
 Object-Oriented Data Modeling and Warehousing to Support Urban Design

 Nabeel Koshak and Ulrich Flemming
 Carnegie Mellon University
 School of Architecture
 Pittsburgh, PA 15213, USA

ABSTRACT

All over the world, local authorities are moving towards managing and storing urban data in
digital form. But the data storage devices used are heterogeneous and typically include
relational database management systems (DBMS), GIS and CAD files. As a result, data are
present in different locations on different platforms and under different schemas. This poses a
problem for software applications meant to support decision-making in urban design that
require input from more than one data source. We demonstrate in our paper how data
warehousing—combined with object-oriented data modeling—is able to provide a general
solution for this problem. Data warehousing is a technique initially developed for business
applications, but is equally useful for urban design: The data warehouse constitutes a
communication layer between the urban design applications and data sources. It makes the
data available through a unified interface that hides the sources themselves and represents
that data in terms of a general-purpose, preferably object-oriented, model. We also describe an
implementation prototype that supports different applications. The City of Makkah in Saudi
Arabia provides us with real-world data and a context to test our prototype.

1 INTRODUCTION

One of the most important concerns in rapidly growing cities is the need for good,
effective urban design. This need is especially acute for the city of Makkah, Saudi
Arabia. More than three million people visit the city every year on a pilgrimage (Hajj),
and with improvements in mass transportation, this number is increasing every year.
Accommodating millions of visitors every year and providing them with adequate
utilities, facilities, and services is a big challenge, as is the movement of vehicles and
pedestrians during Hajj. Local authorities are also faced with the important task to
provide the local population with appropriate housing.
 Urban data needed as input to various urban design and planning applications
are available from various sources in the city of Makkah. Currently, these data sources
are heterogeneous because they are maintained by different authorities at different
locations and use different platforms, data formats and schemas. This becomes apparent
if we look at the major sources available to urban planners and designers in Makkah:

1. The ArcLand GIS project at the Municipality of Makkah is a GIS system that

contains land parcel information and survey maps, using ArcView GIS
software.

Published in the Proceedings of DDSS ‘2002 (The 6th International Conference on
Design and Decision Support Systems in Architecture and Urban Planning).

July 7-10, 2002. Ellecom, The Netherlands.

2. The Hajj Housing Information System at the Ministry of Hajj is a relational
database management system (DBMS) that provides comprehensive
information about the housing entities available for pilgrims, using Oracle
software.

3. The Saudi Military provides digital aerial maps in the form of AutoCAD files.

These files comprise various layers that capture geometric data for land parcels,
streets, contour lines, elevation points, buildings and other urban objects.

4. The Makkah Accommodation GIS project at the Hajj Research Center is a GIS

system that provides comprehensive information (including location maps,
pictures, and textual data) about hotels and furnished apartments available for
visitors to the city.

 If urban designers and planners want to use software that needs input from these
heterogeneous sources, they must transform these data manually into the required
format, a time-consuming and error-prone task that may, in fact, preclude using the
software at all, thus depriving designers of possibly crucial decision support tools.
 The situation in Makkah is not unique. Urban designers and planners are faced
with similar problems in various parts of the world. Urban design software typically
needs data in the following categories: zoning, administrative and political boundaries,
topography, land parcels, buildings, monuments and historic landmarks, open spaces,
traffic networks, facilities and amenities, water system, landscaping, accessibility, and
utilities, including water, gas, electricity, and telecommunication (Dave & Schmitt
1994, Yin & Williams 1995). We cross-reference in Table 1 these data with the types
of urban design applications that need them. The table shows that the same data may be
needed by different applications. It also shows that an application may require data in
multiple categories and from multiple sources.
 We show in the present paper that a data warehouse—originally conceived for
business applications—can also be used as a layer between urban data sources and
urban design applications that hides the heterogeneity of the sources from individual
applications and takes, at the same time, the many-to-many relations between
heterogeneous data sources and applications into account by making the data available
to all applications through a uniform interface. The interface is based on unified data
model that integrates the data independently of their source.
 In section 2, we briefly introduce the notion of a data warehouse. In subsequent
sections, we introduce an object-oriented schema able to serve as data model for a data
warehouse to support urban design (section 3); the overall architecture for such a
warehouse (section 4); and a prototype implementation of this architecture for the City
of Makkah (section 5). We identify open research issues in section 6 and state our
conclusions in section 7.

