
 

 

 

A FORMAL REPRESENTATION FOR GENERATION AND 
TRANSFORMATION IN DESIGN 

HODA MOUSTAPHA,  
Carnegie Mellon University 

Abstract. This paper presents a formal notation for describing 
geometrical configurations. The notation is based on generative and 
relational structures, and is developed in conjunction with a 3D 
modelling system. This paper focuses on the syntax and features of 
the notation. The notation in its capacity to specify the generation and 
transformation of shapes and complex configurations is illustrated 
through two architectural examples.    

1. Introduction 

ICE is a representation to capture higher level constructs for creating and 
manipulating geometric configurations. ICE comprises two components: a 
formal notation to specify a configuration through generative and relational 
constructs, and a generative-interactive 3D modeling system that utilizes 
these constructs as handles for generating and transforming configurations. 
These higher level manipulations distinguish ICE from other systems and 
provide a simple, yet powerful, means for computational design exploration. 

This paper introduces the syntax of the ICE notation. The basic 
generative constructs and properties of ICE are illustrated by means of 
examples. The notation, as a whole, is illustrated by two architectural 
graphic examples. The paper concludes with a discussion of the notation and 
its future development. 
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1.1. MOTIVATION  

The need to describe the structure of complex architectural design 
configurations was a major motivational factor in developing the ICE 
notation, which satisfies the following goals: (i) to describe geometric 
configurations in a clear, succinct, and complete manner; (ii) to maximize 
the universe of possibilities for geometric descriptions; (iii) to capture the 
most parsimonious process (or processes) for generation based on the 
structure; and (iv) to describe the possible transformations which are 
applicable to a configuration, and therefore, can be used for exploration. 

2. The ICE notation 

The ICE notation specifies a geometric configuration in terms of the minimal 
steps required for its generation, and the meaningful relationships for its 
organization. These generative and relational constructs form the basic units 
of the configuration’s structure, referred to as “regulators.” Regulators were 
introduced in Moustapha and Krishnamurti (2001) to demonstrate an early 
version of the ICE system for exploring calligraphic compositions. 
Regulators can control a variety of design elements, and therefore, can be 
used as handles to manipulate configurations. In short, regulators are higher 
level entities that “regulate” the behavior of lower level design elements; 
hence the name.   

A regulator encapsulates a formula, by which it computes the position (or 
some other attribute) of the element(s) it regulates. There are five kinds of 
regulators: transformations, constraints, hierarchies, variations, and 
operations. Transformational regulators, such as translations, rotations, 
reflections, and curves, constitute the primary constructs for generating 
shapes and configurations. Constraint regulators, such as alignment and 
adjacency, are constructs for relating parts of shapes or configurations. 
Hierarchical regulators, such as containment, define hierarchies between 
shapes. Variational regulators, such as rhythm and gradation, create 
variations within the generative structure. Operational regulators, such as 
union and difference, generate complex shapes from simpler ones.   

The basic elements of the representation are regulators and points. 
Notationally, points are indicated in lowercase, for instance, p, and 
regulators in (bold) uppercase, for instance, T for translation. Shapes, 
denoted as lowercase words, are composite objects defined by points and 
regulators. A prefix, depicted in uppercase Greek, indicates its regulator 
category, for example, ∆ : transformations, Φ : constraints, Ψ : hierarchies, 
Ξ : variations, and Ω : operations. Superscripted suffixes indicate regulator 
subtype, for instance, pC∆ and eC∆  respectively specify parabolic and 
elliptical curve regulators with each having its own formula. Numerical 
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suffixes denote the dimension of the regulator, for instance, 0M∆ , 1M∆ , 
and 2M∆ , respectively represent a mirror point (0-dimensions), a mirror line 
(1-dimension) and a mirror plane (2-dimensions). Subscripted suffixes for 
regulators, shapes, or points are used to index the different elements of these 
types, for instance, 1T∆ , 2p , and 2shape .  

The ICE notation can be expressed in either short or expanded forms, the 
latter essential for formal implementation. The short form expresses the 
regulator and regulated object(s), for instance )shape(T∆ . The expanded 
form, additionally, includes the parameters of the regulator; these are 
enclosed within curly braces with vectors depicted by an overline, for 
example, ])shape(},,,{[ ndtp1T∆ . Parameters contribute to a regulator’s 
formula and include geometric parameters such as translation vectors, 
rotation points/lines, reflection axes, and generative attributes, such as 
translation distance, rotation degrees, number of generated objects, etc.  

