SUPERCLASS told_description;

ALTER CLASS kb ADD ATTRIBUTE

 status character(4) DEFAULT 'off ',

 kb_name character varying(1073741823),

 CONSTRAINT "u_kb(kb_name)" UNIQUE(kb_name);

ALTER CLASS kb ADD METHOD

 discard() FUNCTION cl_discard_kb,

 cleanup() FUNCTION cl_cleanup_kb,

 create_primitive() FUNCTION cl_create_primitive_kb,

 create_classification() FUNCTION cl_create_classification_kb,

 discard_classification() FUNCTION cl_discard_classification_kb,

 is_classified() FUNCTION cl_is_classified_kb, is_registered() FUNCTION
cl_is_registered_kb,

 get_classification() FUNCTION cl_get_classification_kb,

 discard_primitive() FUNCTION cl_discard_primitive_kb,

 is_a_disjoint_primitive() FUNCTION cl_is_a_disjoint_primitive_kb,

 is_a_disjunct() FUNCTION cl_is_a_disjunct_kb,

 get_primitives() FUNCTION cl_get_primitives_kb,

 get_super_primitive() FUNCTION cl_get_super_primitive_kb,

 get_sub_primitives() FUNCTION cl_get_sub_primitives_kb,

 create_host_concept() FUNCTION cl_create_host_concept_kb,

 get_host_concepts() FUNCTION cl_get_host_concepts_kb,

 are_disjoined() FUNCTION cl_are_disjoined_kb,

 register_spobj() FUNCTION cl_register_spobj_kb,

 unregister_spobj() FUNCTION cl_unregister_spobj_kb,

 classify_spobj() FUNCTION cl_classify_spobj_kb,
Phd Thesis - Fall 98136

 print_description() FUNCTION cl_print_description_kb,

 print_told_description() FUNCTION cl_print_told_description_kb,

 get_spobjs() FUNCTION cl_get_spobjs_kb,

 get_classifications() FUNCTION cl_get_classifications_kb,

 discard_all_classifications() FUNCTION cl_discard_all_classifications_kb,

 add_to_classification() FUNCTION cl_add_to_classification_kb,

 retract_from_classification() FUNCTION cl_retract_from_classification_kb,

 get_told_supers() FUNCTION cl_get_told_supers_kb,

 get_told_primitives() FUNCTION cl_get_told_primitives_kb,

 get_told_restrictions() FUNCTION cl_get_told_restrictions_kb,

 get_derived_primitives() FUNCTION cl_get_derived_primitives_kb,

 get_derived_restrictions() FUNCTION cl_get_derived_restrictions_kb,

 get_synonyms() FUNCTION cl_get_synonyms_kb,

 get_all_classified() FUNCTION cl_get_all_classified_kb,

 get_told_classified() FUNCTION cl_get_told_classified_kb,

 get_classification_subsumees() FUNCTION cl_get_classification_subsumees_kb,

 get_classification_subsumers() FUNCTION cl_get_classification_subsumers_kb,

 retrieve() FUNCTION cl_retrieve_kb,

 compare() FUNCTION cl_compare_kb,

 classification_compare() FUNCTION cl_classification_compare_kb,

 get_classified_spobjs() FUNCTION cl_get_classified_spobjs_kb

FILE '$KBCLITE/kbmethods.so'

;

ALTER CLASS kb ADD METHOD

CLASS new() FUNCTION cl_new_kb,

CLASS find_active() FUNCTION cl_active_kb,

CLASS activate() FUNCTION cl_activate_kb,

CLASS deactivate() FUNCTION cl_deactivate_kb,

CLASS find() FUNCTION cl_find_kb,

CLASS get_kb_names() FUNCTION cl_get_kb_names_kb

;

Phd Thesis - Fall 98 137

Appendix D: Database Representations
ALTER CLASS told_description ADD ATTRIBUTE

 primitives set(character varying(1073741823)),

 restricted_to set(character varying(1073741823)),

 belongs_to character varying(1073741823),

 inherits_from set(character varying(1073741823));

ALTER CLASS told_description ADD METHOD

 add_primitive() FUNCTION cl_add_primitive_told_description,

 drop_primitive() FUNCTION cl_drop_primitive_told_description,

 restrict_to() FUNCTION cl_restrict_to_told_description,

 drop_restriction() FUNCTION cl_drop_restriction_told_description,

 print() FUNCTION cl_print_told_description,

 discard() FUNCTION cl_discard_told_description,

 add_super() FUNCTION cl_add_super_told_description,

 drop_super() FUNCTION cl_drop_super_told_description,

 subsumes_classification() FUNCTION cl_subsumes_classification_told_description,

 is_in_conflict_with() FUNCTION cl_is_in_conflict_with_told_description,

 clone() FUNCTION cl_clone_told_description,

 get_subsumers() FUNCTION cl_get_subsumers_told_description,

 get_subsumees() FUNCTION cl_get_subsumees_told_description,

 is_canonical_owner() FUNCTION cl_is_canonical_owner_told_description

FILE '$KBCLITE/kbmethods.so'

;

ALTER CLASS told_description ADD METHOD

CLASS new() FUNCTION cl_new_told_description

;

ALTER CLASS host_individual ADD ATTRIBUTE

 hi_type character varying(1073741823),

 belongs_to character varying(1073741823),

 is_classified_by character varying(1073741823);

ALTER CLASS host_individual ADD METHOD

 discard() FUNCTION cl_discard_host_individual
Phd Thesis - Fall 98138

FILE '$KBCLITE/kbmethods.so'

;

ALTER CLASS host_individual ADD METHOD

CLASS new() FUNCTION cl_new_host_individual

;

ALTER CLASS host_concept ADD ATTRIBUTE

 belongs_to character varying(1073741823);

ALTER CLASS host_concept ADD METHOD

CLASS new() FUNCTION cl_new_host_concept

FILE '$KBCLITE/kbmethods.so'

;

ALTER CLASS description ADD ATTRIBUTE

 belongs_to character varying(1073741823),

 primitives set(character varying(1073741823)),

 restrict_to set(character varying(1073741823)),

 subsumees set(description),

 subsumers set(description);

ALTER CLASS description ADD METHOD

 subsumes() FUNCTION cl_subsumes_description,

 add_subsumer() FUNCTION cl_add_subsumer_description,

 add_subsumee() FUNCTION cl_add_subsumee_description,

 add_subsumer_set() FUNCTION cl_add_subsumer_set_description,

 add_subsumee_set() FUNCTION cl_add_subsumee_set_description,

 are_disjoined() FUNCTION cl_are_disjoined_description,

 print() FUNCTION cl_print_description,

 is_disjoined_from() FUNCTION cl_is_disjoined_from_description

FILE '$KBCLITE/kbmethods.so'

;

Phd Thesis - Fall 98 139

Appendix D: Database Representations
ALTER CLASS description ADD METHOD

CLASS new() FUNCTION cl_new_description

;

ALTER CLASS primitive ADD METHOD

CLASS new() FUNCTION cl_new_primitive,

CLASS discard() FUNCTION cl_discard_primitive,

CLASS told_name() FUNCTION cl_told_name_primitive,

CLASS is_a_disjoint_primitive() FUNCTION cl_is_a_disjoint_primitive_primitive,

CLASS get_incompetibles() FUNCTION cl_get_incompetibles_primitive,

CLASS belongs_to() FUNCTION cl_belongs_to_primitive,

CLASS is_a_disjunct() FUNCTION cl_is_a_disjunct_primitive,

CLASS get_super() FUNCTION cl_get_super_primitive,

CLASS get_subs() FUNCTION cl_get_subs_primitive,

CLASS get_n_descendants() FUNCTION cl_get_n_descendants_primitive,

CLASS exists_in_kb() FUNCTION cl_exists_in_kb_primitive,

CLASS are_disjoined() FUNCTION cl_are_disjoined_primitive,

CLASS is_subprimitive() FUNCTION cl_is_subprimitive_primitive,

CLASS is_superprimitive() FUNCTION cl_is_superprimitive_primitive

FILE '$KBCLITE/kbmethods.so'

;

ALTER CLASS tmp_description ADD ATTRIBUTE

 classifies set(character varying(1073741823)),

 tmp_name character varying(1073741823),

 CONSTRAINT "u_tmp_description(tmp_name)" UNIQUE(tmp_name);

2. SEED-CBD schema

CREATE CLASS cb_object;

CREATE CLASS cb;

CREATE CLASS cb_component;

CREATE CLASS proxy_obj;

CREATE CLASS descr;
Phd Thesis - Fall 98140

CREATE CLASS match_operator;

CREATE CLASS target_descr;

CREATE CLASS case_descr;

CREATE CLASS case_obj;

CREATE CLASS target_matchable;

ALTER CLASS cb ADD SUPERCLASS cb_object;

ALTER CLASS cb_component ADD SUPERCLASS cb_object;

ALTER CLASS proxy_obj ADD SUPERCLASS cb_component;

ALTER CLASS descr ADD SUPERCLASS cb_component;

ALTER CLASS match_operator ADD SUPERCLASS cb_component;

ALTER CLASS target_descr ADD SUPERCLASS descr;

ALTER CLASS case_descr ADD SUPERCLASS descr;

ALTER CLASS case_obj ADD SUPERCLASS cb_component;

ALTER CLASS target_matchable ADD SUPERCLASS cb_component;

ALTER CLASS cb_object ADD METHOD

CLASS obj_exists() FUNCTION cbd_obj_exists_cb_object

FILE ’$SEEDCBD/cbmethods.so’

;

ALTER CLASS cb ADD ATTRIBUTE

 cb_name character varying(1073741823),

 ranking sequence(character varying(1073741823)),

 CONSTRAINT "u_cb(cb_name)" UNIQUE(cb_name);

ALTER CLASS cb ADD METHOD

 discard() FUNCTION cbd_discard_cb,

 cleanup() FUNCTION cbd_cleanup_cb,

 component_id() FUNCTION cbd_component_id_cb,

 unrank() FUNCTION cbd_unrank_cb,

 rank() FUNCTION cbd_rank_cb

FILE ’$SEEDCBD/cbmethods.so’

;

Phd Thesis - Fall 98 141

Appendix D: Database Representations
ALTER CLASS cb ADD METHOD

CLASS new() FUNCTION cbd_new_cb,

CLASS get_cbs() FUNCTION cbd_get_cbs_cb,

CLASS discard_all() FUNCTION cbd_discard_all_cb,

CLASS find_unique() FUNCTION cbd_find_unique_cb

;

ALTER CLASS cb_component ADD ATTRIBUTE

 belongs_to character varying(1073741823);

ALTER CLASS proxy_obj ADD ATTRIBUTE

 type_signature character varying(1073741823),

 cb_dboid character varying(1073741823),

 dboid character varying(1073741823),

 CONSTRAINT "u_proxy_obj(cb_dboid)" UNIQUE(cb_dboid);

ALTER CLASS proxy_obj ADD METHOD

 unregister_spobj() FUNCTION cbd_unregister_spobj_proxy_obj,

 get_dboid() FUNCTION cbd_get_dboid_proxy_obj,

 get_type_signature() FUNCTION cbd_get_type_signature_proxy_obj

FILE ’$SEEDCBD/cbmethods.so’

;

ALTER CLASS proxy_obj ADD METHOD

CLASS register_spobj() FUNCTION cbd_register_spobj_proxy_obj,

CLASS get_proxy_objs() FUNCTION cbd_get_proxy_objs_proxy_obj,

CLASS discard_all() FUNCTION cbd_discard_all_proxy_obj,

CLASS find_unique() FUNCTION cbd_find_unique_proxy_obj,

CLASS get_proxy_obj_ids() FUNCTION cbd_get_proxy_obj_ids_proxy_obj,

CLASS is_registered() FUNCTION cbd_is_registered_proxy_obj

;

ALTER CLASS match_operator ADD ATTRIBUTE

 so_location character varying(1073741823),

 matchable_type_sign character varying(1073741823),
Phd Thesis - Fall 98142

 match_operator_name character varying(1073741823),

 match_operator_id character varying(1073741823),

 c_function character varying(1073741823),

 CONSTRAINT "u_match_operator(match_operator_id)" UNIQUE(match_operator_id);

ALTER CLASS match_operator ADD METHOD

 discard() FUNCTION cbd_discard_match_operator,

 set_so_location() FUNCTION cbd_set_so_location_match_operator,

 get_so_location() FUNCTION cbd_get_so_location_match_operator,

 set_matchable_type_sign() FUNCTION
cbd_set_matchable_type_sign_match_operator,

 get_matchable_type_sign() FUNCTION
cbd_get_matchable_type_sign_match_operator,

 set_match_operator_name() FUNCTION
cbd_set_match_operator_name_match_operator,

 get_match_operator_name() FUNCTION
cbd_get_match_operator_name_match_operator,

 set_c_function() FUNCTION cbd_set_c_function_match_operator,

 call_operator() FUNCTION cbd_call_operator_match_operator,

 get_c_function() FUNCTION cbd_get_c_function_match_operator

FILE ’$SEEDCBD/cbmethods.so’