Table 1. Data needs for different urban design applications

 APPLICATIONS

DATA

3d
 v

is
ua

liz
at

io
n

em
er

ge
nc

y
se

rv
ic

e
pl

an
ni

ng

ve
hi

cu
la

r t
ra

ffi
c

si
m

ul
at

io
n

fa
ca

de
 s

tu
di

es

sh
or

te
st

 p
at

h
an

al
ys

is

pe
de

st
ria

n
m

ov
em

en
t s

im
ul

at
io

n
fa

ci
lit

ie
s

di
st

rib
ut

io
n

an
al

ys
is

ho

us
in

g
st

oc
k

in
ve

nt
or

y
V

R
 v

is
ua

liz
at

io
n

ci
rc

ul
at

io
n

an
al

ys
is

la

nd
-u

se
 p

la
nn

in
g/

m
an

ag
em

en
t

ur
ba

n
re

de
ve

lo
pm

en
t a

na
ly

si
s

bu
ild

in
g

vi
ew

s
an

al
ys

is

ut
ili

tie
s

ne
ed

s
an

al
ys

is

ai
r p

ol
lu

tio
n

an
al

ys
is

so

un
d

po
llu

tio
n

an
al

ys
is

hu

m
an

 b
eh

av
io

r s
im

ul
at

in
g

em
er

ge
nc

y
re

sp
on

se
 a

na
ly

si
s

ve
ge

ta
tio

n
an

al
ys

is

ur
ba

n
lig

ht
/s

ha
do

w
 a

na
ly

si
s

ch
oo

si
ng

 b
es

t b
ui

ld
in

g
lo

ca
tio

n
hi

st
or

ic
 p

re
se

rv
at

io
n

la
nd

 o
w

ne
rs

hi
p

in
ve

st
ig

at
io

n
de

m
og

ra
ph

ic
 a

na
ly

si
s

3d building models X X X X X X X X
origin & destination
of cars

 X X X

street address X X X X
origin & destination
of pedistrians

 X X X

housing capacity X X X X X
street segments X X X X
land parcels X X X X X X
traffic network X X X X X X X X X X X X X X X X
building condition X X
building footprints X X X X X X X X X X X X X X

utilities’ maps X
residents
characteristics

 X X X X

vegetation X X X
sun movement X X
owner information X X X
year built X X X
right of way X X
attractions X X X X X
zoning X X
sidewalks X X X
street intersections X X X
traffic control
facilities

 X X X

facilities/services X X X X X
Topography X X X X X X X X

2 DATA WAREHOUSING

Large organizations or companies may have offices and facilities at many sites, where
each site may collect a large volume of data. This means that different data are present
at different locations on different platforms and under different schemas. For instance,
product data and customer data may be stored in separate databases at different
locations. But corporate decision makers need access to information from all of these
sources. Data warehousing provides a solution for this problem (Silberschatz et al.
1999). A data warehouse is a repository (archive) of information gathered from
heterogeneous data sources. The data are either stored under a unified schema (model)
at a single location or extracted from the sources as they are needed, again based on a
unified schema. The extracted data may be queried directly by a user or used as input to
an application. A data warehouse thus presents clients (users or applications) with an
integrated and uniform data source. Since data sources are constructed independently
and likely to have different schemas, a data warehouse must perform schema
integration before data are delivered to clients.
 Data warehousing may also provide a solution for the problems raised by the
heterogeneousness of urban data sources and urban applications as discussed in the
preceding section. We envisage an urban data warehouse that is able to extract data
from heterogeneous sources, to integrate the data using a unified data model, and to
provide input to heterogeneous urban design applications or answer user queries
through a uniform interface. The unified data model (schema) integrates specifically
geometric and non-geometric data that are currently typically distributed over
heterogeneous, non-coordinated sources (like a DBMS and CAD files). Furthermore,
an application that has an interface able to receive data from a warehouse supporting a
specific data model would be able to receive data from any warehouse supporting that
model, that is, would be able to support urban design for any city or region maintaining
such a data warehouse.
 There are good reasons to demand that the unified data model used by a data
warehouse to integrate urban data be object-oriented. Research and practical
applications over the last decades have amply demonstrated that object-oriented
representations are uniquely able to capture the attributes of designed artifacts in a
natural and computationally efficient fashion. Furthermore, object-oriented
programming has by now established itself as the paradigm of choice for the
development of robust, extensible and reusable software (Meyer 1988). An object-
oriented representation is therefore not only desirable in its own right, but also
facilitates data import to object-oriented applications as they are coming into wide use.

