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ABSTRACT

The roBlocks construction kit is a tangible concurrent 
programming environment that encapsulates sensory, 
kinetic,  and computational behavior in modular 
building block units that snap together to construct 
robots. The choice of a protocol for propagating values 
through the constructed robot affects its behavior. 
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INTRODUCTION

Two revolutions in computing are upon us: the advent 
of parallel and concurrent computing everywhere, and 
the physical (tangible) embodiment of computing. 
Together they have the potential to change the way we 
think about things, and in particular our ability to think 
about things computationally. Our roBlocks 
construction kit [1] is a physically embodied 
programming environment for building toy robots that 
employ distributed concurrency as a programming 
model. roBlocks has three important characteristics: 

(1) It is a tangible programming language – users build 
programs by arranging physical blocks. 

(2)  It is distributed and local—computation is carried 
by a set of local processes rather than a single 
sequential process. 

(3) It is a language for programming robot 
constructions, that is, how inputs from sensors 
control the behavior of a set of actuators.  Figure 1 
shows several actuator roBlocks.

Figure 1.  Several actuator roBlocks.  Clockwise from top 
left:  Flashlight, Bar Graph, Numeral, Tread, Tread.

It is easy to understand the basic idea of roBlocks by 
considering a simple light seeking robot made of two 
roBlocks: a light sensor block placed atop a tread 
block. The sensor measures the ambient light level and 
produces a number.  The tread block gets that number 
from the light sensor block that sits on it,  and runs its 
motor with a speed that corresponds to the magnitude 
of that number.  To make the robot avoid light,  take the 
two blocks apart and insert a red Inverse block 
between them.  This operator block takes the number 
produced by the light sensor block, inverts it and 
transmits it to the tread block at the bottom. The new 
three-block robot moves away from a light source just 
as the previous robot moved toward it.  This sort of 
modularity is possible because each of the blocks 
operates independently without knowing its place 
within the construction.

ROBLOCKS AS A PROGRAMMING LANGUAGE

While roBlocks do not immediately match traditional 
concepts of language (as textual or visual), we argue 
that in an important sense roBlocks are a vehicle for 
programming — they compute over sensor inputs and 
produce values (as actuator outputs).  They can be 
configured in different ways to compute and produce 
different values from sensor inputs.  And roBlocks is 
deterministic: any configuration of roBlocks will 
perform in predictable fashion.  
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Dataflow Models

We can describe a robot abstractly as a graph, with the 
nodes representing blocks and arcs representing 
adjacent communicating faces. Graph abstractions, like 
those shown in Figure 2, remove the physics of the 
robot, so we cannot tell from the graph how the robot 
will actually behave in the physical world. For 
example, if a robot has a right and a left motor block, 
the graph won’t tell us which way the robot will 
actually move.   But the graph helps us think about how 
information is transmitted from sensors, transformed 
by operators, and consumed by actuator blocks. 

A difficulty with the directed-graph model of roBlocks, 
though,  is the problem of cycles. It is possible to build 
a robot in which information flows from a sensor, into 
one or more configurations of blocks that are 
connected cyclically in the graph.  So we could see 
feedback loops in which a small signal from a sensor is 
indefinitely amplified through a cycle. 

An solution to this difficulty considers a robot as using 
a “diffusion model” to propagate values throughout the 
construction). We have considered various diffusion 
models and their effects on the robot behaviors.  

Consider the simple two-sensor, two-actuator 
construction in figure 2. Sensor 0 on the left is 
producing a zero value, and sensor 1 on the right is 
producing 100. The question is, what value should 
each actuator compute? 

Figure 2. Simple two actuator, two sensor robot 
construction.  What values for A0 and A1?

In a very simple diffusion model each block would just 
average the sensor values reaching it.   Both A0 and A1 
would compute a value of 50.  We call this the 
continuous average method of computing the value.

In a more complex diffusion model, each sensor block 
broadcasts its data in a packet that contains the sensor 
scalar and a “hop count” that increases each time one 
block passes the packet to a neighbor.  The further from 
a sensor, the larger the hop count on the data packet.  
We can use this to implement a diffusion effect in 
which the strength of a signal diminishes with the 
distance from its source. 

One diffusion model for propagating values throughout 
the system has a fixed falloff.  That is,  we set an 
arbitrary threshold distance within which sensor blocks 
have influence. A light sensor in the middle of a 

construction, for example, might only be able to alter 
values in the set of blocks within four hops away, with 
blocks further away "ignoring" or not receiving the 
data.  A variation is to use a diffusion model with a 
variable falloff.   This is the model that we currently use 
in roBlocks, and we call it the continuous gradient 
algorithm.  Continuous Gradient can be thought of as 
mixing. With only one sensor source,  all blocks in the 
construction reflect the same value - the value in the 
data packet is not reduced as it propagates throughout 
the system. 

In a construction with more than one sensor input, 
however, the values are mixed with blocks physically 
close to sensors showing values that are numerically 
close to the sensor's value and blocks between sensors 
reflecting an average. (Those familiar with analog 
circuits can think of this as a voltage divider model; it 
is similar to how voltage drops across resistors in 
series.) This global behavior is implemented locally by 
weighting each sensor input reaching a block by the 
inverse of its hop count.  Unlike the continuous average 
model, data values don't degrade on their own,  so the 
continuous gradient model lets users build robots of 
any size.  

If the blocks in Figure 2 were programmed to calculate 
a continuous gradient, A0 would compute 33 and A1 
would compute 67.  The blocks divide each sensor 
scalar they receive by its hop count. A signal from a far 
away sensor has a weak effect on the actuator, whereas 
a signal from an adjacent block has a hop count of one, 
which strongly influences the actuator.

In earlier versions of the roBlocks system we have 
considered different propagation protocols and 
corresponding variations of the local block behaviors.  
Each of these, of course, requires reprogramming the 
code in the blocks. We plan to build a programming 
environment for more sophisticated programmers who 
wish to modify the behaviors that are built into the 
blocks. This would make our development cycle easier, 
but more importantly it would enable roBlocks users to 
take the next step toward programming distributed 
robotics algorithms.
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