Generative Geometric Design
and
Boundary Solid Grammars

Dissertation
by

Jeff A. Heisserman

Department of Architecture
Carnegie Mellon University
Pittsburgh, Pennsylvania

May 1991

Copyright (© 1991 Jeff Heisserman

Carnegie Mellon University

Department of Architecture
College of Fine Arts

Dissertation

SUBMITTED IN PARTTAL FULFILLMENT
OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

TITLE Generative Geometric Design

and Boundary Solid Grammars

PRESENTED BY Jeff A. Heisserman

ACCEPTED BY ADVISORY COMMITTEE

Robert F. Woodbury ~ PRINCIPAL ADVISOR DATE
Dana S. Scott ADVISOR DATE
Ramesh Krishnamurti ADVISOR DATE
Ulrich Flemming ADVISOR DATE

Carnegie Mellon University

Department of Architecture
College of Fine Arts

Dissertation

SUBMITTED IN PARTTAL FULFILLMENT
OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

TITLE Generative Geometric Design

and Boundary Solid Grammars

PRESENTED BY Jeff A. Heisserman

APPROVED BY

David Lowry Burgess DEAN

DATE

John P. Eberhard DEPARTMENT HEAD

DATE

Robert F. Woodbury ADVISOR

DATE

Abstract

This thesis explores the automatic generation of solid models based on a grammatical paradigm.
It introduces a formalism, boundary solid grammars, for this purpose. In this formalism, a set of
geometric rules is applied to an initial solid model to generate a language or family of solids. A rule
may match on a portion of the boundary of a solid, and then modify the solid or add new solids.

Genesis is presented as an implementation of the formalism. A number of grammars have been
constructed to demonstrate the concepts and usefulness of the formalism. These grammars generate
simple geometric forms including snowflakes, recursive octahedra, “fractal” mountains, and spirals.
Another grammar generates stereo lithography support structures. Queen Anne houses have been
characterized with a more extensive grammar. Grammars are also being developed to generate
housings for small computers and structural designs for high rise buildings.

The thesis introduces the unary shape operations and a new paradigm for solid modeling. The
unary shape operations take models that may have self-intersections, interpret the models consid-
ering the given geometry and face orientations, and produce valid models. Local operations, the
unary shape operations, and Boolean operations are used together within a valid modeling scheme.

The thesis introduces a new boundary representation for manifold and nonmanifold solids, the
generalized split-edge representation. It describes generalized Euler operations which manipulate
the topology of the nonmanifold representation. Finally, the thesis presents a form of the Euler-
Poincaré equation that characterizes the relationship between elements of nonmanifold surfaces of
solids.

For Mary and Amie

0.1 Preface

This thesis is the result of a rather personal exploration into the area of grammar-based generation
of geometric models. It includes a number of different but related topics. Although it may be
obvious how these research topics are related to each other, it may not be so obvious why I chose to
explore this particular set of topics. The reasoning behind this choice of topics is presented below.

My original intent was to focus on rules and grammars that operate on a solid modeling repre-
sentation. It became clear from my analysis of the shape grammar literature and experience with
expert systems that dealt with (ad hoc) geometry that it is important to work with geometrically
complete representations (i.e. solid models), and that rules are able to match and operate on bound-
ary elements. This suggested using a 2-manifold boundary representation of solids. Rules match
on topological elements with conditions on the geometry, and modify the solid representations with
local operations on their geometry and topology.

The local operations allow the possibility of invalid results due to self intersections of the
bounding surfaces. To address this problem, I began playing with the unary union operation.
The unary union takes a model that may have self-intersections, interprets the model considering
the given geometry and face orientations, and produces a valid model. I eventually expanded the
concept to the unary intersection operation, and finally to the generalized unary intersection.

The unary shape operations solve the invalidity problem, but expose additional problems. First,
the unary operations produce nonmanifold results. Just as the regularized Boolean operations
are closed on r-sets, the unary shape operations are closed on boundary representations of r-
sets. Secondly, the relationship between the unary shape operations and the regularized Boolean
operations was not clear. I found that the Boolean operations form special cases of the unary shape
operations, and that the unary shape operations may be used to compute the Boolean operations.
My use of local operations and unary shape operations allowed me to define a new modeling scheme.

In order for the representation to be closed under the unary operations, I decided to develop a
nonmanifold boundary representation for solids. This representation needed to be both efficient for
rule matching, and compatible with the 2-manifold matching and operations already completed.
This resulted in the development of the generalized split-edge representation. It also began the
exploration of the topological properties of nonmanifold solids, and the development of an extension
to the Euler-Poincaré equation. It also required generalized Euler operations to manipulate the
nonmanifold adjacencies of the representation.

0.2 Acknowledgements

There are many people who have contributed to this thesis, and made my years at Carnegie Mellon
enjoyable and rewarding. Although it is not possible to name all of these people, I would like to
name a few that have contributed directly.

My sincere appreciation goes to Robert Woodbury, my advisor and thesis committee chairman,
for his perspective and unqualified support throughout the work on this thesis. I would like to
thank my thesis committee, Dana Scott, Ramesh Krishnamurti, and Ulrich Flemming, for their
stimulating discussions, insight, and advice.

