

A FORMAL REPRESENTATION FOR GENERATION AND
TRANSFORMATION IN DESIGN

HODA MOUSTAPHA,
Carnegie Mellon University

Abstract. This paper presents a formal notation for describing
geometrical configurations. The notation is based on generative and
relational structures, and is developed in conjunction with a 3D
modelling system. This paper focuses on the syntax and features of
the notation. The notation in its capacity to specify the generation and
transformation of shapes and complex configurations is illustrated
through two architectural examples.

1. Introduction

ICE is a representation to capture higher level constructs for creating and
manipulating geometric configurations. ICE comprises two components: a
formal notation to specify a configuration through generative and relational
constructs, and a generative-interactive 3D modeling system that utilizes
these constructs as handles for generating and transforming configurations.
These higher level manipulations distinguish ICE from other systems and
provide a simple, yet powerful, means for computational design exploration.

This paper introduces the syntax of the ICE notation. The basic
generative constructs and properties of ICE are illustrated by means of
examples. The notation, as a whole, is illustrated by two architectural
graphic examples. The paper concludes with a discussion of the notation and
its future development.

 HODA MOUSTAPHA

1.1. MOTIVATION

The need to describe the structure of complex architectural design
configurations was a major motivational factor in developing the ICE
notation, which satisfies the following goals: (i) to describe geometric
configurations in a clear, succinct, and complete manner; (ii) to maximize
the universe of possibilities for geometric descriptions; (iii) to capture the
most parsimonious process (or processes) for generation based on the
structure; and (iv) to describe the possible transformations which are
applicable to a configuration, and therefore, can be used for exploration.

2. The ICE notation

The ICE notation specifies a geometric configuration in terms of the minimal
steps required for its generation, and the meaningful relationships for its
organization. These generative and relational constructs form the basic units
of the configuration’s structure, referred to as “regulators.” Regulators were
introduced in Moustapha and Krishnamurti (2001) to demonstrate an early
version of the ICE system for exploring calligraphic compositions.
Regulators can control a variety of design elements, and therefore, can be
used as handles to manipulate configurations. In short, regulators are higher
level entities that “regulate” the behavior of lower level design elements;
hence the name.

A regulator encapsulates a formula, by which it computes the position (or
some other attribute) of the element(s) it regulates. There are five kinds of
regulators: transformations, constraints, hierarchies, variations, and
operations. Transformational regulators, such as translations, rotations,
reflections, and curves, constitute the primary constructs for generating
shapes and configurations. Constraint regulators, such as alignment and
adjacency, are constructs for relating parts of shapes or configurations.
Hierarchical regulators, such as containment, define hierarchies between
shapes. Variational regulators, such as rhythm and gradation, create
variations within the generative structure. Operational regulators, such as
union and difference, generate complex shapes from simpler ones.

The basic elements of the representation are regulators and points.
Notationally, points are indicated in lowercase, for instance, p, and
regulators in (bold) uppercase, for instance, T for translation. Shapes,
denoted as lowercase words, are composite objects defined by points and
regulators. A prefix, depicted in uppercase Greek, indicates its regulator
category, for example, ∆ : transformations, Φ : constraints, Ψ : hierarchies,
Ξ : variations, and Ω : operations. Superscripted suffixes indicate regulator
subtype, for instance, pC∆ and eC∆ respectively specify parabolic and
elliptical curve regulators with each having its own formula. Numerical

 A FORMAL NOTATION FOR GENERATION AND TRANSFORMATION

suffixes denote the dimension of the regulator, for instance, 0M∆ , 1M∆ ,
and 2M∆ , respectively represent a mirror point (0-dimensions), a mirror line
(1-dimension) and a mirror plane (2-dimensions). Subscripted suffixes for
regulators, shapes, or points are used to index the different elements of these
types, for instance, 1T∆ , 2p , and 2shape .