Regulators regulate points thereby creating shapes to create 
configurations, and other regulators to create complex schema. The 
conjunction ∧  joins two related ICE notation strings, such as 

)shape()shape( 21 TT ∆∧∆  or )shape()shape( 11 RT ∆∧∆ . The ICE notation 
supports the following distributive property, =∆ )shape  ,shape( 21T  

)shape()shape( 21 TT ∆∧∆ . 

3. Primary generation constructs: Transformational regulators 

3.1.  TRANSFORMATIONAL REGULATORS 

Transformational regulators are generative regulators that take as input a 
shape or a point, and generate “n” output shapes or points. The input shape 
is assigned index 0 and the output shapes are assigned indices 1-n. The 
outputs are positioned according to the transformation.  Transformational 
regulators are indicated by the ∆  prefix. Lines and planes are represented 
internally by vectors. Table 1 gives the list of transformational regulators 
that are currently represented by ICE. Note that although most illustrations 
are in 2D, the regulators are designed to apply to 3D. 
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Table 1. Regulators based on Isometry transformations 

Translation ])shape(},,,{[ ndtp1T∆   

Translation generates n output shapes (d distance apart) along the line 
(indicated by the superscript 1) specified by the starting point p  and the 
direction vector t .  

Rotation ])])shape(},,{[ np α0R∆  

])shape(},,,{[ ntp α1R∆  

 

Rotation generates n output shapes, each rotated α degrees apart, in 2D, 
about about a point p, or in 3D, about the line specified by the starting point 
p  and the direction vector t . 

Mirror ])shape(},{[ np0M∆  

])shape(},,{[ ntp1M∆  

])shape(},,,{[ nvtp2M∆  

 

ICE supports three subtypes of mirrors: an inversion about a mirror point p; 
a mirror about the line defined by point p  and direction vector t ; and a 
mirror in the plane defined by point p  and direction vectors t and v . 

Screw 
Rotation 
 

])shape(},,,,{[ ndtp α11 TR ∆∆  
 

 

The screw rotation is a composition of a rotation and a translation [see table 
3].  

Glide ])shape(},,,{[ ndtp11 MT ∆∆  

])shape(},,,,,{[ nedvtp22 MT ∆∆  

 

Glide is a composition  of a mirror and translation [see table 3]. Sub-types 
include a glide, in 2D, along a glide line, and in 3D, in a glide plane.  

 

∆ T

∆M 

∆R∆T 

∆ R 

∆T∆M 
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Table 2. Regulator based on affine and non-linear transformations. 

Dilation 
(scale) 

])shape(},,{[ nkp0D∆   

Dilation scales successive output shapes by a factor k, represented by a 
vector. Scaling can be isotropic (equal in the xyz-directions) or anisotropic. 

Shear  ])shape(},{[ nk S∆   

This regulator shears successive output shapes by a factor k, represented by 
a vector  that indicates the shearing in each of three principal directions. 

Curve ])shape(},,,{[ ntp αeC∆

])shape(},,,{[ ntp αhC∆  

 

These regulators organize the output shapes along curves or surfaces.  Curve 
regulators have numerous subtypes, for example, elliptical eC∆ and 
hyperbolic hC∆ . Cubic curves are being developed. 

To further augment the universe of possible generated shapes, a category of 
regulators based on non-linear topological transformations (deformations), 
symbolized by F∆ , is currently being investigated.  

3.2 COMPOSITION OF REGULATORS 

To represent the diverse types of structures observed in geometric 
configurations, ICE supports various ways of composing with regulators. 
Table 3 illustrates the three main types and their notation. 

 
 

∆D 

∆ C 

∆ S
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Table 3. Composition of Regulators 

Simultaneous composition. Here, several regulator formulae are applied to 
the same set of elements; for example, glide and screw rotation use 
simultaneous composition. Parameters for the composite are the union of the 
individual regulator parameters, with duplicates differentiated by subscripts.  

])shape(},,,,{[ ndktpp DT
01 DT ∆∆  

Successive composition. Here, a regulator is applied to the output shapes of 
another regulator, forming a nested relationship. Notionally, successive 
compositions correspond to nested parenthesized strings in which inner 
regulators are applied before outer regulators.  