A number of people have contributed to this thesis by providing comments on its various drafts
and engaging in useful discussions. I would like to thank all those people, with special thanks
to Chris Carlson, Spiro Michaylov, Nevin Heintze, Charles Coffman, Kiumarse Zamanian, Rich
Quadrel, and Roy Taylor.

I would like to thank those friends who have contributed to the development of Genesis .
Clauss Strauch applied his programming expertise to the first graphics routines used in Genesis .
Mikako Harada developed integral properties routines for her master’s project that were later in-
tegrated into Genesis . Thanks to Spiro Michaylov for his help and expertise with the Monash
CLP(R)interpreter and the IBM CLP(R)complier. I am especially grateful to Shih Hai Chi-
ang and Ching Yin for their work expanding the set of rules for the Queen Anne grammar, and
for their patience and persistence working with earlier, slow, undocumented versions of Genesis .
Manuel Anaya-Dufresne and Steven Meyer have aided in the process of debugging and developing
of Genesis , while constructing their grammars for the generation of computer housings and struc-
tural designs for high rise buildings. I would also to acknowledge my appreciation to the students
in my Geometric Modeling class for their helpful comments and patience working with Genesis .

Thanks to the faculty, staff, and students of the Engineering Design Research Center for their
contribution to a stimulating research environment. Special thanks to Clauss Strauch for main-
taining my computing environment both for system development and text processing. I would
like to acknowledge the support of the National Science Foundation for their support under Grant
MSM-8717307, and the NSF Engineering Research Program for their support of the Engineering
Design Research Center. Thanks goes to the Hewlett-Packard Corporation for their the generous
equipment grant, on whose workstations this research was conducted. Thanks also goes to the Intel
Corporation for their equipment donation for related work.

Most of all, I would like to thank my wife, Mary, and daughter, Amie, for their love and patience
during the long process of research and writing.

Contents

0.2 Acknowledgements

1 Introduction

I Geometric Modeling

2 Modeling Solids

2.1 Point Set Models e e e
2.2 Surface Models e e e e
2.3 Topological Properties of Solids o oo

3 Generalized Split-Edge Representation

3.1 Winged-Edge Data Structure L o
3.2 Split-Edge Data Structure
3.3 Generalized Split-Edge Representation,

4 Local Operations on Solids
4.1 Euler Operations e e e

4.2 Nonmanifold Euler Operations

13

17

19
19
21

23

33
34
35

37

40

I1

8

4.3 Geometric Operations 0L e

Unary Shape Operations

5.1 Winding Numbers
5.2 Defining the Unary Shape Operations
5.3 Properties of Unary Shape Operations
5.4 The Inversion Operation e
5.5 Boolean Operations e
5.6 Computing the Unary Shape Operations

Modeling With Topologically Valid Solids

6.1 Representation Schemes Lo Lo
6.2 Traditional Approacheso
6.3 A New Modeling Approach

Generative Geometric Design

Boundary Solid Grammars

7.1 Representation of Solidso
7.2 The Initial Solido
7.3 Reasoning About Solids
7.4 Operations on Solids L
7.5 The Composition of Solid Rules L.
7.6 Boundary Solid Grammarso
7.7 Languages of Solids

Applications of Boundary Solid Grammars

56
57
58
60
62
63

66

71
71
72

73

74

76
76
83
34
88
92
95

96

98

8.1 Generalized Snowflake Grammars e 99

8.2 Uniform Snowflake Grammars 101
8.3 Uniform Octahedron Grammar 0 oo 104
8.4 Mountain Grammars L e e e e e 105
8.5 Spiral Grammars. L. e e 108
8.6 Hunting The Spiny Icosopus 108
8.7 Stereo Lithography Support Grammars 109
8.8 Queen Anne Grammarl e e e e 110
9 Genesis : A Boundary Solid Grammar Interpreter 122
9.1 Using Genesis e 122
9.2 Genesis System Architecture o 123
9.3 Performance e e e e e e e e 126
IIT Conclusion 128
10 Contributions of the Thesis 129
10.1 Formalizations e e e e e 129
10.2 Implementations L e e e 130
10.3 Applications L e e e e 130
11 Future Directions 132
11.1 Generative Grammars o v it e e e e e e e e e 132
11.2 Solid Modeling e 133
A Euler Operators as Graph Productions 135

List of Figures

1.1

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

3.1

3.2

3.3

3.4

3.5

3.6

A Queen Anne house. e 14
The neighborhood of an interior point, and a manifold boundary point. 21
Nonmanifold neighborhoods of a vertex, and anedge. 21
A manifold and a nonmanifold solid. o oo 22
A nonmanifold solid. 23
Vertex uses. 24
Edge uses. e 25
Shell uses. L e 25
A solid, its offset and minus offset solids. oo o 26
A solid with a nonmanifold handle.o 0o 27
A solid with a nonmanifold chamber. oo o 27
Faces with multiple loops. 31
Simple faces. 31
Elements of the boundary of asolid., . 33
Edge relations in the winged-edge data structure. oL 34
Asimplesolid.o 35
Edge relations in the split-edge data structure.00 36
Asimplesolid. oL e 36
The Other_eh relations of edge-halves about twoedges. 37