The ICE notation can be expressed in either short or expanded forms, the
latter essential for formal implementation. The short form expresses the
regulator and regulated object(s), for instance)shape(T∆ . The expanded
form, additionally, includes the parameters of the regulator; these are
enclosed within curly braces with vectors depicted by an overline, for
example,])shape(},,,{[ndtp1T∆ . Parameters contribute to a regulator’s
formula and include geometric parameters such as translation vectors,
rotation points/lines, reflection axes, and generative attributes, such as
translation distance, rotation degrees, number of generated objects, etc.

Regulators regulate points thereby creating shapes to create
configurations, and other regulators to create complex schema. The
conjunction ∧ joins two related ICE notation strings, such as

)shape()shape(21 TT ∆∧∆ or)shape()shape(11 RT ∆∧∆ . The ICE notation
supports the following distributive property, =∆)shape ,shape(21T

)shape()shape(21 TT ∆∧∆ .

3. Primary generation constructs: Transformational regulators

3.1. TRANSFORMATIONAL REGULATORS

Transformational regulators are generative regulators that take as input a
shape or a point, and generate “n” output shapes or points. The input shape
is assigned index 0 and the output shapes are assigned indices 1-n. The
outputs are positioned according to the transformation. Transformational
regulators are indicated by the ∆ prefix. Lines and planes are represented
internally by vectors. Table 1 gives the list of transformational regulators
that are currently represented by ICE. Note that although most illustrations
are in 2D, the regulators are designed to apply to 3D.

 HODA MOUSTAPHA

Table 1. Regulators based on Isometry transformations

Translation])shape(},,,{[ndtp1T∆

Translation generates n output shapes (d distance apart) along the line
(indicated by the superscript 1) specified by the starting point p and the
direction vector t .

Rotation])])shape(},,{[np α0R∆

])shape(},,,{[ntp α1R∆

Rotation generates n output shapes, each rotated α degrees apart, in 2D,
about about a point p, or in 3D, about the line specified by the starting point
p and the direction vector t .

Mirror])shape(},{[np0M∆

])shape(},,{[ntp1M∆

])shape(},,,{[nvtp2M∆

ICE supports three subtypes of mirrors: an inversion about a mirror point p;
a mirror about the line defined by point p and direction vector t ; and a
mirror in the plane defined by point p and direction vectors t and v .

Screw
Rotation

])shape(},,,,{[ndtp α11 TR ∆∆

The screw rotation is a composition of a rotation and a translation [see table
3].

Glide])shape(},,,{[ndtp11 MT ∆∆

])shape(},,,,,{[nedvtp22 MT ∆∆

Glide is a composition of a mirror and translation [see table 3]. Sub-types
include a glide, in 2D, along a glide line, and in 3D, in a glide plane.

∆ T

∆M

∆R∆T

∆ R

∆T∆M

 A FORMAL NOTATION FOR GENERATION AND TRANSFORMATION

Table 2. Regulator based on affine and non-linear transformations.

Dilation
(scale)

])shape(},,{[nkp0D∆

Dilation scales successive output shapes by a factor k, represented by a
vector. Scaling can be isotropic (equal in the xyz-directions) or anisotropic.

Shear])shape(},{[nk S∆

This regulator shears successive output shapes by a factor k, represented by
a vector that indicates the shearing in each of three principal directions.

Curve])shape(},,,{[ntp αeC∆

])shape(},,,{[ntp αhC∆

These regulators organize the output shapes along curves or surfaces. Curve
regulators have numerous subtypes, for example, elliptical eC∆ and
hyperbolic hC∆ . Cubic curves are being developed.

To further augment the universe of possible generated shapes, a category of
regulators based on non-linear topological transformations (deformations),
symbolized by F∆ , is currently being investigated.

3.2 COMPOSITION OF REGULATORS

To represent the diverse types of structures observed in geometric
configurations, ICE supports various ways of composing with regulators.
Table 3 illustrates the three main types and their notation.