;

ALTER CLASS match_operator ADD METHOD

CLASS new() FUNCTION cbd_new_match_operator,

CLASS discard_all() FUNCTION cbd_discard_all_match_operator,

CLASS find_unique() FUNCTION cbd_find_unique_match_operator,

CLASS get_match_operators() FUNCTION cbd_get_match_operators_match_operator,

CLASS get_match_operator_ids() FUNCTION
cbd_get_match_operator_ids_match_operator

;

ALTER CLASS target_descr ADD ATTRIBUTE

 matchables set(target_matchable),

 target_name character varying(1073741823),

 target_id character varying(1073741823),

 CONSTRAINT "u_target_descr(target_id)" UNIQUE(target_id);
Phd Thesis - Fall 98 143

Appendix D: Database Representations
ALTER CLASS target_descr ADD METHOD

 discard() FUNCTION cbd_discard_target_descr,

 set_target_name() FUNCTION cbd_set_target_name_target_descr,

 get_target_name() FUNCTION cbd_get_target_name_target_descr,

 add_matchable() FUNCTION cbd_add_matchable_target_descr,

 drop_matchable() FUNCTION cbd_drop_matchable_target_descr,

 get_n_matchables() FUNCTION cbd_get_n_matchables_target_descr,

 get_matchable_id() FUNCTION cbd_get_matchable_id_target_descr,

 get_matchable_operator() FUNCTION cbd_get_matchable_operator_target_descr,

 get_type_signatures() FUNCTION cbd_get_type_signatures_target_descr

FILE ’$SEEDCBD/cbmethods.so’

;

ALTER CLASS target_descr ADD METHOD

CLASS new() FUNCTION cbd_new_target_descr,

CLASS discard_all() FUNCTION cbd_discard_all_target_descr,

CLASS find_unique() FUNCTION cbd_find_unique_target_descr,

CLASS get_targets() FUNCTION cbd_get_targets_target_descr,

CLASS get_target_ids() FUNCTION cbd_get_target_ids_target_descr

;

ALTER CLASS case_descr ADD ATTRIBUTE

 parent_case case_obj,

 matchables set(character varying(1073741823));

ALTER CLASS case_descr ADD METHOD

 add_matchable() FUNCTION cbd_add_matchable_case_descr,

 drop_matchable() FUNCTION cbd_drop_matchable_case_descr,

 type_signatures() FUNCTION cbd_type_signatures_case_descr

FILE ’$SEEDCBD/cbmethods.so’

;

ALTER CLASS case_descr ADD METHOD

CLASS new() FUNCTION cbd_new_case_descr

;

Phd Thesis - Fall 98144

ALTER CLASS case_obj ADD ATTRIBUTE

 annotations set(character varying(1073741823)),

 case_id character varying(1073741823),

 told_name character varying(1073741823),

 case_index case_descr,

 problem_set set(character varying(1073741823)),

 solution_set set(character varying(1073741823)),

 outcome_set set(character varying(1073741823)),

 ranking double DEFAULT 0,

 CONSTRAINT "u_case_obj(case_id)" UNIQUE(case_id);

ALTER CLASS case_obj ADD METHOD

 add_index_matchable() FUNCTION cbd_add_index_matchable_case_obj,

 drop_index_matchable() FUNCTION cbd_drop_index_matchable_case_obj,

 get_index_matchables() FUNCTION cbd_get_index_matchables_case_obj,

 discard() FUNCTION cbd_discard_case_obj,

 set_told_name() FUNCTION cbd_set_told_name_case_obj,

 get_told_name() FUNCTION cbd_get_told_name_case_obj,

 add_annotation() FUNCTION cbd_add_annotation_case_obj,

 drop_annotation() FUNCTION cbd_drop_annotation_case_obj,

 add_to() FUNCTION cbd_add_to_case_obj,

 drop_from() FUNCTION cbd_drop_from_case_obj,

 get_set_of() FUNCTION cbd_get_set_of_case_obj,

 find_annotations() FUNCTION cbd_find_annotations_case_obj,

 get_type_signatures() FUNCTION cbd_get_type_signatures_case_obj,

 set_rank() FUNCTION cbd_set_rank_case_obj,

 get_rank() FUNCTION cbd_get_rank_case_obj

FILE ’$SEEDCBD/cbmethods.so’

;

ALTER CLASS case_obj ADD METHOD

CLASS new() FUNCTION cbd_new_case_obj,

CLASS get_cases() FUNCTION cbd_get_cases_case_obj,

CLASS get_case_ids() FUNCTION cbd_get_case_ids_case_obj,

CLASS find_unique() FUNCTION cbd_find_unique_case_obj,
Phd Thesis - Fall 98 145

Appendix D: Database Representations
CLASS discard_all() FUNCTION cbd_discard_all_case_obj,

CLASS quick_retrieval() FUNCTION cbd_quick_retrieval_case_obj

;

ALTER CLASS target_matchable ADD ATTRIBUTE

 matchable_id character varying(1073741823),

 parent_descriptor target_descr,

 match_operator_id character varying(1073741823);

ALTER CLASS target_matchable ADD METHOD

CLASS new() FUNCTION cbd_new_target_matchable

FILE ’$SEEDCBD/cbmethods.so’

;

CREATE TRIGGER clear_case_content

 STATUS ACTIVE

 PRIORITY 0.000000

 BEFORE DELETE ON case_obj

 EXECUTE delete from case_descr where parent_case.case_id=obj.case_id;

CREATE TRIGGER clear_target_content

 STATUS ACTIVE

 PRIORITY 0.000000

 BEFORE DELETE ON target_descr

 EXECUTE delete from target_matchable where
parent_descriptor.target_id=obj.target_id;

CREATE TRIGGER clear_operator_dependant

 STATUS ACTIVE

 PRIORITY 0.000000

 BEFORE DELETE ON match_operator

 EXECUTE delete from target_matchable where
match_operator_id=obj.match_operator_id;

CREATE TRIGGER cb_delete_cases
Phd Thesis - Fall 98146

 STATUS ACTIVE

 PRIORITY 0.000000

 BEFORE DELETE ON cb

 EXECUTE delete from case_obj where belongs_to=obj.cb_name;

CREATE TRIGGER cb_delete_targets

 STATUS ACTIVE

 PRIORITY 0.000000

 BEFORE DELETE ON cb

 EXECUTE delete from target_descr where belongs_to=obj.cb_name;

CREATE TRIGGER cb_delete_match_operators

 STATUS ACTIVE

 PRIORITY 0.000000

 BEFORE DELETE ON cb

 EXECUTE delete from match_operator where belongs_to=obj.cb_name;

CREATE TRIGGER cb_delete_proxies

 STATUS ACTIVE

 PRIORITY 0.000000

 BEFORE DELETE ON cb

 EXECUTE delete from proxy_obj where belongs_to=obj.cb_name;

CREATE TRIGGER clear_proxy_dependants

 STATUS ACTIVE

 PRIORITY 0.000000

 BEFORE DELETE ON proxy_obj

 EXECUTE delete from target_matchable where matchable_id=obj.dboid and
belongs_to=obj.belongs_to;
Phd Thesis - Fall 98 147

Appendix D: Database Representations
Phd Thesis - Fall 98148

	A Hybrid Model for Case Indexing and Retrieval in Building Design
	Zeyno Aygen
	Submitted to the School of Architecture of
	Carnegie Mellon University in fulfillment of the requirements
	for the degree of Doctor of Philosophy
	School of Architecture and
	Institute of Complex Engineered Systems (ICES)
	Carnegie Mellon University
	Advisory Committee
	Ulrich Flemming [Chair]
	Professor
	School of Architecture and
	Institute of Complex Engineered Systems (ICES)
	Carnegie Mellon University
	Steven J. Fenves
	University Professor
	Department of Civil and Environmental Engineering and
	Institute of Complex Engineered Systems (ICES)
	Carnegie Mellon University
	Omer Akin
	Professor
	School of Architecture
	Carnegie Mellon University
	I hereby declare that I am the author of this dissertation.
	I authorize Carnegie Mellon University to lend this dissertation to other institutions or individ...
	I further authorize Carnegie Mellon University to reproduce this dissertation by photocopying or ...
	Zeyno Aygen
	Copyright © 1998 by Zeyno Aygen
	All rights reserved

	Abstract
	Precedents are commonly used as a means of investigation and inspiration in architectural design....
	Acknowledgment

	I wish to express my gratitude to my advisor and mentor Ulrich Flemming, for his support and cont...
	Table of Contents

	List of Figures xi
	List of Tables xiii
	I Introduction 1
	1 Overview� 1
	2 Motivation� 2
	3 Research objective and approach� 3
	4 Scope� 4
	II Background 5
	1 Type and classification� 5
	1.1 Types� 5
	1.2 Sources of PT� 6
	1.3 Smith and Medin’s survey� 7
	1.3.1 Classical View� 7
	1.3.2 Probabilistic View� 9
	1.3.3 Exemplar View� 12
	1.4 Using the framework - A hybrid representation� 14
	2 Type and typology in architecture� 15
	2.1 Analytical vs generative typologies� 15
	2.2 Linguistic analogy� 17
	2.3 A priori vs. a posteriori� 19
	2.4 Multiplicity of groupings� 21
	3 Indexing and retrieval in CBD� 23
	3.1 CBR in design� 24
	3.2 Memory organization and Indexing� 25
	3.3 Retrieval strategies� 27
	III Conceptual Model 31
	1 Memory organization� 31
	1.1 Distinct schemes� 31
	1.2 Trade-offs� 33
	2 Requirements� 34
	2.1 Generic requirements� 34
	2.2 SEED specific requirements� 35
	3 Hybrid model� 37
	IV Software Architecture 41
	1 Software requirements� 41
	1.1 Object databases� 42
	1.2 Description logic-based classification� 42
	1.3 Platform-independant runtime systems� 42
	2 Overview� 42
	3 Components� 43
	3.1 Component architecture overview� 41
	3.2 SEED-KBC� 45
	3.3 SEED-CBD� 46
	3.4 Retrieval and matching� 46
	V SEED’s Classification Knowledge-Base 49
	1 Overview� 49
	2 Classification� 51
	2.1 KB instance� 51
	2.2 Primitive� 51
	2.3 Host type� 52
	2.4 Classification and description� 50
	2.5 Host individual� 53
	2.6 KB organization� 53
	2.7 Subsumption inference� 53
	2.8 Normalization and classification � 54
	2.9 Conflicts� 54
	3 System architecture 54
	VI SEED’s Case-Based Design Engine 57
	1 Case-base � 57
	1.1 SEED-CBD concepts� 58
	1.1.1 CB� 58
	1.1.2 Case� 59
	1.1.3 Target� 59
	1.1.4 Proxy� 60
	1.1.5 Match operator� 60
	1.2 Organization� 61
	2 System architecture� 62
	VII Retrieval 65
	1 A demo classification knowledge-base� 65
	1.1 Primitives� 66
	1.2 Host types� 66
	1.3 Host individuals� 68
	1.4 Classifications� 69
	1.4.1 Told information� 69
	1.4.2 Derived information� 70
	1.5 Classification assignments� 72
	2 A demo case-base� 74
	2.1 Proxies� 74
	2.2 Cases� 75
	2.3 Match operators� 75
	2.4 Targets� 76
	3 Sample retrieval sessions� 76
	3.1 Retrieval by matching� 76
	3.2 Retrieval by classification� 81
	3.3 Retrieval by annotation� 81
	VIII Conclusions 83
	1 Contributions� 83
	2 Future research directions� 85
	2.1 Classifications with roles� 85
	2.2 UI for case-base and classification KB� 87
	2.3 Matching strategies� 87
	2.4 Combining match operators� 87
	References 89
	Appendix A Using SEED-KBC and SEED-CBD APIs 95
	Appendix B SEED-KBC API s pecifications 99
	Appendix C SEED-CBD API s pecifications 115
	Appendix D Database representations 135
	List of Figures
	FIGURE 1. Tracing the separation between semantic and episodic memory� 33
	FIGURE 2. Data models for SPROUT database, SEED-CBD, SEED-KBC� 44
	FIGURE 3. Component architecture� 45
	FIGURE 4. SEED-KBC� 50
	FIGURE 5. A sample primitive hierarchy� 52
	FIGURE 6. System architecture� 55
	FIGURE 7. Data models and inference engines � 58
	FIGURE 8. Case decomposition� 59
	FIGURE 9. Target description and match operator� 60
	FIGURE 10. Case-base organization� 61
	FIGURE 11. SEED-CBD system architecture� 62
	FIGURE 12. Sample primitive hierarchy� 67
	FIGURE 13. Proxy object configurations� 77

	List of Tables
	TABLE 1. Cases, prototypes and classifications� 38
	TABLE 2. Retrieval types and engines involved� 47
	TABLE 3. Comparison between the suggested and existing systems� 86

