
Integrating Housing Design and
Case-Based Reasoning

Ji-Hyun Lee

Submitted to the School of Architecture
of Carnegie Mellon University in partial fulfillment of

the requirements for the degree of Doctor of Philosophy

School of Architecture and
Institute for Complex Engineered Systems (ICES)

Carnegie Mellon University
Fall 2002

Thesis Committee:

Professor Ulrich Flemming (Chair)
School of Architecture and

Institute for Complex Engineered Systems (ICES)
Carnegie Mellon University

Professor James H. Garrett, Jr.
Department of Civil and Environmental Engineering and

Institute for Complex Engineered Systems (ICES)
Carnegie Mellon University

Professor Stephen R. Lee
School of Architecture

Carnegie Mellon University

I hereby declare that I am the author of this dissertation.

I authorized Carnegie Mellon University to lend this dissertation to other institutions or
individuals for the purpose of scholarly research.

I further authorized Carnegie Mellon University to reproduce this dissertation
by photocopying or by other means, in total or in part, at the request of other

institutions or individuals for the purpose of scholarly research.

Ji-Hyun Lee

Copyright © 2002 by Ji-Hyun Lee
All rights reserved

Table of Contents
Table of Contents iii

List of Figures vi

List of Tables vii

Acknowledgements ix

Abstract xi

CHAPTER 1 Introduction 1

Motivation 1
Case-based Reasoning in Design 2
Why CBD for Housing? 3

Research Objective and Approach 7

Overview 8

CHAPTER 2 Background: The Housing Market in the US 9

Industry Characteristics 9
The Small Average Size of Firms 9
Vertical and Horizontal Fragmentation of the Housing Industry 10
Reaction to Cyclical Characteristics 10
Sparse Management 10

Supply and Demand in the Housing Market 11
Making Housing Choices 11
Households: The Demand Side of the Market 11
Housing Units: The Supply Side of the Market 15
PhD Thesis - Fall 2002 iii

Table of Contents
CHAPTER 3 Housing Types and Classification Systems 21

Type and Typology in Architecture 21

Types in Housing Design 22
Form-based Classifications 22
Component-based Classifications 25

Classification of Housing Precedents in CBD 29

CHAPTER 4 Development of Design Scenarios for Single-Family Houses 31

Interviews with Housing Design Experts 31

Housing Development Types in the US 32

Overview of Design Scenarios 34

Formalized Representation of Design Scenarios 35

Design Scenarios 38
Scenario 1: Developer-Designer Interaction - Establishing
Feasibility 38
Scenario 2: Designer Working Independently - Refining Basic
Architecture 45
Scenario 3: Sales Agent-Client and Builder-Client Interaction -
Building a House for a Client on a Chosen Lot 49
Scenario 4: Non-profit Housing Development - A Neighborhood
Planning Process 53

CHAPTER 5 A Framework for Integrating Housing Design and CBD 59

The Main Steps in CBD 59
Creating Design Cases 59
Indexing and Retrieving Design Cases 60
Adapting Design Cases 61

Design Scenarios Meet CBD: An Integrated Approach 61
Retrieval 61
Creation/Adaptation 63
Summary 64

Platform for a First Prototype Implementation 65
Database 65
The SEED Environment 66
System Architecture 74

CHAPTER 6 Functional Specification and User Interface of a Prototype 77

Use Case-Driven Software Development 77

Overview of Use Cases 78
Case Creation 79
Indexing and Retrieving Cases 79
iv PhD Thesis - Fall 2002

Table of Contents
Adapting Cases 80

Functional Specification and User Interface 80
Primitive and Classifications 80
Cases 103

CHAPTER 7 How it All Works - Case Creation, Retrieval, and Adaptation in
Action 113

Case Base: Initial Seeding 113

The Retrieve-Adapt-Create Cycle 117
Episode 1 118
Episode 2 119
Episode 3 120

CHAPTER 8 Conclusion 123

Contributions 123

Future Research Directions 125

References 127

APPENDIX A Representation and Building Blocks for Design Scenarios 135

APPENDIX B System Object Models 151

APPENDIX C Sequence Diagrams for the Use Cases described in Section 6.2
177
PhD Thesis - Fall 2002 v

List of Figures
FIGURE 1. Idealized household life cycle 14

FIGURE 2. The 13 general climate regions in US 16

FIGURE 3. Early Native Americans lived in an assortment of housing. Housing designs
varied, according to the region in which they were located 17

FIGURE 4. The three ranch styles 24

FIGURE 5. The three main split-level designs 25

FIGURE 6. March and Steadman (1971) show how three Frank Lloyd Wright houses,
designed for different sites, share underlying spatial arrangements of rooms
27

FIGURE 7. Some types of spatial arrangements 28

FIGURE 8. An example of type hierarchy for the classification of housing precedents 30

FIGURE 9. An example of building blocks: ‘sequential task’ 36

FIGURE 10. Body of design scenario: combining linear and iterate design task with
meetings 36

FIGURE 11. Design scenario 1: design task consisting of parallel activities, with meetings
at the beginning and the end 38

FIGURE 12. Design scenario 2: combining linear and iterate design task 45

FIGURE 13. Design scenario 3: combining linear and iterate design task with meetings
49

FIGURE 14. Design scenario 4: linear design task with meetings at the beginning and the
end 54

FIGURE 15. Design Scenarios vs. CBD 62

FIGURE 16. System architecture of SL_Comm 67

FIGURE 17. A solution allocating a number of functional units in SEED-layout 68

FIGURE 18. SEED-CKB 70

FIGURE 19. A class hierarchy of functional unit in SEED-Layout 71

FIGURE 20. An example spatial hierarchy in SEED-Layout 72

FIGURE 21. System architecture for the first prototype implementation, SL_CB 75

FIGURE 22. Phases and products of use case-driven software development 79
vi PhD Thesis - Fall 2002

List of Figures
FIGURE 23. Start a classification session 82

FIGURE 24. New knowledge base dialog box 83

FIGURE 25. Load a CKB 84

FIGURE 26. View primitive hierarchy 87

FIGURE 27. Create a primitive 89

FIGURE 28. Edit primitive settings box 90

FIGURE 29. Primitive information settings box 92

FIGURE 30. Create a classification 93

FIGURE 31. Edit classification settings box 95

FIGURE 32. Delete a classification 97

FIGURE 33. Classification derived information settings box 98

FIGURE 34. Compare classification settings box and the attribute 99

FIGURE 35. Classify settings box 100

FIGURE 36. Compare settings box 101

FIGURE 37. Retrieve settings box 103

FIGURE 38. Start a case-based design session 104

FIGURE 39. Save as case-base dialog box 107

FIGURE 40. Create a Case settings box 109

FIGURE 41. Retrieved by index settings box 112

FIGURE 42. SEED-Layout GUI supporting creation of Functional Units 115

FIGURE 43. Three floors of a split-level residence created with SEED-Layout 116

FIGURE 44. Retrieve-adapt-create cycle in the design scenarios 117

FIGURE 45. Modified split-level residence 119

FIGURE 46. Second modification of split-level residence 120

FIGURE 47. Third modification of split-level residence 122
PhD Thesis - Fall 2002 vii

List of Tables
TABLE 1. The comparison between rule-based reasoning and case-based reasoning 5

TABLE 2. Private vs. public housing allocation 33

TABLE 3. The Functional Units of a split-level residence 114

TABLE 4. Functional Units in extended split-level residence 121
viii PhD Thesis - Fall 2002

Acknowledgement
I was worried about my life—including my studies—before I embarked on a long
journey to study in the US. But I have met a lot of good people along the way, and it
becomes difficult for me to include everyone who made my life rich. I will try to
mention most of them.

First, I would like to express my sincere gratitude to my advisor, Professor Ulrich
Flemming, for his confidence and patience in me, his clarity of thinking, and his
continuous sources of research. I am also grateful to my thesis committee members:
to Professor James Garrett for his precise critiques of the what, why, and how of my
research; and to Professor Stephen Lee for his support and key discussions at some
critical points, especially in developing housing design scenarios.

I am indebted to my former advisor in Korea, Professor Bokcha Yoon, not only for
guiding my research during almost 6 years when I was a graduate student in Yonsei
University, but also for introducing her older sister, who lived in Pittsburgh (I feel so
sad because she passed away this year), to me to help my settling down and to take
care of me while I stayed in Pittsburgh.

I cannot think about CMU without remembering my colleagues. I would like to
specially thank Robert Ries, Dan Greenwood, and others who read various drafts of
this thesis, pointed out mistakes, and suggested better explanations.

Working within the SEED project has given me a priceless learning experience. Even
though many talented students had already graduated when I joined the SEED
project, I still had a chance to meet some of them and would like to specially mention
Shang-chia Chiou, Zeyno Aygen, and Sheng-Fen (Nik) Chien. I have learned a lot
from the SEED project members, Wen-Jaw (Jonah) Tsai and Michael Cumming.

I also have friends who came from the all different places in the world and have given
me precious opportunities to learn about their cultures and countries. I am glad that
my former roommate and classmate Jayada Boonyakiat is able to graduate with me
almost at the same time. I am also glad to have met my other classmates, Hesham
Eissa and Halil Erhan (and his family). I thank all my office mates and neighbors—
we had lunch and dinner together and encouraged each other: Mustafa-Emre Ilal,
Nabeel Koshak, Ye Zhang, Seongju Chang, Kuhn Park, Kristie Mertz, Prechaya
Mahattanatawe, Zhengchun Mo, Heakyung Yoon, Min Oh, and Sang-Hoon Lee.
PhD Thesis - Fall 2002 ix

Acknowledgement
I was surrounded by many great people and friends outside of the campus. I most
likely have met them in the Korean United Presbyterian Church of Pittsburgh. I would
especially like to say thanks to Jeesook Lee for her generous offer to stay in her house
twice during trips back to and forth from the US. I also want to thank Pastor Stephen
Kim and Hana Yoon in New Jersey for their endless concerns and support, especially
when I was sick during the last year.

I want to acknowledge the Korean Government and the Institute for Complex
Engineered Systems (ICES) for supporting me up to the end so that I was able to
finish this degree in a very conducive environment.

From the bottom of my heart, I thank my parents—in memory of my father Keun-Sup
Lee, my mother Daija Shin, as well as my brother Sang-Hun Lee for their
unconditional support, love, and faith in many phases of my life. Without their
support, I would not have been able to complete the whole course.

Finally, thanks God! I can finish my dissertation and be ready to enter a new phase of
my life. Guide me in your truth and teach me.

“Then you will know the truth, and the truth will set you free.”
x PhD Thesis - Fall 2002

Abstract
Expert designers typically refer to and re-use past solutions for recurring design
problems. Case-based design (CBD) attempts to transfer this natural design reasoning
process to computer-aided design using artificial intelligence (AI) methods and
databases. The housing design domain is particularly suited for applying the CBD
approach because the traditional method of home design already makes extensive use
of precedents and solutions are highly standardized in that industry, at least in the
U.S. A generally accessible and continuously updated database of case could also
alleviate some of the structural problems that have plagued this industry and stood in
the way of innovation.

This thesis focuses on a general framework and computational environment that
supports the schematic design phase for housing through a CBD capability. It
describes formally typical activities during early housing design in the U.S.—by both
for-profit and non-profit developers—in the form of scenarios (based on the housing
literature and interviews with various stakeholders in the industry). The framework
links crucial activity blocks to typical phases in CBD. The thesis furthermore
introduces classificatory types of housing precedents that provide a basis for a
structured knowledge representation that supports case retrieval.

The prototype has been implemented using various components of SEED (Software
Environment to Support Early Building Design). It adds to these components an
efficient classification and indexing mechanism derived from the classificatory types
that combines form- and component-based features and remains flexible (i.e. can be
modified and customized by users); a case base on top of SEED’s object-oriented
database; and a retrieval mechanism that uses the indexing mechanism. For the
generation and adaptation of cases, the prototype relies on functionalities provided by
SEED-Layout. Prototype development uses selected methods and concepts of use
case-driven software development.
PhD Thesis - Fall 2002 xi

Abstract
xii PhD Thesis - Fall 2002

PhD Thesis - Fall 2002 1

CHAPTER 1

Introduction

Barry held one of the punched cards up to the light. ‘See those holes?’ he asked
the manager. ‘Those holes are the only part of the software that actually goes into
the plane.’
- A Fortran Programmer working on the avionics software

‘A building is, in principle, four walls with windows for light and air,’ and he
replies that, ‘on the contrary, a building may just as well be four windows with
walls for privacy and shade.’
- Geoffrey Broadbent, Design in Architecture

1.1 Motivation

It seems that there are commonalities between layout design in architecture and
software development using punched cards. In both, emptiness is the main
purpose for creation. That is, empty spaces surrounded by architectural material
are a product of architectural design, as empty holes in punched cards are a
product of Fortran programs. Another similarity between architectural design and
software development is that they are highly goal-oriented activities seeking
solutions for given problems.

In the context of the present thesis, however, one of the most important
similarities between these two types of tasks is that expert designers in both
domains typically refer to and re-use past solutions. For a standard situation,
architects generally use a collection of standard designs, which have evolved
over many decades of experience [Jackson 1995, p.189]. In most cases of
software design, expert designers also avoid solving every problem from first
principles. Instead, when they find a good solution, they try to use it repeatedly.
Gamma et al.(1995) called the experience accumulated in designing software
design patterns. “Design patterns help a designer get a design ‘right’ faster”
[Gamma et al. 1995, p.2]. In the next two sections, I will discuss what case-based
reasoning in design is and why the case-based design paradigm is promising.

2 PhD Thesis - Fall 2002

Introduction

1.1.1 Case-based Reasoning in Design

Case-based reasoning (CBR) is a paradigm for re-using past experience. As a
part of the broader field known as artificial intelligence (AI), it is a form of
analogical1 reasoning, a central inference method in human cognition [Carbonell
1983]. People like lawyers, doctors, mechanics, and managers usually remember
similar past experiences when they face a new problem and apply this experience
to the new problem. CBR is an approach to transfer this natural human reasoning
process to the computer using AI methods and database technology. In CBR, a
reasoner remembers previous situations, called cases, similar to the current one
and uses them to help solve the current problem. A case is defined as “a
contextualized piece of knowledge representing an experience that teaches a
lesson fundamental to achieving the goals of the reasoner” [Kolodner 1993, p.
13]. The specific knowledge of previously encountered problem situations is
organized into a computerized case-base.

Aamodt and Plaza (1994) describe the main phases of the CBR as the CBR-cycle.
A general CBR-cycle includes four processes: retrieve, reuse, revise, and retain.
“A new problem is solved by retrieving one or more previously experienced
cases, reusing the case in one way or another, revising the solution based on
reusing a previous case, and retaining the new experience by incorporating it into
the existing knowledge-base (case-base)” [Aamodt and Plaza 1994, p.8].

CBR is, at its core, as a problem-solving process, but what a problem and a
solution is varies from application to application. In design, the problem is
generally a functional specification that includes goals and a set of requirements
to be satisfied. The solution in design is a description of an artifact to solve a
design problem. In architectural design, precedents from the past are often used
to deal with similar current problems: “Typologies, generic solutions, and
prototypes are used to help clarify the nature of problems during the intelligence
phase, as a basis for generating solutions during the design phase, and as a
yardstick for comparison during the choice phase of praxis” [Lang 1987, p. 62].
In the fields of environmental design, building, landscape and urban design,
typologies are classifications of built structures according to the similarity of
their purposes and/or their formal structure” [Lang 1987, p. 61, 62]; Chapter 3
will return to this topic. The use of typologies is an example of a direct analogy.
A designer who encounters a new design situation recalls analogous previous
design problems that can help with the new situation [Maher et al. 1995, p.3].

1. Analogies suggest an equivalence or likeness of relationship between something in one
medium and something in another medium [Lang 1987] p. 63.

PhD Thesis - Fall 2002 3

Motivation

Computer-aided design research has a number of goals including the
improvement of graphical representations, a better understanding of design
processes, and the development of tools to assist designers. Most commercial
CAD (computer-aided drafting or computer-aided design) systems allow
designers to create, fix, re-use, and reproduce 2D drawings or 3D models with
the help of the computer. CAD systems can replace manual editing because of
their precise and effective modification tools. Animation extends 3D modeling
by adding time to space and allows clients to see how a building will look before
it is complete. Commercial CAD tools are successful as visual design media and
as tools for automating low-level manual processes, like drafting and model-
building.

However, intelligent CAD systems are still not available to help designers
generate solutions. Case-based design (CBD), an application of CBR to design,
promises an efficient way of finding complex design solutions by minimal
search, provided that problems presented to the system have strong similarities to
known cases for which solutions exist. A design case describes a past design
experience. The content and knowledge structure of design cases as well as the
organizational structure of case memory is an important aspect of a CBR system
because it influences subsequent retrieval and adaptation of design cases [Maher
et al. 1995].

To date, CBR has been widely used in a great variety of application domains such
as mechanical engineering, medicine, and business administration. Nevertheless,
its use is not common in architectural design, let alone housing design, despite
the fact that CBR appears particularly appropriate for this domain because the
traditional method of home design already makes extensive use of precedents,
and solutions are highly standardized in the industry, at least in the U.S. The
wide-spread use of CBR in that industry would have to rely on a conceptual and
methodological framework that integrates all of the required functionalities and
data and is accessible to a broad portion of that industry through a robust
implementation. If such a CBD system is to be integrated into the daily working
environment of a firm involved in housing design, it must also be able to share
data with a commercial CAD, modeling and visualization software.

1.1.2 Why CBD for Housing?

1.1.2.1 Expert Systems in Design

Most AI problem-solving theories of design have concentrated on routine
design2. Expert systems using rule-based and model-based reasoning techniques
have been used to build design automation and design decision support systems.

4 PhD Thesis - Fall 2002

Introduction

Expert or rule-based systems are “computerized systems that use knowledge
about some domain to arrive at a solution to a problem from that domain. This
solution is essentially the same as that concluded by a person knowledgeable
about the domain of the problem when confronted with the same problem”
[Gonzalez and Dankel 1993, p. 21].

Although such systems have met with some success in selected design domains,
difficulties have been encountered in terms of formalizing generalized design
experiences as rules, logic, and domain models [Maher and Pu 1997, p.1].
Moreover, those classical AI methods of design are not applicable when design
characteristics are ill-defined, and the system do not possess the flexibility that
practiced designers use in the real world. In this situation, it is more efficient to
create software to assist a human designer interactively rather than to fully
automate the design task.

The following is a summary of some basic shortcomings of the rule-based system
paradigm as described by Slade (1991) when it comes to higher-level design
assistance:

• The task of knowledge acquisition3 is often difficult. Most experts cannot
easily describe or communicate their expertise or the way they make
decisions. Furthermore, experts frequently perform their tasks without being
fully aware of the processes and heuristics they use and of how they make
use of their experience. They may not realize all the different aspects of a
situation that they actually consider when they made a decision [Prerau
1990, p.14]. Because significant effort and time are required to transfer
knowledge from the experts to the system, knowledge acquisition is
considered the bottleneck in the development of expert systems [Rich and
Knight 1991, p.515].

• Rule-based systems do not have a memory. Rule-based systems do not
remember problems that they have already solved. For example, if a medical
diagnosis program is presented with two different patients with the same set
of symptoms, the program evaluates the same set of rules for each: it does
not remember the first patient when it evaluates the second. Moreover, a
program without a memory cannot remember its mistakes and will repeat
them. Thus, accuracy and efficiency pose problems for rule-based systems.

2. Detailed descriptions and distinctions among routine, innovative, and creative design can be
found in [Gero 1990] p. 34-35.

3. The process of extracting domain knowledge from experts during expert system development is
called knowledge acquisition. Knowledge acquisition is usually accomplished by meetings
between so-called “knowledge engineers” and domain experts, where the knowledge engineers
attempt to elicit design knowledge from the experts [Prerau 1990] p.12.

PhD Thesis - Fall 2002 5

Motivation

• Rule-based systems are not robust. If the system is presented with a
problem that cannot be solved by its rules, the program cannot respond
because the system’s knowledge base is limited to its rules: if no rule
applies, the system has no way to respond, and its performance degenerates
rapidly when it encounters unexpected situations.

As an alternative to rule-based systems, a case-based system has several
advantages in terms of knowledge acquisition, memory and performance, and
ease in constructing solutions. First, the unit of knowledge is the case, not the
rule. It is easier to articulate, examine, and evaluate cases than rules. In fact, it
may be possible to construct a case base without the help of knowledge
engineers. Second, a case-based system can learn from its past performance in
the sense that bad cases can be weeded out and new and better ones added over
time. This may involve human administrators, but is generally easier because
cases, as the unit of knowledge, are easier to understand by humans than rules,
which often interact with each other in unanticipated ways. Third, a case-based
system does not need exact matches to come up with promising solutions by
reasons of analogy; even it confronted with a rather novel situation, it may still
retrieve past solutions that have some relevance to the current problem and be
modifiable to solve it; that is, the system degenerates more gracefully in
unexpected situations [Slade 1991, p. 49]. Table 1 shows a comparison of the
main characteristics between rule-based reasoning and case-based reasoning.

1.1.2.2 The Housing Market

The CBD approach is particularly promising for the housing industry because of
the wide-spread use of standardized plans that reflect commonly accepted plan or
house types in that industry. In the US, the housing industry’s design process is

TABLE 1. The comparison between rule-based reasoning and case-based reasoning

Rule-Based Reasoning Case-Based Reasoning

Knowledge
Acquisition

* The unit of knowledge: rule
* Knowledge acquisition:
extracting rules from experts

* The unit of knowledge: case
* Knowledge acquisition:
collection of the cases

Memory and
Performance

Repeating the same mistake Remember as cases, and avoid
repeating prior mistakes

Ease in
Constructing
Solutions

* Simple chain of rules.
* Find exact-match rules ->
hard to construct solutions

By reasoning from analogy,
ease to construct solutions to
new problems.

6 PhD Thesis - Fall 2002

Introduction

largely clientless. Houses are generally developer-built products, sold on the
open market just like cars or shoes [Rouda 1999]. In the absence of individual
clients demanding a custom design, homebuilders usually base the plans they use
on drawings they find in magazines or journals or rely on stock plans, which can
be purchased through magazine advertisements or catalogues [Gutman 1985, p.1-
2]. Designers and developers anticipate the reaction of the housing market based
on their past experience and select the designs accordingly. They may also look
at other projects that are locally under way; if this work has promise for their own
business, they will attempt to learn from it and apply it with just a slight
variation.

However, these traditional methods used by the housing industry have several
shortcomings.

First, there are some disadvantages when plans are collected in books. The major
problem with this is that the data is arranged sequentially [Flemming and Aygen
2001]. For example, authors tend to choose one major building type classification
and group the designs in their books using that classification. When readers want
to select data under different categories, they have to select the proper data
manually unless they somehow rearrange the book for that purpose. A second
disadvantage of using books is their static nature. Once they are printed, data
cannot be inserted or updated only by manual annotations. It is also impossible to
combine or merge data from heterogeneous sources.

Second, purchasing a home is usually an individual’s largest lifetime investment.
Residential designs are evolving constantly in response to changing societal
values and needs. Like in the automobile industry, buyers looking for specialized
products have a growing influence in the housing industry; instead of cookie-
cutter houses, they want room configurations that reflect and accommodate their
particular lifestyle [Wentling 1995, p.3]. However, when searching for a house in
the real world, people mostly rely on model home advertisements and site visits
to decide if the model meets their needs and expectations.

Third, home building in the US is a very conservative industry. There are several
obstacles to innovation in the housing industry [Goldberg 1989]. The customers
themselves cause some of them, but others are caused by the structure of the
industry or the nature of the market. That is, the housing delivery process is a
fragmented system that involves architects/designers, manufacturers, builders,
regulators, financiers, and homeowners/clients. Vertical fragmentation among
home builders, designers, financiers and homeowners obstructs communication
between each group. Horizontal fragmentation between subcontractors further
impedes the free flow of information among the participants in the design and
construction process. Fragmentation in both directions becomes an obstacle to

PhD Thesis - Fall 2002 7

Motivation

innovation in the housing industry. The small size of the firms in each category,
which may be fiercely competing with each other, also obstructs communication
and the spread of innovation. (Chapter 2 returns to these aspects of the housing
industry)

CBD seems to answer many of the raised questions. That is, strategic application
of computer technology based on CBD can help individual designers, overcome
limitations of paper-based static media, the difficulties of exploring alternatives
and adapting houses easily and instantly, and the vertical and horizontal
fragmentation that interferes with intra-industry communication.

An organized case-base as mentioned in Section 1.1.1 becomes more powerful
over time as designers solve each new problem and add the solution to the case-
base to be re-used when needed. Given such a case-base and a flexible indexing
and retrieval mechanism, designers can explore various alternatives with ease,
including ones they have not encountered before. If the cases can be imported
into a CAD system that facilitates adaptation, customization can also happen in
an efficient manner, which, in turn, may add new cases to the case base. This can
also be helpful to the homebuyer looking for a more customized solution. In this
case, tools to visualize a case or its adaptation in 3D would be especially helpful.
The case base, in short, can overcome many limitations of traditional paper-based
and static media.

Provided such a case base is widely accessible within the industry, it can also
help in overcoming some limitations imposed on the industry by vertical and
horizontal fragmentation. First, each group can access this case-base and make
use of the newest data more easily and quickly. That is, hindrance of
communications among each vertically fragmented group can be overcomed by
this industry-wide accessible case-base. Second, a common case-base would
allow each group to share the data that it created with others. Communication
among each horizontally fragmented group or segment can be improved by the
rich collection of precedents in the case base, which may spread information and
new knowledge more rapidly throughout a segment. The case base, per se, does
not address vertical fragmentation directly. But if it is set up so that comments or
annotations can be added to a case as it passes through the different development
phases, information about advantages or disadvantages associated with a specific
case may become available up- or down-stream in a more timely manner.

In short, CBD offers a promising application for the housing domain because it
can overcome some limitations of rule-based systems and of traditional methods
of information storage and exchange in the housing industry.

8 PhD Thesis - Fall 2002

Introduction

1.2 Research Objective and Approach

The main objective for this dissertation is to investigate the application of CBR
to housing design, especially in its initial stage. In particular, the research focuses
on a general framework and computational environment that supports the
schematic design phase through a case-based reasoning capability. Using this
framework, the research validates the approach by implementing a prototype of
CBD for housing design based on the Software Environment to support Early
building Design (SEED) project4 at Carnegie Mellon University.

This research attempts to satisfy these objectives through the following tasks:

1. Investigate promising typologies and classifications that can be used
for an efficient and flexible indexing and retrieval mechanism

2. Model the design process for single-family houses in the early phases

3. Define a general framework to support this housing design process
through a CBD capability

4. Define the functional requirements of the system

5. Design, implement, and test a research prototype of CBD for housing.

1.3 Overview

This dissertation is organized as follows. In Chapter 2, I provide background that
covers the housing market in the US, which includes industry characteristics and
supply and demand for housing. In Chapter 3, I deal with types and typologies of
housing precedents, which include form-based and component-based
classifications. In Chapter 4, I develop design scenarios for single-family houses
and formalize the design scenarios with customized building blocks. In Chapter
5, I present a framework for integrating the housing design process and CBR. In
addition, I introduce SEED as a suitable development platform for a CBD
prototype of the proposed system. In Chapter 6, I develop use cases and present
the user interface of a CBD research prototype for housing. These use cases
specify the functional requirements of the prototype from the users’ perspective.
In Chapter 7, I illustrate how the CBD prototype works by concrete examples of
case creation, retrieval, and adaptation. Finally, in Chapter 8, I summarize the
research contributions and discuss possible future research areas.

4. Detailed descriptions of the SEED can be found in [Flemming and Woodbury 1995] p. 147-152.

PhD Thesis - Fall 2002 9

CHAPTER 2

Background: The Housing Market
in the US
When an architect says that he or she has a new idea, the response will always be
“Great, show me some market research to prove it will work.” Of course,
whatever innovation an architect might come up with is more likely to take hold
if it can be explained very quickly to the home-shopper during a short
conversation with the sales agent. The shopper must also respond to that new
idea by choosing the home above all others, as one might choose one cereal box
over another from a crowded supermarket shelf.
- Mitchell Rouda, Houses as Products

2.1 Industry Characteristics

The residential housing industry is one of the largest and most important sectors
of the U.S. economy. The productivity and competitiveness of the industry and
the affordability and quality of its products and processes can be increased by
accelerating the rate of adoption and application of technological innovation
[Goldberg 1989]. Factors that influence the development and diffusion of
innovation in the housing industry are the industry’s structure, the nature of the
market, and the characteristics of firms. Firms in the housing industry are
segmented into primary producers, manufacturers, suppliers, and home builders.
Firms are classified according to the stage of production in which they operate.
The following is a summary of industry characteristics that influence the
generation and adoption of innovation as described by Goldberg (1989).

2.1.1 The Small Average Size of Firms

In the home building segment of the housing industry, the small average size of
firms is a restriction for doing formal research and development (R&D).
Generally, single-family home builders are smaller than multifamily home
builders and too small to command the considerable additional resources in new
management, technical personnel, and facilities that formal research and
development require.

10 PhD Thesis - Fall 2002

Background: The Housing Market in the US

2.1.2 Vertical and Horizontal Fragmentation of the Housing Industry

Vertical fragmentation among home builders, craftsmen, architects, and sales
people hinders innovation in several ways. First, complicated hierarchical
communication results in poor feedback on specific improvements that need to
be investigated. Second, it is difficult and costly to educate companies about an
innovation when they did not participate in developing it. Finally, vertical
fragmentation including the network of subcontracting makes implementation
difficult and increases the costs of adoption.

Horizontal fragmentation of the various subcontractors and trade specializations
also make the generation and adoption of innovations difficult. Since the
contractors are only interested in their respective responsibilities, they often do
not talk to one another, tend to resist any innovations that might change their
work allocations, and may not be interested in research on larger systems that
combine a number of different products or materials. Consequently, the scope
and benefit of the innovations that can be adopted are limited.

2.1.3 Reaction to Cyclical Characteristics

The home building industry is cyclical. In such circumstances, small firms that
are hardly able to cope with fluctuations usually cannot fund research during a
down-cycle. The few firms that undertake research may initiate research during
an upsurge in demand, but may be stopped again in the down-cycle. They tend to
waste valuable time in reassembling and training a new team during the next up-
cycle. As a result, the outputs of such research are either wasted or the payback is
delayed, affecting the future benefit stream.

2.1.4 Sparse Management

Home building firms usually tend to emphasize research that will help them
solve short-term problems and, as a result, forego the opportunity to achieve the
major savings inherent in longer-term research involving systemic
improvements. The relative lack of management resources tends to make
research more expensive and increases the probability of eventual failure. For the
same reasons, management tends to be more pessimistic when calculating and
evaluating the future benefits of such research. Some managers are reluctant to
engage in incremental innovation because it may threaten the schedule of current
operations.

The lean management of home building firms, preoccupied with daily problems,
is likely to be less aware of new technological developments and be disposed

Design Build Regulate

horizontal

Drafters

Engineers

sub contractors

 sub-sub contractors
 vertical

PhD Thesis - Fall 2002 11

Supply and Demand in the Housing Market

against adopting innovations unless they provide an immediate solution to
current problems. Innovations can be disruptive to building operations.
Management will probably not have the time or ability to plan or incorporate
them into the construction schedule. As a result, the minimum cost and the risk of
adopting innovations are increased.

2.2 Supply and Demand in the Housing Market

In American society, the market for housing can be defined as “a set of
institutions and procedures for bringing together housing supply and demand—
buyers and sellers, renters and landlords, builders and consumers—for purposes
of exchanging resources” [Bourne 1981, p. 72].