3.7

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

A cross section through two edges.o 39

Splitting an edge. L 40
Splitting a face. L 41
The mssflv operator 41
The msflv operator e 42
The mev operator 42
The esplit operator 43
The mefl operator 44
The keml operator 45
The glue operator L 45
The kssflevs operator L 45
The ksflevs operator e 46
The kev operator L 46
The ejoin operator 47
The esqueeze operator L 47
The kefl operator L 48
The mekl operator 48
The unglue operator L 49
Building a tetrahedron using Euler operations 000 49
The ksv operator L 50
The kving operatoro 51
The keg operator L 51
The msv operator L e 52
The mvkg operator e 92
The meg operator 93
Building a solid using nonmanifold Euler operations 93

4.26

5.1

5.2

5.3

5.4

9.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

6.1

7.1

7.2

7.3

7.4

7.5

Moving a vertex. 95
Stretching the boundaries of a solid inward. L L. 56
Stretching the boundaries of a solid outward. a7
Winding numbers. oL 58
Classification of boundary elements using winding numbers. 58
A point set view of the unary union operation. L. 99
Nonmanifold condition at a vertex due to local operations. 62
A tetrahedron and its inversion. 62
A 2-D solid, its inversion, and its complement. 000 63
Solids A and B, their union AU* B, and their intersection AN*B.. 64
Solids A and B, A and the inverse of B, and the difference A—*B. 65
Solids A and B, A and the inverse of B, and the difference A—*B. 66
Computing the unary union. 68
A vertex intersecting a vertex, an edge, and aface. o000 68
An edge intersecting an edge. 69
An edge intersecting a face. L 69
A face intersecting a face. L L 69
Reorganization of the adjacency relations for two intersecting faces. 70
Calculating the winding number of a point p. oo 70
A representation scheme. oL 72
Asimplesolid. L e 77
The nodes of a topology graph for a tetrahedron. 78
The topology of a tetrahedron represented with a topology graph. 79
A tetrahedron represented with a boundary graph. 0oL 80
A tetrahedron represented with a labeled topology graph. 81

7.6

7.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

7.15

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

8.14

8.15

8.16

A tetrahedron represented with a b-graph. 0 0oL 82

An initial solid. oL 83
The implicit other_v relation. 85
The length of an edge-half. o 86
The decomposition of elements.o 87
Composing elements.o 87
The point_face operator. 91
A simplesolidrule. 92
A portion of the language of snowflakes. oL oL 96
Another snowflake. 97
Three stages of generation of the Koch snowflake. 98
Three stages of generation of a 3-D snowflake. o0 99
Alternative initial solids. oL 99
The generalized snowflake rule applied to various faces. 100
The generalized snowflake rule applied to a concave face. 101
An initial solid for the uniform snowflake grammars. 00000 101
Rules for the uniform snowflake grammars. 000 102
A uniform snowflake.o 103
Initial solid for the uniform octahedron grammar. L. 104
A uniform octahedron.o 104
Initial solids for the uniform mountain grammars. 00 0L 105
Basic rules for the uniform mountain grammars. 0L 106
Border rules for the uniform mountain grammars. L. 107
Two mountains. 114
Possible initial solids for spiral grammars. o000 oL 115
Rule for the spiral grammars. 0L oL 115

10

8.17
8.18
8.19
8.20
8.21
8.22
8.23
8.24
8.25
8.26
8.27
8.28

8.29

9.1

9.2

Al
A2
A3
A4
A

A6

A spiral form. 115
Anicosopus egg. 116
A developing spiny icosopus (without spines). oL 116
A developing spiny icosopus (with spines). L Lo L 117
An adult spiny icosopus. L L 117
Rules for locating vertex and edge supports. oo oL 118
Stereo lithography supports for asolid. 118
A basic layout rule for Queen Anne houses. 119
A rule for locating the parlor in a Queen Anne house. 119
A rule for locating the dining room in a Queen Anne house. 119
A rule for adding the second floor to a Queen Anne house. 119
Two Queen Anne houses. 120
Additional Queen Anne houses. 121
The architecture of Genesis 124
Data structures within Genesis (a simplified view). 125
The msflv graph production. 136
The mev graph production when there are no edges in the loop. 137
The general mev graph production. 137
The esplit graph production. L 138
The mefl graph production when there are no edges in the loop. 138
General mefl as two sequentially applied graph productions. 139

11

List of Tables

3.1

3.2

3.3

3.4

3.5

3.6

4.1

4.2

4.3

7.1

7.2

7.3

9.1

The winged-edge data structure. oL 34
The winged-edge data structure for a tetrahedron. o000 35
The split-edge data structure. oL 35
The split-edge data structure for a tetrahedron. 00000 37
The generalized split-edge representation. Lo 38
The generalized split-edge representation for a tetrahedron. 39
The effect of manifold Euler operators on the numbers of topological elements 54
The effect of the glue and unglue operators on the numbers of topological elements 54
The effect of nonmanifold Euler operators on the numbers of topological elements 95
Conversion from graph notation to clausal notation. 84
Euler operations as primitive operations. L0 89
Access complexity of various elements 94
Performance benchmarks on Genesis 0 126

12

Chapter 1

Introduction

The increasing ubiquity of computer graphics
and three-dimensional images of astonishing
realism have artfully concealed the fact that

important aspects of three-dimensional computer
graphics are hard, and in spots the frontier
of what is easy has advanced little in 20 years.