	Introduction

	Designers often refer to a previous design solution when they find a fit between the existing pro...
	I . 1 Overview

	Recent developments in computational design have extended the case-based design (CBD) approach, a...
	CBD approaches differ from other design methods in the way they make use of specific knowledge ab...
	I . 2 Motivation

	SEED requires that the case-base indexing and retrieval capabilities make use of the information ...
	The key characteristics of the reuse of design precedents can be identified as the representation...
	• Representational flexibility: The reuse of a design solution is not limited to a specific level...
	• Recalling flexibility: The recalling of a precedent may be based on a piece of information whic...
	The majority of CBD systems has already attempted to address the former characteristic, yet has r...
	• classifications in a case-base must allow for modifications if the CBD system is expected to in...
	• classifications may have to incorporate thematic features and features reflecting subjective ju...
	• classifications speed up the retrieval of cases by allowing the system to perform needed matche...
	The second motivation is the parallel relation between the issues related to indexing in CBD and ...
	I . 3 Research objective and approach

	This research is an attempt to provide computational support for the reuse and recall of preceden...
	• an object model with object attributes and relations persistently stored in a object oriented d...
	• a knowledge-base of classifications supporting subsumption inference.
	The Software Environment to Support Early Building Design, SEED, provides the first implementatio...
	I . 4 Scope

	This research concentrates on the recalling of the precedents. Classification, as an inherent mec...
	• Architectural typology: The account of the typology literature has been limited by the view of ...
	• CBD: In the CBD literature and research projects, the emphasis has been on the representation, ...
	The thesis scope includes the implementation of the hybrid modeling scheme as part of SEED’s case...
	The implementation is in the form of specific APIs (Application Programming Interface) which acce...
	Chapter II provides a literature survey covering material from architectural typology, cognitive ...
	Background

	This section provides a reference framework for a comparative study of the architectural literatu...
	II . 1 Type and classification

	Types, in the most generic sense, are categories of thought that can be organized in generalizati...
	1.1 Types

	Jackendoff (1994), in his theory of types, defines a type concept as a finite set of conditions t...
	1.2 Sources of PT

	Before introducing PT through Smith and Medin’s framework, I will consider motives behind the pro...
	The majority of knowledge bases assisting CBR problem solvers follow Tulving’s model of memory, w...
	The memory systems differ from each other in the following aspects:
	• Nature of stored information: Episodic memory deals with the perceptual properties and temporal...
	• Denotative reference of input events: The reference in the episodic memory is autobiographical,...
	• Conditions and consequences of retrieval: The episodic memory necessitates the direct entry of ...
	• Susceptibility to interference and erasure of stored information: Forgetting is more typical of...
	When Sowa comments on Tulving’s categorization (Sowa, J. F., 1984), he bases the distinction betw...
	1.3 Smith and Medin’s survey

	When Smith and Medin attempted to provide a ‘systematic’ review of the psychology literature on c...
	1.3.1 The classical view

	Smith and Medin collect the common assumptions of the philosophically oriented studies of languag...
	Assumptions
	• Summary representation: The representation of concepts is the result of an abstraction process;...
	• Necessary and sufficient features: The features of a concept are necessary and sufficient for i...
	• Nesting features in subsets: A concept A is subsumed by a more general concept B, if A’s featur...
	Criticism
	• Exclusion of functional features: A common criticism is that the classical view deals only with...
	• Exclusion of disjunctive features: This criticism responds to the second assumption of the clas...
	• Unclear cases: The classical view assumes that if a concept A is a subset of concept B, the def...
	... Thus one might be unsure about what concept a tomato belongs to because a tomato meets the te...
	• Failure to specify defining features: This criticism is based on an empirical argument (i.e. co...
	One of Wittgenstein’s (1953) most famous examples was that of the concept of games, and we can us...
	1.3.2 The probabilistic view

	Smith and Medin group the spreading activation model of Collins and Loftus, 1975, the property co...
	The following two assumptions are accepted by the majority of these models, and characterize the ...
	• The representation of a concept is a summary description of an entire class.
	• The representation of a concept cannot be restricted to a set of necessary and sufficient condi...
	The authors identify various approaches under the probabilistic view: the featural, dimensional a...
	Assumptions
	• Summary representation: The summary representation is an abstraction and may not be realizable ...
	• Non-necessary features: The features that represent a concept are salient ones that have a subs...
	• General processing: In order to determine whether an instance belongs to a�particular concept o...
	Based on the assumptions stated above, the authors reconsider the problematic aspects of the clas...
	• Disjunctive concepts: Since the category membership is based on a weighted sum of features, and...
	• Unclear cases: The classical view’s subsumption algorithm, which is used to test for concept me...
	• Failure to specify defining features: This problem is naturally avoided because necessary and s...
	• Simple typicality effect: Typical members are categorized faster than atypical members. This ef...
	• Determinants of typicality: Following the typicality assumption stated in the previous item, th...
	• Use of non-necessary features: Non necessary features are allowed in the concept definition; th...
	• Nested concepts: The probabilistic model is more consistent with the data on the distinction be...
	Criticism
	• Correlated features: A listing of features may not be sufficient to define a concept. The featu...
	• Lack of a constraining mechanism: The featural approach, by relaxing the classical view’s const...
	1.3.3 The exemplar view

	The exemplar view suggests that there is no single representation of an entire class, but only a ...
	Concept representation and categorization
	The representation of a concept consists of separate descriptions of some of its exemplars. An ex...
	• Summary description is the result of an abstraction process: A concept definition in the exempl...
	• Summary description does not need to correspond to a specific instance: A concept definition ma...
	• Summary description is used every time a category membership is determined: This assumption is ...
	Benefits
	Exemplar models can deal with disjunctive concepts since their representation is explicitly disju...
	To illustrate the exemplar view’s account of similarity ratings of regular concepts and exception...
	Weaknesses
	• Representing more knowledge in concepts: The exemplar models do not provide any mechanism to re...
	• Lack of constraining mechanisms: The lack of constraints on exemplar properties results in a la...
	• Defining a relation between disjunctive exemplars: A collection of exemplars may point to the s...
	1.4 Using the framework - A hybrid representation

	Smith and Medin’s survey identifies the following questions as the point of departure for the cla...
	• Is there a single or unitary description for all the members of a concept?
	• Are the properties specified in a unitary description true of all members of a class?
	The classical view has its limitations in terms of defining a unified description for the percept...
	We cannot ignore the possibility that the representation of a single concept can contain both pro...
	Tulving’s model of memory, which consists of semantic and episodic components reflects, to a cert...
	II . 2 Type and typology in architecture

	The architectural discourse on type is one of the richest in design theory. It very often derives...
	2.1 Analytical vs. generative typologies

	Vidler, in his study of the transformation of type in 18th and 19th centuries (1976), identified ...
	The same distinction is interpreted by Leupen (Leupen, et.al. 1997) as one between analytical and...
	• Artificial things are synthesized (though not always with full forethought) by man.
	• Artificial things may imitate appearances in nature while lacking, in one or many respects, the...
	• Artificial things can be characterized in terms of functions, goals, adaptation.
	• Artificial things are often discussed, particularly when they are being designed, in terms of i...
	Simon’s conception of artificial kinds provides a basis for studying the classificatory use of ty...
	2.2 Linguistic analogy

	The motivation behind suggesting an analogy between architecture and language is to provide means...
	• Architecture seems to display some kind of syntax: there is a possibility to describe rules gov...
	• An object of architecture is similar to a sentence in its syntactic structure. Hence, the objec...
	It is, however, difficult to infer the existence of a grammar, in the linguistic sense, from a sy...
	To examine the validity of the suggested analogy, a comprehensive comparison of architectural and...
	In regard to the words we must note that, owing to the uncertain correlation of images with words...
	Similarly, in the context of architecture, the sign (or the physical object) itself is essential ...
	In relation to the second question, the truth-value of a complete sentence is decided based on th...
	The linguistic analogy therefore fails when it is pushed to the extent where the existence of sem...
	...the predominant focus on the architectural artifact has left a theoretical vacuum and consider...
	2.3 A priori vs. a posteriori

	In the beginning of Section�II . 2, I set the scope of the literature review to the classificator...
	One of the most frequently cited theoreticians, Quatremere de Quincy, is in the first group with ...
	In the second group we can cite Argan who avoids the problems of Quatremere De Quincy’s definitio...
	It [type] is never formulated a priori, but always deduced from a series of instances... The birt...
	The latter approach is more likely to provide a satisfactory explanation for the emergence of typ...
	The type therefore, is formed through a process of reducing a complex of formal variants to a com...
	In this definition a formal variant is an instance that exhibits the characteristics of the type ...
	2.4 Multiplicity of groupings

	If we consider type as a conceptual structure and assume that classification is an essential mech...
	This point is supported by the architectural discussion on type, where a fairly large number of t...
	It is interesting to note that the common names of most buildings refer to them as functional typ...
	Argan, on the other hand, argues that the fundamental type for architecture is formal and is not ...
	• a design process model suggesting a particular decomposition in terms of design stages where ea...
	• an association between a specified design task in a specified stage and a particular classifica...
	Argan’s argument relies on strong assumptions about the design process in favor of his proposed t...
	What then is type? It can most simply be defined as a concept which describes a group of objects ...
	Moneo recognizes that the use of type in architecture cannot be reduced to a mere formal classifi...
	Based on the above, the need to combine various concepts to form classifications is inevitable. A...
	II . 3 Indexing and retrieval in CBD

	Falling under the more general category of reasoning by analogy, CBR suggests a computational mod...
	3.1 CBR in design

	CBD is the application of CBR technology to solve problems in the domain of design. In architectu...
	Prototype-based design is an alternative to CBD where design prototypes encapsulate more generali...
	Design in a CBR model is a description or a set of descriptions generated to satisfy requirements...
	• Real world design problems are large and complex.
	• The design case representation is composed of various modes of representation such as text, gra...
	• In design, there is no predefined mapping between a set of requirements and a design solution, ...
	• Different types of knowledge may have to be integrated in the design process.
	• Often the design solution is found by merging various parts of various old solutions.
	• CBR should take into account other computer-based representations and processes since the desig...
	By implication, design cases often have complex representations that integrate various kinds of i...
	3.2 Memory organization and Indexing

	In recalling a previous design for the generation of a new design solution, the appropriateness o...
	The process of indexing is often described as assigning labels to cases to ensure their retrieval...
	• Prediction: Indices should be case aspects that tend to predict solutions and outcomes of cases.
	• Specificity: Indices should be specific enough to allow for all the useful discriminations in t...
	• Generality: Indices should be general enough to capture relevant similarities among the cases.
	• Usefulness: The use of indices during retrieval should produce useful results.
	The solutions and outcomes of design problems are not always predictable. The aspects that are cr...
	Another reason for adopting an extendable indexing vocabulary is related to the use of deep featu...
	An indexing scheme is a structured indexing vocabulary to organize cases. One of the major concer...
	• an extendable indexing vocabulary which is not limited to surface features,
	• means to extend and modify the model of case memory and indexing scheme, along with mechanisms ...
	• multiple paths to cases.
	Maher groups the computational indexing schemes as descriptive schemes and relational schemes (19...
	Relational schemes, on the other hand, capture deeper aspects of cases, i.e. abstract relationshi...
	3.3 Retrieval strategies

	Retrieval is the act of selecting the most similar cases to a given problem description. In retri...
	A search strategy can be regarded as a collection of methods employed during the search of a case...
	• List checking: This strategy uses a feature list, where each item points to a number of relevan...
	• Concept refinement: This strategy uses a hierarchical tree where each node points to a number o...
	• Associative recall: This strategy is used in relational indexing schemes. Case indices are grap...
	Maher’s grouping of case retrieval strategies should be considered in connection with the previou...
	• Index elaboration: Index elaboration is an incremental process launched after the retrieval of ...
	• Index revision: By the influence of an initial set of retrieve cases, a problem specification i...
	• Relaxation: When the problem description introduces too many constraints and the retriever fail...
	• Index transformation and mutation: This technique uses heuristics to activate domain specific m...
	The retrieval of design cases starts with a partitioning of the case-base in order to access pote...
	Maher groups the existing CBD approaches to matching and ranking based on their choice of similar...
	Conceptual Model

	This chapter introduces a hybrid memory scheme based on the salient issues discussed in the liter...
	III . 1 Memory organization

	This section describes the implications of the literature survey on the design of the computable ...
	1.1 Distinct schemes

	The conceptual model behind this work traces the distinction between episodic and semantic compon...
	• Cognitive Psychology,
	• Knowledge Representation,
	• AI, and
	• Architectural Typology.
	Tulving introduced the distinction to the Cognitive Psychology literature and focused on the dist...
	On a similar track, the literature on Architectural typology identifies the notions of type and b...
	The literature survey identifies the following issues as the major determinants of the conceptual...
	• the separation of information captured in precedents and classifications in terms of representa...
	• classifications incorporating multiple groupings
	• an evolving classification vocabulary.
	In the hybrid approach, a classification may be a primitive concept or a complex concept composed...
	FIGURE 1. Tracing the separation between semantic and episodic memory
	1.2 Trade-offs