2.2.1 Making Housing Choices

Housing choices require values and a series of decisions based on needs, personal
priority, and life situations. However, the real-world housing choices people
make do not always reflect their housing preferences or attitudes. Preferences
help us understand tastes that exist independently of constraints. As such,
preferences are conceptually distinct from choice, which is the outcome of the
interaction of preferences and constraints [Maclennan 1982]. Therefore,
constraints force people to make trade-offs between preferences based on their
personal priorities and the resources available when choosing their homes. That
is, the real choice of housing in the market is much more complicated and
dynamic, and decision-making by a housing consumer includes some
uncertainty. In order to account for profits or utility and to reflect uncertainty of
consumers’ decision behavior, probability models are suggested by Luce and
Suppes (1965), and developed by McFadden (1973, 1978). These models focus
on understanding different housing choices according to housing characteristics
and socio-economics characteristics of households when housing decisions are
made.

2.2.2 Households: The Demand Side of the Market

According to Nissen et al.(1994, p.170), anthropologist Paul Bohannan defines
the household as “a group of people who live together and form a functioning
domestic unit. They may or may not constitute a family, and if they do, it may or
may not be a simple nuclear family”. Clearly, this definition encompasses a great
variety of living arrangements.

12 PhD Thesis - Fall 2002

Background: The Housing Market in the US

Households are the units of demand in the housing market. Three aspects
contribute to the housing choices made by households: lifestyle, social
stratification and income, and family life-cycle.

2.2.2.1 Lifestyle of the household

“A lifestyle is a living pattern or way of life” [Lewis 1994, p. 20]. A household’s
lifestyle is affected by the composition of its members, their values, and social
status.

Wentling (1995, p.1-2) summarizes changing lifestyle trends in American
households as follows:

• Since the size of the average American household is shrinking to 2.3 persons
per household, less space should be required in a house.

• Household compositions are also changing. The traditional nuclear family is
shrinking both in size and as a percentage of total U.S. households—with
only 25 % of all households now considered “traditional.” The percentage of
“nontraditional” households—married adults without children, single
parents, persons living alone, and unrelated people sharing housing—has
increased.

• Employment trends have changed. In 50 % of all married couples, both
adults work. But corporate downsizing and innovations in technology force
or allow people to work part-time, with flexible hours, or to work from
home. Therefore, a portion of the home is becoming an extension of the
workplace.

• Personal values are also changing. Although more households include two
working spouses, education, leisure, and cultural pursuits are often rated
higher in priority than career advancement. The relative importance of
family and individual relationships is increasing. This means that people
want to spend more time in the comfort and security of a well-designed home
environment.

People’s lifestyle influences their choice of house and the way they use their
house. Households vary in their design preferences and in their use of space
according to the closeness of the family, the extent to which it regards its home as
the center of activity, and expectations and values conditioned by ethnic and
cultural backgrounds.

PhD Thesis - Fall 2002 13

Supply and Demand in the Housing Market

2.2.2.2 Social stratification and income of the household

Social stratification refers to “the arrangement of any social group or society into
a hierarchy of positions that are unequal with regard to power, property, social
evaluation, and/or psychic gratification” [Tumin 1967, p. 12]. The consequences
of stratification can determine people’s life-chances and lifestyles. Income
determines social stratification to a large degree. In the housing market, the
housing supply and demand mechanism is based on price. Therefore, “income is
usually taken as an overall index of demand and purchasing power, while
dwelling price is taken as an index of the type of housing supply available”
[Bourne 1981, p. 76].

2.2.2.3 Family life-cycle

As time goes by, households pass through different life-cycle stages. Since
housing values, norms, needs, and preferences change as people move from one
stage of the life-cycle to another, different housing decisions are made at each
stage. Generally, the life-cycle of a traditional family has five stages: the
beginning stage, the expanding stage, the developing stage, the launching stage,
and the aging stage.

“The beginning stage is the time during which the married couple is without
children. The husband and wife make adjustments to married life and to each
other. The expanding stage is the time when the family is growing. It includes the
childbearing periods and the years of caring for young children. The developing
stage is the time when children are in school. This stage includes the years of
caring for school-age children and teenagers. The launching stage is the time
when the children become adults and leave their parents’ home. They may leave
to go to college, to begin a career, or to get married. When all the children have
left home, the couple is again on its own. The aging stage is the time after
retirement. At some point in this stage, either the husband or the wife live alone
after the death of his or her spouse. As people live longer, this stage increases in
the length of time” [Lewis 1994, p. 18, 19].

Bourne (1981, p.136) describes the relationships between demographic changes
and housing needs and demand. Figure 1 illustrates a life-cycle progression
starting with a typical family unit (parents [F, M] and two children [c]). It follows
one of the children (in this illustration, I follow the daughter) through as many as
seven stages until the children have left home and the parents have retired. This
model is broadly applicable because each stage contains almost all possible
alternatives for a specific family to take the next step.

14 PhD Thesis - Fall 2002

Background: The Housing Market in the US

Source: Reconstruction from the original source by Bourne (1981) p.136

FIGURE 1. Idealized household life-cycle

 HOUSEHOLD
 STAGE

 HOUSING
 TYPE

 MEAN AGE
 (female)
 years

Initial
family

Young
singles

Childless
couples

New
family
(1) or (5)

Mature
family
(1) or (6)

Older
family(1)

Empty
nesters

Senior
singles

Institute,
apt. or
granny

Smaller
house or
apt.

Largest
house

Larger
house (1)
or house
and flat(6) flat

First house
(1) or two
flats (5)

Small
apt.
rented or
owned

 Rented
 room or
 flat

 17-20 20-25 25-29 35-40 45-50 55-60 over 65

 F M
 cc

 M

 F

 M

 M

 F

 F M F M c

 F or M

F MF M cF M cc+

 F or M
 +c

1

2
3

4

5

6
6

Note:
 F: female
 M: male
 c: child
 cc+: two or more children

Alternative paths
1 typical family
2 never married
3 no children

4 one-child only
5 separated/divorced
6 one-parent household

PhD Thesis - Fall 2002 15

Supply and Demand in the Housing Market

2.2.3 Housing Units: The Supply Side of the Market

The housing market has several unique characteristics that make it different from
most other markets. First, products cannot by physically moved, with the
exception of mobile homes. Second, some properties can be severely restricted
through zoning regulations and planned neighborhoods, and can be withdrawn by
public fiat such as compulsory purchase or expropriation. Third, there is no
single geographic marketplace for housing. Instead, buyers move to the goods
[Bourne 1981, p.72]. Because of these reasons, housing encompasses not only
the dwelling itself but all that is within and near it.

Housing changes physically and formally according to environmental, cultural,
societal, economic, technological, and governmental influences.

2.2.3.1 Environmental Influences

The environment comprises the conditions, objects, places, and people around us.
People adapt to their environment in the housing they design and build [Lewis
1994, p.36].

Climate is the combination of weather conditions in a region over a period of
years as shown by temperature, wind velocity, and precipitation [Lewis 1994,
p.36]. Since the United States covers wide areas, it can be divided into several
climate zones. Figure 2 presents the 13 zones5 of climate in US6.

According to Amos Rapoport7, climate is one of the factors affecting housing
form—the plan, roof shape, materials and insulation, and color for the interior
and exterior. In the U.S., climate is one of the factors affecting housing form for
vernacular (see Figure 3) and possibly custom-built houses. But this is much less
true for tract houses, where one can find the same housing layouts and materials
in very different climatic zones.

5. Each climate zone has a reference city: 1A- Hartford, Connecticut, 1B- Madison, Wisconsin, 2-
Indianapolis, Indiana, 3- Salt Lake City, Utah, 4- Ely, Nevada, 5- Medford, Oregon, 6- Fresco,
California, 7A- Charleston, South Carolina, 7B- Little Rock, Arkansas, 8- Knoxville, Tennessee,
9- Phoenix, Arizona, 10A- Midland, Texas, 10B- Fort Worth, Texas, 11- New Orleans, Louisiana,
12- Houston, Texas, 13- Miami, Florida

6. The regions have been based on heating and cooling needs, solar usefulness in a 50 to 65F
range, wind usefulness in a 75 to 85F range, diurnal temperature impact, and low humidity
impact for natural heating and cooling of homes [The AIA Research Corporation 1978, p. 12].

7. Amos Rapoport (1969). House Form and Culture, p.83

16 PhD Thesis - Fall 2002

Background: The Housing Market in the US

Source: The AIA Research Corporation (1978)

FIGURE 2. The 13 general climate regions in US

Natural constraints such as the topography, soil conditions, water supply,
orientation to the sun, the wind and the scenery also influence the location and
design of dwellings.

2.2.3.2 Cultural Influences

The beliefs, social customs, and traits of a group of people form their culture. The
culture of a group of people influences its housing. Hogans, the housing of the
Navajo, a Native American tribe of the early North American Southwest, had
religious significance in the placement of the door. The tradition exists today,
even though the type of housing for many has changed [Lewis 1994, p.32]. It is
an example illustrated how culture influences housing.

Cultures that came from Europe also contributed their styles of housing to the
American vernacular: Spanish mission, Swedish log cabin, Dutch colonial,
Pennsylvania Dutch (German) Colonial, French Normandy, and Italianate
housing styles are all examples of European influences on American housing.

PhD Thesis - Fall 2002 17

Supply and Demand in the Housing Market

Source: Lewis (1994) p. 28

FIGURE 3. Early Native Americans lived in an assortment of housing. Housing designs
varied, according to the region in which they were located

2.2.3.3 Societal Influences

The growth of the cities, the movement of people to new jobs and locations, and
the changing tends in American lifestyles, mentioned in section 2.2.2.1, show the
signs of societal change. Choosing a certain location as one’s social environment
is influenced by several decisions such as employment opportunities; closeness
to family members or friends; density and composition of population according
to age, religion, income, ethnic group, and occupation; community facilities such
as shopping, environmental protection, transportation, banking, religious
organizations, and educational, recreational, and medical facilities. Cost of living
can also be considered when one chooses a community.

While dual-income families, which result from changing roles in modern society,
may have more income, they may have less time for household chores and

18 PhD Thesis - Fall 2002

Background: The Housing Market in the US

therefore may desire more convenient housing and time-saving devices [Lewis
1994, p.34].

Available leisure time also affects housing decisions. People may choose housing
with low maintenance requirements so that they can spend more time on leisure
activities. On the other hand, people may choose housing that provides
opportunities for leisure activities such as a swimming pool, golf course, or
tennis court—with the accompanying maintenace requirements [Lewis 1994,
p.35].

2.2.3.4 Economic Influences

The economic influences on housing include the production and consumption of
goods and services related to housing [Lewis 1994, p.38]. Houses are expensive,
and price is a crucial factor in housing choices for almost everyone.

Since the housing industry employs developers, builders, material suppliers,
financiers, buyers, and sellers, employment goes up and down related to the
condition of the housing industry, mentioned in section 2.1.3.

Housing is traditionally the first major sector of the economy to rebound after a
slump. Growth in the housing industry has a positive impact on the Gross
Domestic Product (GDP), which is the value of all goods and services produced
within a country during a given time period. Mortgage interest rates and tax
regulations affect growth in the housing industry [Lewis 1994, p.39].

2.2.3.5 Technological Influences

The Industrial Revolution had a large technological impact on housing. Goods
started to be mass-produced. Prefabricated houses became popular because they
could be shipped in sections. Many parts of houses, such as doors and windows,
come from the factory ready to install [Lewis 1994, p.40].

Many electrical devices including climate control units have been developed.
Advanced technologies let people program outlets and light fixtures to save
energy and control the amount of light. By touching a button, window material
can change from clear to translucent. Computer technology can also be found
throughout housing [Lewis 1994, p.40, 41].

PhD Thesis - Fall 2002 19

Supply and Demand in the Housing Market

2.2.3.6 Governmental Influences

Legal constraints are imposed by federal, state, or local laws. State laws are
required to conform to federal legislation and local ordinances must conform to
both federal and state laws. Most local housing legislation includes the following
categories: standards for quality construction, control of land and density,
funding for housing, housing for people in need, health, and environmental
protection including health and safety standards [Lewis 1994, p.41].

Housing standards include building codes, which establish minimum standards
for materials and construction methods. Zoning regulations control land use and
density in certain areas. An area may be zoned for residential, commercial, or
industrial use. Sometimes within a residential area, only one type of dwelling
may be built. Manufactured housing and multifamily dwellings are usually
restricted to specific areas. Sometimes the minimum size of dwellings to be built
are also specified [Lewis 1994, p.42].

Funding is another example of government involvement in housing. The
government assures some loans, which means it stands behind the lender if
homeowners do not meet their obligations. Financial organizations such as
Government National Mortgage Association (GNMA), Federal National
Mortgage Association (FNMA), Federal Housing Administration (FHA), etc. are
a part of the Department of Housing and Urban Development (HUD) [Lewis
1994, p.42].

20 PhD Thesis - Fall 2002

Background: The Housing Market in the US

PhD Thesis - Fall 2002 21

CHAPTER 3

Housing Types and Classification
Systems

There is a general distinction concerning thinking: that between categories and
individuals, or classes and instances. (Two other terms sometimes used are
“types” and “tokens”). It might seem at first sight that a given symbol would
inherently be either a symbol for a class or a symbol for an instance -- but that is
an oversimplification. Actually, most symbols may play either role, depending on
the context of their activation.
- Douglas R. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid

3.1 Type and Typology in Architecture

An essential aspect of cognition is the ability to categorize: to judge that a
particular thing is or is not an instance of a particular category [Jackendoff 1994,
p.135]. Types, in the more generic sense, are categories of thought that can be
organized in generalization hierarchies [Aygen 1998]. From the eighteenth
century on, type is used as a classifying tool, as in Linnaeus’ famous plant
classification system. The notion of type entered the architectural discourse
based on this meaning [Leupen 1997, p.133]. However, the architectural notion
of type depends on the context in which it is used.

Moneo (1978) defines a type as follows: “It can most simply be defined as a
concept which describes a group of objects characterized by the same formal
structure”. Moneo explains that this formal structure is connected with reality,
which covers a vast hierarchy of concerns running from social activity to
building construction as well as to abstract geometry. Leupen (1997, p.132)
draws a distinction between analytical typology and generative typology. The
analytical typology is confined to naming various architectural elements and
describing how these elements fit together in a composition. The generative
typology, on the other hand, provides the designer with solutions, where type is
the bearer of design experiences pertaining to a similar issue [Aygen 1998]. For
the purpose of this dissertation, I consider only typologies of houses able to

22 PhD Thesis - Fall 2002

Housing Types and Classification Systems

support a classification of housing precedents useful for CBD. I use the term
classification as the name or label given to a type.

3.2 Types in Housing Design

Designers have made extensive re-use of precedents through analogical
reasoning for a long time. Especially in the housing domain, workbooks
(Schneider, 1997; Sherwood, 1994) are organized systematically, comparing and
evaluating housing precedents. Typology in housing is used to extract common
characteristics and compositional principles from housing precedents and to
classify them through the comparative analysis based on these characteristics and
principles.

In order to allow the re-use of precedents for a computational system, a
structured knowledge representation is needed. The notion of type in housing
may provide a basis for arriving at such a structured knowledge representation.
Based on a survey of the literature, I define two main classes of concepts in
housing design: form-based classifications and component-based classifications.

3.2.1 Form-based Classifications

A form-based classification addresses higher levels of spatial organization with
focus on the outline of the house plan and its context. This classification reflects
site information; access method; the shape, orientation, and size of the floor plan
as well as elevations and section; and style.

The shape of the house plan overall leads to some basic types: the horizontal and
vertical rectangle type, the square type, the linear type, the L type, the T type, the
U type, and the courtyard type.

Exterior design or articulation determines the housing style. It is common for
home buyers that they have already decided what their favorite housing style is
when they choose to purchase a house. Exterior style may determine the mood
that a house conveys and the basic layout and design of the interior of the house
[Kicklighter and Kicklighter 1998, p.375]. Traditional house styles8 in the
United States include Native American, Spanish, Swedish, Dutch, German,
French, English, English/Colonial, Salt Box, Garrison, Cape Cod, Georgian,
Federal, Greek Revival, Southern Colonial, Italianate, and Victorian9. Housing

8. They are designs created in the past that remain attractive [Lewis 1994] p. 106.

PhD Thesis - Fall 2002 23

Types in Housing Design

styles that have been developed in the recent past are called modern [Lewis
1994, p.111]. Most modern housing styles are variations of one of two basic
designs: the ranch and the split-level [Kicklighter and Kicklighter 1998, p.383].

The ranch style, inspired by ranchers’ homes in the southwest, was ideal for that
region because of the informal lifestyle, open land areas, and warm climate. Now
it has become popular throughout the country. Basic features of the ranch include
a one-story design with no stairs and a low-pitched, gable or hipped roof with a
wide overhang. The structure underneath may be rectangular or have an irregular
shape, such as L, T, U, or H. Ranch houses also tend to have large window areas
and sliding-glass patio doors. These houses are easy to maintain for outside tasks
such as painting, cleaning gutters, or replacing window screens. They are also
easily expanded and pose fewer problems of accessibility because they have no
stairs. However, they cover large areas and are less energy-efficient than other
housing styles because of their long, rambling configuration [Kicklighter and
Kicklighter 1998, p.383, Lewis 1994, p.112-114]. Extensive foundations and
roofs cause an increase in construction costs compared to multi-story houses.

Variations of the ranch include the hillside ranch and the raised ranch (Figure 4).
The hillside ranch is built on a hill so that part of the basement is exposed.
Depending on the layout of the lot, the exposed part may be anything from a
living area to a garage. The raised ranch, also called the split-entry ranch, has
the top part of the basement and garage above ground. This allows light to enter
the basement through windows so that the living area in the basement, like a den,
can be pleasant if it is well-insulated and waterproof. The main living quarters
occupy the floor above the basement, hence the term “raised ranch.” The split-
level label refers to the fact that one enters the house a half level above the
basement and below the main floor so that a short flight of stairs can take one up
or down.

The split-level house is designed for a sloping or hilly site. It has either three or
four different levels that are vertically offset from adjacent levels by half a floor.
The general arrangement places the social, private, and service areas of the house
on different levels, for which many variations exist. The three main variations of
the split-level design are the side-to-side, the front-to-back, and the back-to-front
arrangement (Figure 5). Advantages of split-level houses are that they provide
separation of functions within the house and that they are easily adapted to all
kinds of sloping sites. On the other hand, they are often more expensive to build
than two-story or ranch homes because of the complicated section. Heating may

9. Detailed descriptions and illustrations of these housing styles can be found in [Kicklighter and
Kicklighter 1998] p. 375-384.

24 PhD Thesis - Fall 2002

Housing Types and Classification Systems

also be difficult because of the different levels [Kicklighter and Kicklighter 1998,
p.384, Lewis 1994, p.114].

Source: Lewis (1994) p. 113

FIGURE 4. The three ranch styles

Since a single-family house is often adapted to the site on which it is built, the
shape and orientation of the site affect the size, shape, and orientation of the
house plan as well as the number of stories and the means of access to the house.
For example, if a developer wants to build a house on a sloping site, the
developer can consider a hillside ranch or a split-level house and take advantage
of the natural slope of the site to make efficient use of space. Depending on the
shape of the lot, some variations may exist within the chosen housing style. The
following is an example of how housing style, access for cars and people, and
number of stories can reflect the natural constraints of the site. Sites sloping
sideways are best suited for the side-to-side design. Sites that are high in front
and low in back are best suited for the front-to-back style. This type of house
appears as a ranch from the front and as a two-story house from the back. A lot
that is low in front and high in back requires a back-to-front design. In this style,
the living area is typically at the rear of the house, giving it direct access to the
outdoor area [Kicklighter and Kicklighter 1998, p. 384].

PhD Thesis - Fall 2002 25

Types in Housing Design

Source: Kicklighter and Kicklighter (1998) p. 384

FIGURE 5. The three main split-level designs

3.2.2 Component-based Classifications

Some geometries have been discovered that deal not with surfaces of uniform
curvature, but with surfaces which are bent, twisted, magnified, shrunk or
otherwise distorted. The study of such shapes falls under the general heading of
topology, the mathematics of position (geometria situs) and of distortion, which
deals not with the bending, twisting, and so on themselves, but with the
properties of objects which are so fundamental that no amount of such distortions
alters them [Broadbent 1973, p.224]. Among these, connectivity is especially
important in a design context.

26 PhD Thesis - Fall 2002

Housing Types and Classification Systems

Collections of connected objects are often represented by graphs. A graph
comprises a set of points, called nodes, that are connected by edges. In a
topological plan analysis, each habitable space is typically represented by a node
and the possibility of movement between spaces or a direct connection is
represented by an edge. The graph can represent all interior spaces of a building
and also the surrounding external spaces. A graph-based analysis of house plans
can lead to a topological interpretation of the organization of rooms in diverse
buildings that may uncover common connectivity features despite widely varying
shapes.

This method can show that a number of buildings which appear to have very
different configurations share nevertheless an underlying structural pattern.
March and Steadman (1971) demonstrated this in their analysis of three houses
designed by Frank Lloyd Wright (Figure 6). This example serves to illustrate that
a topological analysis of building configurations is not merely a means of visual
representation, but a method of capturing spatial organization for comparative
analysis [Lawrence 1987, p.51-52].

The component-based classification in the planning process for housing is based
on some sort of topological analysis that classifies various ways of organizing
internal spaces through the circulation system of the house plan and the
connectivity among spaces. People’s lifestyle, needs, and wants affect preferred
adjacencies and zoning within the house. There are three primary zones in a
house: social, private, and support areas. The social zone in any home
encompasses the areas where members of the household gather and where friends
are entertained, such as living room and dining room. Private spaces include
sleeping and dressing, and hygiene areas like bedroom, bathroom, and dressing
areas. The kitchen is usually the center for the support zone [Nissen et al. 1994,
p. 206-280].

The spatial arrangements of the house plan can be classified based on the
topological relationships between the zoning and the circulation system such as
halls, corridors, and stairways. According to Schneider (1997), and Chun and
Yoon (1989), some significant types of spatial arrangements are the following
(see Figure 7):

• The corridor type: the floor plan is organized according to a circulation axis
and the rooms are lined up on one or both sides.

• The insert box: the floor plan is visually interpreted as a large, open space
with an inserted cube (or inserted walls). This is also called the core type.

PhD Thesis - Fall 2002 27

Types in Housing Design

Source: Lawrence (1987) p. 52

FIGURE 6. March and Steadman (1971) show how three Frank Lloyd Wright houses,
designed for different sites, share underlying spatial arrangements of rooms

28 PhD Thesis - Fall 2002

Housing Types and Classification Systems

• The living room as centerpoint: the floor plan develops around the living
room. There is a variation where the central living room is combined with
the corridor or hall.

• The flowing floor plan: The rooms are rarely separated from the circulation
area and only slightly separated from each other.

• The hall type: the floor plan develops around a hall that is directly connected
to the entry. There is a variation of combining a central hall with the corridor.

Source: Schneider (1997) p. 26, 28 and Chun and Yoon (1989) p. 45, 46

FIGURE 7. Some types of spatial arrangements

PhD Thesis - Fall 2002 29

Classification of Housing Precedents in CBD

Once the arrangement of blocks of spaces is completed, designers consider the
relationships between individual rooms. The relations between living room,
dining room and kitchen are among the most important connections in the house.
The requirements for each room or area depend on the number of inhabitants and
the residential profile. The number of bedrooms, bathrooms and garages is a
major consideration and often directly reflected in the classification of a home,
like in “3-bedroom split-level.”. Needs for special rooms such as a powder room
are also important because they make certain house plans more popular than
others for people with this preference.

Note that certain configurational features can be derived automatically from a
structured, graph-based representation of cases; i.e. they do not have to be
captured explicitly through classification labels.

3.3 Classification of Housing Precedents in CBD

Form-based and component-based classifications can be used to classify housing
precedents. Figure 8 shows parts of a possible type hierarchy for housing
precedents. Since a single precedent can combine features represented by several
types, it can be grouped under different types. This makes the classification of
housing precedents complex and requires multiple classification taxonomies.

The classificatory types are able to serve as an indexing scheme for the retrieval
of housing precedents with desired characteristics or features in a CBD system. I
show in Chapter 5 how housing precedents can be multiply indexed based on
form-based and component-based classifications.

30 PhD Thesis - Fall 2002

Housing Types and Classification Systems

FIGURE 8. An example of type hierarchy for the classification of housing precedents

 Housing Types Example

 Generic

Form

Component

 Regional Location NW, SW, Central, NE, etc.

 Cost $50,000-$100,000, $100,000-150,000, etc.

 Site
 Shape

 Orientation North, East, West, South, etc.

 Access Front, Side, Back, etc.

 Plan

 Shape

 Orientation

 Size

Exterior Style

 Section

 Spatial Arrangement

 Configuration

 Zoning

 Number
 of
 Units

 Bed

Bath

 Garage

One, Two, Three, etc.

One, Two, Three, etc.

One, Two, Three, etc.

Corridor, Insert Box, Hall type, etc.

Social, Private, Support, etc.

Georgian, Victorian, Italianate, etc.

North, East, West, South, etc.

under 2000 Sq.ft, 2000-4000 Sq.ft, etc.

 Elevation

PhD Thesis - Fall 2002 31

CHAPTER 4

Development of Design Scenarios
for Single-Family Houses
The word design has always intrigued me because a sign is a label for something,
and if you have a label you must be familiar with it. The process of “de-signing,”
of taking the label away, suddenly frees that something from being what it was to
become something new. A great design process is one in which something that
you’re familiar with becomes something new because you’ve transformed it.
That process of transforming it takes it from being a static object to becoming
something you can really use.
- Edwin Schlossberg, in C. Thomas Mitchell, New Thinking in Design

The housing delivery process is a collaborative activity, involving architects/
designers, manufacturers, builders, regulators, financiers, and clients. One of the
aims of this thesis is to provide a basis of design support applications for those
design practitioners. This requires an understanding of the design process in the
housing industry.

4.1 Interviews with Housing Design Experts

In my study of the housing delivery process, I used three methods to gather
information: I reviewed the housing literature, interviewed housing design
experts, and visited real estate agencies to observe tasks performed there. All
these methods provide different points of views of the application domain, but
interviews with housing design experts were—in the end—the main source for
developing the design scenarios below.

In order to develop design scenarios for housing development, five interviews
with housing domain experts were conducted. Subjects A, B, and C are
practicing architects. Subject A is also a professor in the School of Architecture
at Carnegie Mellon University. Subject C is an instructor in the same department.
Subject D is an executive director of the Housing Authority of the City of
Pittsburgh (HACP). Finally, subject E is a developer with experience in both for-

32 PhD Thesis - Fall 2002

Development of Design Scenarios for Single-Family Houses

profit and non-profit housing development. The interviews mainly focused on
single-family detached housing, since that is the main focus of my thesis.

4.2 Housing Development Types in the US

Single-family housing includes tract houses, custom-built houses, and
manufactured houses.

The most individualistic house is custom-designed and custom-built. A designer
considers the needs, personal priorities, and lifestyle of a household and then
designs a house to fit these conditions [Lewis 1994, p.71]. This is a good way to
build a house for most of people. However, this type of house costs more per
square foot than other types [Kicklighter and Kicklighter 1998, p. 19] and takes a
longer time to plan and build [Lewis 1994, p. 71].

In contrast to the custom-built house, tract houses are designed for potential
buyers. To build tract houses, a developer subdivides a larger piece of land into
lots, and builds houses based on a limited number of different designs to reduce
the cost of each house through repetition and economy of scale. A model house
of each design is generally completed and opened to the public to entice
prospective buyers. There are several advantages for tract houses. A tract house
usually costs less than a custom-built house. The buyer can see several model
homes to choose from, and the subdivision has been planned as a whole
including facilities. But tract houses also have several disadvantages. First, they
may look very similar to each other and lack individuality. Second, the sites often
look unfinished until trees and shrubs grow. Third, the lots are generally sized to
maximize profit for the builder. Finally, initial buyers are faced with the
uncertainty of whether the development will eventually be successful or not
[Kicklighter and Kicklighter 1998, p.18-19].

If the prospective homeowners want a custom house, but cannot afford to hire an
architect, they may purchase a stock plan that has been well-designed by
professionals from a magazine or other source, consult with a builder, and
modify it to fit their needs [Kicklighter and Kicklighter 1998, p.19].

According to Bourne (1981), there are two basic mechanisms for housing
allocation.

...... One is the traditional private “market” which allocates households to hous-
ing on a competitive basis in terms of the values people attach to housing and
their ability to pay. A second is that of public sector allocation in which govern-
ments, housing officials or some other community group distribute housing

PhD Thesis - Fall 2002 33

Housing Development Types in the US

according to individual and collective needs and the objectives of the agency
involved (Bourne 1981, p. 69).

The former can be called for-profit, while the letter can be called non-profit.
Those development types pursue different objectives and use different criteria for
housing allocation as shown in Table 2.

Source: Redrawn from Bourne (1981) p. 71

There are some commonalities between for-profit and non-profit housing
development. In both, the feasibility of the development must be established and
its basic architecture must be refined by designers.

On the other hand, their goals are different. The definition of success for for-
profit developers is to make money. In contrast, the goal of non-profit developers
is to improve the community or neighborhood environments and to provide
affordable housing such as co-ops, public housing, low-income family housing,
housing for the elderly, or housing for people with special needs.

Another major difference between for-profit and non-profit development are the
participants involved in the respective design processes. A for-profit

TABLE 2. Private vs. public housing allocation

Private market allocation Public sector allocation

Principal
objective

Profit Social equity

Criteria of
efficiency

Minimizing aggregate
housing prices and rents

Maximizing output and
profits

Maintaining rates of return

Maximizing use of existing
stock

Minimizing administrative
costs

Maintaining adequate stock

Criteria of
equity

No one can move without
making others worse off

Price restricts over-
consumption

Assuring adequate housing
for all

Treating all equally
according to their needs

Process of
allocation

Competition (ability to pay) Needs and social priorities

Countervailing
process

Collusion, cooperation Competition (among
agencies and tenants)

34 PhD Thesis - Fall 2002

Development of Design Scenarios for Single-Family Houses

development is more likely to concist of one-to-one interactions between the
developer and the designer or other contributors, while non-profit development is
done by an organization that has a mission. The organization forms a design
committee, which includes several groups such as the board of directors of a
community development corporation (CDC), potential residents of the housing
project, the residents of surrounding neighborhoods, local community leaders,
property managers, etc. The committee collects the opinions of these various
groups to incorporate their ideas into the housing development. A non-profit
organization thus develops its design based on feedback from the design
committee and the characteristics of the neighborhood and architecture. To
revitalize neighborhoods, non-profit housing projects in the US tend to occur in
mixed-income neighborhoods with a mix of public housing, subsidized rental,
and market-rate for-sale housing. Note that there is no architectural distinction
among those types of homes.

Another difference between for-profit and non-profit developments are the
funding sources. Non-profit development can secure more varied sources of
funds from federal government agencies, urban redevelopment authorities or
housing authorities, corporate contributions, as well as private foundations or
lenders. Public policy agencies such as Housing and Urban Development (HUD)
and State and local governments have coordinated their programs and resources
to promote worthwhile projects. But it has to be kept in mind that buyers need
funds if they want to purchase a home in for-profit and non-profit developments.

4.3 Overview of Design Scenarios

Based on the interviews with housing design experts, I developed design
scenarios, each of which describes a specific development phase. These design
scenarios can be a starting point for software developers to define requirements
of a system meant to support the process. Note that the term design scenario is
not related to the term scenario10 in UML.

Let’s imagine that a client wants to obtain housing. There are many decisions to
make: where to live; whether to buy or to rent; whether to build or buy pre-
owned; how to pay, etc. The decisions will depend on the client’s lifestyle, social
stratification and income, and family life-cycle as described in section 2.2.2. The
client may go to a real estate agency that is connected with housing practitioners
such as builders, regulators, financiers, and manufacturers, and work with the

10. In UML, the definition of a scenario is “a narrative description of what people do and experience
as they try to make use of computer systems and applications” [Bruegge and Dutoit 2000].

PhD Thesis - Fall 2002 35

Formalized Representation of Design Scenarios

agent to acquire a house. Such a situation is illustrated by the following
(hypothetical) scenario.