Robert Sproull (1990)

Geometric design is central to many areas of engineering, computer graphics, and architecture.
Examples of geometric design problems encountered by practitioners in these areas are listed below:

e Compose the rooms of a house according to a particular style and construct a massing model.
From this model, construct the roof, floors, ceilings, and interior and exterior walls, and locate
doors and windows.

e Given a volumetric model of the bays of a high-rise office building, place the structural
columns, beams, shear walls and floor slabs.

e Given a set of components for a computer, lay out the components and design a housing to
enclose them.

e Given a model of a part, generate support structures for manufacturing the part using a
stereo lithography process.

e Construct a model of a set of dies to manufacture a given part.

Current solid modeling systems provide users with little assistance in accomplishing these tasks.
They generally provide operations to create, manipulate, and modify models. To construct the
models previously mentioned, a user must examine the model and consider what parts should be

13

Figure 1.1: A Queen Anne house.

added. The user must then determine where and how to apply the solid modeling operations to
create the new components. Programming facilities are often added, however they provide little
more than the ability to create designs with parametric variations.

Robert Sproull expressed this in a recent address [49], continuing the quotation above:

What remains hard is modeling. The structure inherent in three-dimensional models is difficult
for people to grasp and difficult too for user interfaces to reveal and manipulate. Only the
determined model three-dimensional objects, and they rarely invent a shape at a computer, but
only record a shape so that analysis or manufacturing can proceed. The grand challenges in
three-dimensional graphics are to make simple modeling easy and to make complex modeling
accessible to far more people.

This thesis attempts to address these modeling problems in four ways:

1. solid modeling with local operations and unary shape operations;
2. logical reasoning about solids;
3. rules that match and operate on solids; and

4. grammars generating languages of solids.

14

First, the thesis introduces a new approach to solid modeling. The approach uses a boundary
representation of solids with local operations to modify the topological and geometric representa-
tion, and the wnary shape operations to guarantee valid representations. Local operations allow
more intuitive and direct manipulation of solid models. However, local operations may cause a
model to have self-intersections; thus, they may be a source of geometric invalidity. The unary
shape operations ensure the validity of the boundary representations. These are global operations
that take any topologically valid model and interpret the model, considering the given geometry
and face orientations, to produce topologically and geometrically valid models.

Second, the thesis reports a method for reasoning about conditions or features of solids using
first order logic. The graph based boundary representation of solids determines the basic axioms
for reasoning about a set of solids. Clauses are then constructed to express complex conditions. A
goal clause may be used to express a condition, and a theorem proving mechanism is then used to
determine the satisfiability of the condition.

Third, the thesis introduces rules that match on conditions of the solid models and perform
modifications on them. These solid rules provide the ability to build “smart” operations that locate
where operations should be applied and how to apply them.

Finally, the thesis introduces boundary solid grammars, a rule-based formalism for generating
complex models of rigid solid objects. Solids are represented by their boundary elements, i.e.
vertices, edges, and faces, with coordinate geometry associated with the vertices. Non-geometric
data may be associated with any of these elements. Rules are used to match conditions of a solid
or collection of solids and then modify them or create additional solids. A boundary solid grammar
consists of an initial solid and a set of rules. It produces a language or family of solid models.

The boundary solid grammar formalism and modeling approach are implemented in the Genesis
boundary solid grammar interpreter. Example grammars generate simple geometric forms includ-
ing a three-dimensional variant of Koch snowflakes, recursive octahedra, “fractal” mountains, and
spirals. Another grammar generates stereo lithography support structures. Queen Anne houses
[18] are characterized in a more extensive grammar. Grammars are being developed that gener-
ate personal computer housings and structural designs for high rise buildings. A description of
the Genesis boundary solid grammar interpreter and the example grammars are included in the
thesis.

Organization of the Thesis

The dissertation is organized into three parts. The first part, Geometric Modeling, presents the
solid modeling approach, including mathematical models, representation, and modeling operations
used. This part introduces several new developments: a new approach to solids modeling; an
exploration of the properties of nonmanifold solids; a new data structure for explicit representation
of manifold and nonmanifold solids; Euler operations for nonmanifold solids; and the unary shape
operations on boundary representations.

15

The second part, Generative Geometric Design, presents the boundary solid grammar for-
malism, with explanations of the representation, methods of reasoning about conditions, construct-
ing operators, formulation of solid rules, and the generative power of the grammars. The formalism
is illustrated with grammars that generate solid models in several domains. The Genesis boundary
solid grammar interpreter is also presented.