∆D

∆ C

∆ S

 HODA MOUSTAPHA

Table 3. Composition of Regulators

Simultaneous composition. Here, several regulator formulae are applied to
the same set of elements; for example, glide and screw rotation use
simultaneous composition. Parameters for the composite are the union of the
individual regulator parameters, with duplicates differentiated by subscripts.

])shape(},,,,{[ndktpp DT
01 DT ∆∆

Successive composition. Here, a regulator is applied to the output shapes of
another regulator, forming a nested relationship. Notionally, successive
compositions correspond to nested parenthesized strings in which inner
regulators are applied before outer regulators.

)])]shape(},,,{[

(},,,{[

ntp

ndtp

α1

1

R

T

∆

∆

Partial composition. Here, a regulator is applied to a subset of a previously
generated output. Notionally, this is indicated by a subscripted string
comprising the # symbol followed by the output shape indices.

)])]shape(},,,{[

(},,,{[

4,3#ntp

ndtp

α1

1

R

T

∆

∆

3.3 GENERATION METHODS

ICE supports several methods of generating shapes as complex subparts
of simple shapes: continuous, discrete, combination, subset, and pattern
generation. This feature is indicated by superscripts, for instance,

>−><−<∆ 9630)p(T . Angle brackets group continuous parts together, and the
dash indicates that all shapes/points within the range are generated.

∆T

∆R

 A FORMAL NOTATION FOR GENERATION AND TRANSFORMATION

Table 4. Generation Methods

Discrete generation. Here, output shapes are not connected. The examples
in tables 1 and 2 are generated discretely.

>><><><><><><<∆ 6543210)p(T or
><−><∆ 60)p(T

Continuous generation. Here, output shapes are connected and the loci of
points in-between the output-shapes are also generated. Continuous
generation is used for creating shapes from connected vertices. The shape
examples in table 5 are generated continuously.

><∆ 6,5,4,3,2,1,0)p(T or
>−<∆ 60)p(T

Combined generation. Combined generation includes both continuous and
discrete parts. It is used for generating shapes that have disconnected parts.

>><><<∆ 6,543,2,1,0)p(T or
>−><><−<∆ 65430)p(T

Subset generation. In subset generation, only some indices (from 0-n) are
generated; thus, gaps are created, not by discontinuity as in the previous
method, but by absence of an output shape/point.

>><<∆ 6,52,1,0)p(T or
>−><−<∆ 6520)p(T

Pattern generation. Pattern generation is intended to describe repetitive
patterns, for instance a dashed line, in a concise manner. The symbol ∴
indicates the start of the pattern, i denotes a generated index, and the φ
indicates an absent index, and the brackets indicate continuity.

φ>∴<∆ ii)p(T

Non-generative Transformation. Regulators can be used to work non-
generatively, i.e., these transform the input shape. This is indicated in the
subscript by only including the generated index.

><∆ i)p(T

∆T

p

∆T

p

∆T

p

∆T
p

∆T
p

∆T
p

 HODA MOUSTAPHA

3.4 SHAPE GENERATION

By using the continuous generation method, a variety of simple shapes
(Table 5) and complex shapes (Table 6) can be generated by means of
regulators.

Table 5. Examples of simple shape generation

Straight line:)p(T∆
The translation regulator T∆ sweeps the starting point p
to generate a straight line.

Curved line:)p(C∆
The curve regulator C∆ sweeps p to create a curved line.

Plane:))p((12 TT ∆∆
A plane is generated by a composition of two translation
regulators. The second translation inputs all the output
points of the first.

Prism:))p((base)base(123 TTT ∆∆=∧∆
A prism is generated by sweeping a square base along a
translation regulator T∆ .

Pyramid:)base(TD∆
A pyramid is generated the simultaneous composition of a
translation regulator T∆ and a dilation regulator D∆ . If
the scale factor is increased, the result is a frustum.