	In the suggested computable model, distinct representation schemes for precedents and classificat...
	On the other hand, the hybrid approach has potential weaknesses in comparison to a unified system...
	• Redundancies: Since there are two distinct schemes for representing design information, extra m...
	• Ambiguities: Efforts to reduce the redundancies may encounter concepts that can be equally repr...
	• Expensive maintenance: Reducing redundancy and preserving consistency between the classificatio...
	Consequently, the hybrid approach adds some level of complexity to the modeling process and cause...
	III . 2 Requirements

	The generic requirements are based on some of the prominent issues I addressed in the survey of a...
	2.1 Generic requirements

	Conforming with the discussion on classification vocabularies and architectural types, the generi...
	• Flexibility, extensibility: designing in an “open world” (Hinrich, 1992): When a CBD system per...
	• Use of deep features: In complex problem solving activities such as design, the retrieval may r...
	• Allowing for multiple groupings of cases, multiple paths to cases: The classification of a desi...
	• Computational efficiency: In design, case selection cannot be limited to an attribute-by-attrib...
	2.2 SEED specific requirements

	The implementation context for the hybrid model is the indexing and retrieval capabilities for SE...
	• Specification Unit (SU): A SU is responsible for completely specifying all information needed t...
	• Functional unit (FU): A FU is an identifiable object intended to perform a specific function or...
	• Design unit (DU): A DU is a part of the spatial or physical structure of a building with an ide...
	The application of the hybrid approach to the design of SEED-CBD’s case indexing and retrieval ca...
	• Case representation in SEED should be unified to extend case storage and reuse across tasks or ...
	• Case representation should be structured around the triad problem, solution, and outcome corres...
	These requirements imply that each member of the triad may vary in content depending on the modul...
	The classification capabilities are essential to the suggested case indexing scheme and to the SE...
	• define a taxonomy which supports subsumption, multiple inheritance, disjoint partitioning
	• use the classification to retrieve prototype objects with default properties
	• to speed up the retrieval of cases in the SEED-CBD engine
	The requirements on the indexing scheme guide the design of the retrieval mechanism. When the cas...
	It should be possible in SEED to retrieve cases based on their classifications, on their attribut...
	To summarize SEED’s case indexing and retrieval requirements:
	• The indexing scheme should provide a common interface to build a case index incorporating vario...
	• The retrieval mechanism should provide a common interface for specifying a target that incorpor...
	III . 3 Hybrid model

	The generality and the separation of the classification from the matching inference are the major...
	• Generality: Generality is manifested in terms of a simple and common interface for case-base op...
	• Separation of the classification from the matching inference: This criterion arises from the di...
	Table 1 summarizes the distinctions between the two engines with respect to the kind of data they...
	Conceptual model
	Precedents
	Classification
	Entities
	cases: solutions generated by the system
	prototypes: object prototypes with standard or default properties
	concepts, individual descriptions
	Representation
	object-based representation:
	complex object configurations with behavior
	description-logic based representation:
	design descriptions incorporating thematic features
	Typing scheme
	explicit naming using a rigid type lattice
	subsumption relations inferred from flexible design descriptions
	Inheritance
	single inheritance to assure polymorphism
	multiple inheritance to support multiple classification
	Strategy
	structural matching yielding a degree of similarity
	subsumption based inference yielding TRUE or FALSE
	TABLE 1. Cases, prototypes and classifications

	The precedents in an object model are persistently stored as part of cases or prototypes in a cas...
	The objects that are used to represent precedents may be assigned classifications. During retriev...
	Software Architecture

	This chapter describes the implementation of the hybrid model introduced in Chapter III. The soft...
	IV . 1 Software requirements

	SEED’s multi-team development encourages the use of as many commercial software as possible and p...
	1.1 Object databases

	The modules in SEED make use of object-based representations. Consequently, for the persistent st...
	1.2 Description logic-based classification

	In order to support multiple classification of the persistently stored objects, SPROUT requires t...
	1.3 Platform-independent runtime systems

	SEED is a heterogeneous software environment in which multiple hardware platforms can be accommod...
	IV . 2 Overview

	The complete SPROUT modeling environment incorporates a shared data model, the classification mod...
	Another important integration issue is the notion of workspace suggested by the SPROUT system arc...
	SEED-KBC and SEED-CBD provide both a C and a Java application programming interface. The function...
	The SEED-KBC and SEED-CBD components are implemented as distinct engines. They reference the obje...
	IV . 3 Components

	Based on the software requirements and SPROUT’s system architecture, SEED- KBC and SEED-CBD imple...
	3.1 Component architecture overview

	The conceived base architecture (Figure 3) is common to both engines; it consists of the followin...
	• Schema: The schema contains the object-based representations of engine- specific concepts. The ...
	• C - API: The C - API is a direct interface to the engine functionality built using UNISQL’s C a...
	• UNISQL C - API: The UNISQL API is an interface to the database functionality consisting of a li...
	• Java Native Interface (JNI): Java comes with hooks for working with system libraries to make ca...
	FIGURE 2. Data models for SPROUT database, SEED-CBD, SEED-KBC.

	• Java - API: The Java API uses Java’s Native Interface to connect to the functionality provided ...
	FIGURE 3. Component architecture
	3.2 SEED-KBC

	The classification knowledge-base is completely independent of the SPROUT data model in performin...
	• knowledge bases,
	• classifications and other concepts used to define classifications (e.g. primitives),
	• a dictionary of registered host objects (objects that are defined outside the classification kn...
	The SEED-KBC engine functionality can be summarized under the following generic transaction types:
	• requests to build knowledge-bases, to create and modify classification descriptions, to registe...
	• queries to find out the classification of a particular host object and to compare various forms...
	3.3 SEED-CBD

	Unlike SEED-KBC, the case-base engine contains a distinct retrieval matching engine, and hence, p...
	• case bases,
	• cases and targets,
	• match operators.
	The SEED-CBD engine functionality can be summarized under the following generic transaction types:
	• requests to build case-bases, to create and modify case and target descriptions, to register pr...
	• queries to retrieve cases based on a target description, a classification or an annotation; and...
	3.4 Retrieval and matching

	SEED-CBD’s retrieval capabilities allow for the recall of persistently stored objects that are or...
	• is_subclass/is_superclass: Compare two type signatures to find out whether one is a subclass/su...
	• is_instance_of: Given a global object identifier and a type signature, determine whether the re...
	• get_attributes: Given a global object identifier, retrieve the attributes of the referred object.
	• get_attribute_value: Given a global object identifier and an attribute path, return the specifi...
	The retrieval capabilities make use of classification inferences through the following queries pr...
	Another type of retrieval is classification-based retrieval where cases are recalled only if thei...
	retrieval
	matching
	inference
	classification- based
	annotation-
	based
	SEED-CBD
	X
	X
	X
	SEED-KBC
	X
	X
	SPROUT-DB
	X
	TABLE 2. Retrieval types and engines involved
	SEED’s Classification Knowledge-Base

	This chapter describes the implementation of SEED’s classification engine in terms of its databas...
	V . 1 Overview

	SEED modules to capture design information by means of object-oriented representations of classes...
	However, SEED modules require objects to be multiply classified through multiple, often orthogona...
	• means to build a taxonomy which supports subsumption, multiple inheritance among classes, parti...
	• provision of permanent storage for the classifications along with the identifiers of the classi...
	• means to query subsumption relations between classifications.
	• means to issue queries to identify objects classified by a certain classification and/or by its...
	• means to maintain multiple classification knowledge-bases that allow SEED modules to operate on...
	FIGURE 4. SEED-KBC

	It is important to understand how classification is conceived in SEED-KBC for an efficient use of...
	The classification of a data object requires the object to be registered in the knowledge base. O...
	A classification knowledge-base schema resides in a database file along with a dynamically linked...
	V . 2 Classification

	This sections describes what constitutes a knowledge-base in SEED-KBC. The basic structure of the...
	In traditional semantic networks, the conceptual taxonomy is composed of directly asserted subsum...
	The SEED-KBC engine can maintain multiple kb instances (knowledge- bases) that are specialized fo...
	2.1 KB instance

	A kb instance maintains a domain of primitives (internally defined types), host types (class name...
	2.2 Primitive

	A primitive is an internal type or category residing in a single inheritance type hierarchy. Prim...
	• a simple primitive represents a categorization concept (e.g. types, residential in (Figure 5)).
	• a disjoint primitive represents a disjoint grouping concept (e.g. composition in (Figure 5)).
	FIGURE 5. A sample primitive hierarchy.

	A simple primitive is disjunct if it has a disjoint primitive ancestor (e.g. linear, central). A ...
	2.3 Host type

	Host types (or host concepts) are type signatures of registered and classified objects in the dat...
	2.4 Classification and description

	A classification is a told description, which is composed of primitives and a set of restrictions...
	A told description may be modified by adding or retracting primitives, restrictions or inherited ...
	A derived description is the information derived from a told description. It contains new and inh...
	2.5 Host individual

	A host individual represents a database object through its unique identifier and type signature (...
	2.6 KB organization

	The following properties are true for the structure of the classification knowledge base:
	• a host individual can be associated with at most one told description
	• a told description is always associated with one (normalized & classified) description
	• a classification may classify no or many host individuals
	• more than one classification can be associated with the same description (they are called synon...
	• A classification exists independently of host individuals
	• Primitives exist independently of classifications
	• When the user attempts to discard a told description, the associated description is discarded a...
	2.7 Subsumption inference

	A classification C1 subsumes another classification C2, if C1 is equivalent to C2, or C1 is more ...
	2.8 Normalization and classification

	Normalization of a told description involves the instantiation of a derived description. The clas...
	2.9 Conflicts

	A disjoined primitive conflict arises when there is an attempt to combine disjoined primitives (p...
	A restriction conflict arises when there is an attempt to associate a host individual with a clas...
	An inheritance conflict arises when a classification inherits from two disjoined classifications....
	V . 3 System architecture

	This section describes the software architecture envisioned for the SEED-CBD engine in terms of i...
	• KB schema: The kb schema is implemented using UNISQL’s object-based representation scheme (Appe...
	• UNISQL C - API: The UNISQL API is an interface to the database functionality consisting of a li...
	• KBAPI: The KBAPI consists of wrapper functions implemented in C to interface the KB class and i...
	• KB Java-API: The Java KB API class provides methods to manage a classification knowledge-base s...
	FIGURE 6. System architecture
	SEED’s Case-Based Design Engine

	This chapter describes the implementation of SEED’s case base design engine in terms of the datab...
	VI . 1 Case-base

	SEED’s case-base design engine provides more than a repository for precedents: it allows individu...
	This specialization of the generic functionality happens at three different stages: the represent...
	The first two layers of functionality are provided inside the case-base and use the object and cl...
	The interaction with the classification engine takes place during retrieval and matching. The SEE...
	FIGURE 7. Data models and inference engines.
	1.1 SEED-CBD concepts

	The SEED-CBD engine can maintain multiple case-bases in which modules define and populate their c...
	1.1.1 CB

	The SEED-CKB engine stores multiple cb instances (case-bases), which are identified by their uniq...
	1.1.2 Case

	A case is composed of four containers corresponding to a problem, solution, outcome and a case de...
	A case descriptor is another container of object references which are considered to be significan...
	FIGURE 8. Case decomposition
	1.1.3 Target

	A target is similar to a case descriptor both in idea and structure. Targets are used to describe...
	FIGURE 9. Target description and match operator
	1.1.4 Proxy

	A proxy is a case-base representation of a data object which is persistently stored in the SPROUT...
	As an independent engine, the case-base does not perform any consistency check for the referred o...
	1.1.5 Match operator

	A match operator is a matching strategy which is selected for a particular retrieval session. Mor...
	FIGURE 10. Case-base organization
	1.2 Organization

	The SEED-CBD database maintains multiple case-base instances for various modules based on the fol...
	• Modules may define different case contents.
	• Modules may record different retrieval information.
	• Modules may implement different retrieval strategies.
	• Modules need to maintain different sets of proxies depending on their case- base retrieval scen...
	Hence, each case-base instance is associated with multiple module-specific cases, targets, match ...
	FIGURE 11. SEED-CBD system architecture
	VI . 2 System architecture

	The SEED-CBD system architecture (Figure 11) consists of the following components:
	• CB schema: The cb schema is implemented using UNISQL’s object-based representation scheme (Appe...
	• UNISQL C - API: The UNISQL API is an interface to the database functionality consisting of a li...
	• KBAPI: The KBAPI consists of wrapper functions implemented in C to interface the KB class and i...
	• CB C-API: The CB C-API consists of wrapper functions which interface the case_base, case, proxy...
	• CB Java-API: The CB API is implemented via Java class methods that manage a case-base session. ...
	Retrieval

	This chapter provides demo retrieval sessions. These retrievals are performed on a demo case-base...
	VII . 1 A demo classification knowledge-base