The final part of the thesis, Conclusion, consists of two chapters. The first chapter summarizes
the results of this thesis. The second chapter suggests some future directions for research.

Suggestions to the Reader

Different readers will approach this document with different backgrounds, and will be interested
in different aspects of it. For the reader who does not wish to read the dissertation from cover to
cover, | can offer the following suggestions. Most readers interested in solid modeling should read
Chapter 2 for a characterization of mathematical models of solids and their properties, Chapter 3 for
a discussion of the boundary representation used, Chapter 4 for local operations on geometry and
topology, Chapter 5 for the unary shape operations and Boolean operations, and finally Chapter 6
for a description of the modeling approach. A few suggestions for further work are discussed in the
final chapter.

Those interested primarily in generative geometric design should skim Chapters 2 through 6,
then read Chapter 7 for the definition of boundary solid grammars, including a discussion of the
techniques for reasoning about solids and constructing solid rules, and Chapter 8 for a presentation
of grammars that have been developed.

Finally, those readers interested in implementing solid grammar systems will need an under-
standing of all the geometric modeling and generative design chapters, and should focus on the
material in Chapter 9. Those interested in none of these topics should still enjoy the pictures in
Chapter 8.

16

Part 1

Geometric Modeling

17

Solid modeling seeks to provide geometrically complete representations of solid objects. There
are two dominant representation schemes in solid modeling: constructive solid geometry, and bound-
ary representation.

In constructive solid geometry a solid is represented by (valid) primitive solids combined using
regularized Boolean operations and rigid transformations. The interior and surface of a solid are
defined implicitly. By restricting the creation of solids in this fashion, a CSG model is always valid.
That is, it always represents subsets of £3that are bounded, closed, regular, and semi-analytic.

Boundary representations describe the surfaces of solids by their surface elements, vertices,
edges, and faces, and the adjacency relations between these elements. Fuler operators are used to
maintain the integrity of the adjacency relations when modifying a solid. The geometry of solids
may be assigned by the user. Using Euler operations and unrestricted assignment of geometry to
modify boundary descriptions may cause the boundary to have self-intersections. In order to ensure
that a model is valid, complex and computationally expensive tests are required. However, most
systems simply require the user to determine and maintain the validity of models, in deference to
simpler user interaction and faster response.

This thesis introduces a new approach to the boundary representation scheme. The Euler
operations maintain topological validity (surface neighborhood and orientation conditions), while
the assignment of geometry is not restricted. The boundary descriptions may then have self-
intersections. Unary shape operations, introduced in the thesis, then modify the topology and
geometry to produce valid solids. The unary shape operations find self-intersections in the surfaces
of the solid, and remove portions of the boundary that are within the solid.

A new boundary representation is also used, the generalized split-edge representation. It allows
the representation of topologies of both manifold and nonmanifold solids, and explicitly represents
topological adjacencies necessary for quick matching of the bounding elements. This last char-
acteristic is of primary importance to the formalism introduced in the second part of the thesis.
Nonmanifold Euler operators are introduced to manipulate the nonmanifold adjacencies of the
representation.

The next five chapters discuss the mathematical models and properties of solids, computer
representations, modeling operations, and solid modeling representation schemes.

18

Chapter 2

Modeling Solids

This chapter presents rigorous descriptions of solids and their properties. We begin by presenting
a definition for solids, then consider mathematical characterizations of solids, and conditions of
topological and geometric validity. Finally, we explore the topological properties of solids.

A solid is an idealized physical object. A solid is rigid, i.e. its shape does not deform when we
rotate or translate it. The shape of a solid is independent of its location. A solid must be homo-
geneously three-dimensional. It cannot have elements of lower dimensionality, such as “dangling”
faces, edges, or vertices. It must also have a clearly defined interior, bounding surface, and exterior.
A solid must have finite extent. That is, it must occupy a finite portion of space.

2.1 Point Set Models

This section uses concepts from point set topology to characterize mathematical models of solid
objects. It assumes some familiarity with the terminology of set theory, and introduces definitions
(adapted from Requicha [42], Simmons [48], and Henle [21]) that will be used throughout the thesis.
We characterize solid objects as r-sets, as introduced by Requicha [41].

Definition 2.1 Let W be a non-empty set. A class T of subsets of W is called a topology on W
if it satisfies the following two conditions:

1. the union of every class of sets in T is a set in T;

2. the intersection of every finite class of sets in T is a set in T.

Definition 2.2 A topological space is a pair (W,T) where W is a set and T is a topology on
W. The sets in the class T are called open sets of the topological space, and the elements of W
are called its points.

19

Definition 2.3 A neighborhood N(p) of a point p is a subset of X which contains an open set
which contains p. If N(p) is an open set it is called an open neighborhood.

Definition 2.4 A point p is a limit point of a subset X of E> if each neighborhood of p contains
at least one point of X different from p.

Definition 2.5 A set is closed if and only if it contains all its limit points.

Definition 2.6 The closure of a subset X of E3, denoted kX, is the union of X with the set of
all its limit points.