Sphere:))p((circle)circle(TRR 12 ∆∆=∧∆
A sphere is generated by sweep rotating a circle.

Cylinder:)circle(T∆
A cylinder is generated by sweeping a circular base along
a translation regulator T∆ .

Cone:)circle(TD∆
A cone is generated by sweeping a circle along a trans-
lation regulator T∆ composed with a dilation regulator

D∆ .

∆TD

∆T1p

∆T

∆T p

p ∆C

∆ T

∆R

∆T

∆TD

 A FORMAL NOTATION FOR GENERATION AND TRANSFORMATION

Table 6. Complex shape examples

Polyline:)))p(((## nn11 TTC ∆∆∆
A polyline is generated by successive compositions; each
regulator inputs the last point of the preceding regulator.

Regular polygon:)))p(((400 ><−><>−<∆∆ nTR
An outline polygon is generated by translating a point to
construct a line, then by rotating the line, discretely, to
construct the remaining sides.

Parallel planes = >><<∆ 40)square(T

A series of parallel planes are generated by the discrete
method.

complex_shape =))p(())p((21 312 TRTT ∆∆∧∆∆
A complex shape composed of several independent parts.

sub_shape = >−><−<>∴<∆∆ 3651851755))p((φiiiTR
A complex subshape of a simple known shape is
generated by means of the subset generation method.

Square donut:

()
()
() ⎥

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∆
>−<>−<

>−<>−<

>−><−<>−<

jinl

jik

njin

p
p
p

1

21

)(
)(
)(

1

0
1

00
1

2

T
T
T

T

A square donut is described by using the subset
generation method. The outputs of 1T∆ are treated
differently in 2T∆ . ICE supports several ways of
generating this shape.

∆T

p ∆ T2

∆ C

∆R2

∆T p

p1

∆T1

l

ji

k
p

T2 p2

R
T3

T1

∆R

∆T1
p

∆ T1

∆T2

 HODA MOUSTAPHA

3.5 MULTIPLE REPRESENTATIONS

Although the ICE notation is not ambiguous, it is also not unique: a
configuration can be represented in several ways. For instance, Table 7
shows a few of the many ways that a simple square can be generated in ICE.
This feature affects the transformations applicable to a shape. The ICE
notation describes linear shapes, planar shapes, and solid shapes. Solid
shapes can be described by means of their vertices, edges, or surfaces. The
subset generation method enables any subshape, including boundaries, to be
derived from the solid representation.

Table 7. Multiple Representations

))p((12 TT ∆∆)))p(((12 TTM ∆∆∆)))p(((1TTDM ∆∆∆

))))p((((12 TTMM ∆∆∆∆)))p(((12 TTR ∆∆∆)))p(((1TTDR ∆∆∆

 ()
()

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∆
>><<>−<

>−<>><<

nn

nn

p
p

00
1

00
1

2)(
)(

T
T

T

>><<>><<∆∆ nn 00))p((12 TT
Discrete generation derives
the bounding vertices.

Subset generation derives the bounding edges
by (1) sweeping the first and last points of

1T∆ though 2T∆ , and (2) copying the line
generated by 1T∆ along 2T∆ .

∆T2 p

∆T1

∆M

∆T1

∆T2 p

∆T1

∆TDp ∆M

∆T2 p

∆T1

∆M1

∆M2

∆T2 p

∆T1 ∆R

∆T1

∆TDp

∆R

∆T1

∆T2 p

∆T2

p

∆T1

 A FORMAL NOTATION FOR GENERATION AND TRANSFORMATION

4. Secondary generation and relational constructs: variational,
constraint, and operational regulators

The previous section described the primary generative building blocks of the
ICE notation. This section describes the secondary regulators that are
dependent on the primary ones for their functionality: these are either
composed with the primary regulators, or applied to shapes (defined by
primary regulators) and consequently affect the primary regulators. These
include variational, constraint, hierarchical, and operational regulators.