	This section describes a knowledge-base for thematic descriptions which are used to classify a nu...
	In addition to host types and individuals, the demo classification knowledge- base consists of cl...
	In order to satisfy the precedence constraints while building of a knowledge- base, the following...
	1. Define primitives and register host types
	2. Register host individuals
	3. Define classifications
	4. Assign classifications to host individuals
	1.1 Primitives

	When creating a primitive, the concepts that are declared in its definition must exist in the kno...
	The overall context for this example is the design of firestations for Armybases. The primitives ...
	1.2 Host types

	Host types are similar to primitives, but they do not reside in a generalization hierarchy. There...
	Building_FU
	Story_FU
	Massing_FU
	Zone_FU
	Room_FU
	Building_LAYOUT
	FU_Context
	Each type signature listed above is represented by a host type in the suggested demo classificati...
	FIGURE 12. Sample primitive hierarchy
	1.3 Host individuals

	Host individuals must be registered in the knowledge-base before they are assigned classification...
	Unique Object Identifier
	Type Signature
	SPB_1
	Building_FU
	SPB_2
	Building_LAYOUT
	SPB_3
	Building_FU
	SPB_4
	Building_LAYOUT
	SPC_1
	FU_Context
	SPC_2
	FU_Context
	SPC_3
	FU_Context
	SPM_1
	Massing_FU
	SPM_2
	Massing_FU
	SPM_3
	Massing_FU
	SPM_4
	Massing_FU
	SPM_5
	Massing_FU
	SPZ_1
	Zone_FU
	SPZ_2
	Zone_FU
	SPZ_3
	Zone_FU
	SPZ_4
	Zone_FU
	SPZ_5
	Zone_FU
	SPR_1
	Room_FU
	SPR_2
	Room_FU
	SPR_3
	Room_FU
	SPR_4
	Room_FU
	SPR_5
	Room_FU
	SPR_6
	Room_FU
	SPR_7
	Room_FU
	SPR_8
	Room_FU
	SPR_9
	Room_FU
	SPR_10
	Room_FU
	SPR_11
	Room_FU
	SPR_12
	Room_FU
	SPR_13
	Room_FU
	SPR_14
	Room_FU
	SPR_15
	Room_FU
	SPR_16
	Room_FU
	SPR_17
	Room_FU
	SPR_18
	Room_FU
	Except for SPB_2 and SPB_4, all objects identified in the above table represent elements of speci...
	1.4 Classifications

	Similar to primitives, the knowledge-base must have the definitions of the concepts which are use...
	The following is a list of the classifications in the demo knowledge-base “SEED_Layout” accompani...
	1.4.1 Told information

	The information required to define a told description consists of a unique told description name,...
	Told description name
	Inherits from
	Primitives
	Restrictions
	Basic_Building
	Building_FU Building_Layout
	CL1
	firestation, one_company, satellite
	Building_FU
	CL2
	Basic_Building
	headquarter
	CL3
	Basic_Building
	satellite
	CL4
	CL2
	one_company
	CL5
	CL3
	one_company
	CL6
	CL2
	two_company
	CL7
	CL3
	two_company
	CL8
	army, firestation
	CL9
	government
	CL10
	army, firestation, government
	Spatial_function
	Zone_FU, Massing_FU, Room_FU
	Spatial_unit_function
	Zone_FU, Room_FU
	CL11
	Spatial_function
	dorm
	CL12
	Spatial_function
	administrative
	CL13
	Spatial_function
	mechanical
	CL14
	Spatial_unit_function
	daily_activity
	CL15
	Spatial_unit_function
	bathroom
	CL16
	CL12
	private
	CL17
	CL13
	apparatus
	CL18
	Spatial_unit_function
	kitchen
	CL19
	Spatial_unit_function
	dining
	CL20
	Spatial_unit_function
	chief_executive
	CL21
	Spatial_unit_function
	shift_supervisor
	CL22
	CL20
	private
	1.4.2 Derived Information

	For each told description, the KBC engine generates a derived description unless there is an equi...
	Classification name
	Primitives
	Restrictions
	Subsumer
	Subsumee
	Basic_Building
	Building_FU Building_Layout
	CL2, CL3, CL4, CL5, CL6, CL7
	CL1
	firestation one_company satellite
	Building_FU
	Basic_Building
	CL3, CL5
	CL2
	headquarter
	Building_FU Building_Layout
	Basic_Building
	CL4, CL6
	CL3
	satellite
	Building_FU Building_Layout
	Basic_Building
	CL1, CL5,
	CL7
	CL4
	one_company, headquarter
	Building_FU Building_Layout
	Basic_Building CL2
	CL5
	one_company satellite
	Building_FU Building_Layout
	Basic_Building CL3
	CL1
	CL6
	two_company, headquarter
	Building_FU Building_Layout
	Basic_Building CL2
	CL7
	two_company satellite
	Building_FU Building_Layout
	Basic_Building CL3
	CL8
	army, firestation
	CL10
	CL9
	government
	CL10
	CL10
	army firestation government
	CL9, CL8
	Spatial_function
	Zone_FU Massing_FU Room_FU
	Spatial_unit_f unction,
	CL11, CL12, CL13, CL14, CL15, CL16, CL17, CL18, CL19, CL20, CL21, CL22
	Spatial_unit_func tion
	Zone_FU Room_FU
	Spatial_function
	CL11, CL12, CL13, CL14, CL15, CL16, CL17, CL18, CL19, CL20, CL21, CL22
	CL11
	dorm
	Zone_FU Massing_FU Room_FU
	Spatial_function
	CL12
	administrative
	Zone_FU Massing_FU Room_FU
	Spatial_function
	CL16, CL20, CL21, CL22
	CL13
	mechanical
	Zone_FU Massing_FU Room_FU
	Spatial_function
	CL17
	CL14
	daily_activity
	Zone_FU Room_FU
	Spatial_function, Spatial_unit_fun ction
	CL19
	CL15
	bathroom
	Zone_FU Room_FU
	Spatial_function, Spatial_unit_fun ction
	CL16
	administrative private
	Zone_FU Massing_FU Room_FU
	Spatial_function, CL12
	CL22
	CL17
	apparatus
	Zone_FU Massing_FU Room_FU
	Spatial_function, CL13
	CL18
	kitchen
	Zone_FU Room_FU
	Spatial_function, Spatial_unit_fun ction
	CL19
	dining
	Zone_FU Room_FU
	Spatial_function, Spatial_unit_fun ction, CL14
	CL20
	chief_executive
	Zone_FU Room_FU
	Spatial_function, Spatial_unit_fun ction, CL12
	CL22
	CL21
	shift_superviso r
	Zone_FU Room_FU
	Spatial_function, Spatial_unit_fun ction, CL12
	CL22
	chief_executive private
	Zone_FU Room_FU
	Spatial_function, Spatial_unit_fun ction, CL16, CL20, CL12
	1.5 Classification assignments

	Once the data objects have been registered as host individuals, they can be associated with told ...
	Unique Object Identifier
	Type Signature
	Is Classified By
	SPB_1
	Building_FU
	CL5
	SPB_2
	Building_Layout
	CL5
	SPB_3
	Building_FU
	CL3
	SPB_4
	Building_Layout
	CL5
	SPC_1
	FU_Context
	CL10
	SPC_2
	FU_Context
	CL9
	SPC_3
	FU_Context
	CL8
	SPM_1
	Massing_FU
	CL11 (dorm)
	SPM_2
	Massing_FU
	CL12 (admin)
	SPM_3
	Massing_FU
	CL13 (mechanical)
	SPM_4
	Massing_FU
	CL12 (admin)
	SPM_5
	Massing_FU
	CL11 (dorm)
	SPZ_1
	Zone_FU
	CL14 (daily_activities)
	SPZ_2
	Zone_FU
	CL12
	SPZ_3
	Zone_FU
	CL13
	SPZ_4
	Zone_FU
	CL11
	SPZ_5
	Zone_FU
	CL15 (bathroom)
	SPR_1
	Room_FU
	CL16 (private, admin)
	SPR_2
	Room_FU
	CL17 (apparatus)
	SPR_3
	Room_FU
	CL14
	SPR_4
	Room_FU
	CL18 (kitchen)
	SPR_5
	Room_FU
	CL19 (dining)
	SPR_6
	Room_FU
	CL15
	SPR_7
	Room_FU
	CL12
	SPR_8
	Room_FU
	CL20 (chief_executive)
	SPR_9
	Room_FU
	CL21 (shift_supervisor)
	SPR_10
	Room_FU
	CL12
	SPR_11
	Room_FU
	CL14
	SPR_12
	Room_FU
	CL18
	SPR_13
	Room_FU
	CL19
	SPR_14
	Room_FU
	CL20
	SPR_15
	Room_FU
	CL22 (private, chief_executive)
	SPR_16
	Room_FU
	CL21
	SPR_17
	Room_FU
	CL12
	SPR_18
	Room_FU
	CL12
	The classifications listed above can also be used to retrieve the associated database objects wit...
	VII . 2 A demo case-base

	A case-base is a collection of cases, targets, match operators, proxies and a case- base instance...
	In order to build a case-base, the system requires that:
	1. The registration of proxies precedes the definition of cases and targets.
	2. The creation of match operators precedes the definition of targets.
	2.1 Proxies

	Unlike the host individuals in the classification knowledge-base, proxy types do not have to be d...
	Unique Object Identifier
	Type Signature
	SPB_1
	Building_FU
	SPB_2
	Building_Layout
	SPB_3
	Building_FU
	SPB_4
	Building_Layout
	SPC_1
	FU_Context
	SPC_2
	FU_Context
	SPC_3
	FU_Context
	2.2 Cases

	Following a case declaration, a case object with an empty content is instantiated and a unique ca...
	Case Name
	Descriptor
	Problem
	Solution
	Outcome
	Annotations
	CASE_1
	SPB_1, SPB_2, SPC_1
	SPB_1 SPC_1
	SPB_2
	CASE_2
	SPB_3
	SPB_3 SPC_3
	SPB_2
	CASE_3
	SPB_1, SPC_2
	SPB_1, SPC_2
	SPB_4
	“odd context”
	CASE_4
	SPB_4, SPC_3
	SPB_4, SPC_3
	SPB_4
	“bad match”
	2.3 Match operators

	The creation of a match operator requires that its implementation as a C procedure exists within ...
	Match Operator Name: OP_1
	Implementation: cbd_deep_match_retrieval,
	Shared Object File Location: “<db methods path>/rmethods.so”
	Matchable Type Signature: Building_FU
	Match operators are user-defined matching strategies that can be incorporated within the SEED-CBD...
	2.4 Targets

	Similar to cases, targets can be declared and instantiated as empty target objects. The unique ta...
	Target Name
	Matchables
	TARGET_1
	(SPB_3, DEFAULT), (SPC_3, DEFAULT)
	TARGET_2
	(SPB_3, OP_1), (SPC_3, DEFAULT)
	The retrieval session described in Section�3.1 uses TARGET_1 as its target description. TARGET_1 ...
	VII . 3 Sample retrieval sessions

	This section provides the output of three retrieval sessions for the demo case- base “SEED_Layout”.
	3.1 Retrieval by matching

	The retrieval by matching uses a target to rank the cases in the case-base. The retrieval starts ...
	The matching between the target and case descriptor compares respective sets of matchables. If a ...
	FIGURE 13. Proxy object configurations

