
Learning about Complexity with Modular Robots 
 
 

Eric Schweikardt 
Computational Design Lab 
Carnegie Mellon University 

tza@cmu.edu 

Mark D. Gross 
Computational Design Lab 
Carnegie Mellon University 

mdgross@cmu.edu 
 

 
Abstract 

 
We present progress with roBlocks, a 

reconfigurable modular robotic system for education.  
Children snap together small, magnetic, heterogeneous 
modules to create larger, more complex robotic 
constructions.  The design of the system is described 
and the algorithms that handle data transfer and 
manipulation are explained.  Users tend to begin 
exploring the system through a series of simple robot 
patterns but quickly progress to more involved 
constructions.  Many years before they learn formally 
about hierarchy and modularity, children can develop 
intuitions about these concepts by designing modular 
robots.  Additionally, young users often spontaneously 
engage in creative debugging practices.  
 
1. Introduction 
 

Our world is a confusing and complex place.  
Global phenomena emerge as the result of interacting 
local behaviors.  Classical notions of causality that 
have guided Western thought for centuries continue to 
serve, but we have come to see that complexity plays 
an important role in our world. Understanding 
complexity, and learning to think in terms of 
complexity, is essential to addressing the problems that 
face humankind in the twenty-first century: global 
warming, the management of mega-cities, food, 
energy, and water for a growing population.   This is, 
of course, not a new idea: the “systems thinking” and 
cybernetics movement of the mid-twentieth century [1-
3] and the scientists and mathematicians who worked 
on understanding the dynamics of systems such as 
arms races [4], populations [5], and industrial, urban, 
and world dynamics [6, 7] laid the groundwork. 

We have designed and built a robotic construction 
kit, called roBlocks, which we intend as a vehicle for 
conveying the fundamental perspective of complexity: 
that the behavior of a system need not be programmed 
from the top down, but may result from the interactions 

of independent components.  Our kit is designed for 
young learners (roughly ages 10-15) who have no 
particular technical or computer knowledge.   

We share this goal with educational computing 
environments such as StarLogo and NetLogo [8, 9].  In 
these screen-based environments, children write 
programs that describe the behavior of individuals 
(e.g., a bird) and then explore what happens when the 
individual program is executed by large numbers of 
individuals (e.g., flocks and flocking behavior). A 
different approach but with similar goals is simulations 
such as SimCity or SimEarth. In these games a player 
must make decisions in a complex and time varying 
system.  The rules of the system are concealed from the 
player, so the challenge is to achieve goals without 
knowing how the system works. 

The roBlocks project is based on the idea that the 
acts of designing and building real objects develops 
creativity and scientific curiosity.  Our work is inspired 
by Seymour Papert’s idea of constructionism; that 
building things is a particularly good way to learn 
since the artifacts are tangible – they can be easily 
discussed and critiqued [10].  

 

 
Figure 1.  A few roBlocks. 

Our approach is inspired by the lovely book 
Vehicles, by Valentino Braitenberg [11].  Braitenberg 
shows how, by assembling increasingly complex 



robots out of sensors, effectors, and simple neurons, 
from the ensemble gradually behavior emerges that 
seems intelligent.  Along similar lines is Brooks’s 
approach to robotics, outlined in his early papers 
“Intelligence without Reason” and “Intelligence 
without Representation” [12, 13].  Here again the idea 
is that rather than resulting from a top-down decision 
making process, intelligent behavior emerges from 
communicating local components. 

 
2. The roBlocks construction kit 
 

roBlocks are 40mm plastic cubes that snap together 
with magnetic connectors [14].  Children as young as 
nine snap them together to create constructions that 
drive around on a tabletop, reacting to light and sound.  
Each roBlock is different.  Sensor blocks, including 
specific blocks for sensing light, sound, touch, motion 
and (infrared) distance, take in data from the 
environment and pass it on to connected blocks.  
Multicolored Think blocks apply functions to those 
data including sum, maximum, minimum, inverse and 
threshold.  Action blocks translate data passed to them 
into various types of action.  A tread block contains a 
small motor and drives around on a tabletop according 
to its given value.  Other  blocks have rotating faces, 
bright LEDs and piezoelectric speakers.  The fourth 
block category, utility blocks, includes a block 
containing a small lithium-ion battery that must be 
included in each construction, a Zigbee wireless block, 
and passive data-connection blocks that allow the 
physical form of a construction to be less constrained 
by its programmatic layout. 