)])]shape(},,,{[

(},,,{[

ntp

ndtp

α1

1

R

T

∆

∆
 

Partial composition. Here, a regulator is applied to a subset of a previously 
generated output. Notionally, this is indicated by a subscripted string 
comprising the # symbol followed by the output shape indices.  

 

)])]shape(},,,{[

(},,,{[

4,3#ntp

ndtp

α1

1

R

T

∆

∆
 

3.3 GENERATION METHODS 

ICE supports several methods of generating shapes as complex subparts 
of simple shapes: continuous, discrete, combination, subset, and pattern 
generation. This feature is indicated by superscripts, for instance, 

>−><−<∆ 9630)p(T . Angle brackets group continuous parts together, and the 
dash indicates that all shapes/points within the range are generated. 

 

∆T

∆R
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Table 4. Generation Methods  

Discrete generation. Here, output shapes are not connected. The examples 
in tables 1 and 2 are generated discretely.  

>><><><><><><<∆ 6543210)p(T  or 
><−><∆ 60)p(T    

Continuous generation. Here, output shapes are connected and the loci of 
points in-between the output-shapes are also generated. Continuous 
generation is used for creating shapes from connected vertices. The shape 
examples in table 5 are generated continuously. 

><∆ 6,5,4,3,2,1,0)p(T  or 
>−<∆ 60)p(T   

Combined generation. Combined generation includes both continuous and 
discrete parts. It is used for generating shapes that have disconnected parts. 

>><><<∆ 6,543,2,1,0)p(T  or 
>−><><−<∆ 65430)p(T  

Subset generation. In subset generation, only some indices (from 0-n) are 
generated; thus, gaps are created, not by discontinuity as in the previous 
method, but by absence of an output shape/point. 

>><<∆ 6,52,1,0)p(T  or 
>−><−<∆ 6520)p(T  

Pattern generation. Pattern generation is intended to describe repetitive 
patterns, for instance a dashed line, in a concise manner. The symbol ∴ 
indicates the start of the pattern, i  denotes a generated index, and the φ 
indicates an absent index, and the brackets indicate continuity. 

φ>∴<∆ ii)p(T  

Non-generative Transformation. Regulators can be used to work non-
generatively, i.e., these transform the input shape. This is indicated in the 
subscript by only including the generated index.   

><∆ i)p(T  

∆T

p

∆T

p

∆T

p

∆T
p

∆T 
p

∆T 
p
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3.4 SHAPE GENERATION 

By using the continuous generation method, a variety of simple shapes 
(Table 5) and complex shapes (Table 6) can be generated by means of 
regulators. 

Table 5.  Examples of simple shape generation 

Straight line:  )p(T∆  
The translation regulator T∆  sweeps the starting point p 
to generate a straight line.  

Curved line: )p(C∆  
The curve regulator C∆ sweeps p to create a curved line.   

Plane: ))p(( 12 TT ∆∆  
A plane is generated by a composition of two translation 
regulators. The second translation inputs all the output 
points of the first.  

 

Prism: ))p((base)base( 123 TTT ∆∆=∧∆  
A prism is generated by sweeping a square base along a 
translation regulator T∆ .   

 

Pyramid: )base(TD∆  
A pyramid is generated the simultaneous composition of a 
translation regulator T∆  and a dilation regulator D∆ . If 
the scale factor is increased, the result is a frustum.  

Sphere: ))p((circle)circle( TRR 12 ∆∆=∧∆  
A sphere is generated by sweep rotating a circle.   

 

Cylinder: )circle(T∆  
A cylinder is generated by sweeping a circular base along 
a translation regulator T∆ . 

 

Cone: )circle(TD∆  
A cone is generated by sweeping a circle along a trans-
lation regulator T∆  composed with a dilation regulator 

D∆ .  

∆TD 

∆T1p

∆T

∆T p

p ∆C 

∆ T

∆R

∆T 

∆TD
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Table 6. Complex shape examples 

Polyline: )))p((( ## nn11 TTC ∆∆∆  
A polyline is generated by successive compositions; each 
regulator inputs the last point of the preceding regulator.  

Regular polygon: )))p((( 400 ><−><>−<∆∆ nTR  
An outline polygon is generated by translating a point to 
construct a line, then by rotating the line, discretely, to 
construct the remaining sides.  

 

Parallel planes = >><<∆ 40)square(T  

A series of parallel planes are generated by the discrete 
method. 