	Finally, the SPROUT object configurations (as represented in Figure 13) denoted by the target and...
	In the following example, TARGET_1 is used to rank cases: CASE_1, CASE_2, CASE_3 and CASE_4. TARG...
	> cb retrieve TARGET_1 SEED_Layout
	*** UniSQL/X Client Release 3.5.3 Patch Level 4 ***
	Generated Nov 18 1997 at 16:15:53
	Cases unranked
	target id: #TARGET_1#SEED_Layout
	Building_FU
	FU_Context
	potential case ids:
	#CASE_1#SEED_Layout
	#CASE_2#SEED_Layout
	#CASE_3#SEED_Layout
	#CASE_4#SEED_Layout
	Case matchables for #CASE_1#SEED_Layout: SPB_1
	SPB_2
	SPC_1
	Target matchable op # 0: DEFAULT
	Target matchable id # 0: SPB_3
	Target: SPB_3 with CL3 and case: SPB_1 with CL5
	TARGET SUBSUMES
	PROCEEDING to structural MATCH...
	Max = 1.000000, val = 1.000000
	Target: SPB_3 with CL1 and case: SPB_2 with CL5
	Max = 1.000000, val = 0.000000
	Target: SPB_3 with CL3 and case: SPC_1 with CL10
	Max = 1.000000, val = 0.000000
	Target_sum = 1.000000
	Target matchable op # 1: DEFAULT
	Target matchable id # 1: SPC_3
	Target: SPC_3 with CL8 and case: SPB_1 with CL5
	Max = 0.000000, val = 0.000000
	Target: SPC_3 with CL8 and case: SPB_2 with CL5
	Max = 0.000000, val = 0.000000
	Target: SPC_3 with CL8 and case: SPC_1 with CL10
	TARGET SUBSUMES
	PROCEEDING to structural MATCH...
	Max = 1.000000, val = 1.000000
	Target_sum = 2.000000
	final_match_value = 1.000000
	Case matchables for #CASE_2#SEED_Layout: SPB_3
	Target matchable op # 0: DEFAULT
	Target matchable id # 0: SPB_3
	Max = 1.000000, val = 1.000000
	Target_sum = 1.000000
	Target matchable op # 1: DEFAULT
	Target matchable id # 1: SPC_3
	Target: SPC_3 with CL8 and case: SPB_3 with CL3
	Max = 0.000000, val = 0.000000
	Target_sum = 1.000000
	final_match_value = 0.500000
	Case matchables for #CASE_3#SEED_Layout: SPB_1
	SPC_2
	Target matchable op # 0: DEFAULT
	Target matchable id # 0: SPB_3
	Target: SPB_3 with CL3 and case: SPB_1 with CL5
	TARGET SUBSUMES
	PROCEEDING to structural MATCH...
	Max = 1.000000, val = 1.000000
	Target: SPB_3 with CL3 and case: SPC_2 with CL9
	Max = 1.000000, val = 0.000000
	Target_sum = 1.000000
	Target matchable op # 1: DEFAULT
	Target matchable id # 1: SPC_3
	Target: SPC_3 with CL8 and case: SPB_1 with CL5
	Max = 0.000000, val = 0.000000
	Target: SPC_3 with CL8 and case: SPC_2 with CL9
	Max = 0.000000, val = 0.000000
	Target_sum = 1.000000
	final_match_value = 0.500000
	Case matchables for #CASE_4#SEED_Layout: SPB_4
	SPC_3
	Target matchable op # 0: DEFAULT
	Target matchable id # 0: SPB_3
	Target: SPB_3 with CL3 and case: SPB_4 with CL5
	TARGET SUBSUMES
	PROCEEDING to structural MATCH...
	Max = 0.000000, val = 0.000000
	Target: SPB_3 with CL3 and case: SPC_3 with CL8
	Max = 0.000000, val = 0.000000
	Target_sum = 0.000000
	Target matchable op # 1: DEFAULT
	Target matchable id # 1: SPC_3
	Target: SPC_3 with CL8 and case: SPB_4 with CL5
	Max = 0.000000, val = 0.000000
	Max = 1.000000, val = 1.000000
	Target_sum = 1.000000
	final_match_value = 0.500000
	RESULT SEQUENCE: {
	'#CASE_1#SEED_Layout',
	'#CASE_4#SEED_Layout',
	'#CASE_3#SEED_Layout',
	'#CASE_2#SEED_Layout'}
	3.2 Retrieval by classification

	The classification-based retrieval starts in the classification knowledge-base. Target in this re...
	> cb retrieve_by_classification SEED_Layout SEED_Layout CL8
	*** UniSQL/X Client Release 3.5.3 Patch Level 4 ***
	Generated Nov 18 1997 at 16:15:53
	set{'#CASE_1#SEED_Layout', '#CASE_4#SEED_Layout'}
	3.3 Retrieval by annotation

	The last example performs a substring match on case annotations and returns an unordered set of c...
	> cb retrieve_by_annotation SEED_Layout “odd”
	*** UniSQL/X Client Release 3.5.3 Patch Level 4 ***
	Generated Nov 18 1997 at 16:15:53
	set{'#CASE_3#SEED_Layout'}
	Conclusions

	This chapter identifies the contributions of this research and outlines possible research directi...
	VIII . 1 Contributions

	This research investigates classification of architectural precedents and introduces a classifica...
	• Precedent classification: the research proposes a general framework of memory organization borr...
	• Typology: the development of the classification scheme also benefited from a review of architec...
	• Case-base design: The role of classification in a case indexing mechanism is identified in orde...
	The combination of the following features is novel in the suggested approach to case-base indexin...
	• generality: For the indexing mechanism, a case index is merely a container of objects with clas...
	• hybrid approach to model a case memory: The classification is separated from the matching infer...
	• extensibility of the classification scheme: As a follow-up to the previous feature, a common in...
	SEED-CBD is assisted by a distinct classification engine and offers numerous advantages when comp...
	Heterogeneous representation systems often work with loosely-structured representations in order ...
	Unified representation systems use solutions generated by the system to solve similar problems, a...
	None of these implementations offers an indexing and retrieval mechanism with the capability to e...
	• the information available in the computational representation of a design case, and
	• the thematic information which may have to reside outside the case-base scheme.
	Both the object-based representation of cases and the thematic classification scheme are implemen...
	In Table 3, existing case-base design systems are compared to the suggested SEED-CBD engine in te...
	VIII . 2 Future research directions

	In this section I outline possible enhancements that would benefit this research and identify fut...
	2.1 Classifications with roles

	The current implementation of the classification engine works with descriptions which can inherit...
	Function and feature
	Existing
	Proposed
	case
	index
	1- Feature list, collection of attribute-value pairs
	2- Object-based
	A collection of complex object configurations
	types
	1- None
	2- Object inheritance hierarchy (limited to case vocabulary)
	Object inheritance hierarchy & classification knowledge base
	retrieval
	1- Queries a relational database representation
	2- Queries an object- relational database representation
	Matching complex object configurations & subsumption query for the classifications
	TABLE 3. Comparison between the suggested and existing systems

	The descriptions, however, do not incorporate roles (in the CLASSIC sense) which would allow the ...
	2.2 User Interface (UI) for case-base and classification knowledge-base

	The current interaction with the SEED-KBC and SEED-CBD engines is accommodated at the application...
	2.3 Matching strategies

	The suggested retrieval engine, by default, operates using two matching strategies: deep_match an...
	2.4 Combining match operators

	SEED-CBD’s current definition of a target description allows for a pairing of one match operator ...
	References

	Aadmodt, A. and Plaza, E. (1993) “Case-based reasoning: foundational issues, methodological varia...
	Akin, O., Donia, M., and Sen, R. (1994) “SEED-Pro: A framework for computer supported architectur...
	Akin, O., Donia, M., Sen, R. and Zhang, Y. (1995) “SEED:-Pro: computer assisted architectural pro...
	Argan, G. C. (1963) “On the typology of architecture” in Architectural Design, December, pages 56...
	Aygen, Z. and Flemming, U. 1998. “Classification in SEED-CBD: A hybrid approach for case-indexing...
	Bandini, M. (1984) 'Typology as a form of convention” in AA Files, vol. 6, pages 73-81.
	Borgida, A., Brachman, R. J., McGuiness, D. L. and Resnick, L.A. (1992) Classic: A Structural Dat...
	Borgida, A. and Patel-Schneider, P. (1994) “A semantics and complete algorithm for subsumption in...
	Colquhoun, A. (1969) “Typology and design method” in Meaning in Architecture, C. Jencks and G. Ba...
	Domeshek, E. and Kolodner, J. (1992) “A case-based design aid for architecture” in Proceedings of...
	FABEL (1997) F. Gebhardt (ed.), (url: http://nathan.gmd.de/projects/fabel/prototype.html, 1999)
	Flemming, U. (1994) “Case-based design In the SEED system” in Knowledge-Based Computer-Aided Arch...
	Flemming, U., Aygen, Z., Coyne, R., Snyder, J. (1996) “Case-based design in a software environmen...
	Freeston, M. (1995) “A general solution of the n-dimensional B-tree problem” in Proc. of the 1995...
	Frege, G. (1892) “On sense and nominatum” in Readings in Philosophical Analysis, H. Feigl and W. ...
	Fu, A. L. (1997) Content-Based Image Indexing (url: http://www.cs.cuhk.hk/ ~drsam/Index.html, 1999)
	Gamma, E., Helm, R., Johnson, R. and Vlissides J. (1994)� Design Patterns: Elements of Reusable O...
	Guttman, A.: (1984) “R-trees: a dynamic index structure for spatial searching” in Proc. of the 19...
	Hinrich, T. R. (1992) Problem Solving In Open Worlds, Lawrence Erlbaum Associates, NJ.
	Jackendoff,R. (1994) Consciousness and Computational Mind, Cambridge, Mass., The MIT Press.
	Janetzko, A.D and G. Strube (1991) “Case-based reasoning and model- based knowledge acquisition“ ...
	Kolodner, J., (1984) “Retrieval and Organizational Strategies” in Conceptual Memory - A Computer ...
	Kolodner, J., (1993) Case-Based Reasoning, Morgan Kauffman Publishers Inc., CA.
	Kumar, B. and Raphael, B., (1996) “CADREM: A Case-based System for Conceptual Structural Design” ...
	Kumar, H. S. and C. S. Krishnamoorthy (1995), “A framework for case-based reasoning in engineerin...
	Leupen, B., Grafe, C., Kornig, N., Lampe, M. and Zeeuw, P.D. (1997) “Design and typology” in Desi...
	Maher, M.L, (1994) “Using case-based reasoning for design media management” in Computing in Civil...
	Maher, M.L., and Zhang, D.M. (1993) “CADSYN: a case-based design process model” in Artificial Int...
	Maher, M. L., Balachandran, M. B. and Zhang, D. M. (1995) Case-Based Reasoning in Design, Lawrenc...
	Moneo, R. (1978) “On Typology.” in Oppositions: A Journal for Ideas and Criticism in Architecture...
	Navichandra, D. (1990) Innovative Design Systems: Where are we, and where do we go from here, Rob...
	Oechslin, W. (1986) “Premises for the resumption of the discussion on typology” in Assemblage, MI...
	Oxman, R. (1994) “A computational model for the organization of case knowledge of a design preced...
	Papadias, D., Sellis, T., Theodoridis, Y. and Egenhofer, M. J. (1995) “Topological relations in t...
	Pevsner, N. (1976) A History of Building Types, Princeton University Press, Princeton, New Jersey.
	Purves, A. (1982) “The persistence of formal patterns” in Perspecta: The Yale Architectural Journ...
	Quine, W. V. (1961) “Two dogmas of empiricism” in From a Logical Point of View, Harvard Universit...
	Quatremere de Quincy, A. C., [1825] (1977) “Type with an introduction by A. Vidler” in Opposition...
	Ramaswamy, S. and Kanellakis P. C. (1995) “OODB indexing by class-division” in Proc. of the 1995 ...
	Raphael, B. and B. Kumar (1996) “Indexing and retrieval of cases in a case- based design system” ...
	Reich, Y. and Fenves, S. J. (1995) “A system that learns to design cable- stayed bridges” in Jour...
	Resnick, L. A., Borgida, A., Brachman, R. J., McGuiness, D. L., Patel- Schneider, P. and Zalondek...
	Rosenman, M. A., Gero, J. S. and Oxman, R. E. (1992) “What’s in a case: the use of case bases, an...
	Rossi, A. (1982) “Typological questions” in The Architecture of the City, MIT Press, pages 35-45.
	Scruton, R. (1979) “The language of architecture” in The Aesthetics of Architecture, Princeton Un...
	Simon, A. H. (1969) Sciences of The Artificial, MIT Press, Cambridge, MA.
	Smith, I.F., D. Kurmann and G. Schmitt (1994) “Case combination and adaptation of building spaces...
	Smith, E. E. and Medin, D. L. (1981) Categories and Concepts, Cambridge, Mass., Harvard Universit...
	Snyder, J., Aygen, Z., Flemming, U. and Tsai, J. (1995) “SPROUT - a modeling language for SEED” i...
	Synder, J., (1998) Conceptual Modeling and Application Integration in CAD: The Essential Elements...
	Sowa, J. F. (1984) Conceptual Structures: Information Processing in Mind and Machine, Reading, Ma...
	Sullivan, L. H. (1947) “The tall office building artistically considered” in Kindergarten Chats a...
	Tezar, P. (1991) “The other side of types” in Type and the (Im)Possibilities of Convention, G. Ro...
	Tulving, E. (1972) “Episodic and semantic memory” in Organization of Memory, Tulving, E. and W. D...
	Vidler, A. (1977) “The third typology” in Oppositions, MIT Press, vol. 7, pages 1-4.
	Vidler, A. (1976): “Introduction: a note on the idea of type in architecture” in The Building Of ...
	Waltz D., (1991) “Is indexing Used for Retrieval?” in Proceedings: Workshop on Case-Based Reasoni...
	Way, E. C. (1991) Knowledge Representation and Metaphor, Kluwer Academic Publishers, Boston.
	Woods (1991), “Understanding Subsumption and Taxonomy: A Framework for Progress” in Principles of...
	Woodbury, R., Chang, T.W., Chiou, S.C., Coyne, R., Fenves, S., Flemming, U., and Gomez, N. (1994)...
	Appendix A: Using SEED-KBC and SEED-CBD APIs

	This section contains the sample code segments and requirements for incorporating the SEED-KBC an...
	1. SEED-KBC