 

 
Figure 2.  Inside a roBlock. 

In a roBlocks construction each block possesses a 
single dynamic one-byte value, which determines how 
it operates [15].  Sensor blocks compute this value 
from environmental input.  A light sensor block, for 
example, has a value of about 5 in a dark room, and a 
value of over 200 outside on a sunny day.  A touch 

sensor has a resting value of zero but jumps to 255 
when it detects contact.   blocks, on the other, hand, 
actuate according to their value, which they derive 
from data passed to them by their neighbors.  A 
Rotation block with a value of zero does not move, but 
the same block with a value of 127 would rotate at half 
speed.  roBlocks pass their values to their connected 
neighbors.  Sensors act as sources and action blocks as 
sinks, and constructions form an implicit directed 
graph that may have cycles.  The blocks operate 
asynchronously, transferring data with no centralized 
clock.  Each block's value is determined by the number 
of steps from each data source in a weighted average.  
Two sensor blocks at either end of a chain of blocks, 
for example, create a gradient of block values, with 
blocks closer to a high sensor reading exhibiting higher 
values.  This weighted averaging scheme allows users 
to create densely packed 3D lattices of blocks and 
accurately predict the value at any block. 

Each roBlock body is made of two identical three-
face halves that screw together enclosing electronics 
inside.  We make the bodies on our 3D printer and 
using different colors of plastic to indicate type of 
block.  Each face of the blocks is identical, and 
hermaphroditic connectors allow each block to connect 
to any other block at any of four possible orientations.  
Embedded magnets and spring probes on each 
connector provide both physical and electrical 
connectivity between blocks.  On the back of each 
connector the magnets are attached with conductive 
epoxy to the circuit boards shown in Figure 2.  Each 
roBlock has identical electronics:  an Atmel AVR 
microcontroller, programming header, H-bridge motor 
controller, shift register, and power circuitry. 

 
3. roBlocks robots 
 

The simple robot shown in Figure 3 is built with 
five roBlocks:  two sensor blocks (Light and Knob), a 
Maximum think block, an LED  block and a power 
block. 

 

 
Figure 3.  A little robot that indicates a number 

based on the values of two connected sensor blocks. 



The network and data flow diagram of this robot is 
shaped like a “Y”, with the two sensor inputs merged 
at the think block and passing data to the numeric LED 
block.  Any two sensors could be used here – the 
Maximum block will cause the  output to correspond to 
the higher of the two sensor values.  As we've chosen a 
Knob as one of our sensors, the user can set its data 
value manually.  With this combination we've created a 
sort of Threshold robot in which the light sensor value 
is taken into account only if it becomes greater than the 
value of the Knob sensor.  Braitenberg [11] describes 
how a simple threshold device can be a key element in 
creating lifelike, emergent behaviors. 

 

 
Figure 4.  A mobile robot that steers away from 

light sources. 

The mobile robot shown in Figure 4 is also built 
with only five blocks:  two Light sensor blocks, two 
Tread  blocks and a power block.  Each  connects 
directly to one of the sensors and so responds more 
powerfully whenever its adjacent sensor is stimulated 
more powerfully. With two Tread blocks, we have 
created a differential drive robot that turns away from a 
stimulus, appearing to exhibit the intention of avoiding 
light.  Children as young as six can make the transition 
from ascribing intent to a robot (e.g., “it doesn’t like 
light”) to understanding how its structure could 
produce an apparently intentional behavior [16]. 

  

 
Figure 5.  The construction graph and a photo of a 

robot that avoids falling. 

A simple modification illustrates the behavior 
typical to the think category of blocks.  The robot 
shown in Figure 5 adds a third distance sensor block in 
front and pointing down, connected through an expand 
block (which converts a one-byte block value into a 
binary 0 or 1) and two minimum blocks to the drive 
subassemblies.  Normally, the third distance sensor 
block would output a high value, allowing the robot to 
operate just like the robot shown in Figure 2.  When 
encountering the edge of a table upon which the robot 
is moving, however, the expand block outputs a zero 
instead of 1, and the minimum blocks immediately stop 
both drive motors.  This robot exhibits interesting and 
non-linear behavior. Whereas the previous robots 
suggested a simple action-reaction model, this new 
robot evokes the notion of rules.  Even though we 
haven’t expressed an explicit if-then statement (“if the 
robot sees the edge then stop”), the minimum blocks 
create the effect of a conditional by using only a simple 
mathematical calculation. 
 
