
The Robot is the Program: Interacting with roBlocks

Eric Schweikardt
Computational Design Lab
Carnegie Mellon University

tza@cmu.edu

 Mark D Gross
Computational Design Lab
Carnegie Mellon University

mdgross@cmu.edu

ABSTRACT

The roBlocks construction kit is a tangible concurrent
programming environment that encapsulates sensory,
kinetic, and computational behavior in modular
building block units that snap together to construct
robots. The choice of a protocol for propagating values
through the constructed robot affects its behavior.

Author Keywords

construction, distributed, programming, robot, toy

ACM Classification Keywords

H.5.2 User Interfaces; K.3.1 Computer Uses in
Education

INTRODUCTION

Two revolutions in computing are upon us: the advent
of parallel and concurrent computing everywhere, and
the physical (tangible) embodiment of computing.
Together they have the potential to change the way we
think about things, and in particular our ability to think
about things computationally. Our roBlocks
construction kit [1] is a physically embodied
programming environment for building toy robots that
employ distributed concurrency as a programming
model. roBlocks has three important characteristics:

(1) It is a tangible programming language – users build
programs by arranging physical blocks.

(2) It is distributed and local—computation is carried
by a set of local processes rather than a single
sequential process.

(3) It is a language for programming robot
constructions, that is, how inputs from sensors
control the behavior of a set of actuators. Figure 1
shows several actuator roBlocks.

Figure 1. Several actuator roBlocks. Clockwise from top
left: Flashlight, Bar Graph, Numeral, Tread, Tread.

It is easy to understand the basic idea of roBlocks by
considering a simple light seeking robot made of two
roBlocks: a light sensor block placed atop a tread
block. The sensor measures the ambient light level and
produces a number. The tread block gets that number
from the light sensor block that sits on it, and runs its
motor with a speed that corresponds to the magnitude
of that number. To make the robot avoid light, take the
two blocks apart and insert a red Inverse block
between them. This operator block takes the number
produced by the light sensor block, inverts it and
transmits it to the tread block at the bottom. The new
three-block robot moves away from a light source just
as the previous robot moved toward it. This sort of
modularity is possible because each of the blocks
operates independently without knowing its place
within the construction.

ROBLOCKS AS A PROGRAMMING LANGUAGE

While roBlocks do not immediately match traditional
concepts of language (as textual or visual), we argue
that in an important sense roBlocks are a vehicle for
programming — they compute over sensor inputs and
produce values (as actuator outputs). They can be
configured in different ways to compute and produce
different values from sensor inputs. And roBlocks is
deterministic: any configuration of roBlocks will
perform in predictable fashion.

mailto:tza@cmu.edu
mailto:tza@cmu.edu
mailto:mdgross@cmu.edu
mailto:mdgross@cmu.edu

Dataflow Models

We can describe a robot abstractly as a graph, with the
nodes representing blocks and arcs representing
adjacent communicating faces. Graph abstractions, like
those shown in Figure 2, remove the physics of the
robot, so we cannot tell from the graph how the robot
will actually behave in the physical world. For
example, if a robot has a right and a left motor block,
the graph won’t tell us which way the robot will
actually move. But the graph helps us think about how
information is transmitted from sensors, transformed
by operators, and consumed by actuator blocks.

A difficulty with the directed-graph model of roBlocks,
though, is the problem of cycles. It is possible to build
a robot in which information flows from a sensor, into
one or more configurations of blocks that are
connected cyclically in the graph. So we could see
feedback loops in which a small signal from a sensor is
indefinitely amplified through a cycle.

An solution to this difficulty considers a robot as using
a “diffusion model” to propagate values throughout the
construction). We have considered various diffusion
models and their effects on the robot behaviors.

Consider the simple two-sensor, two-actuator
construction in figure 2. Sensor 0 on the left is
producing a zero value, and sensor 1 on the right is
producing 100. The question is, what value should
each actuator compute?

Figure 2. Simple two actuator, two sensor robot
construction. What values for A0 and A1?

In a very simple diffusion model each block would just
average the sensor values reaching it. Both A0 and A1
would compute a value of 50. We call this the
continuous average method of computing the value.

In a more complex diffusion model, each sensor block
broadcasts its data in a packet that contains the sensor
scalar and a “hop count” that increases each time one
block passes the packet to a neighbor. The further from
a sensor, the larger the hop count on the data packet.
We can use this to implement a diffusion effect in
which the strength of a signal diminishes with the
distance from its source.

One diffusion model for propagating values throughout
the system has a fixed falloff. That is, we set an
arbitrary threshold distance within which sensor blocks
have influence. A light sensor in the middle of a

construction, for example, might only be able to alter
values in the set of blocks within four hops away, with
blocks further away "ignoring" or not receiving the
data. A variation is to use a diffusion model with a
variable falloff. This is the model that we currently use
in roBlocks, and we call it the continuous gradient
algorithm. Continuous Gradient can be thought of as
mixing. With only one sensor source, all blocks in the
construction reflect the same value - the value in the
data packet is not reduced as it propagates throughout
the system.

In a construction with more than one sensor input,
however, the values are mixed with blocks physically
close to sensors showing values that are numerically
close to the sensor's value and blocks between sensors
reflecting an average. (Those familiar with analog
circuits can think of this as a voltage divider model; it
is similar to how voltage drops across resistors in
series.) This global behavior is implemented locally by
weighting each sensor input reaching a block by the
inverse of its hop count. Unlike the continuous average
model, data values don't degrade on their own, so the
continuous gradient model lets users build robots of
any size.

If the blocks in Figure 2 were programmed to calculate
a continuous gradient, A0 would compute 33 and A1
would compute 67. The blocks divide each sensor
scalar they receive by its hop count. A signal from a far
away sensor has a weak effect on the actuator, whereas
a signal from an adjacent block has a hop count of one,
which strongly influences the actuator.

In earlier versions of the roBlocks system we have
considered different propagation protocols and
corresponding variations of the local block behaviors.
Each of these, of course, requires reprogramming the
code in the blocks. We plan to build a programming
environment for more sophisticated programmers who
wish to modify the behaviors that are built into the
blocks. This would make our development cycle easier,
but more importantly it would enable roBlocks users to
take the next step toward programming distributed
robotics algorithms.

ACKNOWLEDGMENTS

This material is based upon work supported by the
National Science Foundation under Grant ITR-0326054.

REFERENCES

1. Schweikardt, E. and Gross, M.D. roBlocks: A
Robotic Construction Kit for Mathematics and
Science Education International Conference on
Multimodal Interaction, Banff, Alberta, Canada,
2006.