Definition 2.7 A point p of S is an interior point of a subset X of S if X is a neighborhood of
p, i.e., if X contains an open set which contains p.

Definition 2.8 The interior of a subset X of W, denoted i X, is the set of all the interior points
of X.

Definition 2.9 The boundary of a subset X of W, denoted 0X, is the set kx — 1 X .
We consider here closed regular sets.

Definition 2.10 The regularization of a subset X of W, denoted rX, is the closure of the
interior of X, rX = ki1 X.

Definition 2.11 A set X is regular if X =rX, i.e., if X = kiX
Definition 2.12 A subset X of E2 is bounded if it can be enclosed in a sphere of finite radius.

Definition 2.13 A subset X of E® is semi-analytic if it can be expressed as a finite combination,
via the usual set operations (intersection, union, difference, and complement) of sets of the form

{(2,9,2)|Fi(2,y,2) < 0}

where the F; are analytic functions (i.e., they are locally expressible as convergent power series).
Finally, we can define r-sets.
Definition 2.14 An r-set is a subset of E2 that is bounded, closed, reqular, and semi-analytic.

R-sets accurately characterize the points of solid objects. We may also represent solid objects
by their bounding surfaces. In the next section, we consider the characteristics of surfaces, with
special attention to the surfaces of r-sets.

20

2.2 Surface Models

The surface of a solid object may be viewed as a smooth, continuous surface. This sort of surface

corresponds to the notion of a 2-manifold.

Definition 2.15 A 2-manifold is a topological space where each point has an open neighborhood
homeomorphic to an open disk in E?

(a) (b)

Figure 2.1: The neighborhood of an interior point, and a manifold boundary point.

(a) (b)

Figure 2.2: Nonmanifold neighborhoods of a vertex, and an edge.

We use the term manifold solid to denote a solid with a 2-manifold surface. The neighborhood of
a point inside a solid, and a point on a manifold boundary are illustrated in Figure 2.1. Nonmanifold
neighborhoods of a vertex, and an edge are presented in Figure 2.2.

For a manifold solid, every point on its surface is two-dimensional. A nonmanifold solid will
have points that are not two-dimensional, i.e., that have two or more portions of the surface that
touch at an edge or a vertex. Figure 2.3 shows a manifold solid (a) and a nonmanifold solid (b).

21

I

Figure 2.3: A manifold and a nonmanifold solid.

(a) (b)

We consider solids whose boundaries are either manifold or nonmanifold surfaces. However, we
do not allow lower dimensional (non-solid) elements, such as dangling faces and edges, or isolated
vertices.

Using these classifications, we can characterize the adjacencies of manifold solids by the following
conditions:

e each vertex has a single cone of edges and faces about it;

e each edge is adjacent to exactly two faces; and

e each edge is adjacent to exactly two vertices.
The adjacencies of nonmanifold solids have a slightly looser set of conditions:

e each vertex has one or more cone of edges and faces about it;

e each edge is adjacent to one or more pairs of faces; and

e each edge is adjacent to exactly two vertices.

It is useful to note that every manifold solid is considered a nonmanifold solid, but not wvice
versa.

We can consider a nonmanifold solid as the immersion of several manifold solids [23]. The
manifold boundaries of the solids are allowed to intersect, but the intersections are restricted to
sets of zero or one dimension.

22

Topological and Geometric Validity

A solid can be represented unambiguously by describing its surface, and topologically orienting it
such that we can tell, at each surface point, on which side the solid interior lies. This description
has two parts, a topological description of the connectivity and orientation of vertices, edges, and
faces, and a geometric description for embedding these surface elements in space. The topological
description of a solid is generally referred as its topology and the geometric description, as its
geometry. The geometry specifies, for example, the coordinates of the vertices. The topology and
geometry together define a boundary representation solid model.

It is possible to construct topologies that do not correspond to solid objects. The topological
description may be invalid due to meaningless adjacencies. For example, one can imagine con-
structing a topology with an adjacency relation between an edge and more than two vertices. This
is clearly invalid, since an edge must be bounded by exactly two vertices for any physical solid.
Alternately, the topological description could have valid adjacencies, but may not be orientable.
For example, it is impossible to orient a Klein bottle. Fuler operators are used in order to construct
only topologically valid models.

A solid is geometrically valid if the faces of the solid intersect each other only at common edges
of the faces and do not intersect at their internal points, and edges intersect only at the vertices
of the edges. A solid representation must be both topologically and geometrically valid in order to
be a valid representation of a rigid solid object.

2.3 Topological Properties of Solids

>

Figure 2.4: A nonmanifold solid.

The Euler-Poincaré equation,
v—e+ f=2s—g), (2.1)

relates the numbers of topological elements of 2-manifold surfaces. Here v, e, f, s, and g refer to
the numbers of vertices, edges, faces, shells (surfaces) and handles. However, the equation does not

23

correctly relate the elements of nonmanifold surfaces, and specifically the boundaries of r-sets.