4. Observations of young users 
 

We recently completed a set of informal user test 
sessions.  Each session began with a quick introduction 
to the kit and a demonstration of how the blocks 
operate.  We demonstrated a couple of simple robot 
constructions with a single sensor and single action 
block, and showed how think blocks placed in between 
change the robot’s behavior. Then, we observed the 
groups in free play sessions, answering questions and 
making suggestions when necessary. Often, we would 
ask subjects to explain their constructions in an attempt 
to elicit the understanding and mental models they hold 
concerning the operation of the blocks. 
 

Session 1: Sunday, March 9, 2008 
Location: Home of User A and B, brothers 
User A 11 (6th grade) Male 
User B 9 (4th grade) Male 
User C 9 (4th grade) Male 
Session 2: Tuesday, April 8, 2008 
Location: Office of User D and F’s mother 
User D 7 Male 
User E 7 Male 
User F 5 Male 
Session 3: Friday, April 18, 2008 
Location: Lunch hour at local middle school 
User G 12 (7th grade) Male 
User H 13 (7th grade) Male 
Session 4: Friday, April 18, 2008 
Location: Lunch hour at local middle school 
User I 12 (7th grade) Male 
User J 13 (7th grade) Male 
User K 13 (7th grade) Male 



Session 5:  Friday, April 18, 2008 
Location: Lunch hour at local middle school 
User L 13 (7th grade) Female 
User M 13 (7th grade) Female 
Session 6:  Wednesday, April 23, 2008 
Location: The girls' home, with their parents 
User N 11 (5th grade) Female 
User O 10 (4th grade) Female 

Table 1.  User testing sessions. 

We conducted six test sessions over two months, 
each with two or three children working together in 
each session. Fifteen children participated: 11 male and 
4 female. Most participants were between 9 and 13 
years old, but we tested with two 7-year-olds and one 
5-year-old. Two test sessions took place at the 
children's homes, with their parents available and with 
access to other toys.  One session was conducted at the 
office of the subjects' mother, and three sessions were 
conducted at a local middle school during lunch hour 
with children who had expressed interest when asked 
by the 7th grade science teacher, who also attended the 
sessions.  The remarks in the following sections draw 
on our observations of children constructing robots. 

 
5. Learning intuition 
 

It is important to distinguish between familiarity 
with a particular concept and explicit knowledge of a 
certain representation of that concept. Claims of 
educational benefit are often made rather spuriously.  
One might hear that playing with LEGO bricks teaches 
kids about physics, or, perhaps more plausibly, that 
playing with Cuisenaire rods teaches kids about math.  
While balancing a LEGO construction might involve 
torque and moment arms, and thereby help students 
build intuitions about mechanics, students aren’t 
exposed to the technical language and formal 
mathematical representations that we use to convey 
these ideas. 

Take, for example, the concept of weighted 
average, the method each roBlock uses to calculate its 
one-byte value.  Children as young as nine have proven 
remarkably adept at understanding this calculation, 
rearranging blocks and noting that data streams are 
“stronger if they’re closer” when mixed.  But they are 
clearly not learning that: 

 

 
 
where the x’s stand for data values and w’s stand for 
their corresponding weights.  Some would claim that 
familiarity with this equation indicates true 

understanding of weighted average, but this equation is 
only one representation of the concept. A simple 
roBlocks robot like that shown in Figure 6 is, in fact, 
another representation of a weighted average. If the 
action blocks A0 and A1 were both flashlight or bar 
graph blocks, a user would notice a gradient of values 
across the construction.  The robot shown in Figure 6 
produces a stair-step gradient, but if there were more 
blocks between the sensors, the gradient would be 
smooth.  This pattern, basically diffusion of data values 
throughout a construction, is not explicitly contained in 
the weighted average algorithm, but instead emerges 
from the interactions between modules. Both the 
equation and the emergent pattern are valid and 
interesting ways to think about weighted average. 
 

 
Figure 6.  A simple roBlocks robot illustrating the 

diffusion algorithm, or weighted average. 

We don’t mean to suggest that fiddling with 
construction toys should supplant traditional 
mathematics or science education.  Yet we do believe 
that early exposure to STEM concepts in different 
representations can improve understanding when the 
concepts are encountered again later in a formal 
education environment.  Specifically, we posit that 
beginning to learn to think computationally [17] at an 
early age prepares students well for more advanced 
subjects in science, technology, and mathematics.  In 
Changing Minds [18], diSessa makes a persuasive 
argument that early bits of encountered knowledge (or 
“phenomenological primitives”) lay the groundwork 
for successful understanding of scientific concepts later 
on in life. 