4.1 VARIATIONAL REGULATORS

Variational regulators, (Table 8) symbolized by Ξ , are composed with
generative regulators to create a variation in the output shapes by controlling
shape attributes or regulator parameters.

Table 8. Variation regulators

Exception:])shapeshape(},{[n0 −Ξ va E
This regulator sets one or more shapes to be an
exception to the output set by overriding an attribute
a, (for instance, position) with a value v.

Rhythm/Gradation:
])shapeshape(},,{[n0 −Ξ ca f R

This regulator creates a rhythm/gradation effect
within the output shapes, by applying a formula f,
and coefficient c, to attribute a of the generative
regulator (for instance, the translation distance) as
it is applied to the output shapes.

Differential:])shapeshape(},,{[n0 −Ξ ca f F
This regulator creates a variation in the output, by
sweeping/copying the elements of input set
differently. It applies the formula f, and coefficient
c, to attribute a of the generative regulator as it is
applied to the input shapes. This regulator is
effective only for many input shapes.

∆TΞ E

∆TΞ R

p ∆T

∆TΞ F

∆TΞ R

 HODA MOUSTAPHA

4.2 HIERARCHICAL REGULATORS

Hierarchical regulators symbolized by Ψ , define hierarchies of shapes;
these can be defined independently, or in composition with generative
regulators. Table 9 illustrates the two hierarchical regulators supported in
ICE.

Table 9. Hierarchical Regulators

Containment:
])tconstituentconstituen container,({}[n0 −Ψ H

The containment regulator creates a container-
constituent relationship, independent of geometry.
Typically, containment inputs the container and
constituents, however it can input the container and
generate the constituents, or vice versa.

Subshape:
])subshapesubshape ,supershape({}[n0 −Ψ S

The subshape regulator creates a geometric dependency
between shapes (or more precisely between their
generative regulators).

4.3 CONSTRAINT REGULATORS

Constraint regulators, symbolized by Φ , bound shapes or define
relationships between shapes. Since shapes in the ICE notation are defined
by regulators, the constraints are ultimately applied to parameters of the
generative regulators. Constraints can be defined independently or in
composition with generative regulators. Although some compositions
involving constraint regulators may cause conflicts, there will be no
restrictions placed on composition until all possibilities are thoroughly
explored. Table 10 illustrates the constraints supported in ICE.

Table 10. Constraint Regulator

Attribute equivalence:
])shapeshape(},{[n0 −Φ va Q

The attribute equivalence regulator assigns a value v to
an attribute a (for instance color) of a shape.

ΦQ

Ψ H

Ψ S

 A FORMAL NOTATION FOR GENERATION AND TRANSFORMATION

Alignment:])shapeshape(},,{[k0
2 −Φ vtpA

There are three subtypes of alignments: 0AΦ restricts
an object to a point, 1AΦ aligns an object to a line, and

2AΦ aligns an object to a plane.

Dimension:])shape(},,{[modmaxminVΦ

There are three subtypes for this regulator: 1VΦ
restricts length, 2VΦ restricts area, and 3VΦ restricts
volume. The parameters are minimum value, maximum
value and an incremental module.

Boundary:)]shapeshape,shape(}{[k1bound
2 −Φ oB

The boundary regulator defines a legal region for a
shape, within an offset o.

Angle:])shapeshape(},,{[k1 −Φ modmaxminL
This regulator sets the angle between two shapes. A
variant pLΦ sets shapes as being parallel.

Distance:])shape,shape(},,{[k1modmaxminJΦ
This regulator defines the proximity between shapes. A
zero distance is an adjacency 0JΦ , and a negative
distance is an overlap ve−ΦJ

Proportion:])shape(},,{[1 dtpPΦ
This regulator controls the aspect ratio of a shape by
means of a diagonal line.