3 UNIFIED OBJECT MODEL

3.1 Overview

An object-oriented (OO) representation is a collection of objects with attributes, where

some attributes may be relations with other objects. The attributes that an object can
have are typically determined by the class to which the object belongs. Classes can
inherit attributes from super classes and pass these attributes to all objects belonging to
the class (these objects are often called instances of the class). An object model or
schema is the collection of all classes describing the universe of discourse for an
application or group of cooperating applications. All data handled by an application are
captured by objects that are instance of classes in the schema. The unified object model
underlying our data warehouse is a schema in this sense: its classes define the types of
objects that can be instantiated to import data (via object attributes) to urban design
clients.
 Over the last decade, various notations have been proposed for the
documentation and communication of object models. Among these, the notation
developed by Rumbaugh (Rumbaugh et al. 1991) has become particularly popular and
is now an integral part of the Unified Modeling Language UML (Booch et al. 1999).
UML has become the standard language used for object-oriented software development
(Naiburg & Maksimchuk 2001). We used Rumbaugh’s notation, via UML, to develop
and document the object model underlying our warehouse; examples are shown in the
figures below.
 We developed our schema by first looking at the data we wanted to export from
heterogeneous sources. A DBMS, for instance, provides data in the form of flat tables
with multiple columns recording various non-geometric attributes of urban objects. A
CAD file may represent urban areas or building outlines as 2-dimensional polygons
defined by the coordinates of their corners. A GIS source typically consists of flat
tables linked with 2D geometries to describe buildings for instance. In short, the data
models used by the data sources are structured collections of value attributes.
 Our schema reflects these characteristics. It is a collection of classes, each of
which collects all (geometric and non-geometric) attributes of an urban object. The
schema captures no behavior; that is, classes have no method attributes, and objects that
instantiate them are strictly passive data repositories. Furthermore, subclass
(inheritance) relations are used sparingly; they are needed only to provide some
flexibility in describing the various geometries that may be associated with an object
like a building. There are no complex relations between classes or objects; that is, no
object can be related to more than one other object. This eliminates a notorious
translation problem for object-oriented representations with possibly complex many-to-
many object relations: the translator receives objects one-by-one, maps each to a
representation understandable by the client and sends it on. If such an object has
relations to other objects, the translator must determine if the related objects have
already been encountered and send out or not; it cannot simply start to translate the
related objects immediately because that may result in duplications. The translator
therefore has to keep a record of all objects already send out for further reference. In
order to be able to do this, it has to maintain a mapping table between incoming and
outgoing objects based on unique object identifiers. All of this is avoided if we
eliminate all cross-references between objects in our model.
 Note that the diagrams below a class diagrams that may show one-to-many or

many-to-many relations between classes; this only means that an object instantiating a
class may have multiple relations to several objects each of which instantiates the same
class, but is a distinct instance of that class. For example, a line has two associated
Point objects, each of which is an instance of the Point class, but differs from the other
point by its coordinate values.
 The simplicity of the resulting schema is not only adequate for the data it has to
capture, but also greatly facilitates parsing and interpretation at the client end. We
illustrate this in the following sections with two examples, the classes representing,
respectively, a land parcel and a building (see Koshak 2002 for a complete model
specification).