A client decides to build a house and visits a real estate agency to meet a
sales person. The client works with the sales person to find available lots in
the client’s preferred area. Once a lot is chosen, the sales person introduces
the client to a builder to discuss which plan(s) are available. The client
chooses one of them and discusses the house in detail with the builder. If the
client is not completely happy with the plan, the client and the builder adapt
the plan to fit the client’s needs and situation. This process will be iterated
until all problems are resolved.

The scenario above describes a design process for a client building a house on a
chosen lot. The following question has to be asked about this scenario: Does this
scenario explain the design activities that ought to occur or the design activities
that actually occur?

There are two models used in design research: One is a descriptive model, which
is based on observations of real world design processes and explains observed
behavior in order to form a scientific theory of the design process. The second
model is prescriptive and normative because it intends to tell designers how to
structure their design activities [Cumming 1999].

All models in the present section are descriptive. The main goal is to arrive at a
detailed understanding of typical phases in housing design as it occurs today and
to identify steps or tasks that may benefit from support by a CBD system and
case base.

4.4 Formalized Representation of Design Scenarios

As illustrated in section 4.3, a design scenario description is typically written in
standard prose. The building blocks concept used by Cumming (1999) is helpful
in formalizing a design scenario description. He borrows some aspects of process
representation from Colored Petri Nets (CPNs), which can be used as general-
purpose process representations and adapted to capture design processes in
various domains.

In most design processes, the practitioners have meetings and perform individual
tasks, which may be sequential or iterative. Cumming develops ten types of
building blocks for design scenarios: performing a task, sequential task, branch
in, branch out, conditional tasks, iterating processes, composing processes using
recursion, holding meetings, building consensuses, and list of design participants.

36 PhD Thesis - Fall 2002

Development of Design Scenarios for Single-Family Houses

These customized building blocks provide a structured format for describing
design scenarios. For a detailed description of the representation and building
blocks for the design scenario, refer to Appendix A.

FIGURE 9. An example of building blocks: ‘sequential task’

Each housing development can be captured by a sufficient number of design
scenarios depending on the type of participants performing them. A design
scenario, in turn, comprises several building blocks, each of which has a set of
associated main tasks that the respective process should accomplish. For
instance, in the design scenario illustrated in section 4.3, the overall design
scenario can be described in terms of four sequential task building blocks:
Meeting 1 and Iterative processes (Figure 10).

FIGURE 10. Body of a design scenario combining linear and iterate design tasks with
meetings

Sequential task Building a house on a chosen lot =>

 Ordered task list

>> • Meeting 1

>> • Iterate building block (including Meeting 2)

Each of these building blocks can be expanded into a more detailed task
description. For example, the body of the ‘Meeting 1’ building block my expand
this task as follows:

t 1 t 3t 2 t 4

 Meet.1 Meet.2

PhD Thesis - Fall 2002 37

Formalized Representation of Design Scenarios

Hold meeting Meeting 1 =>

 Meeting participants

• Client

• Sales Person

 Agenda tasks

>> • Choose a lot for the client

>> • Find a house plan based on the client’s
specification

 Design conflicts anticipated

• The suggested house plan may not fit the
chosen lot.

 Consensus anticipated

• Some alternative for the suggested house
plan will be acceptable.

Tasks may be either non-terminal or terminal. Non-terminal processes are those
which are further decomposed into lower level processes (shown with the ‘>>’
prefix), while terminal processes (shown with the ‘[LEAF]’ prefix) are at their
final level of decomposition. Since the agenda tasks of Meeting 1 are non-
terminal processes, they can be decomposed into lower-level processes. This is
illustrated by the ‘Choose a lot for the client’ task:

Sequential task Choose a lot for the client =>

 Ordered task list

• [LEAF] The client gets some information
about neighborhoods and decides where to
live: choose a neighborhood

• [LEAF] The sales person searches for
available data

• [LEAF] The sales person suggests available
lots in the client’s preference area

• [LEAF] The client chooses one of the
alternative lots

38 PhD Thesis - Fall 2002

Development of Design Scenarios for Single-Family Houses

4.5 Design Scenarios

4.5.1 Scenario 1: Developer-Designer Interaction—Establishing
Feasibility

4.5.1.1 Overview

A designer has been hired by a developer who is interested in developing a for-
profit project at a specific site. The developer and the designer meet. After the
meeting, each pursues a separate feasibility study. After their studies are
completed, they have a second meeting to discuss both studies and make some
decisions.

4.5.1.2 Actors and Goals

Actors

• Developer
• Designer

Goals

• Establishing feasibility for a for-profit development project at a specific site

4.5.1.3 Body of Design Scenario

Sequential task Establishing Feasibility =>

 Ordered task list

>> • Meeting 1

>> • The developer and designer go off separately

>> • The developer and designer meet again

>> • Meeting 2

FIGURE 11. Design Scenario 1: design task consisting of parallel activities, with
meetings at the beginning and end.

 Meet.1
 t 1

 t 2

Meet.2
b-o b-i

PhD Thesis - Fall 2002 39

Design Scenarios

a. Meeting 1

The agenda of this meeting is to start the process of establishing feasibility
of the development. The developer describes the project goals and provides
information related to potential market, total project budget and the site to
the designer. The developer and the designer divide responsibilities for the
feasibility study.

Body of Meeting 1

Hold meeting Meeting 1 =>

 Meeting participants

• Developer

• Designer

 Agenda tasks

• [LEAF] Developer describes the project goals
and provides information related to
potential market, total project budget, and
the site to the designer

• [LEAF] Designer and developer divide
responsibilities for feasibility study

 Design conflicts anticipated

• None

b. The developer and designer go off separately

Once Meeting 1 is completed, the developer and the designer go off
separately and complete their respective feasibility studies in parallel.

Branch-out The developer and designer go off
separately =>

 Input tasks

• [LEAF] Meeting 1

 Output tasks

>> • Feasibility study by Developer

>> • Feasibility study by Designer

40 PhD Thesis - Fall 2002

Development of Design Scenarios for Single-Family Houses

Subtask b1. Feasibility study by Developer

The Developer estimates soft costs.

Body of feasibility study by developer

Do task Feasibility study by developer =>

 Collect data

• Marketing information: Housing value11 from
tax information and demographic features of
the neighborhood for the given site

• Construction financing (bank)

• Tax: county and municipal tax

• Insurance

• Utility (impact fees, tap-in, temporary
power, heat, water, and sewage, and
permanent utility cost for power, gas,
water, sewage, telephone, cable TV, and
Internet)

• Sales cost (real estate fees)

Subtask b2. Feasibility study by designer

The designer starts with the feasibility study.

Body of feasibility study by designer

Sequential task Feasibility study by designer =>

 Ordered task list

• [LEAF] Study the neighborhoods and
architecture around the site

>> • Prepare a preliminary site plan

11. Housing value can be acquired from tax office. The calculation of the tax varies with the commu-
nity. Example:

 - Housing value: Market value = Assessed value * 4 + various municipality
 - The county and municipal tax is some percentage of housing value.

PhD Thesis - Fall 2002 41

Design Scenarios

>> • Refer to precedent(s)

>> • Lay out prototype unit(s)

• [LEAF] Calculate all hard cost

Subtask b2-a. Prepare a preliminary site plan

The designer studies the zoning ordinances for the site under consideration
to determine the existing context and zoning designation, which includes R1,
R2, R3, B, and I. The designer develops a preliminary site plan based on the
zoning ordinance.

Body of Prepare a preliminary site plan

Sequential task Prepare a preliminary site plan =>

 Ordered task list

• [LEAF] Check the zoning ordinances and set
of rules and regulations implied by the
context and zoning designation.

• [LEAF] Develop a preliminary site plan
indicating infrastructure, individual lots,
and the placement of housing units.

Subtask b2-b. Refer to precedent(s)

The designer is looking for housing precedents from different sources.

Body of Refer to precedent(s)

Do task Refer to precedent(s) =>

 Assemble resources

• In-house plans

• On-line

• Memory or databases

42 PhD Thesis - Fall 2002

Development of Design Scenarios for Single-Family Houses

Subtask b2-c. Lay out prototype unit(s)

Based on the above studies, the designer comes up with an idea about the
type, size, and cost of the units. The designer takes the configuration(s) from
the preliminary site plan and designs a prototype unit. Then, the designer
develops variations according to site situations.

Body of Lay out prototype unit(s)

Sequential task Lay out prototype unit(s) =>

 Ordered task list

• [LEAF] Design a prototype unit considering
housing style, massing, type of
construction, exterior materials, and
finishing packages.

• [LEAF] Vary the prototype to adapt the
housing configuration to the topography of
each site.

c. The developer and designer meet again

Once the designer and developer complete their feasibility study, they meet
again.

Branch-in The developer and designer meet again =>

 Input tasks

>> • Feasibility study by Designer

>> • Feasibility study by Developer

 Output tasks

>> • Meeting 2

PhD Thesis - Fall 2002 43

Design Scenarios

d. Meeting 2

The agenda of this meeting is to determine if the developer should go ahead
with the project. In this meeting, the developer and the designer discuss the
project based on feasibility studies done by each in order to determine if it is
profitable or not.

Body of Meeting 2

Hold meeting Meeting 2 =>

 Meeting participants

• Developer

• Designer

 Agenda tasks

>> • Determine to go ahead with the project

 Design conflicts anticipated

• Housing configuration is not appropriate for
target market segment

• Housing volume is too large or small

• Exterior materials are too expensive or
cheap

• Finish packages are too expensive or cheap

• Amenity packages are too expensive or cheap

 Consensus anticipated

• Adjust all conflicts listed above

Subtask d. Determine to go ahead with the project

The developer checks total cost for the development based on feasibility
studies and looks at the total anticipated income from the development. If the
rate of return meets the developers expectations, the developer will develop
the project. Otherwise, the developer and the designer will re-cycle through
the process until the rate of return is acceptable or abandon the project.

44 PhD Thesis - Fall 2002

Development of Design Scenarios for Single-Family Houses

Body of Determine to go ahead with the project

Conditional task Determine to take the project =>

 Test

• ‘Current total cost’

 Input tasks

• Finish feasibility study by designer

• Finish feasibility study by developer

 Conditional outputs

• If ‘Current total cost is higher than
income’

>> • Do Task Reduce project cost
• If ‘Current total cost is less than income’

• [LEAF] Continue to the project

Subtask d-a. Reduce project cost

If the current total cost is higher than the income, the developer and the
designer try to reduce project cost.

Body of Reduce project cost

Iterate Reduce Project Cost =>

 Test

• If ‘Current cost is higher than income’

• [LEAF] Analyze and reduce hard cost

• [LEAF] Analyze and reduce soft cost

 Repeat test

• Else

• Go to the next step

PhD Thesis - Fall 2002 45

Design Scenarios

4.5.2 Scenario 2: Designer Working Independently—Refining Basic
Architecture

4.5.2.1 Overview

After the preliminary feasibility has been established, the designer starts to refine
the design of the prototype. The designer and developer then meet to examine
and discuss the schematic layout. This process iterates several times in a similar
fashion until the schematic layout is completed. Then, the designer goes into
detailed design and meets again with the developer to discuss the detailed design.
This process also iterates several times until the detailed design is completed.

4.5.2.2 Actors and Goals

Actors

• Designer
• Developer

Goals

• Developing schematic layout and detailed design for the project

4.5.2.3 Body of Design Scenario

Sequential task Refining basic Architecture =>

 Ordered task list

>> • Iterate building block 1

>> • Iterate building block 2

FIGURE 12. Design Scenario 2: Combining linear and iterate design task

Meet.2t 1 Meet.1 t 2

46 PhD Thesis - Fall 2002

Development of Design Scenarios for Single-Family Houses

a. Iterate building block 1

These tasks are done iteratively until the task is completed. They involve a
design task and a meeting in the iterative loop.

Iterate Iterate building block 1 =>

 Test

• If ‘Design conflicts still remain’

>> • Refine the design of the prototype

>> • Meeting 1

 Repeat test

• Else

• Archive the layouts and go to the next step

Subtask a1. Refine the design of the prototype

The designer develops the schematic layout design by arranging the interior
spaces. For example, the designer may want to put the public space in the
back of the first floor, kitchen in the front of the first floor, and the private
space in the second floor. Then, the designer configures each room. For
example, the designer may select the “great room” concept, which is a
combination of a family room, a dining room, and a kitchen without any
separation, places the master bath to serve the master bedroom, and adds one
full and another half bathroom for other family members to share, and so on.

Body of Refine the design of the prototype

Sequential task Refine the design of the prototype =>

 Ordered task list

• [LEAF] Arrange the interior spaces

• [LEAF] Configure each room

Subtask a2. Meeting 1

In this meeting, the developer examines the designer’s schematic layout and
provides comments or ideas to improve the plan. During the meeting, design

PhD Thesis - Fall 2002 47

Design Scenarios

conflicts are identified and some are resolved. When both the designer and
the developer are satisfied with the plan, a consensus has been reached.

Body of Meeting 1

Hold meeting Meeting 1 =>

 Meeting participants

• Developer

• Designer

 Agenda tasks

• [LEAF] Refine the schematic layout

 Design conflicts anticipated

• Zoning plans of some houses need to be
changed because of the orientations of the
site

• Housing configuration is not appropriate for
target market segment

• The developer wants to change some room
configurations

 Consensus anticipated

• Try to adjust all conflicts listed above

b. Iterate building block 2

These tasks are done iteratively until they are completed. They involve a
design task and a meeting in the iterative loop.

Iterate Iterate building block 2 =>

 Test

• If ‘Design conflicts still remain’

>> • Do detailed designs

>> • Meeting 2

 Repeat test

• Else

• Archive the drawings and go to the next step

48 PhD Thesis - Fall 2002

Development of Design Scenarios for Single-Family Houses

Subtask b1. Do detailed designs

Once the designer has finished the schematic design, he/she prepares the
working drawings.

Body of Do working drawings

Do task Do detailed designs =>

 Assemble resources

• Working drawings (plans, elevations,
sections, perspectives, details, etc.)

• Specifications

• Create schedules for paint, trim, wall
coverings, doors, or windows

Subtask b2. Meeting 2

This meeting is very similar to Meeting 1, but the developer examines the
designer’s construction drawings.

Body of Meeting 2

Hold meeting Meeting 2 =>

 Meeting participants

• Developer

• Designer

 Agenda tasks

• [LEAF] View the construction drawings and
discuss them

 Design conflicts anticipated

• quite possible from every detail

 Consensus anticipated

• Try to adjust all conflicts

PhD Thesis - Fall 2002 49

Design Scenarios

4.5.3 Scenario 3: Sales Agent-Client and Builder-Client Interaction—
Building a House for a Client on a Chosen Lot

4.5.3.1 Overview

A client decides to build a house and visits a real estate agency to meet a sales
person. The client works with the sales person to find available lots in the client’s
preferred area. Once a lot is chosen, they find house plans based on the client’s
specification. The client chooses one of them and meets with a builder to discuss
the house in detail. If the client is not completely happy with the plan, the client
and the builder adapt the plan to fit the client’s needs and situation. This process
will be iterated until all problems are resolved.

4.5.3.2 Actors and Goals

Actors

• Client
• Sales Person
• Builder

Goals

• Building a house on a chosen lot for a specific client

4.5.3.3 Body of Design Scenario

Sequential task Building a house on a chosen lot

 Ordered task list

>> • Meeting 1

>> • Iterate building block (include Meeting 2)

FIGURE 13. Design Scenario 3: combining linear and iterate design task with meetings

 Meet.1 Meet.2

50 PhD Thesis - Fall 2002

Development of Design Scenarios for Single-Family Houses

a. Meeting 1

The client and the sales person meet. The agenda is to choose a lot in the
client’s preferred area and to find a house plan to build on it. Once a lot is
chosen, the sales person tries to find housing precedents that are similar to
this situation. The client chooses one of them.

Body of Meeting 1

Hold meeting Meeting 1 =>

 Meeting participants

• Client

• Sales Person

 Agenda tasks

>> • Choose a lot for the client

>> • Find a house plan based on the client’s
specification

 Design conflicts anticipated

• The suggested house plan may not fit the
chosen lot

 Consensus anticipated

• Try to find alternative possibilities for
the suggested house plan

Subtask a1. Choose a lot for the client

The client obtains some information about communities and neighborhoods
from the sales person and selects a neighborhood to live in. The sales person
then searches for available data and finds available lots in the client’s
preference area. The client chooses one of the alternative lots.

PhD Thesis - Fall 2002 51

Design Scenarios

Body of Choose a lot for the client

Sequential task Choose a lot for the client =>

 Ordered task list

• [LEAF] The client gets some information
about neighborhoods and decides in which
neighborhood he/she wants to live

• [LEAF] The sales person searches for
available data

• [LEAF] The sales person identifies available
lots in the client’s preference area

• [LEAF] The client chooses one of the
alternative lots

Subtask a2. Find a house plan based on the client’s
specification

Once a lot is chosen, the sales person searches through the collection of
house plans and recommends one or more precedents which are similar to
the client’s specification. The client chooses one of the plans.

Body of Find a house plan based on the client’s specification

Sequential task Find a house plan based on the
client’s specification =>

 Ordered task list

• [LEAF] The sales person searches through the
collection of house plans

• [LEAF] Suggest one or more precedents
similar to the client’s specification

• [LEAF] The client chooses one of the
alternative house plans

52 PhD Thesis - Fall 2002

Development of Design Scenarios for Single-Family Houses

b. Iterate building block

These tasks are done iteratively and involve a meeting in the iterative loop.

Iterate Iterate building block =>

 Test

• If ‘Design conflicts still remain’

>> • Meeting 2

 Repeat test

• Else

• Finalize a house plan to be built

Subtask b. Meeting 2

The agenda is to discuss the house plan to be built in detail.

Body of Meeting 2

Hold meeting Meeting 2 =>

 Meeting participants

• Client

• Builder

 Agenda tasks

>> • Adapt a house plan to be built

 Design conflicts anticipated

• The client doesn’t like aspects of the house
plan

 Consensus anticipated

• The client and the builder agree to modify
the house plan

PhD Thesis - Fall 2002 53

Design Scenarios

Subtask b-a. Adapt a house plan to be built

One of the alternative house plans is chosen, but the client is still not
satisfied with the plan because it does not completely fit the client’s
situation. The client and the builder try to adapt the house plan to fit the
client’s need and site situation.

Body of Adapting a house plan to be built

Sequential task Adapt a house plan to be built =>

 Ordered task list

• [LEAF] The client points out a part of the
plan want to be modified

• [LEAF] Adapt the house plan to fit the
Client’s need and site situation (site,
house, and space levels)

• [LEAF] Archive this (new) house plan

4.5.4 Scenario 4: Non-profit Housing Development—A
Neighborhood Planning Process

A community development corporation (CDC) approaches the local housing
authority to develop an in-fill non-profit housing project.

4.5.4.1 Overview

A CDC contacts the housing authority. They get pre-development financing from
the housing authority and hire designers to develop a neighborhood master plan.
Based on that, representatives of the housing authority, urban redevelopment
authority, and CDC meet to establish the financial feasibility of the whole
neighborhood development.

54 PhD Thesis - Fall 2002

Development of Design Scenarios for Single-Family Houses

4.5.4.2 A Neighborhood Planning Process: Actors and Goals

Actors

• Housing authority (director and staff)
• Community development corporation (CDC)
• Urban redevelopment authority
• Market consultant
• Architect

Goals

• Developing neighborhood plan for the chosen neighborhood

4.5.4.3 Body of Design Scenario

Sequential task A Neighborhood Planning Process =>

 Ordered task list

>> • Meeting 1

>> • Preparing to develop a neighborhood master
plan

>> • Developing the neighborhood master plan

>> • Meeting 2

FIGURE 14. Design Scenario 4: linear design task with meetings at the beginning and
the end.

Meet.1 t 1 Meet.2 t 2

PhD Thesis - Fall 2002 55

Design Scenarios

a. Meeting 1

The agenda of this meeting is twofold: The housing authority provides pre-
development financing to the CDC. After that, the CDC hires a market
consultant and architect to investigate the neighborhood context.

Body of Meeting 1

Hold meeting Meeting 1 =>

 Meeting participants

• Housing authority

• CDC

• Market consultant

• Architect

 Agenda tasks

• [LEAF] The Housing Authority provides pre-
development financing to the CDC

• [LEAF] The CDC hires a market consultant and
architect to investigate the physical
neighborhood (i.e. ownership, tenure, value
of property, building massing, condition of
building, etc.)

 Design conflicts anticipated

• None

b. Preparing to develop a neighborhood master plan

The market consultant and architect meet and prepare to develop a master plan of
the neighborhood. After conducting several design “charrettes” and reviews, they
publicly present the plan to get some feedback.

56 PhD Thesis - Fall 2002

Development of Design Scenarios for Single-Family Houses

Body of Preparing to develop a neighborhood master plan

Sequential task Preparing to develop a neighborhood
master plan =>

 Ordered task list

• [LEAF] Obtain marketing information from the
market consultant

• [LEAF] Make an analysis in the area

• [LEAF] Conduct design charrettes in the area
to develop plan alternatives

• [LEAF] Present the analysis publicly to
obtain feedback

• [LEAF] Meet with traffic experts, real
estate analysists, and government officials
to discuss alternatives

• [LEAF] Present analysis and plan
alternatives publicly to obtain comments and
feedback

c. Developing the neighborhood master plan

Based on the studies above, the market consultant and architect develop a master
plan of the neighborhood.

Body of Developing the neighborhood master plan

Sequential task Developing the neighborhood masterplan
=>

 Ordered task list

• [LEAF] Develop a master plan - perspectives
of the neighborhood and preliminary unit
designs

• [LEAF] Perform a preliminary pricing and
cost analysis

PhD Thesis - Fall 2002 57

Design Scenarios

d. Meeting 2

The agenda of this meeting is to establish the financial feasibility of the
master plan. Representatives of the housing authority, urban redevelopment
authority, mayor’s office, and CDC meet to establish the financial feasibility
of the whole neighborhood development.

Body of Meeting 2

Hold meeting Meeting 2 =>

 Meeting participants

• Housing authority

• Urban redevelopment authority

• Mayor’s office

• CDC

 Agenda tasks

• [LEAF] Establish the financial feasibility
of the master plan

58 PhD Thesis - Fall 2002

Development of Design Scenarios for Single-Family Houses

PhD Thesis - Fall 2002 59

CHAPTER 5

A Framework for Integrating
Housing Design and CBD

The artificial world is centered precisely in this interface between the inner and
outer environments; it is concerned with attaining goals by adapting the former to
the latter. The proper study of those who are concerned with the artificial is the
way in which that adaptation of means to environments is brought about -- and
central to that is the process of design itself.
- Herbert A. Simon, The Sciences of the Artificial

I have developed, in Chapter 4, design scenarios for single-family houses. The
design scenarios can be used to create a framework for augmenting the housing
design process with CBD. The main issue I address in this chapter is how to
make CBD an integral part of this process.

I first describe the main steps of CBR in design. I then identify those building
blocks in the scenarios presented in the preceding chapter where typical CBD
steps can assist the housing design process. I conclude by introducing a suitable
platform for a first prototype implementation of the proposed system.

5.1 The Main Steps in CBD

The main problems addressed by CBD can be grouped into three areas: creating
design cases, retrieving design cases, and adapting design cases [Maher et al.
1995].

5.1.1 Creating Design Cases

Any CBR system creates cases in a particular representation. In general, a case
has three major parts: a problem/situation description; a solution; and an
outcome. The problem/situation description may contain the goals to be
achieved, the constraints on those goals, and the features of the problem context.

60 PhD Thesis - Fall 2002

A Framework for Integrating Housing Design and CBD

It must have sufficient detail for a retriever to be able to determine whether a past
design case is applicable to a new design problem. The solution may contain the
set of reasoning steps used to solve the problem, the set of justifications for
decisions, alternative solutions, and expectations about outcome. The set of
reasoning steps can be helpful to reuse in later design problem solving. The set of
justifications is also useful to provide guidelines during evaluation of a solution
and index selection. The outcome of a case “specifies what happened as a result
of carrying out the solution or how the solution performed. Outcome includes
both feedback from the world and interpretations of that feedback” [Kolodner
1993, p. 158].

Most design problems are large and complex [Maher et al. 1995]. To deal with
such problems, designers often break them into smaller sub-problems. Solutions
may be available for (sub)problems at any level forming a solution hierarchy
[Maher et al. 1995]. Therefore, a hierarchically structured12 case memory is
desirable. The implication for a CBD system is that it has to provide designers
with the capability to generate cases in an appropriate hierarchical representation.

5.1.2 Indexing and Retrieving Design Cases

An index is “a pointer (or indicator) to which a keyword (or label) is assigned
and which leads to information about a specific and related topic in a large
collection of data” [Rivard 1997, p. 112]. The indexing process is described by
Kolodner (1993) as “assigning labels to cases at the time that they are entered
into the case library to ensure that they can be retrieved at appropriate times.”

Retrieving the most relevant design cases in a CBR system depends on an
indexing mechanism with an efficient memory organization. Typical indexing
problems have two parts: one part is the indexing vocabulary problem, which is
how to decide what descriptors should be used for some classes of cases. This
problem needs a careful domain analysis to find an appropriate terminology. The
second part is the indexing assignment problem, which is the process of choosing
identifying descriptors for a particular case [Kolodner 1993]. The classification
scheme presented in Chapter 3 shows us how to solve the vocabulary problem in
the present context. The assignment problem has to be handled by the prototype
system developed in this thesis.

Retrieval consists of selecting the most relevant case to a current design situation.
Based on appropriately constructed indices, the retrieval process searches case

12. A hierarchical structure is a formalized structure formed by decomposing a complicated
configuration into sub-parts and basic components.

PhD Thesis - Fall 2002 61

Design Scenarios Meet CBD: An Integrated Approach

memory to find the relevant design cases [Maher et al. 1995]. To find the most
relevant ones, the case selection process may use various strategies and
algorithms for search and similarity measurement.

5.1.3 Adapting Design Cases

A retrieved case can offer a solution to the new situation. However, it often needs
to be modified to fit the new problem. Adapting a selected design case to a set of
new design requirements is typically a conflict resolution process that requires
additional design knowledge [Lee et al. 1995]. Lee et al. (1995) suggested
several design adaptation strategies including dimensional adjustment,
configurational adjustment, and topological adjustment. In housing design, an
example of dimensional adjustment is changing the length or width of a room.
An example of a configurational adjustment is the addition or removal of a room
in a plan. A topological adjustment may consist of changing the spatial relations
between areas or switching the location of areas, for example, by switching the
location of a kitchen and dining area.

Note that all these changes typically trigger adjustments in the dimensions of
adjacent rooms and may have to be propagated through an entire layout.

5.2 Design Scenarios Meet CBD: An Integrated Approach

In Figure 15, I show all design scenarios in parallel and identify the building
blocks that can be assisted by the main steps of CBD. The left column of this
figure shows the building blocks of design scenarios S1 - S4 developed in
Chapter 4. The right column shows where the main CBD steps are able to assist
tasks in housing design.

5.2.1 Retrieval

Task 2 of design scenario 1 (thick outlines), ‘Feasibility study by
designer’, includes the task ‘Refer to precedent(s)’. Meeting 1 of
design scenario 3 includes the task ‘Find a house plan based on the
client’s specification’, which, in turn, contains the sub-task ‘The
sales person searches through the collection of house
plan’. All of these tasks can be supported by the retrieval step in CBD.

62 PhD Thesis - Fall 2002

A Framework for Integrating Housing Design and CBD

FIGURE 15. Design Scenarios vs. CBD

 Meet.1

 t1

 Meet.2

 Meet.1

 Meet.2

S1

 t2

S2

 t1

 Meet.2

 t2

 Meet.3

S3 Retrieve prototypical plans from CBD
for general discussion and
setting of configuration parameters

 Adapt

 Create

Retrieve

 Adapt

prototypes to specific situation
or
novel solutions

store promising adaptations /
new solutions in CB

prototypical layouts for
kitchens / baths
prototypes to specific situation

Note: S1: scenarios 1: developer-designer interaction

Design Scenarios Role of CBD

 Meet.1

 Meet.2

S4

 t1

 t2

S2: scenarios 2: designer working solo
S3: scenarios 3: sales agent-client and builder-client

S4: scenarios 4: non-profit housing development
 interaction

and

and store promising adaptations /
new solutions in CB

 Create novel solutions

PhD Thesis - Fall 2002 63

Design Scenarios Meet CBD: An Integrated Approach

As I mentioned in section 5.2.2, classificatory types can provide a promising
indexing scheme for the retrieval of housing precedents. The classification of
housing precedents can incorporate orthogonal taxonomies so that a memory
organization that supports multiple classifications is needed in order to
implement such taxonomies. According to the housing types I defined in section
3.3, the same house can be retrieved as a raised ranch, a two-story house, or a 3-
bedroom unit depending on which types designers or clients are interested in for
a specific design problem. Note also that it is possible to combine classifications
for retrieval, for example, search for a 3-bedroom raised ranch. Thus, in design
scenario 3, the sales person should be able to combine classifications into a
search index based on the client’s specification.

Supporting flexible classifications is also important. Each party involved in
housing design may have its own perspectives and interests when looking at a
design case and may not want to use classifications already made by others.
Therefore, it will be useful to have an extensible or adjustable indexing scheme
to support different indexing vocabularies for different parties. That is,
individuals can add new classification instances to the system, and also can
modify existing instances. In the scenarios above, both the designer and the sales
person may want to use the retrieval function in CBD. However, the sales
person’s interest may differ from the designer’s. The sales person may want to
retrieve best-selling house plans and to show them to a specific client quickly. On
the other hand, the designer may be interested in retrieving house plans based on
cost constraints.

5.2.2 Creation/Adaptation

Task 1 of design scenario 2 (thick outlines), ‘Do schematic layout’, and
Meeting 2 of design scenario 3 correspond to the creation or adaptation steps of
CBD. A case-based system supporting these types of tasks for housing designers
must be integrated with a CAD system that is able to represent, generate, and
adapt the geometry and hierarchy of housing cases.

The system must first be able to represent and generate rapidly the geometry and
hierarchical structure of known standard solutions. As I mentioned in section 1.1,
standardized, well-known house plans from diverse sources can be put into the
initial case base to ‘seed’ it. However, if the system requires considerable time
and effort to collect and transfer the case knowledge to the system, this
knowledge acquisition may become a bottleneck. Therefore, a CAD system that
makes it possible to recreate housing layouts with ease for the explicit purpose of
populating a case base is required.

64 PhD Thesis - Fall 2002

A Framework for Integrating Housing Design and CBD

The system should also be able to support designers when they search for novel
solutions to novel problems. Generally, during the design process in the early
phases, designers explore layout alternatives and variants of those alternatives. In
housing, this becomes particularly important when designers confront new
demands that cannot be satisfied by known configurations or by cases already in
the case base. A CAD system integrated with a generative design capability has
an advantage when the system has the capability to aid in the rapid generation of
design representations. Utilizing a computer’s inherent speed, designers may be
able to generate, or generate faster, design solutions which they have never seen
before and which may be innovative or novel.

Case adaptation is one of the most important issues in CBD. A retrieved case
from the case base may not completely fit the given specific context and may
need modifications. For example, the task ‘Adapt the house plan to
be built’ may require not only dimensional, but also configurational or
topological adaptations as introduced in section 5.1.3. In order to facilitate this
process, the CAD system associated with the CBD system should be able to
propagate automatically changes triggered by these adaptations through an entire
configuration. Note that no commercially available CAD system provides such a
capability at present.

5.2.3 Summary

I have shown how all typical CBD steps can find their place and role in the
housing design scenarios. The following list summarizes the issues raised in this
section:

• Efficient classification and indexing mechanism into a case memory derived
from classificatory types as described in section 3.3

• A case-base with special capabilities of classification and retrieval to store
persistently the case information generated by a CBD system

• Effective methods for representing geometries of housing components and
their relationships, for generating cases to be entered into the case base,
including novel solutions for novel demands, and for adapting cases
retrieved by the CBD system

PhD Thesis - Fall 2002 65

Platform for a First Prototype Implementation

5.3 Platform for a First Prototype Implementation

5.3.1 Database

The core of a CBR system is a case base or case library, essentially a database
that is searchable under appropriate indices. The schema underlying the database
must be able to capture cases in an appropriate representation.