4.4 OPERATIONAL REGULATORS

Operational regulators, symbolized by Ω , define complex shapes from
simpler ones, as illustrated in table 11. Like constraints, operations are
ultimately applied to a shape’s generative regulator(s).

Φ A

Φ V

Φ B

Φ L

Φ Lp

Φ J0 Φ J-ve

Φ J

Φ P1

 HODA MOUSTAPHA

Table 11. Operations Regulators

Subdivision:
])shape(},{[nsZΩ

])planeshape,(},{[nsPZΩ

The subdivision regulator inputs a shape and subdivides it n times and
allocates a spacing s between the sudivisions. There are two variants of
subdivision: ZΦ ’s subdivisions are normal to the shape’s direction (i.e., to
the generative regulator’s direction); pZΦ subdivides according to a
splitting plane.

The Boolean operations regulators input two or more
objects, and generate their union, intersection, or
difference. Boolean regulators have no parameters, but
control the generative properties of the shape’s primary
regulators.

Union:])shapeshape({}[k0 −ΩU

Intersection:])shapeshape({}[k0 −ΩI

Difference:])shapeshape({}[k0 −ΩD

Symmetric Difference:])shapeshape({}[k0 −ΩM

5. Transformations in ICE.

The ICE notation is also designed to capture transformations that are
applicable to configurations. The ICE notation supports transformations at
four levels: (i) regulated element; (ii) generation method; (iii) regulator
parameters; and (iv) regulator composition. These are illustrated in Table 12.

ΩU

Ω Z

Ω Zp

Φ I

Φ D

ΦM

 A FORMAL NOTATION FOR GENERATION AND TRANSFORMATION

Notice that simple notation changes represent significant changes in the
geometry.
 Transforming the regulated element modifies the configuration while
maintaining its geometric structure. Transformations in this category include
moving the point, and moving-rotating-scaling the shape.
 Transforming the generation method creates variations and subshapes, but
maintains the geometric structure of the configuration. Transformations in
this category include changing the number of elements generated, changing
the discrete continuous properties, changing the generated subset, and
changing the generation pattern.
 Transforming the parameters regulator modifies the configuration’s
geometric structure but not the notation’s structure. Transformations in this
category include changing the regulator’s geometry by moving it or rotating
it, and changing the major parameter such as rotation degree or minimum-
maximum value.
 Transforming the regulator composition redefines the notation string and
completely alters the configuration’s structure. Transformations in this
category include adding, composing, inserting, deleting, replacing, or
reordering regulators in a sequence.
 The notation string captures all applicable transformations on each of
these four levels. The various symbols, parameters, and indices of the
notation represent manipulation handles for the ICE system. The notation
string can also capture the most parsimonious process for generating a
configuration. When the string is reconfigured, the set of applicable
transformation handles and the generation process can be redefined.
 The notation however, does not capture an exploratory process, i.e., one
that proceeds by means of transforming the notation string until a
satisfactory configuration is achieved.
 The multiple representation property of the notation allows for different
strings to represent the same configuration. Therefore, it supports different
processes to generate it and different transformations for it. Thus different
exploration paths can be achieved for the same configuration.

Table 12. Transformations captured in ICE

Initial configuration:

∆M

∆R
∆T

s

 HODA MOUSTAPHA

()030 s =

])])])s(},,,{[

(},,,{[

(},,,{[

1000 >><<>−<>−<∆

∆

∆

nnndtp

ntp

ndtp

T

R

M

α

Transformation of regulated elements:
Moving the input shape:

() ()020 s030 s =⇒=
() ()000 p.010 p. =⇒= RR

])])])s(},,,{[

(},,,{[

(},,,{[

1000 >><<>−<>−<∆

∆

∆

nnndtp

ntp

ndtp

T

R

M

α

Transformation of generation method
Changing the generation method of R∆ to pattern