3.2 Examples

3.2.1 LandParcel
A LandParcel object captures both non-geometric and geometric data describing a land
parcel in a city (see Figure 1). The LandParcel object is associated with one Deed
object and one or many Owner objects.

Figure 1. LandParcel Class

 The boundary of a LandParcel is described by an associated
LandParcelGeometry object. We assume—based on the GIS data available in
Makkah—that the boundary of a parcel is described by a polygon, which, in turn, is
described by multiple lines representing its sides. Each side is defined by the
coordinates of its two endpoints. The LandParcelGeometry object therefore has an
associated Polygon object. The Polygon, in turn, can have an arbitrary number of
associated Line objects, and each Line object is associated with two Point objects.
 Since each corner of a polygon is shared by the two adjacent sides, this
representation of a polygon is redundant. But we decided to use this representation
because we wanted to avoid many-to relations for the reasons stated above.

3.2.2 Building
A Building object captures all attributes of a building in an urban environment (see
Figure 2). The BuildingGeometry is a collection of 3-dimensional solids of arbitrary
size. Our present implementation includes prisms and extruded objects. This allows us
to represent, for example, the Holy Mosque in Makkah, the building with the most
complex geometry in the city, at a level of detail sufficient for many applications (see
Figure 3). Developing a general model for the representation of buildings and other
urban objects that would be able to cover the needs of most urban design applications is
beyond the scope of our work.

4 A DATA WAREHOUSE TO SUPPORT URBAN DESIGN

4.1 Overall Architecture

We mentioned in Section 2 that there are two basic options for implementing a data
warehouse:
 The persistent data warehouse stores all data that may have to be exported to
clients in a separate, integrated database. The data are collected frequently (weekly or
monthly, for instance) from the heterogeneous sources and stored physically in a
separate database, which is a central component of the data warehouse. Data requests
by clients are sent directly to and returned by this database. This option is problematic
when the amount of data coming from heterogeneous sources is large and consumes a
large amount of storage resources. In addition, data stored in the warehouse are not
always up-to-date.
 The virtual data warehouse is more attractive in the present context. In this
option, data are collected from heterogeneous sources as needed. When a client requires
data, the data warehouse connects remotely to the appropriate data sources and returns
the needed data to the client without storing any data within the data warehouse itself.
 The overall architecture of a virtual data warehouse to support urban design is
shown in Figure 4. A client requests certain data for direct inspection in a web browser
or as input for a specific application. The client application sends the data requests to

Figure 2. Building Class

Data Access Objects in the form of queries. A Data Access Object (DAO) is a software
component that is able to import attribute data for a specific class in the underlying
schema from various sources and to export the data to clients in a unified form
determined by the schema. A DAO uses Extractors to query the appropriate data

Figure 3. Geometry of Holy Mosque

sources (DBMS, CAD, or GIS). Solvers may be needed to handle particular data
integrating problems, for example, when different sources return different values for the
same attribute.
 To preserve data integrity, the data warehouse does not accept any data from
clients that would modify the state of the data sources. Only local authorities are
allowed to modify persistent data or to add new data to the warehouse.

4.2 Data Access Objects (DAOs)

A Data Access Object (DAO) is able to answer queries on objects whose attributes are
recorded by heterogeneous data sources. Our warehouse must contain a DAO for each
class in the underlying schema. The DAO provides a query (get) method for each
attribute in the associated class. It needs an Extractor for each of the heterogeneous
sources to import the data recorded by that source. Accordingly, an extractor is selected
and used to obtain the value for that attribute.
 The DAO design pattern separates an application from its data sources. This has
two advantages: The applications are isolated from changes in the data sources;

Figure 4. The overall architecture of an urban data warehouse

they are, in fact, able to retrieve data from different warehouses, as long as the
warehouses support DAOs based on the same schema. Conversely, the data in the
sources become available to different applications (Wheeler & Wheeler 2001). For
example, the applications do not have to modify their data import procedures when the
source for specific data items changes (although the extractors for this information will
have to change). Moreover, applications that are able to import data from the
warehouse are also able to import, without further modification, data from any other
warehouse that supports the same schema and DAOs.