We can see this clearly by a simple example. The nonmanifold solid in Figure 2.4 may be formed
by joining two tetrahedra at a single vertex, and a third tetrahedron at an edge. The heavy solid
vertices and thick edges in the figure indicate vertices and edges with nonmanifold neighborhoods.
The solid has 9 vertices, 17 edges, 12 faces, one (nonmanifold) shell, and zero handles. Clearly,

9—-17+12#2(1-0).
What then is the relation between the elements of regular solids?

We introduce a generalized form of the Euler-Poincaré equation
v —e+ f=2(s—g) (2.2)

which relates the number of vertex uses, edge uses, faces, shell uses, and (manifold) handles of both
2-manifold and nonmanifold surfaces of r-sets. In addition, we introduce the equation

(V' —v)—('—e)— (s —s)=¢g'—¢ (2.3)

which relates the number of vertex uses, vertices, edge uses, edges, shell uses, and shells to the
number of nonmanifold handles and nonmanifold chambers.

To understand these equations, we need definitions of the new terms. We introduce definitions
of vertex uses, edge uses, shell uses, nonmanifold handles, and nonmanifold chambers.

O

Figure 2.5: Vertex uses.

A verter use, denoted v, is a 2-manifold use of a vertex. This is a use of a vertex with respect
to a shell. For example, the three nonmanifold vertices of the solid in Figure 2.4 each have two
vertex uses. These as shown in Figure 2.5. Any vertex on a 2-manifold surface will have a single
vertex use. A vertex with a nonmanifold neighborhood will have multiple vertex uses.

An edge use, denoted €', is a 2-manifold use of an edge, and corresponds to a pair of incident
faces with respect to that edge. The two edge uses of the nonmanifold (thickened) edge of the solid

24

<

Figure 2.6: Edge uses.

in Figure 2.4 are shown in Figure 2.6. Any edge on a 2-manifold surface will have a single pair of
incident faces, thus a single edge use. An edge with a nonmanifold neighborhood will have multiple
edge uses.

N

Figure 2.7: Shell uses.

A shell use, denoted s', is a 2-manifold piece of a connected surface. We can separate the shell
uses of a surface by splitting apart the vertices and edges with nonmanifold neighborhoods. The
three shell uses of the nonmanifold solid in Figure 2.4 are illustrated in Figure 2.7. We can define a
shell use as a partition of the faces, edge uses, and vertex uses of a shell (surface) such that one can
traverse from any face, edge use, or vertex use of that partition to any other by their adjacencies
without crossing any faces, edge uses, or vertex uses of any other partition. A 2-manifold shell will
have a single shell use, and a 2-manifold solid will have an equal number of shells and shell uses.
A nonmanifold solid may have more shell uses than shells.

We can define the first Betti number (connectivity number) of a 2-manifold surface (our defini-
tion is adapted from [21]), in order to determine its number of handles and genus. Using a variation

25

of this definition, we can define the connectivity number for a nonmanifold surface. Next, we in-
troduce the concept of a nonmanifold handle, and use the new connectivity number to determine
the number of nonmanifold handles and the genus of a nonmanifold solid.

Definition 2.16 The first Betti number hy is the mazimum size of a set of closed curves that taken
together can be drawn on a surface that will not divide the surface into two or more pieces. This is
also known as the connectivity number of the surface.

For any nonmanifold solid, we can create a 2-manifold surface by offsetting the surface of
the solid by an arbitrarily small amount ¢. By choosing a sufficiently small ¢, we can guarantee
that we do not create additional handles or nonmanifold conditions from self-intersection of the
surface. By offsetting the surface, we are able to “thicken” the vertices and edges that have
nonmanifold neighborhoods, thereby eliminating these nonmanifold conditions. This is used to

A
A A
A

define the connectivity number for nonmanifold solids.

(a) (b) (c)

Figure 2.8: A solid, its offset and minus offset solids.

Definition 2.17 The manifold connectivity number hq of the surface of a nonmanifold solid is the
mazimum size of a set of closed curves that taken together can be drawn on a 2-manifold minus
offset surface of that solid (offset from the complement of the solid) that will not divide the surface
into two or more pieces.

Definition 2.18 The nonmanifold connectivity number h} of the surface of a nonmanifold solid is
the mazimum size of a set of closed curves that taken together can be drawn on a 2-manifold offset
surface of that solid that will not divide the surface into two or more pieces.

A nonmanifold handle, denoted ¢’, is a “pinched” handle. That is, it is connected through
one or more vertices or edges that have nonmanifold neighborhoods. Three tetrahedra may be
combined to form a nonmanifold handle as is illustrated in Figure 2.9. The resulting solid has one

26

v Ay

(a) (b)
Figure 2.9: A solid with a nonmanifold handle.

nonmanifold handle that is pinched in three places. A (manifold) handle has no vertices or edges
with nonmanifold neighborhoods.

This then gives us the ability to define nonmanifold handles and the genus of a nonmanifold
solid.

Definition 2.19 The number of nonmanifold handles, denoted ¢, is g' = h} /2 — hy/2.

(a) (b)
Figure 2.10: A solid with a nonmanifold chamber.