 
6. Concepts of complexity 
 

Complex systems are distinguished from those that 
are complicated or chaotic.  A laptop motherboard is 
complicated, due to its numerous parts, signal paths 
and different chips, but it is generally predictable and 
deterministic in its operation. Turbulent flow, by 
contrast, is chaotic.  Enormous sensitivity to initial 
conditions makes modeling difficult and prediction 
almost impossible, even though turbulence is just a 
natural unfolding of physical laws [19]. Complex 
systems, the subject of this inquiry, are characterized 
by numerous components, tightly coupled, that 
simultaneously carry out their own goals or programs.  
Complex systems are hard to understand.  They often 
give rise to emergent behavior, larger global patterns 



that are not easily reduced to the components and 
interactions that produce them [20].  We discuss the 
idea of complexity through the notions of modularity, 
hierarchy, and emergent behavior. 

 
6.1. Modularity 
 

Modularity is used to describe a multitude of 
varying situations.  We speak of modular housing that 
is assembled from prefabricated components, or 
modular programming, where well-defined interfaces 
separate chunks of computer code.   Lipson [21] 
defines modularity as the “localization of function,” 
and this idea is the core concept of roBlocks. Each 
function, whether sensing, actuating, or computational, 
is encapsulated within its own sealed plastic cube, 
accessible but pre-defined. The interfaces between 
functions are the magnetic connectors, designed so that 
any two functions can communicate at any of four 
orientations.  Young users are aware that they can 
remove and replace blocks at will, removing and 
replacing the programmatic functions at the same time. 

A high level of modularity requires loose coupling 
between modules. In other words, components that are 
strongly interdependent with their neighbors are not 
very modular.  roBlocks takes loose coupling to an 
extreme, with each block maintaining a single, 
dimensionless data value.  This block-level modularity 
seems to resonate with young users.  As the blocks 
were being described to the users at the beginning of 
Session 2, a seven-year-old commented that the bar 
graph and numeric block were “the same,” noticing 
that they both displayed a graphic readout of their 
value, albeit in different representations.  Later, having 
built a construction that reacted both to ambient light 
levels and the presence of nearby objects, he began 
switching out different  blocks, noting that “really, all 
of the white blocks are the same.”  While the blocks all 
have different functions, the modularity and loose 
coupling of the system create an interface that allows 
them to be easily substituted for one another. 

On a slightly different level, we have been pleased 
to notice that many users spontaneously begin building 
meta-modules:  assemblies of several roBlocks that can 
be re-used.  These are modules of modules, and users 
seem to build them naturally, in the process of creating 
a construction in several steps.  In Session 6, for 
example, an eleven-year-old girl combined a sensor, 
think, and action block to create a simple mobile robot 
that would slow down as it approached an object.  She 
used this meta-module in several other constructions, 
determining along the way that connecting it to other 
blocks by way of a blocker (a black blocker block 
transmits power but not data) would ensure that its 
operation would not be influenced by the other blocks.  

Eventually, she built a second, identical meta-module, 
and by attaching the two side-by-side with blocker and 
power blocks, created a robot that actively turned 
toward any object before slowing down. 

In many systems, such as homo sapiens or even a 
PC running Photoshop, behavior can seem somewhat 
separate from physical structure.  People often feel that 
they are something more than their physical being, that 
there’s an extra little piece of “soul” floating around.  
And the dividing line between computer hardware and 
software is strangely dark, with software able to run on 
many different machine designs.  But this is an 
illusion:  bits are bits and neurons are neurons.  With 
roBlocks, however, behavior is directly caused by the 
physical structure of a construction.  It’s clear that the 
design of the robot’s body gives rise to its behavior, 
just as it does in biological systems.  Pfeifer and 
Bongard thoughtfully address this issue in their new 
book [22].  In a certain sense, systems like roBlocks 
can encourage critical thinking about traditional ideas 
of mind-body dualism.  This mildly subversive notion 
isn’t a goal of the project, simply a pleasant side effect. 
 