4.3 Extractors

An Extractor is a software component that receives a data request, connects to the
appropriate data source, and returns the requested data. As illustrated in Figure 5, an
extractor has to be implemented for each kind of data source, and the data warehouse
may have to provide, for example, a DBMS extractor, a CAD extractor, and a GIS
extractor.
 An extractor receives two arguments from a DAO: a data source location and a
query (SQL for instance). It then connects to the specified data source and returns data
according to the specified query. For example, a DBMS extractor takes a URL
(Uniform Resource Location) and SQL (Structured Query Language) statement. The
URL indicates where the (remote or local) database is located. The SQL statement
specifies the selection criteria of the requested data. The extractor uses these arguments
to connect to the database and retrieve the data. It then returns the requested data to the
DAO.

Figure 5. Interactions between data sources, Extractors, and DAOs

 Our extractors extend the wrapper concept to data extraction. A wrapper is a
software component that translates data and queries from one model to another
(Papakonstantinou et al. 1995). In the same sense, an extractor translates data requests
from a DAO into source-specific queries, that is, it plays the same role as a wrapper.

4.4 Solvers

A Solver is a software component able to perform data cleaning, transformation, and
integration tasks (see Figure 6). The motivation to introduce solvers into the general
warehouse architecture stems from observations like the following: Suppose that two
different local authorities are using two different GIS map projections that represent the
same urban area. A map projection maps locations on the globe onto the flat surface of
a map. All map projections distort the shapes of the features being displayed to some
degree; this also holds for measurements of area, distance, and direction (Kennedy &
Kopp 2001). In this case, we need a process that is able to resolve the data conflict in
some appropriate way. In our data warehouse, these processes are generally delegated
to Solvers.
 The data warehouse administrators integrate these solvers with the data
warehouse architecture. The selection of solvers is left to the user and can be handled
by preference features in a user interface through which the user is able to select the
appropriate solver among the available ones whenever a data integration problem
arises.

Figure 6. Solvers in the data warehouse

5 PROTOTYPE IMPLEMENTATION

5.1 Languages

To implement a first prototype of the proposed data warehouse, we used Java and the
Extensible Markup Language (XML) as languages to provide, respectively, portable
code and portable data. Java is not only portable through the Java Virtual Machine, but
also supports object-oriented features that are needed to implement our unified object-
oriented data model. Java also supports building web-enabled applications. XML
provides an open standard data format that can be used to import data by different
urban design applications.

5.2 Heterogeneous Data Sources

For obvious reasons, we could not exercise our first prototype directly on the data
sources owned by various authorities in the City of Makkah. To be able to experiment
with the various types of heterogeneous data sources commonly used in cities such as
Makkah, we simulated existing sources by reasonable equivalents and populated the
sources with real data:

1. A DBMS data source using MS Access. This source simulates the relational

database available at the Ministry of Hajj. Sample data were obtained from the
Ministry and imported into the Access database.

2. AutoCAD represents CAD-based data in our prototype. This source simulates
the AutoCAD files available at the Ministry of Defense. Sample data are again
obtained from the Ministry of Defense and captured in DXF files.

3. A GIS data source is simulated using ArcView. This source is a proxy for the

ArcView GIS available at the Municipality of Makkah. As with the previous
sources, sample data were obtained from the Municipality of Makkah and
imported into ArcView.

5.3 Data Model and Data Warehouse

The unified data model is implemented using Java classes. A DAO must be
implemented for each of these classes. We use again Java to implement DAO classes.
When the system is running, urban (domain) objects and DAO objects are created as
instances of the corresponding Java classes. A DAO uses the domain object it serves
directly to capture the retrieved data. For example, a BuildingDAO object uses a
Building object as defined in the unified model to store the data retrieved from different
sources.
 Three kinds of data extractors were implemented in Java, one for each of the
simulated data sources described in Section 5.2. We implemented a sample Solver to
handle a typical data integration problem: the problem that arises when the key attribute
for the same object is different at two different data sources, for example, the same
building has building id b041 at data source A and id 3873 at data source B. A Solver
handling this problem maps the building identification numbers between the two data
sources. The Solver is implemented using Java and added to the data warehouse as a
software component that is called by a DAO whenever this integration problem occurs.