 

complex_shape =  ))p(())p(( 21 312 TRTT ∆∆∧∆∆  
A complex shape composed of several independent parts. 
 

 

sub_shape =  >−><−<>∴<∆∆ 3651851755))p(( φiiiTR  
A complex subshape of a simple known shape is 
generated by means of the subset generation method. 

 

Square donut:  

( )
( )
( ) ⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∆
>−<>−<

>−<>−<

>−><−<>−<

jinl

jik

njin

p
p
p

1

21

)(
)(
)(

1

0
1

00
1

2

T
T
T

T  

A square donut is described by using the subset 
generation method. The outputs of 1T∆ are treated 
differently in 2T∆ . ICE supports several ways of 
generating this shape.  

 

 

∆T 

p ∆ T2 

∆ C 

∆R2 

∆T p

p1 

∆T1

l 

ji

k 
p 

T2 p2 

R 
T3 

T1 

∆R

∆T1 
p 

∆ T1
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3.5 MULTIPLE REPRESENTATIONS 

Although the ICE notation is not ambiguous, it is also not unique: a 
configuration can be represented in several ways. For instance, Table 7 
shows a few of the many ways that a simple square can be generated in ICE. 
This feature affects the transformations applicable to a shape. The ICE 
notation describes linear shapes, planar shapes, and solid shapes. Solid 
shapes can be described by means of their vertices, edges, or surfaces. The 
subset generation method enables any subshape, including boundaries, to be 
derived from the solid representation. 

Table 7. Multiple Representations 

   

))p(( 12 TT ∆∆  )))p((( 12 TTM ∆∆∆  )))p((( 1TTDM ∆∆∆  

  

 

 

 

))))p(((( 12 TTMM ∆∆∆∆  )))p((( 12 TTR ∆∆∆  )))p((( 1TTDR ∆∆∆  

 
 

 ( )
( )

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∆
>><<>−<

>−<>><<

nn

nn

p
p

00
1

00
1

2 )(
)(

T
T

T

 

>><<>><<∆∆ nn 00 ))p(( 12 TT  
Discrete generation derives 
the bounding vertices. 

Subset generation derives the bounding edges 
by (1) sweeping the first and last points of 

1T∆ though 2T∆ , and (2) copying the line 
generated by 1T∆ along 2T∆ . 

∆T2 p 

∆T1

∆M 

∆T1 

∆T2 p 

∆T1

∆TDp ∆M 

∆T2 p 

∆T1 

∆M1 

∆M2 

∆T2 p 

∆T1 ∆R 

∆T1

∆TDp 

∆R 

∆T1 

∆T2 p 

∆T2

p 
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4. Secondary generation and relational constructs: variational, 
constraint, and operational regulators 

The previous section described the primary generative building blocks of the 
ICE notation. This section describes the secondary regulators that are 
dependent on the primary ones for their functionality: these are either 
composed with the primary regulators, or applied to shapes (defined by 
primary regulators) and consequently affect the primary regulators. These 
include variational, constraint, hierarchical, and operational regulators. 

4.1 VARIATIONAL REGULATORS  

Variational regulators, (Table 8) symbolized by Ξ , are composed with 
generative regulators to create a variation in the output shapes by controlling 
shape attributes or regulator parameters.  

 

Table 8. Variation regulators  

Exception: ])shapeshape(},{[ n0 −Ξ va E  
This regulator sets one or more shapes to be an 
exception to the output set by overriding an attribute 
a, (for instance, position) with a value v.  

 

Rhythm/Gradation: 
])shapeshape(},,{[ n0 −Ξ ca f R  

This regulator creates a rhythm/gradation effect 
within the output shapes, by applying a formula f, 
and coefficient c, to attribute a of the generative 
regulator (for instance, the translation distance)  as 
it is applied to the output shapes. 

 

Differential:  ])shapeshape(},,{[ n0 −Ξ ca f F  
This regulator creates a variation in the output, by 
sweeping/copying the elements of input set 
differently. It applies the formula f, and coefficient 
c, to attribute a of the generative regulator as it is 
applied to the input shapes. This regulator is 
effective only for many input shapes.  

 
 

∆TΞ E

∆TΞ R

p ∆T

∆TΞ F 

∆TΞ R
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4.2 HIERARCHICAL REGULATORS  

Hierarchical regulators symbolized by Ψ , define hierarchies of shapes; 
these can be defined independently, or in composition with generative 
regulators. Table 9 illustrates the two hierarchical regulators supported in 
ICE. 