6.2. Hierarchy 
 

Modular systems inspire a vision of several 
encapsulated black boxes, all communicating through 
specified interfaces.  Often, the modules express a 
certain regularity—this is certainly the case with most 
modular robots. In real-world systems, however, things 
are not so simple: modules and meta-modules exist at 
many different levels of hierarchy. The complex 
system of world government, for instance, is made up 
of unions or alliances, which are made up of countries, 
which are, in turn, made up of states or districts, and 
eventually, people.  Biological systems, with layers 
ranging from populations down to cells and 
chromosomes, are even more complex. 

roBlocks, with their regular structure and modular 
functional breakdown, might appear to be restrictive in 
modeling hierarchical systems.  But several children 
have used meta-modules in very creative ways.  During 
Session 1, an eleven-year old boy used the max, min, 
and sum think blocks and a variety of sensors to create 
a complex, hierarchical input chain to a single bar 
graph (Figure 7). His nine-year-old brother 
immediately commented that it was “like a ladder,” 
referring to the common tournament scoring system.  It 
required some discussion to determine exactly how 
data was flowing through the system, and creating a 
desired output required a certain amount of thinking.  
Isaac noted that there were many valid input 
combinations for a particular output value.  Manually 
manipulating the sensor inputs on even this simple 



hierarchy demonstrated the difficulty of determining 
the root cause of an observed outcome. 

 

      
Figure 7.  A young user's hierarchical robot. 

 
6.3. Emergence 

 
Most of what we observe in the world was never 

explicitly programmed.  Fluctuations in an economy, 
for example, emerge from millions of local interactions 
between its component people, businesses, and 
governments.  Almost all of the important systems in 
the world exhibit some sort of emergence, and this is 
precisely what makes them difficult to manage.  
Climate change, war, food shortages—these are not 
problems that can be solved by blunt decree. They are 
problems that demand careful probing of causes, 
patterns, and concurrency. 

Cellular automata are a classic model of emergence; 
the gliders and glider guns in Conway’s Game of Life 
[23] proved a valuable tool for provoking thinking into 
how intentional-looking behaviors can emerge from 
several mindless low-level rules.  More recently, we 
have seen several software systems [8, 9] that allow 
children to create their own rule sets, populating 
cellular automata worlds with various entities and 
behaviors, and then watching the ensuing patterns 
unfold on the computer screen. 

While no doubt screen-based simulations can be 
effective for certain goals, the emergent behavior and 
patterns displayed in a cellular automata grid are an 
extreme abstraction from the complexity that we see 
around us, whether in nature or in societal systems.  
roBlocks represents an attempt to move these concepts 
from the computer screen into the real world. 

The main challenge children face in assembling a 
pile of roBlocks into an intended construction involves 
translating from a distal to a proximal description [24].  
The distal description is the global goal behavior as 
viewed by an outside observer, like “chase the other 
robot” or “stop when you see a red object”.  The 
proximal description is the actual set of instructions, or 

“recipe,” that gets carried out to achieve that goal.  For 
most robots, the recipe is the programming that 
coordinates its actions, but when children build with 
roBlocks, the relevant recipe involves the physical 
configuration of the individual blocks.  This is a subtle 
difference, but one worth elaborating on. 

Adding a roBlock to a construction is not the same 
as adding another function to a body of computer code.  
A roBlock does represent a particular function, but in a 
construction, all of the modules communicate with all 
the other modules, all the time.  So in essence 
attaching a roBlock is more like adding an ingredient 
to a recipe – one must be mindful of how it will react 
with all of the other ingredients, combining to create 
emergent phenomena. 

As emergent behavior is often difficult to predict it 
can be challenging to design a roBlocks construction 
that behaves according to a particular high-level goal.  
Novice users are often confounded as they begin to 
create large constructions—with small sensor 
variations affecting every other block, it becomes 
nearly impossible to understand the control structure of 
the entire construction. 

We often prompt our test subjects to build robots 
that perform some distal behavior, and it is intriguing 
to hear them talk through their constructions.  For 
“chase” is not as simple as adding a “chase” block – it 
is a higher-level behavior that must emerge from low-
level, mindless interactions. Users as young as nine 
have been able to clearly explain how certain blocks 
communicate and function concurrently in order to 
perform a certain high level behavior, but most of their 
robots have been fairly simple, made of fewer than 
eight roBlocks. 

It will be interesting to see how users make sense of 
larger constructions.  The behavior that emerges from 
6-10 block constructions can be either comprehensible 
or confounding, depending on the structure of the 
robot.  Children are quick to use hierarchy and 
modularity to manage the complexity of their robotic 
constructions—we are curious to see the building 
patterns they use when given many more modules to 
design with. 
 