5.4 Client Interfaces

5.4.1 Web Interface
A user can use the web interface to retrieve and inspect data of interest. We developed
this interface using HTML (Hyper Text Markup Language) pages, which allow the user
to specify the needed data (see Figure 7). Data requests are sent to the web server—
through HTTP (Hyper Text Transfer Protocol)—where the data warehouse is located.
DAOs receive these data requests and communicate with other components of the data
warehouse to retrieve the requested data. The DAOs then return the data requested to
the user through the web interface. The DAOs present the retrieved data as HTML
tables. The user can then use the web browser to view the requested data (see Figure 8).
The user can also download the data as XML files. These XML files can be parsed and
used to import the retrieved data into an application.
 Note that it would have been more elegant (and simpler) to implement DAOs
that always return data in the form of XML files—let the client worry about what to do
with them! But this would have forced every client to create a parser and interface to

Figure 7. Web Interface to the data warehouse

Figure 8. Extracted data represented as HTML tables

some application. We avoided this by enabling the data warehouse to return data as
web pages; this can be considered an extra service offered by the warehouse.

5.4.2 Application Interfaces
We simulated an application that can be used to visualize in 3 dimensions existing and
proposed buildings, where the existing buildings are modeled based on data received
form CAD files and a DBMS. The proposed buildings are modeled locally in the same
modeler so that their form and impact on the neighborhood can be assessed.
 We use AutoCAD to simulate the visualizer. We use AutoCAD’s API, Visual
Basic for Applications (VBA), to parse an XML file returned by the warehouse and to
import the data into AutoCAD. The application then constructs a local model of the
existing buildings and renders them on the screen (see Figure 9). Proposed buildings
can be modeled and visualized using the same software.

6 FUTURE WORK

The most important issue that has to be addressed in the context of the work presented
here is how to represent generally the geometry of various urban objects. The
representations of object geometries in our unified object model were developed ad-hoc
based on the data available/needed for the City of Makkah. But the issue requires a
more detailed study aiming at finding a consistent representation for object geometries
that is flexible and general enough to cover all important cases while maintaining
simple enough for easy parsing and interpretation.
 Another open issue at the time of writing is how to construct and use solvers in
general. Currently, solvers are built and added to the warehouse by its administrators.
But this need not be the case. We envision a situation in which the data warehouse has
become the backbone of a connected community of data providers and data users that
cooperate and benefit from each other’s work. At the most basic level, an authority
maintaining one data source serving external clients may in turn become a client when
it needs data maintained by other authorities. But we want to go a step further. Data
providers as well as data users gain knowledge by using the data warehouse to support
urban design decisions. We believe that Solvers can be used to make these insights
available to the entire community.
 In a more effective collaborative environment, solvers can be developed by
urban designers and shared—via the Internet—through the data warehouse as
distributed reusable software components. The Internet has become an important
medium for sharing information. Many Internet applications deliver data, but the web
remains underused for remote processing of computational objects. Bhargava et al.
have described how consumers can use, over the Internet, technologies that are located
at and execute on providers' machines (Bhargava et al. 1995a/b). One application of this
approach would be the use of the Internet to share Solvers for data integration
problems. Solvers can be shared based on parameterized models set by the data
warehouse administrator.