Houses are volumetrically decomposed into components such as floors, zones,
rooms as mentioned in section 3.2.2, which can be viewed as forming a
hierarchical spatial containment structure. A housing case can be decomposed
into sub-cases that are the hierarchical components of the house. For example,
the first floor of a split-level house can be a complete case in its own right if a
designer is interested in finding a precedent for just this part of the whole design.
Therefore, the sub-cases must be independent entities and be retrievable as
complete sub-solutions.

These hierarchical representations must be supported by a database that stores
persistently the objects generated by the system. Relational database technology
was developed for conventional business data-processing applications like
inventory control, payroll, and accounts. This technology cannot, however, deal
with a wide variety of other types of application such as CAD, CAE, CASE and
CAM systems; knowledge-based systems; multimedia systems which deal with
images, voice, and textual documents; and programming language systems [Kim
1990].

There are currently two proposed approaches for transitioning from relational
database technology to the next-generation technology: object-oriented
databases and extended relational databases. An object-oriented schema
includes the object-oriented concepts of encapsulation, inheritance, and
polymorphism. An object-oriented programming language may be extended into
a unified programming and database language. By contrast, the extended
relational approach starts with the relational model of data and a relational query
language, and extends them in various ways to allow the modeling and
manipulation of additional semantic relationships and database facilities. The
case for the extended relational approach is based largely on its use of the
familiar current-generation database technology. There is also a mathematical
foundation for the query language and even an industry-wide standard for the
database language [Kim 1990]. Since both the object-oriented and some of the
extended relational databases can support the geometry and hierarchical
representation for housing cases as envisioned here [Snyder et al. 1994], we can
choose either of them as a database for housing.

66 PhD Thesis - Fall 2002

A Framework for Integrating Housing Design and CBD

5.3.2 The SEED Environment

The generic requirements derived in section 5.2, are satisfied to a large degree by
the SEED development environment introduced in Section 1.2. The SEED-
Database and SEED-Layout13, both of which are implemented based on object-
oriented concepts, are especially useful in this context. They have recently been
integrated in a configuration called SL_Comm14.

Below is a list of the features of SL_Comm that are particularly relevant with
respect to the generic requirements.

• The SEED-Database supports multiple and flexible classification as
mentioned in section 5.3.

• UniSQL, the object-relational database system used to implement the SEED-
Database, can support the required geometry and hierarchical representation.

• SEED-Layout is a generative design system that is able to represent, and -
under the control of the user - to generate and adapt design cases efficiently
and propagate changes as described in section 5.2.

Figure 16 shows the architecture of SL_Comm. I describe below the components
of SL_Comm in greater detail.

5.3.2.1 SEED-Layout

SEED-Layout is a generative design system for the creation of building layouts.
When we have a standard solution for a recurring housing type, it is quite easy to
reconstruct the Layout of the solution in the SEED-Layout format. This process
allocates the components of the housing solution in the form of (rectangular)
Design Units, each of which satisfies the requirements of an associated
Functional Unit (Figure 17). A collection of Functional Units is called a Layout
Problem or problem specification in SEED-Layout, which also provides
designers with the capability to generate Layout Problems from scratch and to
save or retrieve them from the SEED-Database.

13. a module of SEED that supports the generation of schematic Layouts of the Functional Units
specified in an architectural program [Flemming and Chien 1995] p. 162.

14. Ongoing PhD work by Wen-Taw (Jonah) Tsai.

PhD Thesis - Fall 2002 67

Platform for a First Prototype Implementation

FIGURE 16. System architecture of SL_Comm

Given a Layout Problem, designers are able to place interactively the
corresponding Design Units in a given context. An experienced SEED-Layout
user often can do this in minutes. Once the generation is done, designers can
store the Layout in the object database, from where it can be retrieved when
needed.

SEED-Layout provides various mechanisms to generate and search for
alternatives. Given a Layout Problem for which no good solutions are known,
SEED-Layout assists designers trying to create a solution satisfying the problem
systematically and quickly because it has access to explicitly stated requirements
(in Functional Units) and is able to use them, for example, to size or resize
Design Units. In addition, SEED-Layout allows designers to create alternatives
in parallel by allocating Design Units associated with the same Functional Units
in different places. For example, when the location of a living room is to be
decided, the designer can develop alternative Layouts in parallel, for example,
placing the living room in the front or rear and the remaining rooms in the
remaining areas. SEED-Layout can also enumerate novel alternatives for new
specifications exhaustively. It thus allows designers to investigate new and
innovative housing design solutions quickly and easily.

SEED Database

Classification
knowledge base

Object database

Case base

Database
Server

SEED-
Layout

User Interface

User

CBAPI

KBAPI

SEED Database

Classification
knowledge base

Object database

Case base

Database
Server

SEED-
Layout

User Interface

User

CBAPI

KBAPI

68 PhD Thesis - Fall 2002

A Framework for Integrating Housing Design and CBD

FIGURE 17. A solution allocating a number of Functional Units in SEED-Layout

SEED-Layout also provides the capability for case adaptation, one of the most
difficult problems in CBD. In most of the current CBD systems, the retrieved
case can be shown only as digitalized passive pictures, an essentially
unstructured pixel-based representation that makes computer-supported
adaptation very difficult, if not impossible, and adaptation is impossible.
However, this problem can be solved by including generative capabilities like
those of SEED-Layout in a CBD system, which supports interactive editing and
expanding of Layout Problems and Layouts. SEED-Layout is able to do this
because it can handle Functional Units that capture design requirements in a
computable form. This feature enables SEED-Layout, for example, to
automatically propagate changes caused by some modifications through an entire
layout. Users can furthermore add, remove, and edit the requirements of
Functional Units and ask SEED-Layout automatically to reshape the
corresponding Design Units. The system thus offers designers instantly support
for case adaptation.

PhD Thesis - Fall 2002 69

Platform for a First Prototype Implementation

5.3.2.2 Classification Knowledge Base

In order to deal with multiple and flexible classification described in Section 5.3,
SEED contains a classification knowledge base (CKB) that is independent of the
object database [Aygen 1998]. This “hybrid” approach separates precedent
instances stored in the object database from the concepts they represent, which
are expressed in the CKB.

The classification labels in the CKB may belong to multiple classification
taxonomies that imply subsumption relations. That is, the SEED-CKB engine can
infer subsumption relations from the classificatory taxonomies. The separation
between CKB and object database also makes the SEED-CKB very flexible.
Each user can create his/her own classifications and keep the respective
knowledge bases separate from those of others according to his/her needs and
interests.

Figure 18 illustrates the components of SEED-CKB15. The terminology used in
CKB is based on the CLASSIC knowledge representation, after which the CKB
has been modeled [Borgida et al. 1992]. A classification label is called a
primitive in CLASSIC. It corresponds to the name of a classificatory type
described in Chapter 3. Primitives can be arranged in taxonomies where higher
level primitives subsume lower level ones. For example, the primitive ‘split-
level’ can be defined so that it is subsumed by the primitive ‘residential’. A
classification engine modeled after CLASSIC will retrieve any object labeled
‘split-level’ when it is asked to find any objects labeled ‘residential’.

Primitives can be combined into descriptions, which may comprise primitives
from different taxonomies. For example, we may construct a description
combining the primitives ‘split-level’ and ‘sloped’, where the first belongs to a
section-based taxonomy and the second to a topography-based taxonomy.
Furthermore, descriptions can be restricted to selected classes of objects, called
host types in CLASSIC. For example, we may restrict the above description to
Layout Problems or Layouts, which prevents a user from erroneously attaching it
to a Functional Unit.

CLASSIC and the CKB engine based on it are able to take a description and
normalize it in the sense that it is augmented by all primitives that subsume the
ones in the original description without redundancies. Such a construct is called a
classification. Classifications can be modified by means of adding or retracting
primitives [Aygen 1998]. A classification can be attached to an object in the
object database. This happens by proxy; that is, the CKB uses the unique object

15. For detailed descriptions of SEED-CKB, refer to Aygen (1998) p. 45-52.

70 PhD Thesis - Fall 2002

A Framework for Integrating Housing Design and CBD

identifiers in the SEED-Database as references for the objects to which a
classification is attached. In this way, different CKBs can attach different
classifications to the same object. This is the basis for the flexibility with which
SEED’s classification component can be used by different designers.

The CKB is ideal to implement form-based classifications in the prototype,
which will use it to attach such classifications to three classes of objects:
Functional Units, Layout Problems, and Layouts. These classifications can be
used for direct database retrieval or to construct automatically more complex
indices or queries.

Source: Aygen (1998) p. 46

FIGURE 18. SEED-CKB

5.3.2.3 Object Database

The SEED object database is able to support the persistent storage of the housing
precedents themselves, including their geometry and spatial hierarchy of the

class

object

description

(told description)

Classification Knowledge-BaseData Model

host types primitives

classification

derived
info

combinesrestricted_to

classifies

object-proxy

inherits_from

host individuals

represent

PhD Thesis - Fall 2002 71

Platform for a First Prototype Implementation

components as described in section 5.2. An object may belong to a type or class
hierarchy through which it inherits attributes and values from other objects in an
object-oriented representation. It is important to keep in mind that this class
hierarchy has nothing to do with the classifications and taxonomies in a CKB.

SEED-Layout provides a class hierarchy of Functional Units that can be used to
represent the spatial hierarchy of a building. The spatial Functional Units are
specialized into Building, MassingElement, Floor, Horizontal Zone, Vertical
Zone, and Room (Figure 19).

FIGURE 19. A class hierarchy of Functional Unit in SEED-Layout

In SEED-Layout, a Layout Problem is defined by a collection of Functional
Units arranged in a spatial hierarchy, called a constituent hierarchy. SEED-
Layout interprets constituent relationships strictly as spatial containment
relations, which is a special form of a ‘part-of’ relationship. Figure 20 shows an
example spatial hierarchy of a residential house. A spatial containment hierarchy
is recursive in SEED-Layout, Therefore, any level and parts in a spatial hierarchy
are retrievable directly from the database through querying.

I mentioned already in section 5.3.2.1 that a Layout in SEED-Layout is a
collection of Design Units16. Each Design Unit is associated with a Functional
Unit in a constituent hierarchy of a Layout Problem. If this Functional Unit
contains Functional Unit constituents, the Design Unit contains a sub-Layout
whose Design Units are associated with the constituents. In this way, the Layout/
sub-Layout relationships mirror the constituent hierarchy of the associated
Functional Units. For example, in Figure 20, the ‘public zone’ Functional Unit

16. a continuous spatial area of a building with a specific geometry and location [Flemming and
Aygen 2000]

SPATIAL FUNCTIONAL UNIT

Building Massing Floor Horizontal Vertical Room
Element Zone Zone(Storey)

Roof Shaft Atrium

72 PhD Thesis - Fall 2002

A Framework for Integrating Housing Design and CBD

has a ‘Living Room’ and ‘Dining Room’ Functional Unit. A corresponding
Layout would contain at one level a Design Unit associated with the public zone,
which contains a sub-Layout with Design Units associated with living room and
dining room.

FIGURE 20. An example spatial hierarchy in SEED-Layout

The Design Units have a geometry, that is, location and dimensions. In this way,
they capture the geometry of a Layout, whereas the Layout/sub-Layout relations
reflect the spatial hierarchy as expressed in the constituent hierarchy of the
associated Functional Units in the Layout Problem the Layout solves. Like a
constituent hierarchy, the Layout/sub-Layout hierarchy is recursive; that is, a
Layout at any level is formally complete and retrievable as such. Consequently,
the representation used in SEED-Layout for Layout Problems and Layouts has
exactly the hierarchical structure we are looking for to represent cases, and the
object database captures these structures.

5.3.2.4 Case Base

SEED has a case base with additional capabilities beyond the object database and
CKB. The case base schema defines the following concepts: case, target, and
match operators.

Building

Floor

Zone

Room

Residential
House

First
Floor

Second
Floor

Public
Zone

Kitchen Bath
Room

 Living
 Room

 Dining
 Room

Bed
Room

Bed
Room

Master
Bedroom

PhD Thesis - Fall 2002 73

Platform for a First Prototype Implementation

What constitutes a case is highly domain-dependent, even in an environment like
SEED, which may contain applications dealing with architectural programming
or structural design in addition to SEED-Layout. Application developers are able
to define cases as they please and use the CKB to classify them. But such
classifications may not be sufficient to represent all aspects that an application
may want to use for retrieval. CB therefore provides a target that can be used by
any SEED-based application to attach additional information to a case. The
SEED developers also realized that certain retrievals should take configurational
aspects into account that may require matching on components independently of
any classifications. The CB component therefore allows application developers
to add match operators to a particular CB.

Since the generative capabilities available in SL_Comm are those of SEED-
Layout and layout design is a crucial part of the initial design phase in housing
design, the prototype system will consider cases mainly in the form of Layouts
that can be retrieved through form- or component-based classifications attached
to them. These classifications identify, at an abstract level, the type of problem
the Layout solves. That is, these classifications represent the problem
specifications part of a case, while the Layout represents the solution part.

Under this scheme, retrieval can be implemented in a computationally very
efficient way because the CKB and CB engines are able to retrieve the object
proxies associated with specific classifications or targets very efficiently.
Another advantage of this scheme is that query indices can be computed
automatically from a given Layout Problem if we allow Layout Problems to have
the same classification as the Layouts that solve them: in this situation, the
prototype can use the classification attached to the current Layout Problem as
search index to find in the case base all Layouts with the same classification.

This degree of efficiency and automation induced me to prefer this scheme over a
more elaborate one that seemed more natural at first. Since we have an explicit
problem formulation in the form of a Layout Problem, we may attach the entire
Layout Problem to a Layout as an index and retrieve cases by comparing the
current Layout Problem to the Layout Problems attached to the Layouts in the
case base and retrieving those Layouts with the closest matches. I rejected this
scheme because Layout Problems consist of a, possibly rather complex,
constituent hierarchy, and any matching algorithm would have to solve a
computationally hard combinatorial problem that may well prove untractable.

There is no equivalent in this scheme to also include information resembling the
outcome portion of the traditional problem/solution/outcome triad used to
represent cases (see section 5.1.1). It is true that SEED-Layout evaluates each
Layout and Layout modification against the requirements in the current Layout

74 PhD Thesis - Fall 2002

A Framework for Integrating Housing Design and CBD

Problem and makes these evaluations accessible to users through special
windows. But the database schema does not capture these evaluations. It would
be possible to use the target construct to record some of this information, but I
did not pursue this for the current prototype because SEED-Layout generates this
information anyway when a Layout is retrieved.

I do use the target to capture component-based classifications. In the current
prototype, they are restricted to simple attributes like the number of bedrooms or
bathrooms in a Layout, which can be automatically computed if the respective
Functional Units in a Layout Problem are appropriately classified.

Note that the case base engine can maintain multiple case-bases in which
different designers or organizations define and populate their cases, targets, and
match operators and register the related objects from the object database as
proxies.

5.3.3 System Architecture

SL_Comm and the CKB and CB in their present implementations are not
sufficient to provide all the functionalities needed by the CBD system for
housing as envisaged above. The capabilities of the CKB and CB are accessible
through application programming interfaces (APIs) which, so far, have not been
utilized by any application. There is also no graphical user interface (GUI)
available that would allow designers to create classifications cases and attach
them to objects created with SEED-Layout and stored in the object database.
Finally, no mechanism exists to retrieve object identifiers from the object
database so that they can be used as proxies by the CKB or CB.

Figure 21 shows the components that have to be added to SL_Comm in order to
provide a complete CBD prototype:

• A GUI that makes those functions in the CKB and CB APIs that deal with
the construction of classifications and cases and their association with
objects generated by SEED-Layout directly accessible to users.

• A CKB manager and CB manager that control the information exchange
between the GUI and the CKB and CB APIs. This intermittent layer
separates the domain functionality proper from the user interface and is
based on the model-view-controller separation, which is a hallmark of good
object-oriented design. The managers furthermore interact with the database
server to obtain object identifiers from the object database or retrieve cases
from it.

PhD Thesis - Fall 2002 75

Platform for a First Prototype Implementation

• The target construct in the CB has to be augmented in order to represent the
specific component-based attributes needed for the prototype.

I call this prototype SL_CB.

FIGURE 21. System architecture for the first prototype implementation, SL_CB

SEED Database

CKB

Object database

Case base

Database
Server

SEED-
Layout

SL_Comm GUI

User

SEED-Layout
GUI

Database
GUI

CKB and CB GUI

CBAPI

KBAPI

CB ManagerCKB Manager

SEED Database

CKB

Object database

Case base

Database
Server

SEED-
Layout

SL_Comm GUI

User

SEED-Layout
GUI

Database
GUI

CKB and CB GUI

CBAPI

KBAPI

CB ManagerCKB Manager

76 PhD Thesis - Fall 2002

A Framework for Integrating Housing Design and CBD

PhD Thesis - Fall 2002 77

CHAPTER 6

Functional Specification and
User Interface of a Prototype

A requirement is a feature that the system must have or a constraint that it must
satisfy to be accepted by the client. Requirements engineering aims at defining
the requirements of the system under construction. Requirements engineering
includes two main activities; requirements elicitation, which results in the
specification of the system that the client understands, and analysis, which results
in an analysis model that the developers can unambiguously interpret.
- Bernd Bruegge & Allen H. Dutoit, Object-oriented software engineering

Based on SL_CB as platform for a prototype implementation, I have developed
use cases describing the functionality and designed a graphical user interface
(GUI) of SL_CB. In this chapter, I first introduce briefly use case-driven
software development. I then introduce in detail the use cases that describe the
functionality and GUI specific to SL_CB.

6.1 Use Case-Driven Software Development

Software developers must define at the outset what the software is supposed to
accomplish. This is often called “behavior modeling”. The use case model
introduced by Jacobson et al. (1994) uses actors and use cases to aid in defining
who makes use of the system (actors) and what they can do with the system (use
cases).

A use case is a “sequence of actions an actor performs using a system to achieve
a particular goal” [Rosenberg 1999, p. 38]. Actors represent external entities that
interact with the system. An actor can be human or an external system [Bruegge
and Dutoit 2000, p. 106]. The following example illustrates these concepts.

78 PhD Thesis - Fall 2002

Functional Specification and User Interface of a Prototype

Use Case: View classification hierarchy

1. The designer issues the “Classification Hierarchy” command from the
command bar in the CB window.

2. SL_CB displays in the CB Window a tree view of the classification
hierarchy to which the currently active classification belongs.

In this use case, the designer is the actor and the sequence of actions describes
how this actor can accomplish as specific task, in this case, to create a specific
display.

A use case-driven approach to software development is based on the assumption
that a system can be described in a number of different views represented by the
different actors. Each of those views leads to a set of tasks the actors have to be
able to perform with the help of the system. When we consider all of the different
actors and associated tasks, we arrive at a set of use cases that describe the entire
functionality of the system from the end users’ point of view. From the system
developer’s perspective, the use cases specify the functional requirements the
system has to satisfy.

The use case-driven software development process specifies a series of ‘models’
within the overall iterative process: requirement, analysis (sometimes called the
static object model), design (sometimes called the dynamic object model),
implementation, and testing model. Derived from the requirements model
described through the use cases, the analysis model identifies the classes and
their relations that must be instantiated to capture all data of interest. The design
model identifies the object instances that must interact to deliver the
functionalities of the individual use cases. The implementation model includes
the source code written in a specific programming language. Finally, the testing
model consists of documentation of test specifications and test results for each
use case. Figure 22 shows the phases of the process and the products each phase
creates.

In short, use case specifications govern not only the requirements model, but also
work on the analysis, design, implementation, and test models. Currently, it is the
approach of choice when it comes to object-oriented software development.

6.2 Overview of Use Cases

This section provides an overview of the use cases that I defined to deliver the
functionality outlined in Chapter 5.

PhD Thesis - Fall 2002 79

Overview of Use Cases

Source: Flemming et al. (2001) p.12

FIGURE 22. Phases and products of use case-driven software development

6.2.1 Case Creation

The capabilities of SEED-Layout are used in SL_CB to create cases and all
related information: Functional Units, Layout Problems, and Layouts. Flemming
et al. (2000) describe the use cases that deliver the functionality to designers.
Readers are also referred to Flemming (1999) and Flemming and Chien (1998)
for a SEED-Layout Tutorial and SEED-Layout Reference Manual, respectively.
These descriptions are not included in the present document.

6.2.2 Indexing and Retrieving Cases

The use cases covering this aspect of SL_CB fall into following two groups:

• Primitives and classifications. This group contains the use cases that
describe how designers can create primitives and classifications, attach them
to objects created by SEED-Layout and retrieve objects with these
classifications from the object database.

• Cases. This group contain the use cases dealing with the creation and
retrieval of cases, where a case is a Layout, to which form- and component-
based classifications have been attached.

80 PhD Thesis - Fall 2002

Functional Specification and User Interface of a Prototype

These use cases and the respective GUIs are described in detail in the bulk of this
chapter. Class and sequence diagrams covering the same use cases can be found
in Appendix B and C.

The template used to describe use cases expands the format used in the example
above. It starts each use case with a brief statement that summarizes the task. It
then states the preconditions that much be met if the use case is to be executed.
The main portion lists the individual steps that comprise the use case, possibly by
distinguishing a basic course from one or several alternative courses. GUI
snapshots augment the descriptions. This format has been borrowed from
Flemming et al. (2001).

Since the tasks covered by these use cases are closely related, it seems
unnecessary to distinguish between several actors in their execution. I therefore
describe use cases for a single, generic actor called ‘user’.

6.2.3 Adapting Cases

SL_CB again relies entirely on SEED-Layout for this capability. The use cases
describing these capabilities of SEED-Layout can be found in the literature cited
in section 6.2.1.

6.3 Functional Specification and User Interface

6.3.1 Primitives and Classifications

I argued in Chapter 3 and 5 that the classification engine of CKB is capable of
capturing form-based features of a case. I have developed twenty-five use cases
that make the capabilities of CKB available to designers.

6.3.1.1 Session Handling

The capabilities of CKB are accessible to designers from a general window
called CKB Window. All actions that can be performed while a single CKB
Window is open constitute a classification session.

PhD Thesis - Fall 2002 81

Functional Specification and User Interface

1. Start a classification session

The user starts a classification session in order to employ the specific
functionalities of the classification engine of CKB.

Preconditions:
1. The SL_Comm Window (SCW) is open.

Basic Course:
1. The user selects the “Classification” option from the “Communication”

menu in the SCW menu bar.
2. SL_CB opens the “Classification Login” dialog box. It prompts the user

to select a database type and to input a database name, username and
password.

3. If the three input values are all correct, SL_CB connects to the
database and opens the Classification Knowledge Base (CKB)
Window; otherwise, it shows an appropriate error message and returns
to step 2.

4. The user may exit this use case anytime by hitting the “Cancel” button
in the “Classification Login” dialog box.

2. End a classification session

The user ends a classification session and closes the CKB Window.

Preconditions:
1. The CKB Window is open.

Basic Course:
1. The user selects the “Close” option from the “File” menu.
2. If changes have been made after the last save, SL_CB asks the user if

the changes should be saved and acts accordingly.
3. SL_CB closes the CKB Window and ends the classification session.

6.3.1.2 CKB Administration

A specific CKB instance contains all primitives, restrictions, classifications, and
classified object proxies that a specific designer or group of designers uses to
index and retrieve objects from the object database. All CKBs are identified by
names.

82 PhD Thesis - Fall 2002

Functional Specification and User Interface of a Prototype

FIGURE 23. Start a classification session

3. Create a CKB

The user creates a new CKB instance and gives it a name.

Preconditions:
1. SL_CB is connected to a database.
2. The CKB Window is open.

Basic Course:
1. The user selects the “New CKB” option from the “File” menu.
2. SL_CB opens the “New Knowledge Base” dialog box (see Figure 24).
3. The user enters a name in the “New KB Name:” field and hits the

“Commit” button.

Classification Login dialog box

 SL_Comm
 Window CKB Window

PhD Thesis - Fall 2002 83

Functional Specification and User Interface

4. SL_CB creates a new CKB in working memory, provided a CKB with
the same name does not exist in the database; otherwise, SL_CB
shows an error message and the use case returns to step 3.

5. The user may exit this use case anytime by hitting the “Cancel” button
in the “New Knowledge Base” dialog box.

Comments:
This use case creates a new CKB only in working memory; it does not
save it persistently in the database. When the user tries to create a CKB
again or load a CKB without saving the first one, SL_CB asks if the user
wants to save or dismiss the former one.

FIGURE 24. New knowledge base dialog box

4. Load a CKB

Upon the user’s request, SL_CB loads a previously created CKB, using its name
for identification.

Preconditions:
1. SL_CB is connected to a database.
2. The CKB Window is open.

Basic Course:
1. The user selects the “Load CKB” option from the “File” menu.
2. SL_CB opens the “Load Knowledge Base” dialog box showing a list of

existing CKB names in the connected database (see Figure 25).
3. The user selects a desired CKB by name and hits the “Commit” button.
4. SL_CB retrieves the respective CKB from the database and makes it

the currently active one.
5. The user may exit this use case anytime by hitting the “Cancel” button

in the “Load Knowledge Base” dialog box.

84 PhD Thesis - Fall 2002

Functional Specification and User Interface of a Prototype

FIGURE 25. Load a CKB

5. Close a CKB

Upon the user’s request, SL_CB closes the active CKB.

Preconditions:
1. A CKB is active.
Basic Course:
1. The user selects the “Close CKB” option from the “File” menu.
2. If changes have been made after the last save, the SL_CB asks the

user if the changes should be saved and acts accordingly.
3. The currently active CKB is closed.

PhD Thesis - Fall 2002 85

Functional Specification and User Interface

6. Save a CKB

Upon the user’s request, SL_CB saves the active CKB in the database.

Preconditions:
1. A CKB is active.

Basic Course:
1. The user selects the “Save CKB” option from the “File” menu.
2. SL_CB saves the currently active CKB in the persistent database.
3. If changes have not been made after the last save, SL_CB lets the user

know the fact.

7. Save a CKB as

Upon the user’s request, SL_CB saves the active CKB in the database under a
different name.

Preconditions:
1. A CKB is active.

Basic Course:
1. The user selects the “Save As CKB” option from the “File” menu.
2. SL_CB opens the “Save As Knowledge Base” dialog box.
3. The user enters a desired name in the “New KB Name:” field and hits

the “Commit” button.
4. SL_CB saves the currently active CKB under the new name in the

persistent database, provided a CKB with the same name does not
exist in the database; otherwise, SL_CB shows an error message and
prompts the user again to input another name.

5. The user may exit this use case anytime by hitting the “Cancel” button
in the “Save As Knowledge Base” dialog box.

8. Delete a CKB

Upon the user’s request, SL_CB deletes a specific CKB in the database.

Preconditions:
1. The CKB Window is open.

86 PhD Thesis - Fall 2002

Functional Specification and User Interface of a Prototype

Basic Course:
1. The user selects the “Delete CKB” option from the “File” menu.
2. SL_CB opens the “Delete Knowledge Base” dialog box showing a list

of existing CKB names in the connected database.
3. The user selects a name to be deleted and hits the “Delete” button.
4. SL_CB prompts the user to confirm the deletion.
5. If the user confirms and the selected CKB is not currently active,

SL_CB deletes that CKB from the database along with all primitives,
restrictions, DB objects, and classifications associated with it;
otherwise, SL_CB dismisses this use case.

6. The user may exit this use case anytime by hitting the “Cancel” button
in the “Delete Knowledge Base” dialog box.

9. Cleanup a CKB

Upon the user’s request, SL_CB cleans up the active CKB.

Preconditions:
1. A CKB is active.

Basic Course:
1. The user selects the “Cleanup CKB” option from the “File” menu.
2. SL_CB asks the user to confirm the clean-up.
3. If the user confirms, SL_CB discards the primitives, restrictions, DB

objects, and classifications associated with the currently active CKB;
otherwise, the use case terminates.

6.3.1.3 Handling of Primitives

10. View primitive hierarchy

Upon the user’s request, SL_CB displays a specific taxonomy as a tree of
primitives. The view also indicates all subsumption relations between primitives
and whether they are disjunct or disjoined.

Preconditions:
1. A CKB is active.
2. At least one primitive has been created in the CKB.

PhD Thesis - Fall 2002 87

Functional Specification and User Interface

Basic Course:
1. The user issues the “Primitive Hierarchy” command in the SL_CB

commands box.
2. SL_CB displays a tree view of the primitive hierarchy in the currently

active CKB (see Figure 26).

FIGURE 26. View primitive hierarchy

11. Create a primitive

The user creates a primitive by determining its name, relations to existing
primitives, and its type.

Preconditions:
1. A CKB is active.
2. A tree view of the primitive hierarchy is displayed.

88 PhD Thesis - Fall 2002

Functional Specification and User Interface of a Prototype

Basic Course:
1. The user selects a primitive from the tree view hierarchy with the left

mouse button and clicks the right mouse button to display the pop-up
menu.

2. The user selects “Add” option to create a new primitive (see Figure 27).
3. SL_CB opens the “Add Primitive” dialog box with the super primitive -

the first selected primitive -.
4. The user enters a name in the “New Primitive Name:” field and

chooses its type (simple or disjoint).
5. The user hits the “Commit” button.
6. If a primitive with the same name does not exist in the database,

SL_CB creates a new primitive with the given name in the persistent
database and displays the new primitive in the correct position in an
updated tree view; otherwise, SL_CB shows an error message and
prompts the user to enter another name.

7. The user may exit this use case anytime by hitting the “Cancel” button
in the “New Primitive” dialog box.

Alternate course:
1. The user selects the “New Primitive” option from the “Primitive” menu.
2. SL_CB opens the “New Primitive” dialog box.
3. The user enters a name in the “New Primitive Name:” field, chooses its

super primitive from a list of existing primitives in the current CKB, and
chooses its type (simple or disjoint).

4. The use case continues with step 5 of the basic course.

Comments:
The basic course can save time because the user already knows where
the primitive is placed in the tree view hierarchy and the super primitive
can be decided automatically. This way is more intuitive.

12. Edit a primitive

The user modifies the attributes, relations with other primitives, or type of a
specific primitive.

Preconditions:
1. A CKB is active.
2. At least one primitive has been created in this CKB.
3. A tree view of the primitive hierarchy is displayed.

PhD Thesis - Fall 2002 89

Functional Specification and User Interface

FIGURE 27. Create a primitive

Basic Course:
1. The user selects the “Edit Primitive” option from the “Primitive” menu.
2. SL_CB opens the “Edit Primitive” settings box, which displays - in the

“Primitive List” field - the names of all primitives currently defined in the
active CKB (see Figure 28).

3. The user selects a primitive in the list.
4. SL_CB displays the name of itself in the “Primitive Name” field, the

name of its super primitive in the “Select Super Primitive” button, and
the primitive type in the “Select Type” button.

5. The user types the new primitive name, or changes the super primitive,
or primitive type as desired.

6. The user hits the “Commit” button.
7. SL_CB saves the changed attributes.

90 PhD Thesis - Fall 2002

Functional Specification and User Interface of a Prototype

8. The user may exit this use case anytime by hitting the “Cancel” button
in the “Edit Primitive” settings box.

FIGURE 28. Edit primitive settings box

13. Delete a primitive

Upon the user’s request, SL_CB deletes a selected primitive in the active CKB.

Preconditions:
1. A CKB is active.
2. At least one primitive has been created in the CKB.
3. A tree view of the primitive hierarchy is displayed.

Basic Course:
1. The user selects a primitive from the tree view hierarchy with the left

mouse button and clicks the right mouse button to display the pop-up
menu.

2. The user selects “Delete” option.
3. SL_CB displays an Alert box asking the user if the primitive should be

deleted.
4. If the user confirms, SL_CB deletes the primitive and updates the

display of the primitive hierarchy.