7. Debugging 
 

In observation we’ve seen that children are 
generally capable of building simple robots to meet 
their design goals, but that a greater number of blocks 
can begin to confound them.  During the first 20 
minutes of encountering the system, for example, many 
users explore the space of constructions that can be 
built with single sensor and action blocks:  simple 
robots that respond to a stimulus in a linear fashion.  



As they become familiar with the data model, they 
begin to add more blocks.  Since most of the blocks 
don’t explicitly display their data values, system 
behavior becomes harder to predict.  When writing 
software, the solution to this problem involves various 
debugging techniques:  we’ve seen children implement 
a few of these techniques without prompting. 

Many users begin to use certain action blocks to 
examine the data values in the system, stepping 
through their construction and tracing the data flow.  
The numeric and bar graph blocks both use arrays of 
green LEDs to display their value to a user.  Snapping 
one of these blocks onto any other block in the 
construction displays the data value of that block/ In 
effect these blocks are probes; the equivalent to 
printing variable values to the screen when debugging 
a piece of software.  This technique enables kids to 
step through their constructions and figure out exactly 
where and how data is changing, so that they can make 
targeted modifications to their robot. 

Most of the roBlocks robots children build are 
autonomous; their behavior is determined through the 
sensing of environmental conditions.  The absence of a 
user in control of the robot makes these robots difficult 
to test.  A robot might have light and distance sensor 
blocks, for instance, and it may be difficult to 
manipulate both the room’s light level and the position 
of some other object in order to test the robot’s 
behavior.  Some of our young users have gotten around 
this difficulty by temporarily substituting a knob block 
for a particular sensor. This allows them to easily 
change the sensor value (by adjusting the 
potentiometer on the block) and simulate conditions 
that the original robot may encounter.  This practice is 
similar to the programming technique of hard-coding 
certain variables during debugging to test the operation 
of others.  Indeed, controlling certain variables in an 
attempt to examine the behavior of others is the 
fundamental idea of scientific experiment. 

We’ve been surprised to see many users begin by 
trying to build complete robots, finally attaching a 
power block when the rest of the blocks are in place.  
On reflection, however, our experience teaching 
students to write software has shown us that novice 
programmers often begin by attempting to write a 
complete program and then run the whole thing.  With 
more experience, programmers learn the value of 
additive programming; creating functional pieces of 
code and adding to them makes it much easier to 
isolate errors.  Many of our users have the same 
experience with roBlocks – they learn that by starting a 
construction with the power block, they can observe 
the functionality of their robot as it’s being 
constructed, instead of only at the end, when it may 
have become unwieldy to debug. 

While many computer scientists recognize the great 
value of debugging skills for writing software, we 
imagine these ideas to be much more broadly 
applicable.  The US National Science Education 
Standards put forth by the National Research Council 
[25] describe a general theme of inquiry.  Chapter 
Three of the standards specifically recommends less 
emphasis on “focusing on student acquisition of 
information” and more emphasis on “focusing on 
student understanding and use of scientific knowledge, 
ideas, and inquiry processes”.  The standards also 
recommend less emphasis on “presenting scientific 
knowledge through lecture, text, and demonstration” 
and more emphasis on “guiding students in active and 
extended scientific inquiry”. 
 
8. Conclusions and future work 
 

At DIGITEL2007, we presented a brief survey of 
toys with multiple nodes of computation [26].  This 
year, we discuss the ways in which these toys can 
support notions of how complex systems function.  We 
are currently working on improving the roBlocks kit 
and creating a programming interface that children can 
use to modify the behavior of individual blocks. 

The informal results and anecdotes we’ve presented 
are preliminary, but they give us an idea as to the 
educational affordances of modular robotic kits like 
roBlocks. Most importantly, we have seen that by 
providing children with tools to design and build their 
own physical, concurrent, complex systems, we can 
scaffold their understanding of difficult concepts like 
emergence, modularity, and hierarchy.  Although these 
are not the standard “reading, writing, and arithmetic” 
subjects of secondary education, issues of complexity 
are paramount in addressing the problems that will face 
our society in the generations to come. 
 