Table 9. Hierarchical Regulators 

Containment:   
])tconstituentconstituen container,({}[ n0 −Ψ  H  

The containment regulator creates a container-
constituent relationship, independent of geometry. 
Typically, containment inputs the container and 
constituents, however it can input the container and 
generate the constituents, or vice versa. 

 

Subshape: 
])subshapesubshape ,supershape({}[ n0 −Ψ  S  

The subshape regulator creates a geometric dependency 
between shapes (or more precisely between their 
generative regulators). 

 

4.3 CONSTRAINT REGULATORS  

Constraint regulators, symbolized by Φ , bound shapes or define 
relationships between shapes. Since shapes in the ICE notation are defined 
by regulators, the constraints are ultimately applied to parameters of the 
generative regulators. Constraints can be defined independently or in 
composition with generative regulators. Although some compositions 
involving constraint regulators may cause conflicts, there will be no 
restrictions placed on composition until all possibilities are thoroughly 
explored. Table 10 illustrates the constraints supported in ICE. 

Table 10. Constraint Regulator 

Attribute equivalence:  
])shapeshape(},{[ n0 −Φ va Q  

The attribute equivalence regulator assigns a value v to 
an attribute a (for instance color) of a shape. 

 
 
ΦQ

Ψ H

Ψ S
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Alignment:  ])shapeshape(},,{[ k0
2 −Φ vtpA  

There are three subtypes of alignments: 0AΦ  restricts 
an object to a point, 1AΦ aligns an object to a line, and 

2AΦ  aligns an object to a plane. 

 

Dimension: ])shape(},,{[ modmaxminVΦ   

There are three subtypes for this regulator: 1VΦ  
restricts length, 2VΦ  restricts area, and 3VΦ restricts 
volume. The parameters are minimum value, maximum 
value and an incremental module.  

 

Boundary: )]shapeshape,shape(}{[ k1bound
2 −Φ oB   

The boundary regulator defines a legal region for a 
shape, within an offset o. 

 

Angle: ])shapeshape(},,{[ k1 −Φ modmaxminL  
This regulator sets the angle between two shapes. A 
variant  pLΦ  sets shapes as being parallel. 

 

Distance: ])shape,shape(},,{[ k1modmaxminJΦ  
This regulator defines the proximity between shapes. A 
zero distance is an adjacency 0JΦ , and a negative 
distance is an overlap ve−ΦJ  

 

Proportion: ])shape(},,{[1 dtpPΦ  
This regulator controls the aspect ratio of a shape by 
means of a diagonal line. 

 

 

4.4 OPERATIONAL REGULATORS 

Operational regulators, symbolized by Ω , define complex shapes from 
simpler ones, as illustrated in table 11. Like constraints, operations are 
ultimately applied to a shape’s generative regulator(s).  

Φ A

Φ V 

Φ B

Φ L 

Φ Lp 

Φ J0 Φ J-ve 

Φ J 

Φ P1 
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Table 11. Operations Regulators 

Subdivision:  
])shape(},{[ nsZΩ  

])planeshape,(},{[ nsPZΩ   

 
 

The subdivision regulator inputs a shape and subdivides it n times and 
allocates a spacing s between the sudivisions. There are two variants of 
subdivision: ZΦ ’s subdivisions are normal to the shape’s direction (i.e., to 
the generative regulator’s direction); pZΦ  subdivides according to a 
splitting plane. 

The Boolean operations regulators input two or more 
objects, and generate their union, intersection, or 
difference. Boolean regulators have no parameters, but 
control the generative properties of the shape’s primary 
regulators.  

 

Union: ])shapeshape({}[ k0 −ΩU   

Intersection: ])shapeshape({}[ k0 −ΩI   

Difference: ])shapeshape({}[ k0 −ΩD  
 

 

Symmetric Difference: ])shapeshape({}[ k0 −ΩM  
 

 

5. Transformations in ICE. 

The ICE notation is also designed to capture transformations that are 
applicable to configurations. The ICE notation supports transformations at 
four levels: (i) regulated element; (ii) generation method; (iii) regulator 
parameters; and (iv) regulator composition. These are illustrated in Table 12. 