Alternate course:
1. The user selects the “Delete Primitive” option from the “Primitive”

menu.
2. SL_CB opens the “Delete Primitive” dialog box, with displays - in the

“Primitive List” field - the names of all primitives currently defined in the
active CKB.

PhD Thesis - Fall 2002 91

Functional Specification and User Interface

3. The user selects a primitive name in the list and hits the “Delete”
button.

4. The use case continues with step 3 of the basic course.
5. The user may exit this use case anytime by hitting the “Cancel” button

in the “Delete Primitive” dialog box.

Comments:
Deleting a primitive is also deleting all its derived sub-primitives because
the primitive consists of subsumption hierarchy relationships.

14. Get derived information

The user displays all derived information for a primitive, such as the primitives it
subsumes or is subsumed by.

Preconditions:
1. A CKB is active.
2. At least one primitive has been created in the CKB.

Basic Course:
1. The user selects the “Get Primitive Info” option from the “Primitive”
 menu.
2. SL_CB opens the “Primitive Information” settings box, which shows the

names of the primitives currently defined in the “Primitive List” field in
the active CKB (see Figure 29).

3. The user selects a primitive in the list.
4. The settings box displays the “super primitive” and “sub primitives” list

for the selected primitive.
5. The user inspects the current settings and closes the settings box.

Alternate course:
1. If the primitive hierarchy is currently not displayed in the CKB Window,

the user displays it by selecting the “Primitive Hierarchy” command in
the SL_CB command bar (use case 10).

2. The user selects a primitive from the tree view hierarchy with the left
mouse button and clicks the right mouse button to display the pop-up
menu.

3. The user selects “Open” option.
4. SL_CB displays the derived information of the selected primitive.
5. The user inspects the current settings and closes the information box.

92 PhD Thesis - Fall 2002

Functional Specification and User Interface of a Prototype

FIGURE 29. Primitive information settings box

6.3.1.4 Handling of Classifications

15. Create a classification

The user creates a new classification by giving it a name and selecting the
primitives it encompasses and restrictions that apply.

Preconditions:
1. A CKB is active.

Basic Course:
1. The user selects the “New Classification” option from the

“Classification” menu in the CKB Window.
2. SL_CB opens the “New Classification” settings box (see Figure 30).
3. The user inputs a classification name in the “Classification Name:” field;

chooses its super classification from the “Super Classification List:”;
chooses the primitives from the “Primitive List:”; and selects a
restriction from the “Restriction List:”.

4. The user hits the “Commit” button.
5. If no classification with the same name exists in the active CKB and the

selected super classifications do not have inheritance conflicts each
other, SL_CB creates the new classification; otherwise, SL_CB
displays an appropriate error message and the use case returns to
step 3.

PhD Thesis - Fall 2002 93

Functional Specification and User Interface

6. The user may exit this use case anytime by hitting the “Cancel” button
in the “New Classification” dialog box.

FIGURE 30. Create a classification

16. Load a classification

Upon the user’s request, SL_CB loads a previously created classification, using
its name for identification. The settings box also displays all the parents,
primitives, and restrictions information.

Preconditions:
1. A CKB is active.
2. At least one classification has been created in the active CKB.

94 PhD Thesis - Fall 2002

Functional Specification and User Interface of a Prototype

Basic Course:
1. The user selects the “Load Classification” option from the

“Classification” menu.
2. SL_CB opens the “Load Classification” settings box which shows in the

“Classification List:” field a list of the names of the classifications in the
active CKB.

3. The user selects a classification name.
4. SL_CB displays in the settings box the parent, primitives, and

restrictions of the selected classification.
5. The user hits the “Commit” button.
6. SL_CB retrieves the classification from the database and makes it the

current active one.
7. The user may exit this use case anytime by hitting the “Cancel” button

in the “Load Classification” settings box.

17. View classification hierarchy

Upon the user’s request, SL_CB creates a display of the classification hierarchy
to which the currently active classification belongs.

Preconditions:
1. A classification is active.

Basic Course:
1. The user issues the “Classification Hierarchy” command in the CKB

commands box.
2. SL_CB displays in the CKB Window a tree view of the classification

hierarchy to which the currently active classification belongs.

18. Edit a classification

The user edits the currently active classification by adding/removing its parents,
primitives, or restrictions. The box also displays its subsumers, subsumees, and
synonyms information.

Preconditions:
1. A classification is active.

Basic Course:
1. The user selects the “Edit Classification” option from the

“Classification” menu.

PhD Thesis - Fall 2002 95

Functional Specification and User Interface

2. SL_CB opens the “Edit Classification” settings box, which displays - in
the “Classification Name:” field - the active classification name, the
parent of the active classification in the “Super List:” field, the primitives
it encompasses in the “Primitive List:” field, and the restrictions that
apply in the “Restriction List:” field. It also displays its derived
information such as its subsumers, subsumees, and synonyms (see
Figure 31).

3. The user types the new classification name, or changes the super
classifications, primitives, or restrictions as desired.

4. The user hits the “Commit” button.
5. If no classification with the same name exists in the active CKB and the

selected super classifications do not have inheritance conflicts each
other, SL_CB saves the changed settings; otherwise, SL_CB displays
an error message and the use case returns to step 2.

6. The user may exit this use case anytime by hitting the “Cancel” button
in the “Edit Classification” settings box.

FIGURE 31. Edit classification settings box

96 PhD Thesis - Fall 2002

Functional Specification and User Interface of a Prototype

19. Delete a classification

Upon the user’s request, SL_CB deletes a specific classification and propagates
the changes to the effected classifications. It also removes all pairings between
that classification and the objects to which it is attached.

Preconditions:
1. A CKB is active.
2. At least one classification has been created in the CKB.

Basic Course:
1. The user selects the “Delete Classification” option from the
 “Classification” menu.
2. SL_CB opens the “Delete Classification” dialog box, which shows - in

the “Classification List:” field - the names of the classifications in the
active CKB (see Figure 32).

3. The user selects a classification name and hits the “Delete” button.
4. If the selected classification is not currently active, SL_CB displays an

Alert box prompting the user to confirm the request; otherwise, SL_CB
displays an error message and the use case returns to step 3.

5. If the user confirms, SL_CB deletes the classification and all
classifications it subsumes along with all pairings between these
classifications and the objects to which they are attached. SL_CB also
updates the tree view of the current classification hierarchy if it is
shown in the CKB Window.

6. The user may exit this use case anytime by hitting the “Cancel” button
in the “Delete Classification” dialog box.

20. Delete all classifications

Upon the user’s request, SL_CB deletes all classifications in the active CKB.

Preconditions:
1. A CKB is active.

Basic Course:
1. The user selects the “Delete All” option from the “Classification” menu.
2. SL_CB opens an Alert box prompting the user to confirm the request.
3. If the user confirms, SL_CB deletes all classifications along with all

pairings between these classifications and the objects to which they
are attached.

PhD Thesis - Fall 2002 97

Functional Specification and User Interface

FIGURE 32. Delete a classification

21. Get derived information

Upon the user’s request, SL_CB displays all derived information for a
classification, such as the classifications it subsumes or is subsumed by.

Preconditions:
1. A CKB is active.
2. At least one classification has been created in the CKB.

Basic Course:
1. The user selects the “Get Derived Info” option from the “Classification”

menu.
2. SL_CB opens the “Derived Classification” settings box (see Figure 33).

98 PhD Thesis - Fall 2002

Functional Specification and User Interface of a Prototype

3. The user selects a classification in the list.
4. The settings box displays the “Derived Primitives”, “Derived

Restrictions”, “Subsumers”, “Subsumees”, and “Synonyms” list for the
selected classification.

5. The user inspects the current settings and closes the settings box.

FIGURE 33. Classification derived information settings box

22. Compare classifications

Upon the user’s request, SL_CB compares a classification to others by displaying
the comparison types.

Preconditions:
1. A CKB is active.
2. At least two classifications have been created in the active CKB.

Basic Course:
1. The user selects the “Compare Classifications” option from the
 “Classification” menu.
2. SL_CB opens the “Compare Classification” settings box, which shows

a list of all classification names in the active CKB (see Figure 34).

PhD Thesis - Fall 2002 99

Functional Specification and User Interface

3. The user selects two classifications and hits the “Compare” button.
4. SL_CB displays the attributes of the selected classifications such as

SUBSUMER, SUBSUMEE, EQUIVALENT, EQUAL, DISJOINED, and
DISTINCT.

5. The user may exit this use case anytime by hitting the “Cancel” button
in the “Compare Classifications” dialog box.

FIGURE 34. Compare classification settings box and the attribute

23. Attach a classification

The user attaches a classification to the active Layout or Layout Problem (LP) or
to a selected Functional Unit (FU).

Preconditions:
1. SL_CB has loaded a LP from a file or the database. This implies that

an active layout exists. if the user wants to classify a Functional Unit, a
Unit must have been selected.

2. SL_CB is connected to the object database.
3. A CKB is active.
4. At least one classification has been created in the active CKB.

Basic Course:
1. The user selects the “Classify” option from the “Classification” menu.

100 PhD Thesis - Fall 2002

Functional Specification and User Interface of a Prototype

2. SL_CB opens the “Classify” settings box, which shows a lists of the
names of all classifications in the active CKB (see Figure 35).

3. The user selects a classification.
4. SL_CB displays all of the attributes for the selected classification.
5. The user selects the type (or class) of object to which the selected

classification should be attached and hits the “Classify” button.
6. If the user selected “FU” but no FU has been selected, SL_CB displays

an error message and aborts the use case. If the selected classification
has a restriction that excludes the selected object type, SL_CB
displays an error message and the use case returns to step 3 or 5. If
the active Layout/LP or selected FU has already an attached
classification, SL_CB asks the user in a special Alert box if the existing
classification should be replaced by the selected one. If the user does
not confirm this, the use case returns to step 3 or 5. In all other cases,
the use case continues with step 7.

7. Depending on the user’s selection, SL_CB attaches the selected
classification to Layout, LP, or FU.

8. The user may exit this use case anytime by hitting the “Cancel” button
in the “Classify” dialog box.

FIGURE 35. Classify settings box

24. Compare

The user creates a temporary description and compares it with existing
classifications.

PhD Thesis - Fall 2002 101

Functional Specification and User Interface

Preconditions:
1. A CKB is active.
2. At least one classification has been created in the CKB.

Basic course:
1. The user selects the “Compare” option from the “Retrieve” menu.
2. SL_CB opens the “Compare” settings box (see Figure 36).
3. The user inputs a temporary description name in the “Temp Description

Name:” field and selects the super classifications from the “Super
Classification List:” field, primitives from the “Primitive List:” field, and
restrictions from the “Restriction List:” field; and selects the
classification from the “Existing Classification List:” field.

4. If the user clicks the “Compare” button, the temporary description is
compared with the selected classification.

5. The user can decide if the temporary description is saved or not. If the
user decides the temporary description is saved, the user clicks the
“SaveTemp” button to save the temp description.

6. The user may exit this use case anytime by hitting the “Cancel” button
in the “Compare” settings box.

FIGURE 36. Compare settings box

102 PhD Thesis - Fall 2002

Functional Specification and User Interface of a Prototype

25. Retrieve classified objects

Upon the user’s request, SL_CB retrieves an object with a specific classification
from the database. Recall that users may attach classifications to Functional
Units, Layout Problems, and Layouts.

Preconditions:
1. SL_CB is connected to the object database.
2. A CKB is active and contains at least one classification that is attached

to an object in the database.

Basic course:
1. The user selects the “Retrieve” option from the “Retrieve” menu.
2. SL_CB opens the “Retrieve” settings box (see Figure 37).
3. The user specifies interactively the retrieval type (SUBSUMER,

SUBSUMEE, or EQUIVALENT) and selects one name.
4. The user selects a desired combination of classifications and the class

of objects he wants to retrieve (FU, Layout or LayoutProblem), and
clicks the “GetDBObjectName” button. During this process, the
classification engine checks the disjoined primitive conflicts among
selected classifications.

5. The dialog box displays the names of all objects of that class with the
specified classification and shows them in a selection field.

6. The user selects one name and clicks the Retrieve button.
7. SL_CB retrieves the selected object and loads it into working memory.

If the object is a Functional Unit, it will be added as a constituent to the
current Layout Problem. If it is a Layout Problem, SL_CB deletes the
current Layout Problem and all Layouts generated from it, and makes
the retrieved Layout Problem the current one. If the object is Layout, it
adds this Layout to the set of currently available Layout alternatives;
the Design Units in the retrieved Layout become associated with
Functional Units in the current Layout Problem that have the same
name as the Functional Units with which the Design Units were
associated when the Layout was saved in the database. If no such
Functional Unit can be found, the Functional Unit originally associated
with the Design Unit will also be retrieved and added as a constituent
to the current Layout Problem.

8. The user may exit this use case anytime by hitting the “Cancel” button
in the “Retrieve” settings box.

PhD Thesis - Fall 2002 103

Functional Specification and User Interface

FIGURE 37. Retrieve settings box

6.3.2 Cases

I have argued in Chapter 3 and 5 that cases can be indexed based on their form or
the components they contain. I also suggested that the classifications handled by
the CKB engine can be used to index cases according to their form (“split-level”,
“ranch”), features which a CAD system often cannot discover on its own.
However, certain component-based features can be automatically recognized. I
suggested that the CB engine, especially the target construct, can be used to
automatically add component-based features to a case that can be used as indices
for retrieval in addition to the classifications.

The first prototype implementation is restricted to three basic component features
that can be easily implemented with the CB engine: the number of bedrooms,
bathrooms, and work rooms in a Layout. Whenever a user saves the active
Layout as a case, SL_CB automatically determines how many rooms of these
types it contains and adds these numbers as attributes to the case. In other words,
a user does not have to capture these features explicitly through classifications.
Upon retrieval, users are then able to specify not only a classification, but also
the number of desired components for which they are looking. For example, they
can specify that they are looking for a split-level house with three bedrooms, two
bathrooms and one work room.

I have developed twelve use cases that capture the required functionality based
on the schema specifications and case-base API provided by the CB engine

104 PhD Thesis - Fall 2002

Functional Specification and User Interface of a Prototype

mentioned in section 5.3.2.4. In the following, I describe in greater detail the use
cases and the GUI that makes them available to users.

6.3.2.1 Session Handling

26. Start a case-base design session

The user starts a case-base session in order to define or retrieve appropriate cases
from the case base (CB).

Preconditions:
1. The SL_Comm Window (SCW) is open.

Basic Course:
1. The user selects the “Case base” option from the “Communication”

menu in the SCW menu bar.
2. SL_CB opens the “Database Login” dialog box.
3. SL_CB prompts the user to select a database type and to input a

database name, username and password.
4. If the three input values are all correct, SL_CB connects to the selected

case base and opens the Case-based Design (CBD) Window;
otherwise, it shows an appropriate error message and prompts the
user again for the required inputs.

5. The user may abort this use case anytime by hitting the “Cancel” button
in the “Database Login” dialog box.

FIGURE 38. Start a case-based design session

Database Login dialog box

CBD Window

PhD Thesis - Fall 2002 105

Functional Specification and User Interface

27. End a case-based design session

The user ends a case-based design session and closes the CBD Window.

Preconditions:
1. The CBD Window is open.

Basic Course:
1. The user selects the “Close” option from the “File” menu.
2. If changes have been made after the last save, SL_CB asks the user if

the changes should be saved and acts accordingly.
3. SL_CB closes the CBD Window and ends the case-based design

session.

6.3.2.2 CB Administration

Like with CKBs, the information a designer or group of designers wants to
collect to form a specific CB can be recorded and saved in a specific, named CB
instance.

28. Create a CB

Upon the user’s request, SL_CB creates a new CB instance and gives it a name.

Preconditions:
1. The CBD Window is open.

Basic Course:
1. The user selects the “New CB” option from the “File” menu.
2. SL_CB opens the “New Case-base” dialog box.
3. The user inputs a CB name in the “New CB Name:” field.
4. The user hits the “Commit” button.
5. If a CB with the same name does not exist in the database, SL_CB

creates a new CB in working memory; otherwise, it shows an error
message and prompts the user to input another name. The new CB is
stored persistently only when the user selects the “Save CB” option
from the File menu (use case 32).

6. The user may exit this use case anytime by hitting the “Cancel” button
in the “New Case-base” dialog box.

106 PhD Thesis - Fall 2002

Functional Specification and User Interface of a Prototype

29. Load a CB

Upon the user’s request, SL_CB loads a previously created CB.

Preconditions:
1. The CBD Window is open.

Basic Course:
1. The user selects the “Load CB” option from the “File” menu.
2. SL_CB opens the “Load Case-base” dialog box, which shows in the

“Load Case Base” field the names of the CBs in the connected
database.

3. The user selects a CB name and hits the “Commit” button.
4. SL_CB retrieves the CB from the connected database and makes it the

currently active one.
5. The user may abort this use case anytime by hitting the “Cancel” button

in the “Load Case-base” dialog box.

Alternate course:
The user issues the “Load CBD” command from the CBD command bar in
step 1. All steps are the same from step 2 on.

30. Close a CB

Upon the user’s request, SL_CB closes the active CB.

Preconditions:
1. A CB is active.

Basic Course:
1. The user selects the “Close CB” option from the “File” menu in the CBD

Window.
2. If changes have been made after the last save, SL_CB asks the user if

the changes should be saved and acts accordingly.
3. SL_CB closes the currently active CB.

31. Save a CB

Upon the user’s request, SL_CB saves the active CB in the connected database.

PhD Thesis - Fall 2002 107

Functional Specification and User Interface

Preconditions:
1. A CB is active.

Basic Course:
1. The user selects the “Save CB” option from the “File” menu.
2. SL_CB saves the currently active CB in the connected database.
3. SL_CB informs the user if no changes have been made after the last

save.

32. Save a CB as

Upon the user’s request, SL_CB saves the active CB in the connected database
under a different name.

Preconditions:
1. A CB is active.

Basic Course:
1. The user selects the “Save CB As” option from “File” menu.
2. SL_CB opens the “Save As Case-base” dialog box (see Figure 39).
3. The user enters a name in the “New CB Name:” field and hits the

“Save” button.
4. If a CB with the same name is not in the connected, SL_CB saves the

currently active CB under the new name in the connected database;
otherwise, it shows an error message and prompts the user to enter
another name.

5. The user may abort this use case anytime by hitting the “Cancel” button
in the dialog box.

FIGURE 39. Save as case-base dialog box

108 PhD Thesis - Fall 2002

Functional Specification and User Interface of a Prototype

33. Delete a CB

Upon the user’s request, SL_CB deletes a CB in the database.

Preconditions:
1. The CBD Window is open.

Basic Course:
1. The user selects the “Delete CB” option from the “File” menu.
2. SL_CB opens the “Delete Case-base” dialog box, which shows a list of

the CBs in the connected database.
3. The user selects a CB name and hits the “Delete” button.
4. If the selected CB is not the active one, SL_CB opens an Alert box

asking the user to confirm the request; otherwise, it displays an error
message and the use case returns to step 3.

5. If the user hit the “OK” button in the Alert box, SL_CB deletes the
selected CB in the connected database along with all the associated
CB components. This deletion is immediately persistent. If the user hit
the “Cancel” button in the Alert box, SL_CB terminates the use case
and closes all related dialog boxes.

34. Cleanup a CB

Upon the user’s request, SL_CB cleans up the active CB.

Preconditions:
1. A CB is active.

Basic Course:
1. The user selects the “Cleanup CB” option from the “File” menu.
2. SL_CB opens an Alert box asking the user to confirm the request.
3. If the user hit the “OK” button in the Alert box, SL_CB cleans up the

active CB. If the user hit the “Cancel” button in the Alert box, SL_CB
terminates the use case and closes all related dialog boxes.

6.3.2.3 Case Handling

35. Create a Case

Upon the user’s request, SL_CB turns the active Layout into a new case.

PhD Thesis - Fall 2002 109

Functional Specification and User Interface

Preconditions:
1. A CB is active.
2. A Layout Problem (LP) is active, which implies that there exists an

active Layout, and this LP has been read from the object database.
3. Users who wish that SL_CB add component information (number of

bedrooms, bathrooms, and work rooms) as case attributes must make
sure that the Functional Units representing these rooms in the active
LP have been classified accordingly and have been allocated in the
active Layout.

Basic Course:
1. The user selects the “Create a Case” option from the “Case” menu.
2. SL_CB opens the “New Case” settings box.
3. The user enters a name in the “Case Name:” field.
4. SL_CB displays the classifications attached to the current Layout

Problem and component-based attributes of the currently active Layout
derived from the classifications of the Functional Units allocated in it.

5. The user hits the “Save” button.
6. If no case with the new name exists in the active CB, SL_CB creates a

new case; otherwise, it shows an error message and the use case
returns to step 3. The form- and component-based classifications are
attached to the Layout in the background, i.e. do not need any user
action.

7. The user may exit this use case anytime by hitting the “Cancel” button
in the “New Case” settings box.

Alternate course:
1. The user issues the “Create a Case” command from the CBD

command bar in step 1. All steps are the same from step 2 on.

FIGURE 40. Create a Case settings box

110 PhD Thesis - Fall 2002

Functional Specification and User Interface of a Prototype

36. Delete a Case

Upon the user’s request, SL_CB deletes a selected case in the active CB.

Preconditions:
1. A CB is active.
2. At least one case has been created in the CB.

Basic Course:
1. The user selects the “Delete a Case” option from the “Case” menu.
2. SL_CB opens the “Delete Case” dialog box, with displays - in the “Case

Name List” field - the names of all cases currently defined in the active
CB.

3. The user selects a case name in the list and hits the “Delete” button.
4. SL_CB displays an Alert box asking the user if the case should be

deleted.
5. If the user confirms, SL_CB deletes the case.
6. The user may exit this use case anytime by hitting the “Cancel” button

in the “Delete a Case” dialog box.

Alternate course:
1. The user issues the “Delete a Case” command from the CBD

command bar in step 1. All steps are the same from step 2 on.

37. Retrieve a Case

Upon the user’s request, SL_CB retrieves a Layout as a case from the active CB.
The retrieved case is added to the current design space and becomes the active
Layout. Note that a case can be retrieved in two ways: (i) by name or (ii) by
index, which is a combination of a classification and components.

Preconditions:
1. A CB is active.
2. A Layout Problem is active and has been read from the object

database.

Basic Course:
1. The user selects the “Retrieve Cases” option from the “Case” menu.
2. SL_CB opens the “Retrieve Cases” settings box.
3. The user selects the retrieval method by checking the “By Name” or “By

Index” check box.

PhD Thesis - Fall 2002 111

Functional Specification and User Interface

4. If the user checked the “By Name” box, SL_CB displays the names of
all cases in the active CB. If the user checked the “By Index” box, the
use case continues with the alternate course.

5. The user selects a case name and hits the “Retrieve” button.
6. If the object representing the case exists in the object database,

SL_CB retrieves the case; otherwise, it displays an error message, and
the use case returns to step 3. The retrieved case is added to the
current design space and becomes the active Layout. The DesignUnits
in that Layout are associated with FunctionalUnits in the active
LayoutProblem that have the same name as the FunctionalUnits with
which these Design Units were associated when the case was created
(use case 36); if such Functional Units do not exist, the FunctionalUnits
associated with the original layout are added to the LayoutProblem.

7. The user may exit this use case anytime by hitting the “Cancel” button.

Alternate course (Retrieval by index):
4. If the user checked the “By Index” box, SL_CB computes automatically

a retrieval index by combining form-based classification attached to the
current Layout Problem with the number of Functional Units classified
as bedrooms, bathrooms, or workrooms. SL displays this
classifications to the user.

5. The user inspects this classification, and may change the number of
desired components of some type. The user then hits the “Commit”
button.

6. If cases with this combination of indices exist in the active CB, SL_CB
displays the names of these cases as in step 4 of the basic course.

7. The use case continues with step 5 of the basic course.

112 PhD Thesis - Fall 2002

Functional Specification and User Interface of a Prototype

FIGURE 41. Retrieved by index settings box

PhD Thesis - Fall 2002 113

CHAPTER 7

How it All Works -- Case Creation,
Retrieval and Adaptation in Action

The present chapter illustrates how the prototype described in the preceding
chapters’ works by describing concrete examples of case creation, retrieval, and
adaptation that make use of SL_CB. These examples tie the use cases back to the
scenarios in Chapter 4 and demonstrate concretely how SL_CB supports selected
tasks in housing design. The examples also illustrate how the capabilities SL_CB
adds to SL_Comm interact with its other components, especially SEED-Layout.

7.1 Case Base: Initial Seeding

I mentioned in section 5.3.2.4 that a case base needs some initial cases as
contents or needs to be ‘seeded’. For the present context, the initial case base
may contain standard housing configurations that are or have been widely used in
the industry, from ranches, raised ranches, and split-levels to the currently
popular ‘MacMansions’.

Designers charged with the task of generating such a case must first use the
SEED-Layout GUI to create a Layout Problem and its Functional Unit
constituents, and then generate a Layout, possibly over several floors, that
allocates the Functional Units. If the case to be created is a traditional split-level
residence, the Layout Problem may be formulated as shown in Table 3.
Constituent relations are indicated by indentation in the left-most column. Note

114 PhD Thesis - Fall 2002

How it All Works -- Case Creation, Retrieval and Adaptation in Action

how MassingElements have to be used in SEED-Layout to assure proper exterior
alignments across floors within a building block and to allow floors in different
blocks to have different floor heights (off-set by 1/2 floor—the basic idea
underlying the split-level scheme). Figure 42 shows a snapshot of the SEED-
Layout GUI that supports the generation of Functional Unit constituents: a
constituent hierarchy window showing the evolving spatial hierarchy and the
dialog box a designer can use to define various numerical constraints.

* The area requirements for MassingElements apply to the footprint of the element, not the sum of floor areas
contained in it

TABLE 3. The Functional Units of a split-level residence

 FU name FU class Dimensional Requirements Required Adjacency

SplitLevel BuildingFU min.width: 24ft., min.area: 1152sq.ft.

 Part1 MassElementFU min.width: 24ft., min.area: 576sq.ft.*

 Floor0 StoreyFU min.width: 24ft., min.area: 576sq.ft.

elevation: 0 ft.

 Garage ZoneFU min.width: 20ft., min.area: 480sq.ft.

 Stair VertZoneFU min.width: 6ft. Garage

 Utilities RoomFU min.width: 5ft. Stair

 Floor2 StoreyFU min.width: 24ft., min.area: 576sq.ft.

elevation: 9 ft.

 Stair VertZoneFU min.width: 6ft.

 Hall ZoneFU min.width: 3ft. Stair

 MBedroom RoomFU min.width: 12ft., min.area: 176sq.ft. Hall

 Bedroom1 RoomFU min.width: 10ft., min.area: 125sq.ft. Hall

 Bedroom2 RoomFU min.width: 10ft., min.area: 125sq.ft. Hall

 Bathroom1 RoomFU min.width: 5ft., min.area: 25sq.ft. Hall

 Bathroom2 RoomFU min.width: 5ft., min.area: 25sq.ft. Hall

 Part2 MassElementFU min.width: 24ft., min.area: 576sq.ft.

 Floor1 StoreyFU min.width: 24ft., min.area: 576sq.ft.

elevation: 4.5 ft.

 Entry RoomFU min.width: 3ft.

 Living Room RoomFU min.width: 15ft., min.area: 250sq.ft. Entry

 Dining Room RoomFU min.width: 12ft., min.area: 176sq.ft Living Room

 Kitchen RoomFU min.width: 10ft., min.area: 125sq.ft. Dining Room

PhD Thesis - Fall 2002 115

Case Base: Initial Seeding

FIGURE 42. SEED-Layout GUI supporting creation of Functional Units

Based on this information, designers are now able to create, in a short time, the
three floors of the house as shown in Figure 43. If designers have a sketch of the
entire configuration (in their head or on paper), they can tell SEED-Layout
exactly where to place each unit. SEED-Layout is able to use the requirements in
the Layout Problem to size the spaces on each floor automatically and to check if
all required relations are satisfied. This process may take only minutes if the
designers are experienced SEED-Layout users.

Formulating the Layout Problem may take a little longer because quite a bit of
information has to be entered. Nevertheless, the entire example discussed here
was completed by an experienced SEED-Layout user in less than 30 minutes.

Before the Layout can be saved as a case, the Layout Problem has to be
classified, for example, with the classification ‘CLsidewiseSlope-splitLevel’. In
order to create this classification, the designer has to use first use case 11 (Create
a primitive) to create the two primitives sidewise_slope and split_level,
respectively; the first specializes the primitive site_shape and the second
specializes exterior_style in the taxonomy (see Figure 26).

116 PhD Thesis - Fall 2002

How it All Works -- Case Creation, Retrieval and Adaptation in Action

FIGURE 43. Three floors of a split-level residence created with SEED-Layout

Once the primitives have been defined, the designer can create the classification
that combines both with use case 15 (Create a classification). Since the
classification CLsidewiseSlope-splitLevel is a specific kind of split-level, the
designer should make it a specialization of the more general classification
CLsplitLevel. As a result, the classification CLsidewiseSlope-splitLevel inherits
all derived information from the classification CLsplitLevel.

The designer is now able to attach this classification to the Layout Problem with
use case 23 (Attach a classification). In order to do this, it is not necessary that
the Layout Problem has been saved persistently in the object database. When a
classifiable object (Layout Problem, Functional Unit or Layout) is being
classified, SL_CB checks if the object is already persistently stored and saves it
persistently if this is not so. In the end, the classification is persistently attached
to the object (via an object proxy).

In order to assure that component-based classifications can be generated
accurately, the designer must also ensure that all Functional Units representing
bedrooms or bathrooms are classified correctly with classification CLbedroom or

FLOOR 1

FLOOR 2

FLOOR 0 FLOOR 1FLOOR 1

FLOOR 2FLOOR 2

FLOOR 0FLOOR 0

PhD Thesis - Fall 2002 117

The Retrieve-Adapt-Create Cycle

CLbathroom (again with use case 23). This enables SL_CB to derive the number
of rooms of each type independently of their names and to save these as an
additional case attribute.

At this point, the generated Layout is ready to be saved as a case in the initial
case base. This happens with use case 35 (Create a Case). SL_CB computes
automatically the index to be used by combining the classification attached to the
Layout Problem with the number of bedrooms and bathrooms contained in the
Layout (Figure 41 shows the settings box supporting this use case).

The primitives and classifications attached to the Layout Problems and
Functional Units are saved in a specific, named CKB, and the case with the
added component information is saved in a specific, named CB. Both of these are
databases in their own right and independent of the object database storing the
Layout Problem and Layout themselves. The CKB and CB must be made
available, together with the object database, to any user or organization interested
in using this information because otherwise, the case base cannot be accessed. In
combination, the three databases allow designers and other users to browse the
case base. Once they have developed an idea about its content, they are able to
start building their own CKBs and CBs over the same objects in the object
database, if they desire to do this.

7.2 The Retrieve-Adapt-Create Cycle

What emerges clearly from Figure 15 is that the CBD steps supporting parts of
the scenarios form retrieve-adapt-create patterns that are cyclical because the
adapted case that is saved as a new case may, in turn, become the first step in a
next cycle (see Figure 44). This section illustrates how SL_CB supports this
cycle through three episodes.

FIGURE 44. Retrieve-adapt-create cycle in the design scenarios

Retrieve

 Adapt

 Create

a prototype Layout

the Layout to satisfy new demands

a case that adds the new Layout
to the case base

from the case base

118 PhD Thesis - Fall 2002

How it All Works -- Case Creation, Retrieval and Adaptation in Action

7.2.1 Episode 1

Suppose a potential client discusses with a designer or sales person possible
configurations for a three-bedroom/two-bathroom residence (building block xx
in scenario 3). Suppose furthermore that the designer has access to SL_CB and
the initial case base. As a first step, the designer may retrieve a Layout Problem
using a classification as search index that lists three bedrooms and two
bathrooms as attributes. Suppose that one of the Layout Problems retrieved in
this way is the Layout Problem generated for the split-level case. As the designer
and client inspect the Functional Units in the problem, they may find out that all
the desired units are there and consequently retrieve the Layout shown in
Figure 43.