Acknowledgements 
We thank the children who participated in our study, 
their parents, and their science teacher, Ms. Katie 
Levedahl of the Sto Rox School District.  Ben 
Wojtyna, Andrew Jones, and Drew Hendrickson 
contributed many hours of robot assembly help.  This 
work was supported by National Science Foundation 
Grant ITR-0326054.   
 
8. References 
 
[1] L. von Bertalanffy, General System theory: 

Foundations, Development, Applications, 1968. 
[2] S. Beer, Platform for Change. London and New 

York: John Wiley, 1975. 



[3] G. Pask, An Approach to Cybernetics: Hutchinson, 
1961. 

[4] A. Rapoport, Fights, games, and debates: 
University of Michigan Press, 1974. 

[5] V. Volterra, "Variations and fluctuations of the 
number of individuals in animal species living 
together," in Animal Ecology: McGraw-Hill, 1931. 

[6] J. W. Forrester, World Dynamics: Pegasus 
Communications, 1973. 

[7] J. W. Forrester, "System Dynamics and K-12 
Teachers," presented at the University of Virginia 
school of education, May 30, 1996, 1996. 

[8] M. Resnick, "Turtles, Termites, and Traffic Jams." 
Cambridge, MA: MIT Press, 1994. 

[9] U. Wilensky, "Modeling Nature's Emergent 
Patterns with Multi-agent Languages," presented at 
Proceedings of EuroLogo 2001, Linz, Austria, 
2001. 

[10] S. Papert, "Situating Constructionism," in 
Constructionism, I. Harel and S. Papert, Eds. 
Norwood, NJ: Ablex Publishing Company, 1991, 
pp. 1-11. 

[11] V. Braitenberg, Vehicles:  Experiments in Synthetic 
Psychology. Cambridge, MA: MIT Press, 1984. 

[12] R. Brooks, "Intelligence Without Reason," 
presented at Proceedings of the Twelfth 
International Joint Conference on Artificial 
Intelligence (IJCAI-91), Sydney, Australia, 1991. 

[13] R. Brooks, "Intelligence Without Representation," 
Artificial Intelligence, vol. 47, pp. 139-151, 1991. 

[14] E. Schweikardt and M. D. Gross, "roBlocks:  A 
Robotic Construction Kit for Mathematics and 
Science Education," in International Conference 
on Multimodal Interaction. Banff, Alberta, Canada, 
2006. 

[15] E. Schweikardt and M. D. Gross, "The Robot is the 
Program:  Interacting with roBlocks," in TEI 2008: 
Second International Conference on Tangible and 
Embedded Interaction. Bonn, Germany, 2008. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[16] D. Mioduser, S. T. Levy, and V. Talis, 
"Kindergarten children's perception of robotic-
control rules," in International Conference on the 
Learning Sciences. Seattle, WA, 2002. 

[17] J. M. Wing, "Computational Thinking," 
Communications of the ACM, vol. 49, pp. 33-35, 
2006. 

[18] A. A. DiSessa, Changing Minds: Computers, 
Learning, and Literacy. Cambridge, MA, USA: 
MIT Press, 2000. 

[19] J. Gleick, Chaos: Making a New Science. New 
York: Penguin Books, 1987. 

[20] J. H. Holland, Emergence: From Chaos to Order. 
Reading, MA: Addison-Wesley, 1998. 

[21] H. Lipson, "Principles of modularity, regularity, 
and hierarchy for scalable systems," Journal of 
Biological Physics and Chemistry, vol. 7, pp. 125-
128, 2007. 

[22] R. Pfeifer and J. Bongard, How the Body Shapes 
the Way We Think: A New View of Intelligence. 
Cambridge, MA: MIT Press, 2006. 

[23] M. Gardner, "Mathematical Games:  The fantastic 
combinations of John Conway's new solitaire game 
"life"," in Scientific American, 1970, pp. 120-123. 

[24] N. E. Sharkey and J. Heemskerk, "The neural mind 
and the robot," in Neural Network Perspectives on 
Cognition and Adaptive Robotics, A. J. Browne, 
Ed. Bristol, UK: IOP Press, 1997. 

[25] N. R. C. National Committee on Science Education 
Standards and Assessment, "National Science 
Education Standards," National Academies Press 
1996. 

[26] E. Schweikardt and M. D. Gross, "A Brief Survey 
of Distributed Computational Toys," presented at 
DIGITEL 2007: The First IEEE International 
Workshop on Digital Game and Intelligent Toy 
Enhanced Learning, Jhongli, Taiwan, 2007. 

 
 