ΩU

Ω Z 

Ω Zp

Φ I

Φ D

ΦM
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Notice that simple notation changes represent significant changes in the 
geometry.  
 Transforming the regulated element modifies the configuration while 
maintaining its geometric structure. Transformations in this category include 
moving the point, and moving-rotating-scaling the shape. 
 Transforming the generation method creates variations and subshapes, but 
maintains the geometric structure of the configuration. Transformations in 
this category include changing the number of elements generated, changing 
the discrete continuous properties, changing the generated subset, and 
changing the generation pattern. 
 Transforming the parameters regulator modifies the configuration’s 
geometric structure but not the notation’s structure. Transformations in this 
category include changing the regulator’s geometry by moving it or rotating 
it, and changing the major parameter such as rotation degree or minimum-
maximum value. 
 Transforming the regulator composition redefines the notation string and 
completely alters the configuration’s structure. Transformations in this 
category include adding, composing, inserting, deleting, replacing, or 
reordering regulators in a sequence. 
 The notation string captures all applicable transformations on each of 
these four levels. The various symbols, parameters, and indices of the 
notation represent manipulation handles for the ICE system. The notation 
string can also capture the most parsimonious process for generating a 
configuration. When the string is reconfigured, the set of applicable 
transformation handles and the generation process can be redefined. 
 The notation however, does not capture an exploratory process, i.e., one 
that proceeds by means of transforming the notation string until a 
satisfactory configuration is achieved. 
 The multiple representation property of the notation allows for different 
strings to represent the same configuration. Therefore, it supports different 
processes to generate it and different transformations for it. Thus different 
exploration paths can be achieved for the same configuration. 
 
 
 
 
 
 

Table 12. Transformations captured in ICE 

Initial configuration:  

∆M 

∆R 
∆T 

s 
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( )030 s =  

])])])s(},,,{[

(},,,{[

(},,,{[

1000 >><<>−<>−<∆

∆

∆

nnndtp

ntp

ndtp

T           

R      

M

α  

Transformation of regulated elements: 
Moving the input shape:  

( ) ( )020 s030 s =⇒=  
( ) ( )000 p.010 p. =⇒= RR  

])])])s(},,,{[

(},,,{[

(},,,{[

1000 >><<>−<>−<∆

∆

∆

nnndtp

ntp

ndtp

T           

R      

M

α  

 

Transformation of generation method 
Changing the generation method of R∆  to pattern 

])])])s(},,,{[

(},,,{[

(},,,{[

10300 >><<>−∴<>−<∆

∆

∆

φ

α
nndtp

ntp

ndtp

1T           

R      

M

 

Transformation of regulator parameters 
Rotate M:  [ ] [ ]001 012  . =∆⇒=∆ tt M.M  

])])])s(},,,{[

(},,,{[

(},,,{[

10300 >><<>−∴<>−< φ

α
nndtp

ntp

ndtp

1T           

R      

M

 

 

Transformation of regulator composition 
Replacing  the  regulator R∆  by 2T∆  

])])])s(},,,{[

(},,,{[

(},,,{[

10300 >><<>−∴<>−< φnndtp

ndtp

ndtp

1

2

T           

T      

M

 

 

∆M 
∆R 

∆T 
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s 
∆M 

∆R 

∆T 

∆M 

∆T 

s 
∆R 

s ∆T2 

∆T1
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6. Architectural Design Examples 

6.1 DESIGN STUDIO EXAMPLE 

 Akin and Moustapha (forthcoming) have used the ICE notation to codify 
a complete sequence of drawings from an annotated design studio. Table 13 
shows one drawing of a dormitory project submission, as represented by the 
ICE notation in two distinct ways. The two distinct notations capture two 
distinct generation processes, as well as two distinct sets of applicable 
transformations. 