In order to retrieve the case, the designer opens the Retrieved By Index dialog box
(use case 37; see Figure 41), which shows a search index combining the
classification attached to the Layout Problem and the number of bedrooms and
bathrooms in the problem. If the designer commits, the Layout shown in
Figure 43 can be retrieved from the case base (together with other cases that have
the same classification).

Let’s further assume that when the client discusses this option with the designer,
they discover that it would be easy to extend Floor 1 to the front so that it can
contain an additional home office that is accessible by the client directly from the
living room and by outside visitors from the outside. The other part of the
residence, with its independent foundation, is unaffected by this modification.

In order to generate this variant, the designer has to add a home office as a
RoomFU with the appropriate requirements to the current Layout Problem on
Floor 1 and interactively direct SEED-Layout to allocate it on Floor 1 in a
desired location. SEED-Layout will size the room automatically based on the
requirements specified in the Functional Unit. The corresponding plan is shown
in Figure 45. Note that SEED-Layout would also be able to find automatically
feasible room locations, but the interactive method is much faster for an
experienced SEED-Layout user who knows exactly where the space should be.

The designer finds this adaptation interesting enough and decides to add it to the
case base; this happens in the same way in which the initial case was created (see
section 7.1). If the added home office was classified as CLworkroom, this case
can now be retrieved when the index calls for a residence (or split-level
residence) with 3 bedrooms, 2 bathrooms and one work room.

PhD Thesis - Fall 2002 119

The Retrieve-Adapt-Create Cycle

FIGURE 45. Modified split-level residence

7.2.2 Episode 2

Suppose now that at a later time, the same or a different designer retrieves this
case for a new client interested in an integrated home office from the start.
However, this client wants more than a single office; he/she expects frequent
visitors and needs an independent entrance and reception area. The designer is
again able to modify the Layout Problem and Layout to include the new
Functional Unit (see Figure 46). The process is analogous to the one described in
episode 1.

The designer saves this new adaptation again as a case. If he has started to built
his own CKB, he may create a specific classification that adds the primitive
extended_workarea to the classification of the Layout Problem. In order to do

FLOOR 2

FLOOR 0 FLOOR 1

FLOOR 2FLOOR 2

FLOOR 0FLOOR 0 FLOOR 1FLOOR 1

120 PhD Thesis - Fall 2002

How it All Works -- Case Creation, Retrieval and Adaptation in Action

this, he either uses use case 15 to create the new classification from scratch or
modify the existing classification (use case 18, Edit a classification).

FIGURE 46. Second modification of split-level residence

7.2.3 Episode 3

As a later time, this case may be retrieved for a client interested in an extended
home office, but the site does not easily accommodate the pronounced L-shape of
this solution. In discussing this, the designer suggests that a more compact shape
could be achieved if a floor is added to Part 2 of the residence. This requires a
significantly different Layout Problem with a constituent hierarchy as shown in
Table 4. A Layout allocating the Functional Units in the Problem is shown in
Figure 47.

FLOOR 0 FLOOR 1FLOOR 0FLOOR 0 FLOOR 1FLOOR 1

FLOOR 2FLOOR 2

PhD Thesis - Fall 2002 121

The Retrieve-Adapt-Create Cycle

TABLE 4. Functional Units in extended split-level residence

 FU name FU class

SplitLevel BuilldingFU

 Part1 MassElementFU

 Floor0 StoreyFU

 Garage ZoneFU

 Stair VertZoneFU

 Utilities RoomFU

 Floor3 StoreyFU

 Hall ZoneFU

 MBedroom RoomFU

 Bedroom1 RoomFU

 Bedroom2 RoomFU

 Bathroom1 RoomFU

 Bathroom2 RoomFU

 Part2 MassElementFU

 Floor2 StoreyFU

 Stair VertZoneFU

 Living Room RoomFU

 Dining Room RoomFU

 Kitchen RoomFU

 Floor1 StoreyFU

 Stair VertZoneFU

 Entry/reception RoomFU

 Home office RoomFU

 1/2 Bathroom RoomFU

122 PhD Thesis - Fall 2002

How it All Works -- Case Creation, Retrieval and Adaptation in Action

FIGURE 47. Third modification of split-level residence

These episodes illustrate how SL_CB supports the retrieve-adapt-create cycle
identified in Figure 15. At the same time, they illustrate how the case base can
continue to expand as these cycles multiply. They specifically illustrate how
adaptations, even novel solutions, once they have been created as cases, become
immediately accessible to anyone who has access to SL_CB and the connected
databases.

FLOOR 3FLOOR 2

FLOOR 1FLOOR 0

FLOOR 3FLOOR 2

FLOOR 1FLOOR 0

PhD Thesis - Fall 2002 123

CHAPTER 8

Conclusion

Stat rosa pristina nomine, nomina nuda tenemus.
- Umberto Eco, The name of the rose

This chapter presents the contributions of this research. It then makes
suggestions for several enhancements and indicates promising directions for
future research.

8.1 Contributions

Case-based design offers an efficient way of finding complex design solutions by
minimal search, provided that problems presented to the system have strong
similarities to known cases for which solutions exist. The housing market is a
prime candidate for this approach because both public and for-profit
developments rely heavily on standardized plan configurations or established
precedents. An additional benefit for this special market arises from the fact that
the case base of a CBD system may serve as general mechanism to distribute
innovative design solution and thus counteract the problems inherent in that
particular industry. This thesis identifies classificatory types of housing
precedents to serve as indexing features for the retrieval in a CBD system. This
typology is embedded in a general framework that integrates building blocks of
the housing design scenarios and the main phases of CBR in design. The building
blocks of the housing design scenarios have been formally modeled based on
interviews with various housing design experts. The suitability of the framework
for its intended purpose has been demonstrated by a prototype of CBD systems

124 PhD Thesis - Fall 2002

Conclusion

for housing design based on the SEED databases and SEED-Layout
environment.

The following contributions result from this work:

• Description of the housing design process with different parties in the
housing market: Based on a literature survey about the housing industry in
the US and interviews with housing experts, this research has developed
design scenarios to model the housing design process, which is inherently an
ill-structured domain. Each design scenario comprises several building
blocks in a formalized structure. This thesis makes only limited use of this
formalization, but it allows other researchers to investigate housing design in
greater detail.

• Definition of a general framework for applying CBR to housing design:
The general framework integrates the housing design process and CBR in
design. It associates appropriate building blocks of the housing design
scenarios with typical CBD phases. The integrated approach provides the
context, defines the overall functionality, and raises the issues that have to be
addressed in the design and implementation of a CBD system for housing
design.

• Identification of types for the classification of housing precedents: This
research identifies classificatory types of housing precedents that are most
useful for a CBD system that retrieves precedents based on form- and
component-based classifications. These types serve as an indexing scheme
for the retrieval of housing precedents in a CBD system.

• Functional specification of a CBD system supporting this process: This
research develops a functional specification for a prototype CBD system.
The use case approach is used here to specify the capabilities of a CBD
prototype for housing. Thirty-nine use cases have been developed so far and
used in the design of the prototype implementation. However, they could
also guide developments in a different context and environment from the one
underlying the present prototype.

• User interface design: This research designs and implements an appropriate
graphical user interface to deliver the use cases to users. It integrates (and
hide from the user) heterogeneous modules like CKB, object database, case
base, a database and a communication server, SEED-Layout, and so on, and
provides effective user interactions to manage complex information.

PhD Thesis - Fall 2002 125

Future Research Directions

8.2 Future Research Directions

In this section, I provide a brief outline of possible enhancements and future
research directions to extend the work in this dissertation.

• Improvement of the graphical user interface: I have implemented the
graphical user interface (GUI) for CKB and CBD. Testing the GUI with real
end-users is needed to see if layout/graphics/terms are intuitive and easy to
learn. Especially, some of the terms are based on the CLASSIC knowledge
representation system and not necessarily familiar to designers or
developers.

• Extension of component-based classifications to define more complex
queries: Component-based queries in the first prototype implemented in this
dissertation are restricted to simple checks that ascertain if certain room
types exist in a layout independently of where they are in the layout or how
they are related to each other or to other spaces. The implementation is
further restricted (hard-coded) to consider only three basic room types:
bedrooms, bathrooms, and work rooms. This was easy to implement based
on the given API. Extended and more complex component-based queries
that take an open-ended set of room types, location and spatial relations into
account are conceivable, but introduce a significant increase in algorithmic
complexity that deserves a careful investigation in its own right.

• Classification-based matching of rooms during retrieval: As explained in
Section 5.4.3, a Layout in SEED-Layout consists of a collection of
rectangular areas called Design Units that are associated with the Functional
Units in a Layout Problem. These Functional Units collect the requirements
the Design Unit must satisfy and indicate, to the user, the basic function of
that Design Unit. The most basic of these is that the Functional Units are
used to give the Design Units a name (like ‘living room’). When a Layout is
stored persistently, the association between Design Units and Functional
Units is maintained. When the same Layout is retrieved as solution to a
current Layout Problem, the retrieved Design Units must be associated with
Functional Units in the current problem. Right now, this is done by name;
that is, whenever SEED-Layout retrieves a Design Unit, it retrieves at the
same time the name of the Functional Unit originally associated with it and
checks if the current Layout Problem contains a Functional Unit with the
same name. If this is the case, it associates that Functional Unit with the
retrieved Design Unit. If no such Functional Unit can be found, SEED-
Layout retrieves the original Functional Unit and adds it to the current
Layout Problem. It is up to the user to inspect this Functional Unit and
decide what to do with it. This scheme works properly only if some strict

126 PhD Thesis - Fall 2002

Conclusion

naming conventions are maintained across Layout Problems, a restriction
that appears far too severe for a general-purpose CBD system intended to be
used by various designers independently of each other. In this situation, it
would be much more convenient to assigns Functional Units to Design Units
by classification; for example, Design Units associated with a Functional
classified as “bedroom” will be associated with a Functional Unit of the
same classification independently of how these Functional Units are named
in the original and current Layout Problems. However, this approach is again
algorithmically and computationally decidedly non-trivial because of the
ambiguities that arise when several units have the same classification; in
fact, under subsumption, most units may end up with the same classification:
there may be choices for each Functional Unit involved. This creates a hard
combinational optimization problem that cannot be addressed in this thesis,
but seems to represent an interesting and practically relevant topic for a
second dissertation.

• Acquiring learning capability with accumulated housing precedents: I
introduced in the Chapter 1 that the CBR-cycle includes four main activities:
retrieve, reuse, revise, and retain. An important phase in this cycle is the
retain phase in which the system may be modified as a result of its usage and
success in the past; new cases may be collected within the case base and/or
the similarity concept in use may be tuned [Kamp et al. 1998]. CBR,
Information Retrieval (IR), database management system, and machine
learning are coming closer to provide the intelligent retrieval techniques
over complex, structured data. Recently, technologies developed allow for
much larger case-base. In order to extract patterns from these large
databases, “data mining” algorithms are useful to analyze the data
efficiently. In the first prototype implementation, housing solutions are
generated, modified, and stored in the CBD system. However, I do not have
enough amount of cases to apply data mining algorithms up to now.
Acquiring knowledge from databases using data mining techniques will be
an interesting topic for a later research.

References
[Aamodt 1995] Aamodt, A. (1995). Knowledge acquisition and learning by experience - the
role of case-specific knowledge. In Machine Learning and Knowledge
Acquisition - Integrated Approaches, eds. G. Tecuci and Y. Kodratoff, 197-
245. Academic Press.

[Aamodt and Plaza 1994] Aamodt, A. and E. Plaza (1994). Case-based Reasoning: Foundational
Issues, Methodological Variations, and System Approaches. In AI
Communications 7(1):39-59. IOS Press.

[Aygen 1998] Aygen, Z. (1998). A Hybrid Model for Case Indexing and Retrieval in
SEED. Ph.D. Dissertation. School of Architecture, Carnegie Mellon
University, Pittsburgh, PA.

[Bergmann and Althoff
1998]

Bergmann, R. and K-D. Althoff (1998). Methodology for Buildiing CBR
Applications. In Case-Based Reasoning Technology, eds. M. Lenz, B.
Bartsch-Spörl, H. Burkhard, and S. Wess, 299-326. Heidelberg, Berlin:
Springer-Verlag.

[Borgida 1992] Borgida A., R. Brachman, D. McGuiness, and L. Resnick (1992). CLASSIC:
A Structural Data Model for Objects, Technical report. AT&T Bell
Laboratories. Murray Hill, NJ.

[Börner 1998] Börner, K. (1998). CBR for Design. In Case-Based Reasoning Technology,
eds. M. Lenz, B. Bartsch-Spörl, H. Burkhard, and S. Wess, 201-233.
Heidelberg, Berlin: Springer-Verlag.

[Bourne 1981] Bourne, L. (1981). The Geography of Housing. New York: John Wiley &
Sons.
PhD Thesis - Fall 2002 127

References
[Broadbent 1973] Broadbent, G. (1973). Design in Architecture: Architecture and the Human
Sciences. NewYork: John Wiley & Sons.

[Bruegge and Dutoit
2000]

Bruegge, B. and A. Dutoit (2000). Object-oriented software engineering:
conquering complex and changing systems. New Jersey: Prentice-Hall.

[Carbonell 1983] Carbonell, J. (1983). Learning by Analogy: Formulating and Generalizing
Plans from Past Experience. In Machine Learning: An Artificial Intelligence
Approach, eds. R.S. Michalski, J.G. Carbonell, and T. M. Mitchell, 137-161.
Palo Alto: Tioga Publishing Co.

[Chien 1998] Chien, S. (1998). Supporting Information Navigation in Generative Design
Systems. Ph.D. Dissertation. School of Architecture, Carnegie Mellon
University, Pittsburgh, PA.

[Chun and Yoon 1989] 전경배 , 윤충렬 (1989). 주택 계획론 . 중판 , 서울 : 산업도서출판공사

[Coyne et al. 1993] Coyne, R., U. Flemming, P. Piela, and R. Woodbury (1993). Behavior
Modeling in Design System Development. In CAAD Futures ‘93, eds. U.
Flemming and S. V. Wyk, 335-354. Amsterdam, The Netherlands: Elsevier
Science Publishers B.V.

[Cumming 1999] Cumming, M. (1999). SEED: Collaborative Design Scenarios, US Army
Construction Engineering Research Laboratory, P.O.Box 9005, Champaign
IL. Contact Order No. DAC88-96-D-0004. March 8, 1999.

[Flemming and Aygen
2001]

Flemming, U. and Z. Aygen (2001). A hybrid representation of architectural
precedents. In Automation in Construction 10: 687-699.

[Flemming et al. 2000] Flemming, U. and SEED-Team (2000). Appendix C: SEED-Layout Use
Cases. In The SEED Experience, Internal Report. School of Architecture and
Institute for Complex Engineered Systems, Carnegie Mellon University,
Pittsburgh, PA 15213.

[Flemming 1999] Flemming, U. (1999). SEED-Layout Tutorial. Internal Report. School of
Architecture and Institute for Complex Engineered Systems, Carnegie
Mellon University, Pittsburgh, PA 15213.
128 PhD Thesis - Fall 2002

References
[Flemming and Chien
1998]

Flemming, U. and S. Chien (1998). SEED-Layout Reference Manual.
Internal Report. School of Architecture and Institute for Complex
Engineered Systems, Carnegie Mellon University, Pittsburgh, PA 15213.

[Flemming et al. 1997] Flemming, U., Z. Aygen, R. Coyne, and J. Snyder (1997). Case-based
Design in a Software Environment that supports the Early phases in building
Design. In Issues and Applications of Case-Based Reasoning in Design, eds.
M. Maher and P. Pu, 61-85. Lawrence Erlbaum Associates, Publishers.

[Flemming and Chien
1995]

Flemming, U. and S. Chien (1995). Schematic Layout Design in SEED
Environment. In Journal of Architectural Engineering Dec.1995:162-169.

[Flemming and Woodbury
1995]

Flemming, U. and R. Woodbury (1995). Software Environment to support
Early building Design (SEED): Overview. In Journal of Architectural
Engineering Dec.1995:147-152.

[Gamma et al.1995] Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1995). Design Patterns.
Addison Wesley Longman, Inc.

[Gero 1990] Gero, J. (1990). Design Prototypes: A Knowledge Representation Schema
for Design. In AI magazine 11(4):26-36.

[Goldberg 1989] Goldberg, B. (1989). Diffusion of Innovation in the Housing Industry.
prepared by NAHB National Research Center.

[Gonzalez and Dankel
1993]

Gonzalez, A. and D. Dankel (1993), The Engineering of Knowledge-Based
Systems: Theory and practice. Prentice-Hall, Inc.

[Gutman 1985] Gutman, R. (1985). The Design of American Housing: A Reappraisal of the
Architect’s Role. the Publishing Center for Cultural Resources.

[Jackendoff 1994] Jackendoff, R. (1994). Consciousness and the computational mind, 2nd ed.
Cambridge, Massachusetts: The MIT Press.

[Jackson 1995] Jackson, M. (1995). Software Requirements and Specifications: a lexicon of
practice, principles and prejudices, Addison-Wesley Publishing Company.
PhD Thesis - Fall 2002 129

References
[Jacobson et al. 1994] Jacobson, I., M. Christerson, P. Jonsson, and G. Overgaard (1994). Object-
Oriented Software Engineering: A Use Case Driven Approach. Addison-
Wesley Publishing Company, Inc.

[Jones et al. 1998] Jones, T., W. Pettus, and M. Pyatok (1998). Good Neighbors: Affordable
Family Housing, 2nd ed. North America: McGraw-Hill, a division of The
McGraw-Hill Companies, Inc.

[Kamp et al. 1998] Kamp, G., S. lange and C. Globig (1998). Related Areas. In Case-Based
Reasoning Technology, eds. M. Lenz, B. Bartsch-Spörl, H. Burkhard, and S.
Wess, 327-351. Springer-Verlag Berlin Heidelberg.

[Kicklighter and
Kicklighter 1998]

Kicklighter C. and J. Kicklighter (1998). Residential Housing & Interiors.
Tinley Park, Illinois: The Goodheart-Willcox Company, Inc.

[Kim 1990] Kim, W. (1990), Introduction to Object-Oriented Databases. The MIT Press.

[Kolodner 1993] Kolodner, J. (1993). Case-Based Reasoning. San Mateo: Morgan Kaufmann
Publishers.

[Kolodner 1991] Kolodner, J. (1991). “Improving human decision making through case-based
decision aiding” in AI magazine 12(2):52-68.

[Krier 1988] Krier, R. (1988). Architectural Composition. New York: Rizzoli.

[Lang 1987] Lang, J. (1987). Creating Architectural Theory: The role of the Behavioral
Sciences in Environmental Design. New York: Van Nostrand Reinhold.

[Lawrence 1987] Lawrence, R. (1987). Housing, Dwellings and Homes - Design theory,
research, and practice. New York: John Wiley & Sons.

[Lee et al. 1995] Lee, H., J. Lee, and S. Chang (1995). Design Adaptation for Handling
Design Failures. Proceedings of the CAAD Futures ‘95, eds. Milton Tan and
Robert Teh, 567-576. Centre for Advanced Studies in Architecture, National
University of Singapore.

[Leupen 1997] Leupen, B. (1997). Design and analysis. New York: Van Nostrand Reinhold.
130 PhD Thesis - Fall 2002

References
[Lewis 1994] Lewis, E. (1994). Housing Decisions. Tinley Park, Illinois: The Goodheart-
Willcox Company, Inc.

[Lewis et al. 1995] Lewis, T., L. Rosenstein, W. Pree, A. Weinand, E. Gamma, P. Calder, G.
Andert, J. Vlissides, and K. Schmucker (1995). Object-Oriented Application
Frameworks. Greenwich CT: Manning Publications Co.

[Luce and Suppes 1965] Luce, R. and P. Suppes (1965). Preference, Utility and Subjective
Probability. In Handbook of Mathematical Psychology, eds. R. Luce, R.
Bush and E. Galanter, vol. III. New York: Wiley and Sons.

[Maclennan 1982] Maclennan, D. (1982), Housing Economics: an applied approach. London;
NewYork: Longman.

[Maher and Pu 1997] Maher, M. and P. Pu (1997). Issues and Applications of Case-Based
Reasoning in Design. Lawrence Erlbaum Associates, Publishers.

[Maher et al. 1995] Maher, M., M. Balachandran, and D. Zhang (1995). Case-Based Reasoning
in Design. Lawrence Erlbaum Associates, Publishers.

[McFadden 1978] McFadden, D. (1978). Modelling the Choice of Residential Location. In
Spatial Interaction Theory and Planning Models, eds. A. Karlqvist, L.
lundqvist, F. Snickars, and J. Weibull, 75-96. Amsterdam: North-Holland.

[McFadden 1973] McFadden, D. (1973). Conditional Logit Analysis of Qualitative Choice
Behavior. In Frontiers in Econometrics, ed. P. Zarembka, 105-142. New
York: Academic Press.

[Meyer 1988] Meyer, B. (1988). Object-oriented software construction. New York:
Prentice-Hall.

[Nissen et al. 1994] Nissen L., R. Faulkner, and S. Faulkner (1994). Inside Today’s Home, 6th ed.
Orlando, Florida: Harcourt Brace College Publishers.

[Prerau 1990] Prerau, D. (1990), Developing and managing expert system: proven
techniques for business and industry, Addison-Wesley Publishing Company,
Inc.
PhD Thesis - Fall 2002 131

References
[Resnick et al. 1993] Resnick, L., A. Borgina, R. Brachman, D. McGuinness, P. Patel-Schneider,
and K. Zalondek (1993). “CLASSIC Description and Reference Manual For
the COMMON LISP Implementation - Version 2.1”.

[Rich and Knight 1991] Rich, E. and K. Knight (1991), Artificial Intelligence, 2nd edition, McGraw-
Hill, Inc.

[Rivard 1997] Rivard, H. (1997). A Building Design Representation for Conceptual Design
and Case-Based Reasoning. Ph.D. Dissertation. Carnegie Mellon University,
Pittsburgh, PA.

[Rosenberg 1999] Rosenberg, D. (1999), Use Case Driven Object Modeling with UML - A
Practical Approach, Reading, Massachusetts: Addison Wesley Longman,
Inc.

[Rouda 1999] Rouda, M. (1999). Houses as products. In Architectural Record ‘99(1): 115-
117, 176-177.

[Schneider 1997] Schneider, F. (1997). Floor Plan Atlas: Housing, ed. F. Schneider, second,
revised, and expanded ed. Basel, Switzerland: Birkhauser.

[Snyder et al. 1994] Snyder, J., U. Flemming, R. Coyne, R. Woodbury, S-C. Chiou, B. Choi, H.
Kiliccote, T-W. Chang, and S-F. Chien (1994). SEED Database
Requirements. SEED Website, URL: http://seed.edrc.cmu.edu/SD/dbreq/
seedreq.html.

[Sherwood 1994] Sherwood, R. (1994). Modern Housing Prototypes. sixth printing,
Cambridge, Massachusetts: Harvard University Press.

[Slade 1991] Slade, S. (1991). Case-Based Reasoning: A Research Paradigm. In AI
magazine 12(1):42-54.

[Snyder 1998] Snyder, J. (1998). Conceptual Modeling and Application Integration in
CAD. Ph.D. Dissertation. School of Architecture, Carnegie Mellon
University, Pittsburgh, PA.
132 PhD Thesis - Fall 2002

References
[The AIA Research
Corporation 1978]

The AIA Research Corporation (1978). Regional Guidelines for Building
Passive Energy Conserving Homes, U.S. Department of Housing and Urban
Development, US Government Printing Office, Washington DC.

[Tumin 1967] Tumin, M. (1967). Social stratification; the forms and functions of
inequality. Englewood Cliffs, NJ: Prentice-Hall.

[Weinand and Gamma
1994]

Weinand, A. and E. Gamma (1994). ET++ - a Potable, Homogeneous Class
Library and Application Framework, Proceedings of UBILAB Conference
‘94. Konstanz, Switzerland.

[Wentling 1995] Wentling, J. (1995). Housing by Lifestyle: The component Methods of
Residential Design. 2nd ed. McGraw-Hill, Inc.
PhD Thesis - Fall 2002 133

References
134 PhD Thesis - Fall 2002

Appendix A
Representation and Building Blocks
for Design Scenarios
A.1 Design Scenario Representation

A.1.1 Layout of Design Scenarios

• A description of the flow of events written in standard prose. This part will be
shown in standard body text.

• A translation of this prose into a more formalized representation using the design
process ‘building blocks’. These parts are formatted to indicate keywords and
variable names, e.g.

 Sequential task Prepare FU Hierarchy in SP =>

 Ordered task list

• Task A

• Task B

A.1.2 Text Formatting Conventions

• Keywords: Iterate

• Variable name: Preliminary Design

• Element defined as: =>

A.1.3 Terminal and Non-terminal Processes

Tasks may be either non-terminal or terminal processes. Non-terminal are those
which are further decomposed into lower level processes (shown with ‘>>’ prefix),
PhD Thesis - Fall 2002 135

Representation and Building Blocks for Design Scenarios
while terminals (shown with ‘[LEAF]’ prefix) are at their final level of decomposition
and description in the context of these use cases. e.g.

 Sub-tasks

>> • Do preliminary design [= non-terminal]

• [LEAF] Open layout in SL [= terminal]

A.2 Building Blocks for Design Scenarios

Each building blocks shows both states (shown as circles or ovals) and activities, or
tasks (shown as rectangles).

A.2.1 Performing a Task

Performing a design-related task with the constraint that the required resources to
perform the task are assembled prior to performing the task.

A.2.1.1 Flow of events

1. Assemble all resources required [including people]

2. Do task[s]

FIGURE 1. ‘Performing a task’ building block

A.2.1.2 Comments

assemble
resources

 t 1.0
136 PhD Thesis - Fall 2002

Building Blocks for Design Scenarios
A.2.1.3 Object required

• Input task[s] [including resource assembly]

• Assembly node

• Output task[s]

A.2.1.4 Textual description example

Do task Massing Design =>

 Assemble resources

• Architect

• Client

• SEED Config application

A.2.2 Sequential Task

A task which is decomposed into a lower level set of tasks which are performed one
after the other.

A.2.2.1 Flow of events

1. Do each task in the order specified

FIGURE 2. ‘Sequential task’ building block

A.2.2.2 Comments

t 1 t 3t 2 t 4
PhD Thesis - Fall 2002 137

Representation and Building Blocks for Design Scenarios
A.2.2.3 Object required

• List of tasks

A.2.2.4 Textual description example

Sequential task Standard Building Design Process =>

 Ordered task list

• Preliminary Design

• Detailed Design

• Contract Documents

• Bidding and Award

• Construction Review

A.2.3 Branching In

A task which requires that a set of tasks be completed prior to starting it.

A.2.3.1 Flow of events

1. If all input tasks are completed

2. Activate branch-in node

3. Do output task[s]

FIGURE 3. ‘Branching in’ building block

 t 1.1

t 1.2

t 1.3

b-i
t 2.0
138 PhD Thesis - Fall 2002

Building Blocks for Design Scenarios
A.2.3.2 Comments

A.2.3.3 Object required

• Input tasks

• Assembly node

• Output task[s]

A.2.3.4 Textual description example

Branch-in Start Detailed Design =>

 Input tasks

• Finish structural design

• Finish massing scheme

• Complete site plan

 Output task

• Start detailed design

A.2.4 Branching Out

A state which enable the start of a set of tasks running in parallel.

A.2.4.1 Flow of events

1. If branch-out node activated

2. Do all output tasks
PhD Thesis - Fall 2002 139

Representation and Building Blocks for Design Scenarios
FIGURE 4. ‘Branching out’ building block

A.2.4.2 Comments

A.2.4.3 Object required

• Input task[s]

• Assembly node

• Output tasks

A.2.4.4 Textual description example

Branch-out End of Preliminary Design =>

 Input task

• Finish preliminary design

 Output tasks

• Start detailed structural design

• Start preliminary mechanical design

• Start demolition design

A.2.5 Conditional Tasks

A set of tasks whose execution are dependent on the outcome of a single test.

 t 2.1

t 2.2

t 2.3

b-o
140 PhD Thesis - Fall 2002

Building Blocks for Design Scenarios
A.2.5.1 Flow of events

1. Complete all input tasks

2. Activate decision node

3. Do appropriate task depending on outcome

FIGURE 5. ‘Conditional tasks’ building block

A.2.5.2 Comments

A.2.5.3 Object required

• Input task[s]

• Test node

• Conditional task[s]

A.2.5.4 Textual description example

Conditional task Find Current Cost =>

 Test

• ‘Cost of current scheme’

 Input tasks

• Finish detailed architectural design

• Finish detailed structural design

• Finish preliminary mechanical design

 t 2.1

t 2.2

t 2.3

t

 t 1.1

t 1.2

t 1.3

if ‘a’

if ‘b’

if ‘c’
PhD Thesis - Fall 2002 141

Representation and Building Blocks for Design Scenarios
 Conditional outputs

• If ‘over budget’

• Do Task Reduce scope of project

• If ‘under budget’

• Do Task Check for errors

• If ‘on budget’

• Do Task Continue to next phase

A.2.6 Iterating Processes

A closed loop structure which iterates according to the results of a single test.

A.2.6.1 Flow of events

1. Activate decision node

2. If ‘true’ do task[s] [may be multiple/parallel tasks]

3. Else end iteration [and proceed to next task]

FIGURE 6. ‘Iterating processes’ building block

A.2.6.2 Comments

end

t

 true

 false

t 1.0
142 PhD Thesis - Fall 2002

Building Blocks for Design Scenarios
A.2.6.3 Object required

• Input task[s]

• Iteration test node

• Iteration task[s]

• Post-iteration task[s]

A.2.6.4 Textual description example

Iterate Reduce Project Cost =>

 Test

• If ‘Current scheme is over budget’

• Eliminate un-requested functions

• Eliminate extravagant finishes

 Repeat test

• Else

• Continue...

A.2.7 Composing Processes Using Recursion

The composition of layered processes into a containment hierarchy

A.2.7.1 Flow of events

[Note: this seems to perform the same function as a ‘Sequential task’. One of these
constructs will probably be eliminated...Perhaps ‘sub-tasks’ will not imply a
sequential ordering].

1. If task is simple, do task

2. Else (task is composed of lower level tasks) recurs one level down
PhD Thesis - Fall 2002 143

Representation and Building Blocks for Design Scenarios
FIGURE 7. ‘Composing processes using recursion’ building block

A.2.7.2 Comments

A.2.7.3 Object required

• Simple tasks [non-decomposable ones]

• Complex tasks [tasks composed of other tasks]

• Assembly nodes

A.2.7.4 Textual description example

Composed task Design Building =>

 Sub-tasks

• Design massing

• Design urban context

• Define functional relationships

r

t 1.0

 t 1.1 t 1.2 t 1.3

r

 t 1.1.1 t 1.1.2 t 1.1.3
144 PhD Thesis - Fall 2002

Building Blocks for Design Scenarios
A.2.8 Holding Meetings

A set of tasks which structure the holding of meetings according to the items
described in a meeting agenda. As a simplification, meeting participants are assumed
to perform only those tasks which are listed on the agenda. The design conflicts and
the consensuses reached which are assumed to resolve these conflicts, are also listed.