	The classification functionality provided by the SEED-KBC engine requires several changes in term...
	1.1. Environment variable

	The following environment variable should be set prior to using the classification engine. This p...
	KBCLITE: /usr/users/zeyno/seed_kbc/dbmethods
	1.2. Database

	The SEED-KBC schema and methods are defined in the database named KBCLite. The classification sch...
	> isqlx KBCLite
	1.3. C - API

	The C-API (*.c and *.h files) for SEED-KBC is located at:
	/usr/users/zeyno/seed_kbc/kblite_api.
	The SEED-KBC static library libkbliteapi.a in the same directory, can be linked to other C/C++ ap...
	1.4. Java API

	Before using the SEED-KBC Java API, the following path needs to be added to the CLASSPATH environ...
	/usr/users/zeyno/seed_kbc/javaimpl/classes
	Additionally, to enable the Java-API’s JNI connection (through the shared object file: libkbcapi....
	/usr/users/zeyno/seed_kbc/middleware/jniimpl
	The SEED-KBC API is implemented as the class: DBWorkspace. In order to use the Java-API as part o...
	public class MyJavaApplication extends AnApplication {
	...
	protected DBWorkspace workspace;
	...
	public MyJavaApplication() {
	// workspace connection
	workspace = new DBWorkspace("KBCLite");
	...
	}
	...
	}
	In SEED-KBC’s Java API, sets are represented by Java strings. Below is a sample code segment for ...
	String s = null;
	...
	StringTokenizer t = new StringTokenizer(s, ":");
	int nItems = t.countTokens();
	for (int i=0; i < nItems; i++) {
	s = t.nextToken();
	...
	}
	2. SEED-CBD

	The case-base functionality provided by the SEED-CBD engine requires several changes in terms of ...
	2.1. Environment variable

	The following environment variable should be set prior to using the case-base engine. This path i...
	SEEDCBD: /usr/users/zeyno/seed_cbd/dbmethods
	2.2. Database

	The SEED-CBD schema and methods are defined in the database named CBDSeed. The case-base schema c...
	> isqlx CBDSeed
	2.3. C - API

	The C-API (*.c and *.h files) for SEED-CBD is located at:
	/usr/users/zeyno/seed_cbd/cbdapi.
	The SEED-CBD static library libcbdapi.a in the same directory, can be linked to other C/C++ appli...
	2.4. Java API

	Before using the SEED-CBD Java API, the following path needs to be added to the CLASSPATH environ...
	/usr/users/zeyno/seed_cbd/javaimpl/classes
	Additionally, to enable the Java-API’s JNI connection (through the shared object file: libcbdapi....
	/usr/users/zeyno/seed_cbd/javaimpl/jnimpl
	The SEED-CBD API is implemented as the class: CBWorkspace. In order to use the Java-API as part o...
	public class MyJavaApplication extends AnApplication {
	...
	protected CBWorkspace workspace;
	...
	public MyJavaApplication() {
	// workspace connection
	workspace = new CBWorkspace("CBDSeed");
	...
	}
	...
	}
	Appendix B: SEED-KBC API specifications

	Based on the software requirements and SPROUT’s system architecture, SEED- KBC implements classif...
	1. Constant values

	The following are the type constants employed by the SEED-KBC API.
	2. Return values

	The following are the constants representing values returned by the SEED-KBC API methods.
	3. KB class methods

	SEED-KBC maintains multiple classification knowledge-bases that are represented via distinct kb i...
	4. KB instance methods

	The following methods are called on a specific kb instance to maintain and query its components: ...
	5. Database transactions

	The following methods are used to handle some of the generic database transactions.
	Appendix C: SEED-CBD API specifications

	Based on the software requirements and SPROUT’s system architecture, SEED- CBD implements case-ba...
	1. Constant values

	The following are the type constants employed by the SEED-CBD API.
	2. Return values

	The following are the constants representing values returned by the SEED-CBD API methods.
	3. CB object

	The following method is called to query cb_object: the base class. If the specified case-base nam...
	4. CB

	The following methods are called to query the cb class and instances. If the specified case-base ...
	5. Case

	The following methods are called to query the case class and instances. If the specified case-bas...
	6. Proxy

	The following methods are called to query the proxy class and instances. If the specified case-ba...
	7. Match operator

	The following methods are called to query the match operator class and instances. If the provided...
	8. Target

	The following methods are called to query the target class and instances. If the provided case-ba...
	9. Retrieval

	The following methods are called to retrieve cases in the specified case-base. If the provided ca...
	10. Database transactions

	The following methods are used to handle some of the generic database transactions.
	Appendix D: Database Representations

	This section contains the schema specifications for the SEED-CBD and SEED_KBC engines.
	1. SEED-KBC schema

	CREATE CLASS kb_object;
	CREATE CLASS kb;
	CREATE CLASS role_restriction;
	CREATE CLASS told_description;
	CREATE CLASS kb_role;
	CREATE CLASS individual;
	CREATE CLASS concept;
	CREATE CLASS kb_individual;
	CREATE CLASS host_individual;
	CREATE CLASS kb_concept;
	CREATE CLASS host_concept;
	CREATE CLASS description;
	CREATE CLASS primitive;
	CREATE CLASS tmp_description;
	ALTER CLASS kb ADD SUPERCLASS kb_object;
	ALTER CLASS role_restriction ADD SUPERCLASS kb_object;
	ALTER CLASS told_description ADD SUPERCLASS kb_object;
	ALTER CLASS kb_role ADD SUPERCLASS kb_object;
	ALTER CLASS individual ADD SUPERCLASS kb_object;
	ALTER CLASS concept ADD SUPERCLASS kb_object;
	ALTER CLASS kb_individual ADD SUPERCLASS individual;
	ALTER CLASS host_individual ADD SUPERCLASS individual;
	ALTER CLASS kb_concept ADD SUPERCLASS concept;
	ALTER CLASS host_concept ADD SUPERCLASS concept;
	ALTER CLASS description ADD SUPERCLASS kb_concept;
	ALTER CLASS primitive ADD SUPERCLASS kb_concept;
	ALTER CLASS classifier ADD SUPERCLASS kb_object;
	ALTER CLASS tmp_description ADD SUPERCLASS told_description;
	ALTER CLASS kb ADD ATTRIBUTE
	status character(4) DEFAULT 'off ',
	kb_name character varying(1073741823),
	CONSTRAINT "u_kb(kb_name)" UNIQUE(kb_name);
	ALTER CLASS kb ADD METHOD
	discard() FUNCTION cl_discard_kb,
	cleanup() FUNCTION cl_cleanup_kb,
	create_primitive() FUNCTION cl_create_primitive_kb,
	create_classification() FUNCTION cl_create_classification_kb,
	discard_classification() FUNCTION cl_discard_classification_kb,
	is_classified() FUNCTION cl_is_classified_kb, is_registered() FUNCTION cl_is_registered_kb,
	get_classification() FUNCTION cl_get_classification_kb,
	discard_primitive() FUNCTION cl_discard_primitive_kb,
	is_a_disjoint_primitive() FUNCTION cl_is_a_disjoint_primitive_kb,
	is_a_disjunct() FUNCTION cl_is_a_disjunct_kb,
	get_primitives() FUNCTION cl_get_primitives_kb,
	get_super_primitive() FUNCTION cl_get_super_primitive_kb,
	get_sub_primitives() FUNCTION cl_get_sub_primitives_kb,
	create_host_concept() FUNCTION cl_create_host_concept_kb,
	get_host_concepts() FUNCTION cl_get_host_concepts_kb,
	are_disjoined() FUNCTION cl_are_disjoined_kb,
	register_spobj() FUNCTION cl_register_spobj_kb,
	unregister_spobj() FUNCTION cl_unregister_spobj_kb,
	classify_spobj() FUNCTION cl_classify_spobj_kb,
	print_description() FUNCTION cl_print_description_kb,
	print_told_description() FUNCTION cl_print_told_description_kb,
	get_spobjs() FUNCTION cl_get_spobjs_kb,
	get_classifications() FUNCTION cl_get_classifications_kb,
	discard_all_classifications() FUNCTION cl_discard_all_classifications_kb,
	add_to_classification() FUNCTION cl_add_to_classification_kb,
	retract_from_classification() FUNCTION cl_retract_from_classification_kb,
	get_told_supers() FUNCTION cl_get_told_supers_kb,
	get_told_primitives() FUNCTION cl_get_told_primitives_kb,
	get_told_restrictions() FUNCTION cl_get_told_restrictions_kb,
	get_derived_primitives() FUNCTION cl_get_derived_primitives_kb,
	get_derived_restrictions() FUNCTION cl_get_derived_restrictions_kb,
	get_synonyms() FUNCTION cl_get_synonyms_kb,
	get_all_classified() FUNCTION cl_get_all_classified_kb,
	get_told_classified() FUNCTION cl_get_told_classified_kb,
	get_classification_subsumees() FUNCTION cl_get_classification_subsumees_kb,
	get_classification_subsumers() FUNCTION cl_get_classification_subsumers_kb,
	retrieve() FUNCTION cl_retrieve_kb,
	compare() FUNCTION cl_compare_kb,
	classification_compare() FUNCTION cl_classification_compare_kb,
	get_classified_spobjs() FUNCTION cl_get_classified_spobjs_kb
	FILE '$KBCLITE/kbmethods.so'
	;
	ALTER CLASS kb ADD METHOD
	CLASS new() FUNCTION cl_new_kb,
	CLASS find_active() FUNCTION cl_active_kb,
	CLASS activate() FUNCTION cl_activate_kb,
	CLASS deactivate() FUNCTION cl_deactivate_kb,
	CLASS find() FUNCTION cl_find_kb,
	CLASS get_kb_names() FUNCTION cl_get_kb_names_kb
	;
	ALTER CLASS told_description ADD ATTRIBUTE
	primitives set(character varying(1073741823)),
	restricted_to set(character varying(1073741823)),
	belongs_to character varying(1073741823),
	inherits_from set(character varying(1073741823));
	ALTER CLASS told_description ADD METHOD
	add_primitive() FUNCTION cl_add_primitive_told_description,
	drop_primitive() FUNCTION cl_drop_primitive_told_description,
	restrict_to() FUNCTION cl_restrict_to_told_description,
	drop_restriction() FUNCTION cl_drop_restriction_told_description,
	print() FUNCTION cl_print_told_description,
	discard() FUNCTION cl_discard_told_description,
	add_super() FUNCTION cl_add_super_told_description,
	drop_super() FUNCTION cl_drop_super_told_description,
	subsumes_classification() FUNCTION cl_subsumes_classification_told_description,
	is_in_conflict_with() FUNCTION cl_is_in_conflict_with_told_description,
	clone() FUNCTION cl_clone_told_description,
	get_subsumers() FUNCTION cl_get_subsumers_told_description,
	get_subsumees() FUNCTION cl_get_subsumees_told_description,
	is_canonical_owner() FUNCTION cl_is_canonical_owner_told_description
	FILE '$KBCLITE/kbmethods.so'
	;
	ALTER CLASS told_description ADD METHOD
	CLASS new() FUNCTION cl_new_told_description
	;
	ALTER CLASS host_individual ADD ATTRIBUTE
	hi_type character varying(1073741823),
	belongs_to character varying(1073741823),
	is_classified_by character varying(1073741823);
	ALTER CLASS host_individual ADD METHOD
	discard() FUNCTION cl_discard_host_individual
	FILE '$KBCLITE/kbmethods.so'
	;
	ALTER CLASS host_individual ADD METHOD
	CLASS new() FUNCTION cl_new_host_individual
	;
	ALTER CLASS host_concept ADD ATTRIBUTE
	belongs_to character varying(1073741823);
	ALTER CLASS host_concept ADD METHOD
	CLASS new() FUNCTION cl_new_host_concept
	FILE '$KBCLITE/kbmethods.so'
	;
	ALTER CLASS description ADD ATTRIBUTE
	belongs_to character varying(1073741823),
	primitives set(character varying(1073741823)),
	restrict_to set(character varying(1073741823)),
	subsumees set(description),
	subsumers set(description);
	ALTER CLASS description ADD METHOD
	subsumes() FUNCTION cl_subsumes_description,
	add_subsumer() FUNCTION cl_add_subsumer_description,
	add_subsumee() FUNCTION cl_add_subsumee_description,
	add_subsumer_set() FUNCTION cl_add_subsumer_set_description,
	add_subsumee_set() FUNCTION cl_add_subsumee_set_description,
	are_disjoined() FUNCTION cl_are_disjoined_description,
	print() FUNCTION cl_print_description,
	is_disjoined_from() FUNCTION cl_is_disjoined_from_description
	FILE '$KBCLITE/kbmethods.so'
	;
	ALTER CLASS description ADD METHOD
	CLASS new() FUNCTION cl_new_description
	;
	ALTER CLASS primitive ADD METHOD
	CLASS new() FUNCTION cl_new_primitive,
	CLASS discard() FUNCTION cl_discard_primitive,
	CLASS told_name() FUNCTION cl_told_name_primitive,
	CLASS is_a_disjoint_primitive() FUNCTION cl_is_a_disjoint_primitive_primitive,
	CLASS get_incompetibles() FUNCTION cl_get_incompetibles_primitive,
	CLASS belongs_to() FUNCTION cl_belongs_to_primitive,
	CLASS is_a_disjunct() FUNCTION cl_is_a_disjunct_primitive,
	CLASS get_super() FUNCTION cl_get_super_primitive,
	CLASS get_subs() FUNCTION cl_get_subs_primitive,
	CLASS get_n_descendants() FUNCTION cl_get_n_descendants_primitive,
	CLASS exists_in_kb() FUNCTION cl_exists_in_kb_primitive,
	CLASS are_disjoined() FUNCTION cl_are_disjoined_primitive,
	CLASS is_subprimitive() FUNCTION cl_is_subprimitive_primitive,
	CLASS is_superprimitive() FUNCTION cl_is_superprimitive_primitive
	FILE '$KBCLITE/kbmethods.so'
	;
	ALTER CLASS tmp_description ADD ATTRIBUTE
	classifies set(character varying(1073741823)),
	tmp_name character varying(1073741823),
	CONSTRAINT "u_tmp_description(tmp_name)" UNIQUE(tmp_name);
	2. SEED-CBD schema