])])])s(},,,{[

(},,,{[

(},,,{[

10300 >><<>−∴<>−<∆

∆

∆

φ

α
nndtp

ntp

ndtp

1T

R

M

Transformation of regulator parameters
Rotate M: [] []001 012 . =∆⇒=∆ tt M.M

])])])s(},,,{[

(},,,{[

(},,,{[

10300 >><<>−∴<>−< φ

α
nndtp

ntp

ndtp

1T

R

M

Transformation of regulator composition
Replacing the regulator R∆ by 2T∆

])])])s(},,,{[

(},,,{[

(},,,{[

10300 >><<>−∴<>−< φnndtp

ndtp

ndtp

1

2

T

T

M

∆M
∆R

∆T
s

s
∆M

∆R

∆T

∆M

∆T

s
∆R

s ∆T2

∆T1

∆M

 A FORMAL NOTATION FOR GENERATION AND TRANSFORMATION

6. Architectural Design Examples

6.1 DESIGN STUDIO EXAMPLE

 Akin and Moustapha (forthcoming) have used the ICE notation to codify
a complete sequence of drawings from an annotated design studio. Table 13
shows one drawing of a dormitory project submission, as represented by the
ICE notation in two distinct ways. The two distinct notations capture two
distinct generation processes, as well as two distinct sets of applicable
transformations.

Table 13 An example from the annotated studio

Generation alternative 1:

)]dormUnit(},,,{[

)]dormUnit(},,,{[

)]]))]dormUnit(},,,{[

(},,,{[

(},,,{[

5

4

1#0

nvtp

nvtp

nvtp

nvtp

nvtp

5

4

1

2

3

M

M

M

M

M

Generation alternative 2:

)]]))]dormUnit(},,,{[

(},,,{[

(},,,{[

]))]dormUnit(},,,{[

(},,,{[

0

0

ntp

nvtp

nvtp

nvtp

ntp

α

α

2

4

6

1

1

R

M

M

M

R

∆M1

∆M2

∆M3

∆M4

∆M5

∆M1

∆M4

∆R2

∆M6

∆R1

 HODA MOUSTAPHA

6.2 HYPOTHETICAL EXAMPLE HEJDUK’S HALF HOUSE

Moustapha (2003) encoded the hypothetical generation of Hejduk’s half
house from a rectangle. Due to the length of this example, snapshots of the
half house generation are included as a simplified abstraction (Table 14).
The generation was exploratory, i.e., it used transformations to generate
alternatives. The three rectangle configuration was transformed into the half
house simply by replacing and adjusting regulators.

Table 14. A hypothetical example: Hejduk’s Half House

Initial configuration: Three rectangles
Rectangle1 =

)])]])v(},,,{[
(},,,{[

(},,,{[

,1#1 nndtp
ndtp

ndtp

a1

b1

T
T

M
a1

∆

∆

∆

Transform Rectangle3 to Triangle3
• Update Tb in the sequence such that it

only applies to v3 and Rotate Ta 45º

Triangle3 =

)])]v(},,,{[
)]v(},,,{[

(},,,{[

3

3

ndtp
ndtp

ndtp

b3

a3

T
T

M
a3

+

Transform rectangle 2 to semicircle 2
• Update Tb in the sequence such that it only