Table 13 An example from the annotated studio 

  

Generation alternative 1: 

)]dormUnit(},,,{[

)]dormUnit(},,,{[

)]]))]dormUnit(},,,{[

(},,,{[

(},,,{[

5

4

1#0

nvtp

nvtp

nvtp

nvtp

nvtp

5

4

1

2

3

M

M

M           

M      

M

       
Generation alternative 2: 

)]]))]dormUnit(},,,{[

(},,,{[

(},,,{[

]))]dormUnit(},,,{[

(},,,{[

0

0

ntp

nvtp

nvtp

nvtp

ntp

α

α

2

4

6

1

1

R           

M      

M

M           

R

 

      

∆M1

∆M2 

∆M3 

∆M4 

∆M5 

∆M1

∆M4 

∆R2 

∆M6 
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6.2 HYPOTHETICAL EXAMPLE HEJDUK’S HALF HOUSE   

Moustapha (2003) encoded the hypothetical generation of Hejduk’s half 
house from a rectangle. Due to the length of this example, snapshots of the 
half house generation are included as a simplified abstraction (Table 14). 
The generation was exploratory, i.e., it used transformations to generate 
alternatives. The three rectangle configuration was transformed into the half 
house simply by replacing and adjusting regulators. 

Table 14.  A hypothetical example: Hejduk’s Half House  

Initial  configuration: Three rectangles 
Rectangle1 =  
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∆
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Transform Rectangle3 to Triangle3 
• Update Tb in the sequence such that it 

only applies to v3 and Rotate Ta 45º 

Triangle3 = 
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Transform rectangle 2 to semicircle 2 
• Update Tb in the sequence such that it only 

applies to v2 and Replace Ta by Ra 

Semicircle2 =
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Half House =  
Rectangle1 ∧  Semicircle2 ∧  Triangle3 
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7. Conclusion  

The ICE notation can represent a geometric configuration as a string that 
expresses generative and relational structures. By accommodating various 
methods of composition and various methods of generation, the ICE notation 
expands the universe of possible shapes and configurations that it can 
describe. This representation succinctly captures the complete configuration. 
It also captures the generative process in the most parsimonious manner. 
Furthermore, it is possible to determine further information about 
configurations from notation strings. For instance, given the string of 
generative regulators, one can compute subshapes, boundaries, lengths, 
areas, volumes and midpoints, just by evaluating their parameters and 
indices. It is also possible to determine the transformations applicable to a 
configuration through its notation string. Whether these transformations are 
achieved through adjusting parameters or through redefining the notation 
string, it is possible to designate manipulation handles for these 
transformations. 

Since the ICE notation is developed in parallel to the ICE 
generative/interactive system, every regulator described in this paper, has 
been implemented or is currently being implemented in the computer 
medium. The ICE system supports regulators as manipulation handles, 
therefore the models it generates are highly flexible. Their parameters as 
well as their generative sequence can be redefined at runtime and in real 
time.  Describing a complex geometrical configuration through a concise 
string has the additional computational advantages of minimizing the size of 
storage, and maximizing the speed of file transfer. For the aforementioned 
reasons of completeness, information processing, flexibility, and 
computational efficiency, the ICE system promises to be a valuable tool for 
design exploration. 

It is important to note that ICE is not the only notation in its class. Leyton 
(2001) developed a generative theory of shape, which uses similar 
fundamental principles of mathematics as ICE. Leyton also addressed the 
issue of process-capture, which he refers to as recoverability.  Cha and Gero 
(2001) have developed a shape pattern representation, based on isometry 
transformations and used it to describe numerous notable buildings. While 
Leyton’s work, focused on theoretical aspects of shape generation, and Cha-
Gero’s work focused on pattern description, the ICE system/notation focuses 
on the practical aspects of implementation and interaction, the most 
important of which is the ability to manipulate the configurations generated 
by the ICE notation. 

In addition to being part of a computational system, the ICE notation 
extends the aforementioned representations in the following ways: 
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• ICE is designed to work in 3D. All parameters and operations in 
ICE are based on 3-dimensional geometry principles. 

• The regulator construct in ICE subsumes generative trans-
formations, and encode other functions such as constraints, 
operations, hierarchies and variations. 

• Support for continuous, discrete and sub-part generation methods 
is a unique feature of ICE. This allows for complex shape 
description and maximizes the possibilities for shape generation.  

• The property of deriving boundary, sub-part information, and 
other geometric information from a given ICE string, augments 
the ICE notation from being merely a geometry descriptor to that 
of a geometry processor. 

• Support for different levels of information simplifies the 
representation. Short and long forms allow the ICE notation 
string to be viewed at two crucial levels of abstraction: relational 
and parameterization). The shape encapsulation feature of ICE 
helps structure the notation string and avoids redundancy of 
description.  

 This notation will continue to be refined and improved. In particular, the 
rigorous mathematical aspects of regulators, regulator relationships, and 
geometry processing algorithms will be addressed in future work. 
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