	CREATE CLASS cb_object;
	CREATE CLASS cb;
	CREATE CLASS cb_component;
	CREATE CLASS proxy_obj;
	CREATE CLASS descr;
	CREATE CLASS match_operator;
	CREATE CLASS target_descr;
	CREATE CLASS case_descr;
	CREATE CLASS case_obj;
	CREATE CLASS target_matchable;
	ALTER CLASS cb ADD SUPERCLASS cb_object;
	ALTER CLASS cb_component ADD SUPERCLASS cb_object;
	ALTER CLASS proxy_obj ADD SUPERCLASS cb_component;
	ALTER CLASS descr ADD SUPERCLASS cb_component;
	ALTER CLASS match_operator ADD SUPERCLASS cb_component;
	ALTER CLASS target_descr ADD SUPERCLASS descr;
	ALTER CLASS case_descr ADD SUPERCLASS descr;
	ALTER CLASS case_obj ADD SUPERCLASS cb_component;
	ALTER CLASS target_matchable ADD SUPERCLASS cb_component;
	ALTER CLASS cb_object ADD METHOD
	CLASS obj_exists() FUNCTION cbd_obj_exists_cb_object
	FILE ’$SEEDCBD/cbmethods.so’
	;
	ALTER CLASS cb ADD ATTRIBUTE
	cb_name character varying(1073741823),
	ranking sequence(character varying(1073741823)),
	CONSTRAINT "u_cb(cb_name)" UNIQUE(cb_name);
	ALTER CLASS cb ADD METHOD
	discard() FUNCTION cbd_discard_cb,
	cleanup() FUNCTION cbd_cleanup_cb,
	component_id() FUNCTION cbd_component_id_cb,
	unrank() FUNCTION cbd_unrank_cb,
	rank() FUNCTION cbd_rank_cb
	FILE ’$SEEDCBD/cbmethods.so’
	;
	ALTER CLASS cb ADD METHOD
	CLASS new() FUNCTION cbd_new_cb,
	CLASS get_cbs() FUNCTION cbd_get_cbs_cb,
	CLASS discard_all() FUNCTION cbd_discard_all_cb,
	CLASS find_unique() FUNCTION cbd_find_unique_cb
	;
	ALTER CLASS cb_component ADD ATTRIBUTE
	belongs_to character varying(1073741823);
	ALTER CLASS proxy_obj ADD ATTRIBUTE
	type_signature character varying(1073741823),
	cb_dboid character varying(1073741823),
	dboid character varying(1073741823),
	CONSTRAINT "u_proxy_obj(cb_dboid)" UNIQUE(cb_dboid);
	ALTER CLASS proxy_obj ADD METHOD
	unregister_spobj() FUNCTION cbd_unregister_spobj_proxy_obj,
	get_dboid() FUNCTION cbd_get_dboid_proxy_obj,
	get_type_signature() FUNCTION cbd_get_type_signature_proxy_obj
	FILE ’$SEEDCBD/cbmethods.so’
	;
	ALTER CLASS proxy_obj ADD METHOD
	CLASS register_spobj() FUNCTION cbd_register_spobj_proxy_obj,
	CLASS get_proxy_objs() FUNCTION cbd_get_proxy_objs_proxy_obj,
	CLASS discard_all() FUNCTION cbd_discard_all_proxy_obj,
	CLASS find_unique() FUNCTION cbd_find_unique_proxy_obj,
	CLASS get_proxy_obj_ids() FUNCTION cbd_get_proxy_obj_ids_proxy_obj,
	CLASS is_registered() FUNCTION cbd_is_registered_proxy_obj
	;
	ALTER CLASS match_operator ADD ATTRIBUTE
	so_location character varying(1073741823),
	matchable_type_sign character varying(1073741823),
	match_operator_name character varying(1073741823),
	match_operator_id character varying(1073741823),
	c_function character varying(1073741823),
	CONSTRAINT "u_match_operator(match_operator_id)" UNIQUE(match_operator_id);
	ALTER CLASS match_operator ADD METHOD
	discard() FUNCTION cbd_discard_match_operator,
	set_so_location() FUNCTION cbd_set_so_location_match_operator,
	get_so_location() FUNCTION cbd_get_so_location_match_operator,
	set_matchable_type_sign() FUNCTION cbd_set_matchable_type_sign_match_operator,
	get_matchable_type_sign() FUNCTION cbd_get_matchable_type_sign_match_operator,
	set_match_operator_name() FUNCTION cbd_set_match_operator_name_match_operator,
	get_match_operator_name() FUNCTION cbd_get_match_operator_name_match_operator,
	set_c_function() FUNCTION cbd_set_c_function_match_operator,
	call_operator() FUNCTION cbd_call_operator_match_operator,
	get_c_function() FUNCTION cbd_get_c_function_match_operator
	FILE ’$SEEDCBD/cbmethods.so’
	;
	ALTER CLASS match_operator ADD METHOD
	CLASS new() FUNCTION cbd_new_match_operator,
	CLASS discard_all() FUNCTION cbd_discard_all_match_operator,
	CLASS find_unique() FUNCTION cbd_find_unique_match_operator,
	CLASS get_match_operators() FUNCTION cbd_get_match_operators_match_operator,
	CLASS get_match_operator_ids() FUNCTION cbd_get_match_operator_ids_match_operator
	;
	ALTER CLASS target_descr ADD ATTRIBUTE
	matchables set(target_matchable),
	target_name character varying(1073741823),
	target_id character varying(1073741823),
	CONSTRAINT "u_target_descr(target_id)" UNIQUE(target_id);
	ALTER CLASS target_descr ADD METHOD
	discard() FUNCTION cbd_discard_target_descr,
	set_target_name() FUNCTION cbd_set_target_name_target_descr,
	get_target_name() FUNCTION cbd_get_target_name_target_descr,
	add_matchable() FUNCTION cbd_add_matchable_target_descr,
	drop_matchable() FUNCTION cbd_drop_matchable_target_descr,
	get_n_matchables() FUNCTION cbd_get_n_matchables_target_descr,
	get_matchable_id() FUNCTION cbd_get_matchable_id_target_descr,
	get_matchable_operator() FUNCTION cbd_get_matchable_operator_target_descr,
	get_type_signatures() FUNCTION cbd_get_type_signatures_target_descr
	FILE ’$SEEDCBD/cbmethods.so’
	;
	ALTER CLASS target_descr ADD METHOD
	CLASS new() FUNCTION cbd_new_target_descr,
	CLASS discard_all() FUNCTION cbd_discard_all_target_descr,
	CLASS find_unique() FUNCTION cbd_find_unique_target_descr,
	CLASS get_targets() FUNCTION cbd_get_targets_target_descr,
	CLASS get_target_ids() FUNCTION cbd_get_target_ids_target_descr
	;
	ALTER CLASS case_descr ADD ATTRIBUTE
	parent_case case_obj,
	matchables set(character varying(1073741823));
	ALTER CLASS case_descr ADD METHOD
	add_matchable() FUNCTION cbd_add_matchable_case_descr,
	drop_matchable() FUNCTION cbd_drop_matchable_case_descr,
	type_signatures() FUNCTION cbd_type_signatures_case_descr
	FILE ’$SEEDCBD/cbmethods.so’
	;
	ALTER CLASS case_descr ADD METHOD
	CLASS new() FUNCTION cbd_new_case_descr
	;
	ALTER CLASS case_obj ADD ATTRIBUTE
	annotations set(character varying(1073741823)),
	case_id character varying(1073741823),
	told_name character varying(1073741823),
	case_index case_descr,
	problem_set set(character varying(1073741823)),
	solution_set set(character varying(1073741823)),
	outcome_set set(character varying(1073741823)),
	ranking double DEFAULT 0,
	CONSTRAINT "u_case_obj(case_id)" UNIQUE(case_id);
	ALTER CLASS case_obj ADD METHOD
	add_index_matchable() FUNCTION cbd_add_index_matchable_case_obj,
	drop_index_matchable() FUNCTION cbd_drop_index_matchable_case_obj,
	get_index_matchables() FUNCTION cbd_get_index_matchables_case_obj,
	discard() FUNCTION cbd_discard_case_obj,
	set_told_name() FUNCTION cbd_set_told_name_case_obj,
	get_told_name() FUNCTION cbd_get_told_name_case_obj,
	add_annotation() FUNCTION cbd_add_annotation_case_obj,
	drop_annotation() FUNCTION cbd_drop_annotation_case_obj,
	add_to() FUNCTION cbd_add_to_case_obj,
	drop_from() FUNCTION cbd_drop_from_case_obj,
	get_set_of() FUNCTION cbd_get_set_of_case_obj,
	find_annotations() FUNCTION cbd_find_annotations_case_obj,
	get_type_signatures() FUNCTION cbd_get_type_signatures_case_obj,
	set_rank() FUNCTION cbd_set_rank_case_obj,
	get_rank() FUNCTION cbd_get_rank_case_obj
	FILE ’$SEEDCBD/cbmethods.so’
	;
	ALTER CLASS case_obj ADD METHOD
	CLASS new() FUNCTION cbd_new_case_obj,
	CLASS get_cases() FUNCTION cbd_get_cases_case_obj,
	CLASS get_case_ids() FUNCTION cbd_get_case_ids_case_obj,
	CLASS find_unique() FUNCTION cbd_find_unique_case_obj,
	CLASS discard_all() FUNCTION cbd_discard_all_case_obj,
	CLASS quick_retrieval() FUNCTION cbd_quick_retrieval_case_obj
	;
	ALTER CLASS target_matchable ADD ATTRIBUTE
	matchable_id character varying(1073741823),
	parent_descriptor target_descr,
	match_operator_id character varying(1073741823);
	ALTER CLASS target_matchable ADD METHOD
	CLASS new() FUNCTION cbd_new_target_matchable
	FILE ’$SEEDCBD/cbmethods.so’
	;
	CREATE TRIGGER clear_case_content
	STATUS ACTIVE
	PRIORITY 0.000000
	BEFORE DELETE ON case_obj
	EXECUTE delete from case_descr where parent_case.case_id=obj.case_id;
	CREATE TRIGGER clear_target_content
	STATUS ACTIVE
	PRIORITY 0.000000
	BEFORE DELETE ON target_descr
	EXECUTE delete from target_matchable where parent_descriptor.target_id=obj.target_id;
	CREATE TRIGGER clear_operator_dependant
	STATUS ACTIVE
	PRIORITY 0.000000
	BEFORE DELETE ON match_operator
	EXECUTE delete from target_matchable where match_operator_id=obj.match_operator_id;
	CREATE TRIGGER cb_delete_cases
	STATUS ACTIVE
	PRIORITY 0.000000
	BEFORE DELETE ON cb
	EXECUTE delete from case_obj where belongs_to=obj.cb_name;
	CREATE TRIGGER cb_delete_targets
	STATUS ACTIVE
	PRIORITY 0.000000
	BEFORE DELETE ON cb
	EXECUTE delete from target_descr where belongs_to=obj.cb_name;
	CREATE TRIGGER cb_delete_match_operators
	STATUS ACTIVE
	PRIORITY 0.000000
	BEFORE DELETE ON cb
	EXECUTE delete from match_operator where belongs_to=obj.cb_name;
	CREATE TRIGGER cb_delete_proxies
	STATUS ACTIVE
	PRIORITY 0.000000
	BEFORE DELETE ON cb
	EXECUTE delete from proxy_obj where belongs_to=obj.cb_name;
	CREATE TRIGGER clear_proxy_dependants
	STATUS ACTIVE
	PRIORITY 0.000000
	BEFORE DELETE ON proxy_obj
	EXECUTE delete from target_matchable where matchable_id=obj.dboid and belongs_to=obj.belongs_to;