applies to v2 and Replace Ta by Ra

Semicircle2 =

)])]v(},,,{[
)]v(},,,{[

(},,,{[

2

2

ndtp
ntp

ndtp

b2

a2

T
R

M
a2

+α

Half House =
Rectangle1 ∧ Semicircle2 ∧ Triangle3

])mid..Rectangl(}{[1 bTp 1e0A∆

])mid..Triangle3(}{[3 bTp0A∆

])mid..2Semicircle(}2{[bTp0A∆

Ma1 v1
Tb1

Ta1

Ma2v2
Tb2

Ra2

Ma3

v1
Tb3

Ta3

 A FORMAL NOTATION FOR GENERATION AND TRANSFORMATION

7. Conclusion

The ICE notation can represent a geometric configuration as a string that
expresses generative and relational structures. By accommodating various
methods of composition and various methods of generation, the ICE notation
expands the universe of possible shapes and configurations that it can
describe. This representation succinctly captures the complete configuration.
It also captures the generative process in the most parsimonious manner.
Furthermore, it is possible to determine further information about
configurations from notation strings. For instance, given the string of
generative regulators, one can compute subshapes, boundaries, lengths,
areas, volumes and midpoints, just by evaluating their parameters and
indices. It is also possible to determine the transformations applicable to a
configuration through its notation string. Whether these transformations are
achieved through adjusting parameters or through redefining the notation
string, it is possible to designate manipulation handles for these
transformations.

Since the ICE notation is developed in parallel to the ICE
generative/interactive system, every regulator described in this paper, has
been implemented or is currently being implemented in the computer
medium. The ICE system supports regulators as manipulation handles,
therefore the models it generates are highly flexible. Their parameters as
well as their generative sequence can be redefined at runtime and in real
time. Describing a complex geometrical configuration through a concise
string has the additional computational advantages of minimizing the size of
storage, and maximizing the speed of file transfer. For the aforementioned
reasons of completeness, information processing, flexibility, and
computational efficiency, the ICE system promises to be a valuable tool for
design exploration.

It is important to note that ICE is not the only notation in its class. Leyton
(2001) developed a generative theory of shape, which uses similar
fundamental principles of mathematics as ICE. Leyton also addressed the
issue of process-capture, which he refers to as recoverability. Cha and Gero
(2001) have developed a shape pattern representation, based on isometry
transformations and used it to describe numerous notable buildings. While
Leyton’s work, focused on theoretical aspects of shape generation, and Cha-
Gero’s work focused on pattern description, the ICE system/notation focuses
on the practical aspects of implementation and interaction, the most
important of which is the ability to manipulate the configurations generated
by the ICE notation.

In addition to being part of a computational system, the ICE notation
extends the aforementioned representations in the following ways:

 HODA MOUSTAPHA

• ICE is designed to work in 3D. All parameters and operations in
ICE are based on 3-dimensional geometry principles.

• The regulator construct in ICE subsumes generative trans-
formations, and encode other functions such as constraints,
operations, hierarchies and variations.

• Support for continuous, discrete and sub-part generation methods
is a unique feature of ICE. This allows for complex shape
description and maximizes the possibilities for shape generation.

• The property of deriving boundary, sub-part information, and
other geometric information from a given ICE string, augments
the ICE notation from being merely a geometry descriptor to that
of a geometry processor.

• Support for different levels of information simplifies the
representation. Short and long forms allow the ICE notation
string to be viewed at two crucial levels of abstraction: relational
and parameterization). The shape encapsulation feature of ICE
helps structure the notation string and avoids redundancy of
description.

 This notation will continue to be refined and improved. In particular, the
rigorous mathematical aspects of regulators, regulator relationships, and
geometry processing algorithms will be addressed in future work.

Acknowledgements

I would like to acknowledge my advisors Professors Ömer Akin and Ramesh
Krishnamurti for their constant guidance and support during the
development of this work.

References

Akin, O, Moustapha, H: forthcoming, Formalizing Generation and Transformation in Design,
Proceedings of the Design and Cognition Conference, MIT, Cambridge, MA, 2004, in
print

Cha, M, Gero, J: 2001, Shape Pattern Representation for Design Computation, Automation in
construction, Elsevier, New York.

Leyton, M: 2001, A Generative Theory of Shape. Springer Verlag, New York.
Moustapha, H, Krishnamurti, R: 2001, Arabic Calligraphy: A Computational Exploration,

Mathematics and Design 2001, Third International Conference, Deakin University,
Geelong.

Moustapha, H: 2003, From Rectangle to Half House to House 10. Unpublished document.