Figure 9. 3D Visualization of building data

 Finally, we want to point to possibilities that emerge once the problem of
heterogeneous data sources for urban design applications has been solved. The data
available through a unified interface can now be used to support more advanced
decision making tools that generate data from the available data. We mention just two
promising emerging techniques: On-line Analytical Processing (OLAP) systems and
Data Mining systems. OLAP refers to an advanced data analysis environment (Rob &
Carlos 1997). OLAP tools access the data warehouse to provide advanced
multidimensional data analysis, for instance, in the present context, OLAP can be used
to monitor and analyze urban growth in cities. Data mining is a computer-based method
to analyze data with the intention of finding previously unknown data characteristics,
relationships, dependences, and trends (Rob & Carlos 1997). For instance, data mining
applied to a target data set extracted from the warehouse can be used to investigate the
relationship between urban growth and traffic congestions.

7 CONCLUSIONS

We demonstrated that data warehousing can be used to solve a central problem in
computer-supported urban design and planning: the heterogeneity of data sources
needed by clients such as urban designers and the applications they use. The warehouse
provides an intermediate layer between the sources and clients that isolates each side
from changes and modifications on the other side. We presented architecture for such a

warehouse that can be implemented by cities and municipalities based on readily
available platforms and software and is portable except for the Extractors, which are
site-specific. We have also presented a simple object model or schema that can be used
to present data to clients in a unified format that is independent from the data sources
themselves.
 The data model and data warehouse establish a collaborative environment
among the various authorities influencing urban design, planning, and management in
cities such as Makkah and the planners and designers involved in urban decision-
making. The warehouse architecture we presented can be extended to make the
environment more cooperative and to generate data from the existing data to provide
more advanced support to urban decision makers.

Acknowledgements. The work reported here was supported by The Custodian of the
Two Holy Mosques Institute for Hajj Research, Umm Al-Qura University, Makkah,
Saudi Arabia.

REFERENCES

Booch, G., Rumbaugh, J., and Jacobson, I. (1999). The Unified Modeling Language.

User Guide. Addison Wesley Longman, New York.
Bhargava, H. K., King, A. S., and McQuay, D. S. (1995a). "DecisionNet: An

Architecture for Modeling and Design Support over the World Wide Web". In
Proc. International Symposium on Decision Support Systems, Hong Kong, June
1995.

Bhargava, H. K., Krishnan, R., and Muller, R. (1995b). "On Parameterized Transaction
Models for Agents in Electronic Markets for Decision Technologies". In Proc.
Fifth Workshop on Information Technologies and Systems, Amsterdam,
Holland, December 1995.

Dave, B., and Schmitt, G. (1994). "Information Systems for Urban Analysis and Design
Development". Environment and Planning B: Planning and Design, vol. 21,
83-96.

Kennedy, K. and Kopp, K. (2001). Understanding Map Projections. Environmental
Systems Research Institute, Inc. (ESRI). Redlands, California, USA.

Koshak, N. (2002) Object-Oriented Data Modeling and Warehousing to Support
Urban Design. Ph.D. dissertation (in preparation). School of Architecture.
Carnegie Mellon University, Pittsburgh, Penn.

Meyer, B. (1988) Object-Oriented Software Construction. Prentice-Hall, New York.
Naiburg, Eric J., and Maksimchuk, Robert, A. (2001). UML for Database Design.

Addison-Wesley, Reading, Mass.
Papakonstantinou, Y., Garcia-Molina, H., and Widom, J. (1995). "A Query Translation

Schema for Rapid Implementation of Wrappers". In Proc. Fourth International
Conference on Deductive and Object-Oriented Databases, Singapore,
December.

Rob, P., and Carlos, C. (1997). Database Systems: Design, Implementation, and
Management (3rd ed.). Course Technology, Cambridge.

Rumbaugh, J. et al. (1991). Object-Oriented Modeling and Design. Prentice-Hall,
Englewood Cliffs, New Jersey.

Silberschatz, A., Korth, H., and Sudarshan, S. (1999). Database System Concepts.
McGraw-Hill, New York.

Wheeler, J. and Wheeler, W. (2001). "Achieve Persistence Independence". Java Pro
Magazine, November 2001, Volume 5, Number 11.

Yin, Z., and Williams, T. H. L. (1995). "GIS Analysis Model for Urban Strategic
Planning". In Proc. International Symposium on RS, GIS, and GPS, Hong
Kong, 746-753.