A.2.8.1 Flow of events

1. Gather agenda items

2. Organize meeting participants

2.1 Choose meeting participant

2.2 Assemble participants

2.3 Hold meeting

2.4 Disband meeting

FIGURE 8. ‘Holding meetings’ building block

A.2.8.2 Comments

• A State: Meeting required [sufficient number/urgency of agenda items]

• B State: Waiting for new meeting

r

 t 2

 t 2.1 t 2.2 t 2.3 t 2.4

 t 1

A B
PhD Thesis - Fall 2002 145

Representation and Building Blocks for Design Scenarios
A.2.8.3 Object required

• Tasks / sub-tasks

• State nodes

• Assembly nodes

A.2.8.4 Textual description example

Hold meeting Preliminary Massing Design Meeting =>

 Meeting participants

• Engineer

• Client

• Architect

 Agenda tasks

• Decide on massing scheme

• Meet with client

 Design conflicts anticipated

• Client prefers metal cladding, while Architect
prefers brick

 Consensus anticipated

• Metal cladding to be used, but of a higher than
normal quality

A.2.9 Building Consensuses

A set of tasks which structure the building of consensuses according to a list of design
conflicts, and the participants required to resolve these conflicts.
146 PhD Thesis - Fall 2002

Building Blocks for Design Scenarios
A.2.9.1 Flow of events

1. Gather design conflict items

2. Attempt to reach a consensus

2.1 Choose required participants

2.2 Assemble participants

2.3 Hold conflict resolution session

2.4 Disband conflict resolution session

FIGURE 9. ‘Building consensuses’ building block

A.2.9.2 Comments

• A State: Consensus required [sufficient number of design conflict items]

• B State: Waiting for new design conflicts

A.2.9.3 Object required

• Tasks / sub-tasks

• State nodes

• Assembly nodes

r

 t 2

 t 2.1 t 2.2 t 2.3 t 2.4

 t 1

A B
PhD Thesis - Fall 2002 147

Representation and Building Blocks for Design Scenarios
A.2.9.4 Textual description example

Building consensus Conflict 1.5.3 =>

 Required participants

• Structural engineer

• Mechanical engineer

• Architect

• [Client is not required]

 Design conflicts anticipated

• building is too expensive

• Structural design ignores mechanical design

 Arguments anticipated

• Budget is upwardly flexible (Architect)

• Structural drawings are complete, Mech. drawing
have not been started (Str. E.)

• Mechanical design is innovative (Mech. E.)

 Resolutions anticipated

• Mechanical engineer agrees to move plumbing
pipes to standard location

• Structural engineer agrees to modify the
structure slightly

A.2.10 List of Design Participants

A way of identifying a set of participants in a design process, without having to name
each one individually. The intention here is that this list can be dynamically generated
rather than specified at ‘compile-time’.

A.2.10.1 Flow of events

• N/A
148 PhD Thesis - Fall 2002

Building Blocks for Design Scenarios
A.2.10.2 Comments

• A simple dynamically generated linked list with no implied order.

A.2.10.3 Object required

• List of participants

• Participants

A.2.10.4 Textual description example

Design participants Preliminary design team 1a =>

• Client

• Architect

• Structural engineer

• Real estate agent

• Advertising designer
PhD Thesis - Fall 2002 149

Representation and Building Blocks for Design Scenarios
150 PhD Thesis - Fall 2002

Appendix B
System Object Models
B.1 Domain Object Models

B.1.1 Classification Knowledge Base (CKB) Domain Object Models

B.1.1.1 CKB Schema
PhD Thesis - Fall 2002 151

System Object Models
B.1.1.2 CKB Manager for API Implementation
152 PhD Thesis - Fall 2002

Domain Object Models
B.1.2 Case-Based Design (CBD) Domain Object Models

B.1.2.1 CBD Schema
PhD Thesis - Fall 2002 153

System Object Models
B.1.2.2 CBD Manager for API implementation
154 PhD Thesis - Fall 2002

Interface Object Models
B.2 Interface Object Models

B.2.1 Database Connections
PhD Thesis - Fall 2002 155

System Object Models
156 PhD Thesis - Fall 2002

Interface Object Models
B.2.2 Main GUI Windows and Dialogs

B.2.2.1 The Main CKB Window

ET++.h
KBAPI.h
KBUtil.h
CKBView.hxx
CKBUIDialogs.hxx

:include
Manager:imported

TextItem:imported
status

Manager:imported
mainDoc

CKBView:imported

#jobkbname:char*
#joborigprimname:char*
#jobprimname:char*
#......
#jobprimtype:int
#jobclassname:char*
#jobupdate:int
#tree:int

+CKBWin()=: Manager() { InitInstance(); }
+~CBDWin()
-InitInstance():void
+DoMakeContent():VObject*
+DoMakeMenuBar():MenuBar*
+DoMenuCommand(cmd:int):Command*
+DoSetupMenu(m:Menu*):void
+MakeMenu(id:int):Menu*
+Control(id:int, part:int, vp:void*):void
+GetTreeFlag():int={ return tree; }
+SetTreeFlag(t:int):void={ tree = t; }
+GetInitialWindowSize():Point={ return Point(500, 560); }
+MakeCommandBar():VObject*
+NewKBStatus():bool
+LoadKBStatus():bool
+SaveAsKBStatus():bool
+DiscardKBStatus():bool
+CleanupKBStatus():bool
+NewPrimStatus():bool
+AddPrimStatus():bool
+EditPrimStatus():bool
+SaveAsPrimStatus():bool
+DiscardPrimNodeStatus():bool
+DiscardPrimStatus():bool
+NewClassStatus():bool
+AddClassificationStatus():bool
+NewClassificationStatus():bool
+LoadClassificationStatus():bool
+EditClassificationStatus():bool
+DiscardClassificationStatus():bool
+DiscardClassificationNodeStatus():bool
+CompareClassificationStatus():bool
+CompareStatus():bool
+GetPHView():CKBView*
+OpenClassificationWindow():void
+DoObserve(id:int, part:int, what:void*, op:Object*):void
+PrintStatus(s:char*):void
+ClearStatus():void
+UpdateView():void
+SaveAsPrimsToDB(:char*, :char*, :char*):void
+GetPrimitiveUI():DatabaseItem*={ return dbitem; }
+SetPrimitiveUI(d:DatabaseItem*):void

CKBWin

mainView

DatabaseItem:imported
dbtree

DatabaseItem:imported
dbitem
PhD Thesis - Fall 2002 157

System Object Models
B.2.2.2 The Tree View (Primitive and Classification Hierarchy)
158 PhD Thesis - Fall 2002

Interface Object Models
B.2.2.3 CKB UI Dialogs

#kbname:char*
#selected_kbs:KBList<DatabaseItem *>

+KBLoadDialog(title:char*)=: Dialog(title) { }
+~KBLoadDialog()
+DoMakeContent():VObject*
+MakeButtons():VObject*
+DoSetup():void
+Control(id:int, part:int, val:void*):void
+ShowDialog(): DatabaseItem*
+get_kbs(): DatabaseItem*
+get_selected_KBs():KBList<DatabaseItem *>*={ return(&selected_kbs); }
+GetName():char*={ return (kbname); }
+SetName(n:char*):void={ kbname = n; }

KBLoadDialog

Dialog:imported

MultiSelCollView:imported
selLIst

DatabaseItem:imported

ActionButton:imported

ActionButton:imported

kb

commitButton

cancelButton
PhD Thesis - Fall 2002 159

System Object Models
+KBCleanupDialog(title:char*)=: Dialog(title) { }
+~KBCleanupDialog()
+DoMakeContent():VObject*
+MakeButtons():VObject*

KBCleanupDialog

Dialog:imported

TextField:imported
cleanupKB
160 PhD Thesis - Fall 2002

Interface Object Models
#jobkbname:char*
#prim:char*
#super:char*
#kbtype:int

+PrimCreateDialog(:char*, :char*)=: Dialog(title) { jobkbname = kname; }
+~PrimCreateDialog()
+DoMakeContent():VObject*
+MakeButtons():VObject*
+ShowDialog(jobNumber:int):DatabaseItem*
+GetPrimName():char*={ return prim; }
+GetSuperName():char*={ return super; }
+GetTypeValue():int={ return kbtype; }

PrimCreateDialog

Dialog:imported

TextField:imported
primName

PopupButton:imported

PopupButton:imported

primsuperName

primtype

#jobkbname:char*
#origprim:char*
#prim:char*
#super:char*
#kbtype:int

+PrimEditDialog(:char*, :char*)=: Dialog(title) { jobkbname = kname; InitInstance(); }
+~PrimEditDialog()
-InitInstance():void
+DoMakeContent():VObject*
+MakeButtons():VObject*
+Control(id:int, part:int, val:void*):void
+ShowDialog():DatabaseItem*
+GetOrigPrimName():char*={ return origprim; }
+GetPrimName():char*={ return prim; }
+GetSuperName():char*={ return super; }
+GetTypeValue():int={ return kbtype; }

PrimEditDialog

Dialog:imported

MultiSelCollView:imported
primList

PopupButton:imported

TextField:imported

primsuperName

superprim

PopupButton:imported
primtype

TextField:imported
pType

ActionButton:imported
commitButton
PhD Thesis - Fall 2002 161

System Object Models
#jobkbname:char*
#primname:char*
#selected_prims:KBList<DatabaseItem *>

+PrimDiscardDialog(:char*, :char*)=: Dialog(title) { jobkbname = kname; }
+~PrimDiscardDialog()
+DoMakeContent():VObject*
+MakeButtons():VObject*
+DoSetup():void
+Control(id:int, part:int, val:void*):void
+ShowDialog():DatabaseItem*
+get_prims():DatabaseItem*
+get_selected_Prims():KBList<DatabaseItem *>*={ return(&selected_prims); }
+GetName():char*={ return (primname); }
+SetName(n:char*):void={ primname = n; }

PrimDiscardDialog

Dialog:imported

MultiSelCollView:imported
selList

DatabaseItem:imported

ActionButton:imported

prim

discardButton

ActionButton:imported
cancelButton

#primname:char*
#jobkbname:char*
#selected_prims:KBList<DatabaseItem *>

+PrimInfoDialog(title:char*, kname:char*)=: Dialog(title) { jobkbname = kname; }
+~PrimInfoDialog()
+DoMakeContent():VObject*
+MakeButtons():VObject*
+DoSetup():void
+Control(id:int, part:int, val:void*):void
+ShowDialog():DatabaseItem*
+get_selected_PRIMs():KBList<DatabaseItem *>*={ return(&selected_prims); }
+GetName():char*={ return (primname); }
+SetName(n:char*):void={ primname = n; }

PrimInfoDialog

Dialog:imported

MultiSelCollView:imported
selList

MultiSelCollView:imported

MultiSelCollView:imported

attList

subList

TextField:imported
superprim

DatabaseItem:imported
prim

ActionButton:imported
commitButton

ActionButton:imported
cancelButton
162 PhD Thesis - Fall 2002

Interface Object Models
#jobkbname:char*

+ClassCreateDialog(:char*, :char*)=: Dialog(title) { jobkbname = kname; }
+~ClassCreateDialog()
+DoMakeContent():VObject*
+MakeButtons():VObject*
+ShowDialog():DatabaseItem*

ClassCreateDialog

Dialog:imported

TextField:imported
className

#hcname:char*
#jobkbname:char*
#selected_hcs:KBList<DatabaseItem *>

+ClassLoadDialog(:char*, :char*)=: Dialog(title) { jobkbname = kname; }
+~ClassLoadDialog()
+DoMakeContent():VObject*
+MakeButtons():VObject*
+DoSetup():void
+Control(id:int, part:int, val:void*):void
+ShowDialog():DatabaseItem*
+get_hcs():DatabaseItem*
+get_selected_HCs():KBList<DatabaseItem *>*={ return(&selected_hcs); }
+GetName():char*={ return (hcname); }
+SetName(n:char*):void={ hcname = n; }

ClassLoadDialog

Dialog:imported

MultiSelCollView:imported
selList

DatabaseItem:imported
hc

ActionButton:imported
commitButton

ActionButton:imported
cancelButton
PhD Thesis - Fall 2002 163

System Object Models
#jobkbname:char*
#Classification:char*
#primName:char*
#primlist:char*
#hclist:char*
#super:char*

+ClassificationCreateDialog(:char*, :char*, :char*)=: Dialog(title) { jobkbname = kname; }
+~ClassificationCreateDialog()
+DoMakeContent():VObject*
+MakeButtons():VObject*
+Control(id:int, part:int, val:void*):void
+ShowDialog(jobNumber:int):DatabaseItem*
+GetClassificationName():char*={ return Classification; }
+GetPrim():char*={ return primName; }
+GetPrimList():char*={ return primlist; }
+GetHCList():char*={ return hclist; }
+GetSuperList():char*={ return superlist; }

ClassificationCreateDialog

Dialog:imported

TextField:imported
ClassificationName

TextField:imported

MultiSelCollView:imported

superprimName

primList

MultiSelCollView:imported
classSelList

ActionButton:imported
ClassRightButton

ActionButton:imported
ClassLeftButton

PopupButton:imported
cfprimName

MultiSelCollView:imported
primSelList

MultiSelCollView:imported
classList
164 PhD Thesis - Fall 2002

Interface Object Models
#jobkbname:char*
#Classification:char*
#prim:char*
#primlist:char*
#hclist:char*
#superlist:char*

+ClassificationEditDialog(:char*, :char*)=: Dialog(title) { jobkbname = kname; }
+~ClassificationEditDialog()
+DoMakeContent():VObject*
+MakeActionButtons():VObject*
+MakeButtons():VObject*
+Control(id:int, part:int, val:void*):void
+ShowDialog(jobNumber:int):DatabaseItem*
+SetClassificationName(cfnm:char*):void={ Classification = cfnm; }
+SetPrimList(prims:char*):void={ primlist = prims; }
+SetHCList(hcs:char*):void={ hclist = hcs; }
+SetSuper(sps:char*):void= { superlist = sps; }
+GetClassificationName():char*={ return Classification; }
+GetPrim():char*= { return prim; }
+GetPrimList():char*={ return primlist; }
+GetHCList():char*={ return hclist; }
+GetSuper():char*={ return superlist; }

ClassificationEditDialog

Dialog:imported

TextField:imported
ClassificationName

TextField:imported
primname

MultiSelCollView:imported
superList

MultiSelCollView:imported
superSelList

MultiSelCollView:imported
primList

MultiSelCollView:imported
classList

MultiSelCollView:imported
primSelList

MultiSelCollView:imported classSelList

MultiSelCollView:imported
subsumersList

MultiSelCollView:imported
subsumeesList

MultiSelCollView:imported
synoymsList

ActionButton:imported
SuperRightButton

ActionButton:imported
SuperLeftButton

ActionButton:imported
PrimRightButton

ActionButton:imported
PrimLeftButton

ActionButton:imported
ClassRightButton

ActionButton:imported
ClassLeftButton

PopupButton:imported
cfsuperName
PhD Thesis - Fall 2002 165

System Object Models
#jobkbname:char*
#kbname:char*
#selected_kbs:KBList<DatabaseItem *>

+ClassificationDiscardDialog(:char*, :char*)=: Dialog(title) { jobkbname = kname; }
+~ClassificationDiscardDialog()
+DoMakeContent():VObject*
+MakeButtons():VObject*
+DoSetup():void
+Control(id:int, part:int, val:void*):void
+ShowDialog():DatabaseItem*
+get_kbs():DatabaseItem*
+get_selected_KBs():KBList<DatabaseItem *>*={ return(&selected_kbs); }
+GetName():char*={ return (kbname); }
+SetName(n:char*):void={ kbname = n; }

ClassificationDiscardDialog

Dialog:imported

ActionButton:imported
cancelButton

ActionButton:imported
discardButton

DatabaseItem:imported
kb

MultiSelCollView:imported
selList

#jobkbname:char*
#scfname:char*
#tcfname:char*
#selected_kbs:KBList<DatabaseItem *>

+ClassificationCompareDialog(:char*, :char*)=: Dialog(title) { jobkbname = kname; }
+~ClassificationCompareDialog()
+DoMakeContent():VObject*
+MakeButtons():VObject*
+DoSetup():void
+Control(id:int, part:int, val:void*):void
+ShowDialog():DatabaseItem*
+get_kbs():DatabaseItem*
+get_selected_KBs():KBList<DatabaseItem *>*={ return(&selected_kbs); }
+GetName():char*={ return (scfname); }
+SetName(n:char*):void={ scfname = n; }
+GetTName():char*={ return (tcfname); }
+SetTName(n:char*):void={ tcfname = n; }

ClassificationCompareDialog

Dialog:imported

ActionButton:imported
cancelButton

ActionButton:imported
compareButton

DatabaseItem:imported
cl

MultiSelCollView:imported
compList

MultiSelCollView:imported
selList
166 PhD Thesis - Fall 2002

Interface Object Models
#tdname:char*
#jobkbname:char*
#selected_tds:KBList<DatabaseItem *>

+GetCLInfoDialog(:char*, :char*)=: Dialog(title) { jobkbname = kname; }
+~GetCLInfoDialog()
+DoMakeContent():VObject*
+DoSetup():void
+Control(id:int, part:int, val:void*):void
+ShowDialog():DatabaseItem*
+MakeButtons():VObject*
+MakeGUIDButtons():VObject*
+get_tds():DatabaseItem*
+get_selected_TDs():KBList<DatabaseItem *>*={ return(&selected_tds); }
+GetName():char*={ return (tdname); }
+SetName(n:char*):void={ tdname = n; }

GetCLInfoDialog

Dialog:imported

MultiSelCollView:imported
cfList

MultiSelCollView:imported
sList

MultiSelCollView:imported
pList

MultiSelCollView:imported
rList

MultiSelCollView:imported
dpList

MultiSelCollView:imported
drList

MultiSelCollView:imported
subsumersList

MultiSelCollView:imported
subsumeesList

MultiSelCollView:imported
synonymsList

DatabaseItem:imported
obj

DatabaseItem:imported
prim

ActionButton:imported
commitButton

ActionButton:imported
cancelButton
PhD Thesis - Fall 2002 167

System Object Models
#tdname:char*
#hc_name:char*
#jobkbname:char*
#hctypename:int
#selected_tds:KBList<DatabaseItem *>

+ClassifyDBObjectDialog(:char*, :char*)=: Dialog(title) { jobkbname = kname; }
+~ClassifyDBObjectDialog()
+DoMakeContent():VObject*
+DoSetup():void
+Control(id:int, part:int, val:void*):void
+ShowDialog():DatabaseItem*
+MakeButtons():VObject*
+MakeGUIDButtons():VObject*
+get_tds():DatabaseItem*
+get_selected_TDs():KBList<DatabaseItem *>*={ return(&selected_tds); }
+GetName():char*={ return (tdname); }
+SetName(n:char*):void={ tdname = n; }
+GetHCName():char*={ return (hc_name); }
+SetHCName(n:char*):void={ hc_name = n; }
+GetFacade():ClassificationManager*={ return (&clmanager); }

ClassifyDBObjectDialog

Dialog:imported

DatabaseItem:imported
dbitem

MultiSelCollView:imported
cfList

MultiSelCollView:imported
sList

MultiSelCollView:imported
pList

MultiSelCollView:imported
cList

DatabaseItem:imported
obj

DatabaseItem:imported
prim

DatabaseItem:imported
hc

DatabaseItem:imported
super

ActionButton:imported
classifyButton

ActionButton:imported
cancelButton

VObject:imported
objtype

ClassificationManager:imported
clmanager
168 PhD Thesis - Fall 2002

Interface Object Models
#counter:int
#tdname:char*
#objname:char*
#objnamelist:char*
#jobkbname:char*
#selectedobjname:char*
#guidname:char*
#selected_tds:KBList<DatabaseItem *>

+RetrieveByGUIDDialog(title:char*, kname:char*)
+~RetrieveByGUIDDialog()
+DoMakeContent():VObject*
+MakeButtons():VObject*
+MakeTypeButtons():VObject*
+MakeGUIDButtons():VObject*
+DoSetup():void
+Control(id:int, part:int, val:void*):void
+ShowDialog():DatabaseItem*
+get_tds():DatabaseItem*
+get_selected_TDs:KBList<DatabaseItem *>*={ return(&selected_tds); }
+GetName():char*={ return (tdname); }
+SetName(n:char*):void={ tdname = n; }
+GetSelectedObjName():char*={ return selectedObjname; }
+GetObjName():char*={ return objname; }
+GetFacade():ClassificationManager*={ return (&clmanager); }
+DoObserve(id:int, part:int, vp:void*, sender:Object*):void

RetrieveByGUIDDialog

Dialog:imported

MultiSelCollView:imported
cfList

MultiSelCollView:imported
sList

MultiSelCollView:imported
pList

MultiSelCollView:imported
cList

MultiSelCollView:imported
cfcList

MultiSelCollView:imported
cfselList

MultiSelCollView:imported
retList

MultiSelCollView:imported
objList

MultiSelCollView:imported
objNameList

DatabaseItem:imported
obj

ActionButton:imported
getDBOButton

ActionButton:imported
retrieveButton

ActionButton:imported
cancelButton

ActionButton:imported
ClassDownButton

ActionButton:imported
ClassUpButton

VObject:imported
objtype

VObject:imported
objguid

ClassificationManager:imported
clmanager

Dictionary:imported
nameDict
PhD Thesis - Fall 2002 169

System Object Models
B.2.2.4 The Main CBD Window

ET++.h
CBDUIDialogs.hxx
ClassificationManager.hxx

:include
Manager:imported

TextItem:imported
status

Manager:imported
mainDoc

CBAPIMethods:imported

#jobcbname:char*
#jobcasename:char*
#jobtargetname:char*
#jobmopname:char*
#jobtargettstype:char*
#jobtargettype:int
#jobupdate:int

+CBDWin()=: Manager() { InitInstance(); }
+~CBDWin()
-initInstance():void
+DoMakeContent():VObject*
+DoMakeMenuBar():MenuBar*
+DoMenuCommand(cmd:int):Command*
+DoSetupMenu(m:Menu*):void
+MakeMenu(id:int):Menu*
+Control(id:int, part:int, vp:void*):void
+GetInitialWindowSize():Point={ return Point(220, 200); }
+MakeCommandBar():VObject*
+DoObserve(id:int, part:int, what:void*, op:Object*):void
+PrintStatus(s:char*):void
+ClearStatus();void
+GetFacade():ClassificationManager*={ return (&clmanager); }

CBDWin

method

ClassificationManager:imported
clmanager

DatabaseItem:imported
dbitem
170 PhD Thesis - Fall 2002

Interface Object Models
B.2.2.5 CBD UI Dialogs

+CBCreateDialog(title:char*)=: Dialog(title) { }
+~CBCreateDialog()
+DoMakeContent():VObject*
+MakeButtons():VObject*
+ShowDialog(jobNumber:int):
CBAPIMethods*
+GetName():const char*

CBCreateDialog

Dialog:imported

TextField:imported
CBName

Dialog.h
PopupItem.h
Fields.h
CBList.h
CollView.h
ClassificationManager.hxx
DatabaseItem.hxx

1:include

#CBname:char*
#selected_CBs:CBList<CBAPIMethods *>

+CBLoadDialog(title:char*)=: Dialog(title) { }
+~CBLoadDialog()
+DoMakeContent():VObject*
+MakeButtons():VObject*
+DoSetup():void
+Control(id:int, part:int, val:void*):void
+ShowDialog(): CBAPIMethods*
+get_CBs(): CBAPIMethods*
+get_selected_CBs():CBList<CBAPIMethods*>*={ return(&selected_CBs); }
+GetName():char*={ return (CBname); }
+SetName(n:char*):void={ CBname = n; }

CBLoadDialog

Dialog:imported

MultiSelCollView:imported
selLIst

CBAPIMethods:imported

ActionButton:imported

ActionButton:imported

CB

commitButton

cancelButton
PhD Thesis - Fall 2002 171

System Object Models
#CBname:char*
#selected_CBs:CBList<CBAPIMethods *>

+CBDiscardDialog(title:char*)=: Dialog(title) { }
+~CBDiscardDialog()
+DoMakeContent():VObject*
+MakeButtons():VObject*
+DoSetup():void
+Control(id:int, part:int, val:void*):void
+ShowDialog():CBAPIMethods*
+get_CBs():CBAPIMethods*
+get_selected_CBs():CBList<CBAPIMethods*>*={ return(&selected_CBs); }
+GetName():char*={ return (CBname); }
+SetName(n:char*):void={ CBname = n; }

CBDiscardDialog

Dialog:imported

MultiSelCollView:imported
selLIst

CBAPIMethods:imported

ActionButton:imported

ActionButton:imported

CB

discardButton

cancelButton

+CBCleanupDialog(title:char*)=: Dialog(title) { }
+~CBCleanupDialog()
+DoMakeContent():VObject*
+MakeButtons():VObject*

CBCleanupDialog

Dialog:imported

TextField:imported
cleanupCB
172 PhD Thesis - Fall 2002

Interface Object Models
#jobCBname:char*
#CaseName:char*
#casename:char*
#Bedrooms:int
#Bathrooms:int
#Workrooms:int

+CaseCreateDialog(:char*, :char*)=: Dialog(title) { jobCBname = kname; InitInstance(); }
+~PrimCreateDialog()
+DoMakeContent():VObject*
+MakeButtons():VObject*
+ShowDialog(jobNumber:int):DatabaseItem*
+GetPrimName():char*={ return prim; }
+GetSuperName():char*={ return super; }
+GetTypeValue():int={ return kbtype; }

CaseCreateDialog

Dialog:imported

TextField:imported
caseName

ActionButton:imported
commitButton

ClassificationManager:imported

MultiSelCollView:imported

MultiSelCollView:imported

ClassificationList

DescriptorList

TextField:imported
annotationName

clmanager

CBAPIMethods:imported
CB

DatabaseItem:imported
dbitem

#jobCBname:char*
#Casename:char*
#Casenameid:char*
#selected_Cases:CBList<CBAPIMethods *>

+CaseDiscardDialog(:char*, :char*)=: Dialog(title) { jobCBname = kname; }
+~CaseDiscardDialog()
+DoMakeContent():VObject*
+MakeButtons():VObject*
+DoSetup():void
+Control(id:int, part:int, val:void*):void
+ShowDialog():CBAPIMethods*
+get_Cases():CBAPIMethods*
+get_selected_Cases():CBList<CBAPIMethods *>*={ return(&selected_Cases); }
+GetName():char*={ return (Casename); }
+SetName(n:char*):void={ Casename = n; }
+GetNameId():char*={ return (Casenameid); }
+SetNameId(n:char*):void={ Casenameid = n; }

CaseDiscardDialog

Dialog:imported

MultiSelCollView:imported
selList

CBAPIMethods:imported

ActionButton:imported

Case

discardButton

ActionButton:imported
cancelButton
PhD Thesis - Fall 2002 173

System Object Models
+CaseRetrieveDialog(title:char*)=: Dialog(title) { }
+~CaseRetrieveDialog()
+DoMakeContent():VObject*
+MakeTypeButtons():VObject*
+MakeButtons():VObject*
+ShowDialog():CBAPIMethods*

CaseRetrieveDialog

Dialog:imported

VObject:imported
objtype

#jobCBname:char*
#Casename:char*
#Casenameid:char*
#selected_Cases:CBList<CBAPIMethods *>

+ByNameDialog(:char*, :char*)=: Dialog(title) { jobCBname = kname; }
+~ByNameDialog()
+DoMakeContent():VObject*
+MakeButtons():VObject*
+DoSetup():void
+Control(id:int, part:int, val:void*):void
+ShowDialog():CBAPIMethods*
+get_Cases():CBAPIMethods*
+get_selected_Cases():CBList<CBAPIMethods *>*={ return(&selected_Cases); }
+GetName():char*={ return (Casename); }
+SetName(n:char*):void={ Casename = n; }
+GetNameId():char*={ return (Casenameid); }
+SetNameId(n:char*):void={ Casenameid = n; }

ByNameDialog

Dialog:imported

MultiSelCollView:imported
selList

CBAPIMethods:imported

ActionButton:imported

Case

discardButton

ActionButton:imported
cancelButton
174 PhD Thesis - Fall 2002

Interface Object Models
#jobCBname:char*
#selectcf:char*
#bedrooms:int
#bathrooms:int
#workrooms:int

+ByIndexDialog(:char*, :char*)=: Dialog(title) { jobCBname = kname; }
+~ByIndexDialog()
+DoMakeContent():VObject*
+MakeRoomCompoButtons():VObject*
+MakeButtons():VObject*
+Control(id:int, part:int, val:void*):void
+ShowDialog():CBAPIMethods*
+GetName():char*={ return (selectcf); }
+SetName(n:char*):void={ selectcf = n; }

ByIndexDialog

Dialog:imported

MultiSelCollView:imported
ClassificationList

MultiSelCollView:imported

CBAPIMethods:imported

ComponentList

method

DatabaseItem:imported
dbitem

IntField:imported
BeRoomNum

IntField:imported
BaRoomNum

IntField:imported
WRoomNum
PhD Thesis - Fall 2002 175

System Object Models
#jobCBname:char*
#Casename:char*
#Casenameid:char*
#selected_Cases:CBList<CBAPIMethods *>

+CaseNameDialog(:char*, :char*)=: Dialog(title) { jobCBname = kname; }
+~CaseNameDialog()
+DoMakeContent():VObject*
+MakeButtons():VObject*
+DoSetup():void
+Control(id:int, part:int, val:void*):void
+ShowDialog():CBAPIMethods*
+get_Cases():CBAPIMethods*
+get_selected_Cases():CBList<CBAPIMethods *>*={ return(&selected_Cases); }
+GetName():char*={ return (Casename); }
+SetName(n:char*):void={ Casename = n; }
+GetNameId():char*={ return (Casenameid); }
+SetNameId(n:char*):void={ Casenameid = n; }

CaseNameDialog

Dialog:imported

MultiSelCollView:imported
selList

CBAPIMethods:imported
Case

ActionButton:imported
discardButton

ActionButton:imported
cancelButton
176 PhD Thesis - Fall 2002

Appendix C
Sequence Diagrams for the Use
Cases described in Section 6.2
C.1 Start a classification session

Flow of Events:

1. The user selects the “Classification” option from the “Communication” menu in
the SCW menu bar.

2. SL_CKB opens the “Classification Login” dialog box. It prompts the user to select
a database type and to input a database name, username and password.

3. If the three input values are all correct, SL_CKB connects to the database and
opens the Classification Knowledge Base (CKB) window.

CKBWindowaUser SL_CommWin CLManager DBService CLLoginDialog

Open CL
New

Show

Enter Login Info.(Database type, database name, username, and password)

Login Info.

Login Info.
DB Connection

Open CKB
PhD Thesis - Fall 2002 177

Sequence Diagrams for the Use Cases described in Section 6.2
C.2 Create a CKB

Flow of Events:

1. The user selects the “New CKB” option from the “File” menu.
2. SL_CKB opens the “New Knowledge Base” dialog box.
3. The user enters a name in the “New KB Name:” field and hits the “Commit”

button.
4. SL_CKB creates a new CKB in working memory, provided a CKB with the same

name does not exist in the database.

CLManager NewKBDialog WorkingMemoryaUser CKBWindow

New CKB
New CKB

Display

Enter KB name

KB name

KB name

Create CKB
178 PhD Thesis - Fall 2002

Load a CKB
C.3 Load a CKB

Flow of Events:

1. The user selects the “Load CKB” option from the “File” menu.
2. SL_CKB opens the “Load Knowledge Base” dialog box showing a list of existing

CKB names in the connected database.
3. The user selects a desired CKB by name and hits the “Commit” button.
4. SL_CKB retrieves the respective CKB from the database and makes it the currently

active one.

aUser CKBWindow LoadKBDialog UniSQLDBCLManager

Load CKB
Load CKB

Display
Get KB name list

KB name list

KB name list

KB name

KB name

KB nam e

Update interface
PhD Thesis - Fall 2002 179

Sequence Diagrams for the Use Cases described in Section 6.2
C.4 Close a CKB

Flow of Events:

1. The user selects the “Close CKB” option from the “File” menu.
2. If changes have been made after the last save, the SL_CKB asks the user if the

changes should be saved and acts accordingly.
3. The currently active CKB is closed.

aUser CKBWindowCLManager

Close CKB
Close CKB

Update interface
180 PhD Thesis - Fall 2002

Save a CKB
C.5 Save a CKB

Flow of Events:

1. The user selects the “Save CKB” option from the “File” menu.
2. SL_CKB saves the currently active CKB in the persistent database.
3. If changes have not been made after the last save, SL_CKB lets the user know the

fact.

aUser CKBWindow UniSQLDBCLManager

Save CKB
Save CKB

Save CKB
PhD Thesis - Fall 2002 181

Sequence Diagrams for the Use Cases described in Section 6.2
C.6 Save a CKB as

Flow of Events:

1. The user selects the “Save As CKB” option from the “File” menu.
2. SL_CKB opens the “Save As Knowledge Base” dialog box.
3. The user enters a desired name in the “New KB Name:” field and hits the

“Commit” button.
4. SL_CKB saves the currently active CKB under the new name in the persistent

database, provided a CKB with the same name does not exist in the database.

aUser CKBWindow SaveAsKBDialog UniSQLDBSLManager

Save As CKB
Save As CKB

Display

Enter KB name

KB name
Create CKB

KB name

Update inte rface
182 PhD Thesis - Fall 2002

Delete a CKB
C.7 Delete a CKB

Flow of Events:

1. The user selects the “Delete CKB” option from the “File” menu.
2. SL_CKB opens the “Delete Knowledge Base” dialog box showing a list of existing

CKB names in the connected database.
3. The user selects a name to be deleted and hits the “Delete” button.
4. SL_CKB prompts the user to confirm the deletion.
5. If the user confirms and the selected CKB is not currently active, SL_CKB deletes

that CKB from the database along with all primitives, restrictions, DB objects, and
classifications associated with it.

aUser CKBWindow DeleteKBDialog UniSQLDBCLManager

Delete CKB
Delete CKB

Display
Get KB name list

KB name list

KB name list

KB name

KB name

KB name

Make sure

Confirm

Delete CKB
PhD Thesis - Fall 2002 183

Sequence Diagrams for the Use Cases described in Section 6.2
C.8 Cleanup a CKB

Flow of Events:

1. The user selects the “Cleanup CKB” option from the “File” menu.
2. SL_CKB asks the user to confirm the clean-up.
3. If the user confirms, SL_CKB discards the primitives, restrictions, DB objects, and

classifications associated with the currently active CKB.

aUser CKBWindow UniSQLDBCLManager

Cleanup CKB
Cleanup CKB

Make sure

Confi rm

Cleanup CKB
184 PhD Thesis - Fall 2002

View primitive hierarchy
C.9 View primitive hierarchy

Flow of Events:

1. The user issues the “Primitive Hierarchy” command in the SL_CKB commands
box.

2. SL_CKB displays a tree view of the primitive hierarchy in the currently active
CKB.

aUser CKBWindow CKBView StateTreeNode UniSQLDBCLManager

Prim hierarchy
Show

Install Tree
Set Tree

Get primitives

Get Tree

Display
PhD Thesis - Fall 2002 185

Sequence Diagrams for the Use Cases described in Section 6.2
C.10 Create a primitive

Flow of Events:

1. The user selects a primitive from the tree view hierarchy with the left mouse button
and clicks the right mouse button to display the pop-up menu.

2. The user selects “Add” option to create a new primitive.
3. SL_CKB opens the “New Primitive” dialog box with its super primitive.
4. The user enters a name in the “New Primitive Name:” field and chooses its type

(simple or disjoint).
5. The user hits the “Commit” button.
6. If a primitive with the same name does not exist in the database, SL_CKB creates a

new primitive with the given name in the persistent database and displays the new
primitive in the correct position in an updated tree view.

aUser CKBWindow CKBView StateTreeNode AddPrimDialog UniSQLDBCLManager

Select a node

Set selection
Display menu

Add primitive
Add primitive

Display

Enter primitive name and type

Primitive name and type

Primitive name and type

Create primitive

Update view
186 PhD Thesis - Fall 2002

Edit a primitive
C.11 Edit a primitive

Flow of Events:

1. The user selects the “Edit Primitive” option from the “Primitive” menu.
2. The CKB opens the “Edit Primitive” settings box, which displays - in the

“Primitive List” field - the names of all primitives currently defined in the active
CKB.

3. The user selects a primitive in the list.
4. SL_CKB displays the name of itself in the “Primitive Name” field, the name of its

super primitive in the “Select Super Primitive” button, and the primitive type in the
“Select Type” button.

5. The user types the new primitive name, or changes the super primitive, or primitive
type as desired.

6. The user hits the “Commit” button.
7. SL_CKB saves the changed attributes.

aUser CKBWindow EditPrimDialog UniSQLDBCLManager

Ed it primi tive
Edit primitive

Display
Get primitive list

Primitive list

Enter primitive

Primitive

Display prim name, super, and type

Enter primitive info.

Primitive info.

Save primitive info.
PhD Thesis - Fall 2002 187

Sequence Diagrams for the Use Cases described in Section 6.2
C.12 Delete a primitive

Flow of Events:

1. The user selects a primitive from the tree view hierarchy with the left mouse button
and clicks the right mouse button to display the pop-up menu.

2. The user selects “Delete” option.
3. SL_CKB displays an Alert box asking the user if the primitive should be deleted.
4. If the user confirms, SL_CKB deletes the primitive and updates the display of the

primitive hierarchy.

aUser CKBWindow CKBView StateTreeNode UniSQLDBCLManager

Select a node

Set selection

Display menu

Delete primi tive
Delete primitive

Make sure

Confirm

Delete primi tive

Update VIew
188 PhD Thesis - Fall 2002

Get derived information
C.13 Get derived information

Flow of Events:

1. The user selects the “Get Primitive Info” option from the “Primitive”
 menu.
2. SL_CKB opens the “Primitive Information” settings box, which shows the names

of the primitives currently defined in the “Primitive List” field in the active CKB.
3. The user selects a primitive in the list.
4. The settings box displays the “super primitive” and “sub primitives” list for the

selected primitive.
5. The user inspects the current settings and closes the settings box.

aUser CKBWindow PrimInfoDialog UniSQLDBCLManager

Get primitive info.
Get primitive info.

Display
Get primname lis t

Prim name list

Primitive name list

Primitive name
Get derived info.

Derived info.

Di splay derived info.
PhD Thesis - Fall 2002 189

Sequence Diagrams for the Use Cases described in Section 6.2
C.14 Create a classification

Flow of Events:

1. The user selects the “New Classification” option from the “Classification” menu in
the CKB Window.

2. SL_CKB opens the “New Classification” settings box.
3. The user inputs a classification name in the “Classification Name:” field; chooses

its super classification from the “Super Classification List:”; chooses the
primitives from the “Primitive List:”; and selects a restriction from the “Restriction
List:”.

4. The user hits the “Commit” button.
5. If no classification with the same name exists in the active CKB and the selected

super classifications do not have inheritance conflicts each other, SL_CKB creates
the new classification.

aUser CKBWindow NewCLDialog UniSQLDBCLManager

New CL
New CL

Display

Enter CL nam e, supe r, prims, and restrictions

CL name, super, prims, and restrictions

CL name, super, prims, and restrictions

Create CL
190 PhD Thesis - Fall 2002

Load a classification
C.15 Load a classification

Flow of Events:

1. The user selects the “Load Classification” option from the “Classification” menu.
2. SL_CKB opens the “Load Classification” settings box which shows in the

“Classification List:” field a list of the names of the classifications in the active
CKB.

3. The user selects a classification name.
4. SL_CKB displays in the settings box the parent, primitives, and restrictions of the

selected classification.
5. The user hits the “Commit” button.
6. SL_CKB retrieves the classification from the database and makes it the current

active one.

aUser CKBWindow LoadCLDialog UniSQLDBCLManager

Load CL
Load CL

Display
Get CL name list

CL name list

CL name list

CL name

CL name

CL name

Update interface
PhD Thesis - Fall 2002 191

Sequence Diagrams for the Use Cases described in Section 6.2
C.16 View classification hierarchy

Flow of Events:

1. The user issues the “Classification Hierarchy” command in the CKB commands
box.

2. SL_CKB displays in the CKB Window a tree view of the classification hierarchy to
which the currently active classification belongs.

aUser CKBWindow CKBView StateTreeNode UniSQLDBCLManager

CL hierarchy
Show

Install Tree
Set Tree

Get CLs

Get Tree

Display
192 PhD Thesis - Fall 2002

Edit a classification
C.17 Edit a classification

Flow of Events:

1. The user selects the “Edit Classification” option from the “Classification” menu.
2. SL_CKB opens the “Edit Classification” settings box, which displays - in the

“Classification Name:” field - the active classification name, the parent of the
active classification in the “Super List:” field, the primitives it encompasses in the
“Primitive List:” field, and the restrictions that apply in the “Restriction List:”
field. It also displays its derived information such as its subsumers, subsumees,
and synonyms.

3. The user types the new classification name, or changes the super classifications,
primitives, or restrictions as desired.

4. The user hits the “Commit” button.
5. If no classification with the same name exists in the active CKB and the selected

super classifications do not have inheritance conflicts each other, SL_CKB saves
the changed settings.

aUser CKBWindow EditCLDialog UniSQLDBCLManager

Edit CL
Edit CL

Display
Get told & derived info.

Told & derived info.

Enter CL name and told info.

CL name and told info.

CL name and told info.

Save CL name and told info.
PhD Thesis - Fall 2002 193

Sequence Diagrams for the Use Cases described in Section 6.2
C.18 Delete a classification

Flow of Events:

1. The user selects the “Delete Classification” option from the “Classification” menu.
2. SL_CKB opens the “Delete Classification” dialog box, which shows - in the

“Classification List:” field - the names of the classifications in the active CKB.
3. The user selects a classification name and hits the “Delete” button.
4. If the selected classification is not currently active, SL_CKB displays an Alert box

prompting the user to confirm the request.
5. If the user confirms, SL_CKB deletes the classification and all classifications it

subsumes along with all pairings between these classifications and the objects to
which they are attached.

aUser CKBWindow Dele teCLDialog UniSQLDBCLManager

Delete CL
Delete CL

Display
Get CL name list

CL name list

CL name list

CL name

CL name

CL nam e

Make sure

Confi rm

Delete CL
194 PhD Thesis - Fall 2002

Delete all classifications
C.19 Delete all classifications

Flow of Events:

1. The user selects the “Delete All” option from the “Classification” menu.
2. SL_CKB opens an Alert box prompting the user to confirm the request.
3. If the user confirms, SL_CKB deletes all classifications along with all pairings

between these classifications and the objects to which they are attached.

aUser CKBWindow UniSQLDBCLManager

Delete a ll
Delete a ll

Make sure

Confirm

Delete all CL
PhD Thesis - Fall 2002 195

Sequence Diagrams for the Use Cases described in Section 6.2
C.20 Get derived information

Flow of Events:

1. The user selects the “Get Derived Info” option from the “Classification” menu.
2. SL_CKB opens the “Derived Classification” settings box.
3. The user selects a classification in the list.
4. The settings box displays the “Derived Primitives”, “Derived Restrictions”,

“Subsumers”, “Subsumees”, and “Synonyms” list for the selected classification.
5. The user inspects the current settings and closes the settings box.

aUser CKBWindow PrimInfoDialog UniSQLDBCLManager

Get CL derived info.
Get CL derived info.

Display
Get CL name list

CL name list

CL name list

CL name
Get derived info.

Derived info.

Display derived info.
196 PhD Thesis - Fall 2002

Compare classifications
C.21 Compare classifications

Flow of Events:

1. The user selects the “Compare Classifications” option from the “Classification”
menu.

2. SL_CKB opens the “Compare Classification” settings box, which shows a list of
all classification names in the active CKB.

3. The user selects two classifications and hits the “Compare” button.
4. SL_CKB displays the attributes of the selected classifications such as

SUBSUMER, SUBSUMEE, EQUIVALENT, EQUAL, DISJOINED, and
DISTINCT.

aUser CKBWindow CompareCLDialog UniSQLDBCLManager

Com pare CL
Compare CL

Display
Get CL name list

CL nam e list

Enter two CLs

Two CLs

Get relation

Relation
Display relation
PhD Thesis - Fall 2002 197

Sequence Diagrams for the Use Cases described in Section 6.2
C.22 Attach a classification

Flow of Events:

1. The user selects the “Classify” option from the “Classification” menu.
2. SL_CKB opens the “Classify” settings box, which shows a lists of the names of all

classifications in the active CKB.
3. The user selects a classification.
4. SL_CKB displays all of the attributes for the selected classification.
5. The user selects the type (or class) of object to which the selected classification

should be attached and hits the “Classify” button.
6. Depending on the user’s selection, SL_CKB attaches the selected classification to

Layout, LP, or FU.

aUser CKBWindow Classi fyDialog UniSQLDBCLManager

Classify
Clas sify

Display
Get CL name list

CL name list

CL name list & restriction types

CL name

Get derived info.

Derived info.

Restriction type

Attach CL to type
198 PhD Thesis - Fall 2002

Compare
C.23 Compare

Flow of Events:

1. The user selects the “Compare” option from the “Retrieve” menu.
2. SL_CKB opens the “Compare” settings box.
3. The user inputs a temporary description name in the “Temp Description Name:”

field and selects the super classifications from the “Super Classification List:”
field, primitives from the “Primitive List:” field, and restrictions from the
“Restriction List:” field; and selects the classification from the “Existing
Classification List:” field.

4. If the user clicks the “Compare” button, the temporary description is compared
with the selected classification.

5. The user can decide if the temporary description is saved or not. If the user decides
the temporary description is saved, the user clicks the “SaveTemp” button to save
the temp description.

a Us er CKBW in dow Com p a re D ia lo g UniSQLDBC LMana ger

Com pare
C om pare

D i sp l ay
Get CL nam e lis t

C L nam e lis t

Enter tem pC L, s upe r, p rim , an d res triction nam e

En ter exis ting CL n am e

Tem p CL, s uper, p rim , and res triction nam e

Exis ting C L nam e

Get re la tion

Re la t io n

D isp l ay re la t ion

Save tem p
Save tem p
PhD Thesis - Fall 2002 199

Sequence Diagrams for the Use Cases described in Section 6.2
C.24 Get classified DB objects

Flow of Events:

1. The user selects the “Retrieve” option from the “Retrieve” menu.
2. SL_CKB opens the “Retrieve” settings box.
3. The user specifies interactively the retrieval type (SUBSUMER, SUBSUMEE, or

EQUIVALENT) and selects one name.
4. The user selects a desired combination of classifications and the class of object he

wants to retrieve (FU, Layout or LayoutProblem), and clicks the
“GetDBObjectName” button. During this process, the classification engine checks
the disjoined primitive conflicts among selected classifications.

5. The dialog box displays the names of all objects of that class with the specified
classification and shows them in a selection field.

6. The user selects one name and clicks the Retrieve button.
7. The classification engine asks SLCommFacade to retrieve the selected object and

load it into SL.
8. SL_Comm retrieves the object from the object database and loads it into SL; the

specifics depend on the class of the object being loaded.

a U s e r C K B W in d o w R e tri e ve D ia l o g S L C o m m Fa c a d e U n iS Q L D BC L M a n a g e r

R e tr ie ve
R e tri e ve

D i s p l a y

E n te r re tr ie va l typ e

E n te r C L n a m e s a n d re tr ic tio n typ e

R e tri e va l typ e

C L n a m e s a n d r es tr i ctio n typ e

G e t D B o b je c ts

D B ob j e ct s

D B o b je c ts

O n e D B o b je c ts

R e tr ie v e D B o b j e c t
R e trie ve D B o b je c t

R e tr ie v e D B o b je c t

R e tr ie v e D B o b je c t

U p d a te Vie w
200 PhD Thesis - Fall 2002

End a classification session
C.25 End a classification session

Flow of Events:

1. The user selects the “Close” option from the “File” menu.
2. If changes have been made after the last save, SL_CKB asks the user if the changes

should be saved and acts accordingly.
3. SL_CKB closes the CKB Window and ends the classification session.

aUser CKBWindowCLManager

Close
Close

Close and end session
PhD Thesis - Fall 2002 201

Sequence Diagrams for the Use Cases described in Section 6.2
C.26 Start a case-base design session

Flow of Events:

1. The user selects the “Case base” option from the “Communication” menu in the
SCW menu bar.

2. SL_CBD opens the “Database Login” dialog box.
3. SL_CBD prompts the user to select a database type and to input a database name,

username and password.
4. If the three input values are all correct, SL_CBD connects to the selected case base

and opens the Case-based Design (CBD) Window.

aUser SL_CommWin CBManager DBService DBLoginDialog CBDWindow

Open case base

New

Show

Enter Login Info.(Database type, database name, username, and password)

Login Info.

Login Info.

Open CBD

DB Connection
202 PhD Thesis - Fall 2002

Create a CB
C.27 Create a CB

Flow of Events:

1. The user selects the “New CB” option from the “File” menu.
2. SL_CBD opens the “New Case-base” dialog box.
3. The user inputs a CB name in the “New CB Name:” field.
4. The user hits the “Commit” button.
5. If a CB with the same name does not exist in the database, SL_CBD creates a new

CB in working memory.

aUser CBDWindow NewCaseDialog UniSQLDBCBManager

New CB
New CB

Display

Enter CB nam e

CB name

CB name

Create CB
PhD Thesis - Fall 2002 203

Sequence Diagrams for the Use Cases described in Section 6.2
C.28 Load a CB

Flow of Events:

1. The user selects the “Load CB” option from the “File” menu.
2. SL_CBD opens the “Load Case-base” dialog box, which shows in the “Load Case

Base” field the names of the CBs in the connected database.
3. The user selects a CB name and hits the “Commit” button.
4. SL_CBD retrieves the CB from the connected database and makes it the currently

active one.

aUser CBDWindow LoadCBDialog UniSQLDBCBManager

Load CB
Load CB

Display
Get CB nam e list

CB nam e list

CB name list

CB name

CB nam e

CB name

Update interface
204 PhD Thesis - Fall 2002

Close a CB
C.29 Close a CB

Flow of Events:

1. The user selects the “Close CB” option from the “File” menu in the CBD Window.
2. If changes have been made after the last save, SL_CBD asks the user if the changes

should be saved and acts accordingly.
3. SL_CBD closes the currently active CB.

aUser CBDWindowCBManager

Close CB
Close CB

Update interface
PhD Thesis - Fall 2002 205

Sequence Diagrams for the Use Cases described in Section 6.2
C.30 Save a CB

Flow of Events:

1. The user selects the “Save CB” option from the “File” menu.
2. SL_CBD saves the currently active CB in the connected database.
3. SL_CBD informs the user if no changes have been made after the last save.

aUser CBDWindow UniSQLDBCBManager

Save CB
Save CB

Save CB
206 PhD Thesis - Fall 2002

Save a CB as
C.31 Save a CB as

Flow of Events:

1. The user selects the “Save CB As” option from “File” menu.
2. SL_CBD opens the “Save As Case-base” dialog box.
3. The user enters a name in the “New CB Name:” field and hits the “Save” button.
4. If a CB with the same name is not in the connected, SL_CBD saves the currently

active CB under the new name in the connected database.

aUser CBDWindow SaveAsCBDialog UniSQLDBCBManager

Save As CB
Save As CB

Display

Enter CB name

CB name

Create CB

KB name

Update interface
PhD Thesis - Fall 2002 207

Sequence Diagrams for the Use Cases described in Section 6.2
C.32 Delete a CB

Flow of Events:

1. The user selects the “Delete CB” option from the “File” menu.
2. SL_CBD opens the “Delete Case-base” dialog box, which shows a list of the CBs

in the connected database.
3. The user selects a CB name and hits the “Delete” button.
4. If the selected CB is not the active one, SL_CBD opens an Alert box asking the

user to confirm the request.
5. If the user hit the “OK” button in the Alert box, SL_CBD deletes the selected CB in

the connected database along with all the associated CB components. This deletion
is immediately persistent.

aUser CBDWindow DeleteCBDialog UniSQLDBCBManager

Delete CB
Delete CB

Display
Get CB nam e list

CB nam e list

CB name list

CB name

CB nam e

CB name

Make sure

Confirm

Delete CB
208 PhD Thesis - Fall 2002

Cleanup a CB
C.33 Cleanup a CB

Flow of Events:

1. The user selects the “Cleanup CB” option from the “File” menu.
2. SL_CBD opens an Alert box asking the user to confirm the request.
3. If the user hit the “OK” button in the Alert box, SL_CBD cleans up the active CB.

aUser CBDWindow UniSQLDBCBManager

Cleanup CB
Cleanup CB

Make sure

Confi rm

Cleanup CB
PhD Thesis - Fall 2002 209

Sequence Diagrams for the Use Cases described in Section 6.2
C.34 Create a Case

Flow of Events:

1. The user selects the “Create a Case” option from the “Case” menu.
2. SL_CBD opens the “New Case” settings box.
3. The user enters a name in the “Case Name:” field.
4. SL_CBD displays the descriptors attached to the active Layout.
5. The user hits the “Save” button.
6. If no case with the new name exists in the active CB, SL_CBD creates a new case.

When SL_CBD saves a case, it computes in the background the number of
significant room components it contains and saves them as additional case
attributes.

aUser CBDWindow NewCaseDialog UniSQLDBCBManager

New Case
New Case

Display

Enter Case name

Case name

Case name

Create Case

Compute the number of room compo. and save them
210 PhD Thesis - Fall 2002

Delete a Case
C.35 Delete a Case

Flow of Events:

1. The user selects the “Delete a Case” option from the “Case” menu.
2. SL_CBD opens the “Delete Case” dialog box, with displays - in the “Case Name

List” field - the names of all cases currently defined in the active CB.
3. The user selects a case name in the list and hits the “Delete” button.
4. SL_CBD displays an Alert box asking the user if the case should be deleted.
5. If the user confirms, SL_CBD deletes the case.

aUser CBDWindow DeleteCBDialog UniSQLDBCBManager

Delete Case
Delete Case

Di splay
Get Case name list

Case name list

Cas e name list

Case name

Case name

Case name

Make sure

Confirm

Delete case
PhD Thesis - Fall 2002 211

Sequence Diagrams for the Use Cases described in Section 6.2
C.36 Retrieve a Case

Flow of Events:

1. The user selects the “Retrieve Cases” option from the “Case” menu.
2. SL_CBD opens the “Retrieve Cases” settings box.
3. The user selects the retrieval method by checking the “By Name” or “By Index”

check box.
4. If the user checked the “By Index” box, SL_CBD displays the names of all

classifications associated with cases in the active CB and the component attributes.
5. The user selects a classification, enters numbers in selected component attribute

fields and hits the “Retrieve” button.
6. If cases with this combination of indices exist in the active CB, SL_CBD displays

the names of these cases.
7. The user selects a case name and hits the “Retrieve” button.
8. If the object representing the case exists in the object database, SL_CBD retrieves

the case. The retrieved case is added to the current design space and becomes the
active Layout.

aUser CBDWindow Retr ieveCasesD ialog UniSQLDBCBManager

Retrieve Cases
Retrieve Cases

Display

Enter retrieval m ethod

By index

Get CL name lis t

CL nam e lis t

CL nam e lis t & the num bers of com ponents

CL nam e and component num bers respectively

CL and com pos. info.

Retrieve case and update interface
212 PhD Thesis - Fall 2002

End a case-based design session
C.37 End a case-based design session

Flow of Events:

1. The user selects the “Close” option from the “File” menu.
2. If changes have been made after the last save, SL_CBD asks the user if the changes

should be saved and acts accordingly.
3. SL_CBD closes the CBD Window and ends the case-based design session.

aUser CBDWindowCBManager

Close
Close

Close and end session
PhD Thesis - Fall 2002 213

Sequence Diagrams for the Use Cases described in Section 6.2
214 PhD Thesis - Fall 2002

	Integrating Housing Design and Case-Based Reasoning
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgement
	Abstract

	Introduction
	1.1 Motivation
	1.2 Research Objective and Approach
	1.3 Overview

	Background: The Housing Market in the US
	2.1 Industry Characteristics
	2.2 Supply and Demand in the Housing Market

	Housing Types and Classification Systems
	3.1 Type and Typology in Architecture
	3.2 Types in Housing Design
	3.3 Classification of Housing Precedents in CBD

	Development of Design Scenarios for Single-Family Houses
	4.1 Interviews with Housing Design Experts
	4.2 Housing Development Types in the US
	4.3 Overview of Design Scenarios
	4.4 Formalized Representation of Design Scenarios
	4.5 Design Scenarios

	A Framework for Integrating Housing Design and CBD
	5.1 The Main Steps in CBD
	5.2 Design Scenarios Meet CBD: An Integrated Approach
	5.3 Platform for a First Prototype Implementation

	Functional Specification and User Interface of a Prototype
	6.1 Use Case-Driven Software Development
	6.2 Overview of Use Cases
	6.3 Functional Specification and User Interface

	How it All Works -- Case Creation, Retrieval and Adaptation in Action
	7.1 Case Base: Initial Seeding
	7.2 The Retrieve-Adapt-Create Cycle

	Conclusion
	8.1 Contributions
	8.2 Future Research Directions

	References
	[Aamodt 1995]
	[Aamodt and Plaza 1994]
	[Aygen 1998]
	[Bergmann and Althoff 1998]
	[Borgida 1992]
	[Börner 1998]
	[Bourne 1981]
	[Broadbent 1973]
	[Bruegge and Dutoit 2000]
	[Carbonell 1983]
	[Chien 1998]
	[Chun and Yoon 1989]
	[Coyne et al. 1993]
	[Cumming 1999]
	[Flemming and Aygen 2001]
	[Flemming et al. 2000]
	[Flemming 1999]
	[Flemming and Chien 1998]
	[Flemming et al. 1997]
	[Flemming and Chien 1995]
	[Flemming and Woodbury 1995]
	[Gamma et al.1995]
	[Gero 1990]
	[Goldberg 1989]
	[Gonzalez and Dankel 1993]
	[Gutman 1985]
	[Jackendoff 1994]
	[Jackson 1995]
	[Jacobson et al. 1994]
	[Jones et al. 1998]
	[Kamp et al. 1998]
	[Kicklighter and Kicklighter 1998]
	[Kim 1990]
	[Kolodner 1993]
	[Kolodner 1991]
	[Krier 1988]
	[Lang 1987]
	[Lawrence 1987]
	[Lee et al. 1995]
	[Leupen 1997]
	[Lewis 1994]
	[Lewis et al. 1995]
	[Luce and Suppes 1965]
	[Maclennan 1982]
	[Maher and Pu 1997]
	[Maher et al. 1995]
	[McFadden 1978]
	[McFadden 1973]
	[Meyer 1988]
	[Nissen et al. 1994]
	[Prerau 1990]
	[Resnick et al. 1993]
	[Rich and Knight 1991]
	[Rivard 1997]
	[Rosenberg 1999]
	[Rouda 1999]
	[Schneider 1997]
	[Snyder et al. 1994]
	[Sherwood 1994]
	[Slade 1991]
	[Snyder 1998]
	[The AIA Research Corporation 1978]
	[Tumin 1967]
	[Weinand and Gamma 1994]
	[Wentling 1995]

	Appendix
	Representation and Building Blocks for Design Scenarios
	A.1 Design Scenario Representation
	A.1.1 Layout of Design Scenarios
	A.1.2 Text Formatting Conventions
	A.1.3 Terminal and Non-terminal Processes
	>> • Do preliminary design [= non-terminal]

	A.2 Building Blocks for Design Scenarios
	A.2.1 Performing a Task
	A.2.1.1 Flow of events
	1. Assemble all resources required [including people]
	2. Do task[s]
	FIGURE 1. ‘Performing a task’ building block
	A.2.1.2 Comments
	A.2.1.3 Object required
	A.2.1.4 Textual description example

	A.2.2 Sequential Task
	A.2.2.1 Flow of events
	1. Do each task in the order specified
	FIGURE 2. ‘Sequential task’ building block
	A.2.2.2 Comments
	A.2.2.3 Object required
	A.2.2.4 Textual description example

	A.2.3 Branching In
	A.2.3.1 Flow of events
	1. If all input tasks are completed
	2. Activate branch-in node
	3. Do output task[s]
	FIGURE 3. ‘Branching in’ building block
	A.2.3.2 Comments
	A.2.3.3 Object required
	A.2.3.4 Textual description example

	A.2.4 Branching Out
	A.2.4.1 Flow of events
	1. If branch-out node activated
	2. Do all output tasks
	FIGURE 4. ‘Branching out’ building block
	A.2.4.2 Comments
	A.2.4.3 Object required
	A.2.4.4 Textual description example

	A.2.5 Conditional Tasks
	A.2.5.1 Flow of events
	1. Complete all input tasks
	2. Activate decision node
	3. Do appropriate task depending on outcome
	FIGURE 5. ‘Conditional tasks’ building block
	A.2.5.2 Comments
	A.2.5.3 Object required
	A.2.5.4 Textual description example

	A.2.6 Iterating Processes
	A.2.6.1 Flow of events
	1. Activate decision node
	2. If ‘true’ do task[s] [may be multiple/parallel tasks]
	3. Else end iteration [and proceed to next task]
	FIGURE 6. ‘Iterating processes’ building block
	A.2.6.2 Comments
	A.2.6.3 Object required
	A.2.6.4 Textual description example

	A.2.7 Composing Processes Using Recursion
	A.2.7.1 Flow of events
	1. If task is simple, do task
	2. Else (task is composed of lower level tasks) recurs one level down
	FIGURE 7. ‘Composing processes using recursion’ building block
	A.2.7.2 Comments
	A.2.7.3 Object required
	A.2.7.4 Textual description example

	A.2.8 Holding Meetings
	A.2.8.1 Flow of events
	1. Gather agenda items
	2. Organize meeting participants
	2.1 Choose meeting participant
	2.2 Assemble participants
	2.3 Hold meeting
	2.4 Disband meeting
	FIGURE 8. ‘Holding meetings’ building block
	A.2.8.2 Comments
	A.2.8.3 Object required
	A.2.8.4 Textual description example

	A.2.9 Building Consensuses
	A.2.9.1 Flow of events
	1. Gather design conflict items
	2. Attempt to reach a consensus
	2.1 Choose required participants
	2.2 Assemble participants
	2.3 Hold conflict resolution session
	2.4 Disband conflict resolution session
	FIGURE 9. ‘Building consensuses’ building block
	A.2.9.2 Comments
	A.2.9.3 Object required
	A.2.9.4 Textual description example

	A.2.10 List of Design Participants
	A.2.10.1 Flow of events
	A.2.10.2 Comments
	A.2.10.3 Object required
	A.2.10.4 Textual description example

	System Object Models
	B.1 Domain Object Models
	B.1.1 Classification Knowledge Base (CKB) Domain Object Models
	B.1.1.1 CKB Schema
	B.1.1.2 CKB Manager for API Implementation

	B.1.2 Case-Based Design (CBD) Domain Object Models
	B.1.2.1 CBD Schema
	B.1.2.2 CBD Manager for API implementation

	B.2 Interface Object Models
	B.2.1 Database Connections
	B.2.2 Main GUI Windows and Dialogs
	B.2.2.1 The Main CKB Window
	B.2.2.2 The Tree View (Primitive and Classification Hierarchy)
	B.2.2.3 CKB UI Dialogs
	B.2.2.4 The Main CBD Window
	B.2.2.5 CBD UI Dialogs

	Sequence Diagrams for the Use Cases described in Section 6.2
	C.1 Start a classification session
	C.2 Create a CKB
	C.3 Load a CKB
	C.4 Close a CKB
	C.5 Save a CKB
	C.6 Save a CKB as
	C.7 Delete a CKB
	C.8 Cleanup a CKB
	C.9 View primitive hierarchy
	C.10 Create a primitive
	C.11 Edit a primitive
	C.12 Delete a primitive
	C.13 Get derived information
	C.14 Create a classification
	C.15 Load a classification
	C.16 View classification hierarchy
	C.17 Edit a classification
	C.18 Delete a classification
	C.19 Delete all classifications
	C.20 Get derived information
	C.21 Compare classifications
	C.22 Attach a classification
	C.23 Compare
	C.24 Get classified DB objects
	C.25 End a classification session
	C.26 Start a case-base design session
	C.27 Create a CB
	C.28 Load a CB
	C.29 Close a CB
	C.30 Save a CB
	C.31 Save a CB as
	C.32 Delete a CB
	C.33 Cleanup a CB
	C.34 Create a Case
	C.35 Delete a Case
	C.36 Retrieve a Case
	C.37 End a case-based design session