The last nonmanifold element that appears in our equations is the nonmanifold chamber. This is
a bubble or space that is trapped when two surfaces (or two portions of the same surface) are joined
together at a loop of edges with nonmanifold neighborhoods. For example, a nonmanifold chamber
is is formed by joining the two modified tetrahedra of Figure 2.10. The loop of edges divides the
surface of the solid into two portions: an inside surface of the solid (forming the chamber), and an

27

outside surface of the solid. (Topologically speaking, the portion of the surface considered as the
chamber is arbitrary.) We denote the number of nonmanifold chambers of a solid by e.

Finally, we are ready to explain the relationship between these elements of nonmanifold solids.

Theorem 2.1 The Fuler equation for reqular solids is

o' —e + f=2(s—g)

!

where v', €', and s’ are the numbers of vertex uses, edge uses, and shell uses, respectively.

Proof. We will systematically decompose the nonmanifold solid into its 2-manifold compo-
nents. We begin by decomposing the edges with nonmanifold neighborhoods. For each edge with a
nonmanifold neighborhood, we split the edge, introducing a new edge adjacent to the two vertices
of the original edge and to one pair of adjacent faces. This will remove one edge use from the
original edge, and will create a new edge with a single edge use. The total number of edge uses is
unchanged. We repeat this process until no more edges have multiple edge uses, and ¢’ = e.

Next, we decompose the vertices with nonmanifold neighborhoods. We split a vertex with a
nonmanifold neighborhood and introduce a new vertex adjacent to one of the cycles of edges and
faces. This will remove one vertex use from the original vertex, and will create a new vertex with
a single vertex use. The total number of vertex uses does not change. We will have one of three
cases:

1. If the original vertex and the new vertex are on the same shell use, we remove a nonmanifold
handle. This does not affect the number of shells or shell uses.

2. If the original vertex and the new vertex are on different shell uses, but remain on the same
shell, then we remove a nonmanifold handle. This does not affect the number of shells or
shell uses.

3. If the original vertex and the new vertex are on different shell uses and separated sets of
connected shell uses, then we split the shell. This partitions the shell uses into two separate
shells, each with connected shell uses, and creating a new shell. The total number of shell
uses is unchanged.

We repeat this process until no more vertices have multiple vertex uses, and »" = v. By our process
of creating new shells, we will also have s’ = s.

Once we have completed this process, the solid is decomposed into 2-manifold components and
v/ = v, e =e, and s’ = s. For these 2-manifold components, we know that

v—e+ f=2(s—g).

28

Therefore,
v —€ + f=2(s"-g).0

Theorem 2.2 The number of nonmanifold handles is determined by

(v —v)—(e'—€e)— (s —s)=¢ —c.

Proof. Following our previous proof, we can confirm the relation of nonmanifold handles
and chambers to other elements as we decompose the solid. First, we decompose the edges with
nonmanifold neighborhoods. For each edge with a nonmanifold neighborhood, we split the edge,
introducing a new edge adjacent to the two vertices of the original edge and to one pair of adjacent
faces. This will remove one edge use from the original edge, and will create a new edge with a
single edge use, thus ¢’ — e will be reduced by one. In addition, we will have one of two cases:

1. Splitting the edge removes a nonmanifold edge that is part of a cycle of nonmanifold edges,
thereby destroying a nonmanifold chamber. Both ¢ and ¢’ — e are reduced by one, and ¢’ is
unchanged.

2. Splitting the edge creates a nonmanifold handle. Then, e’ — e is reduced by one, and and ¢’
is increased by one.

We repeat this process until no more edges have multiple edge uses. Therefore, ¢/ — e = 0 and
c=0.

We next decompose the vertices with nonmanifold neighborhoods. We split a vertex with a
nonmanifold neighborhood and introduce a new vertex adjacent to one of the cycles of edges and
faces. This will remove one vertex use from the original vertex, and will create a new vertex with
a single vertex use. The total number of vertex uses remains invariant. We will have one of three
cases:

1. If the original vertex and the new vertex are on the same shell use, then the number of
nonmanifold handles will be reduced by one. Therefore, the additional vertex balances the
removed nonmanifold handle.

2. If the original vertex and the new vertex are on different shell uses, but remain on the
same shell, then the number of nonmanifold handles will be reduced by one. Therefore, the
additional vertex balances the removed nonmanifold handle.

3. If the original vertex and the new vertex are on different shell uses and different sets of
connected shell uses, then we split the shell. This partitions the shell uses into two separate
shells, each with connected shell uses, and creating a new shell. Therefore, the additional
vertex cancels the additional shell.

29

We repeat this process until no more vertices have multiple vertex uses, and the solid is de-
composed into 2-manifold components. Therefore, v’ — v = 0, and s’ — s = 0. Since we know that
2-manifold solids have no nonmanifold handles, it is clear that that

(W —v)—(e'—€e)— (s —s)=¢ —c.

The above operations are invertible. Thus the equation is preserved when applying these opera-
tions in either the forward or inverse directions. Using the 2-manifold components as the base case,
we can construct any nonmanifold solid from its 2-manifold components. Therefore, by induction,
we know that our equation holds for all nonmanifold solids.O

Examples

We can now see that our solid in Figure 2.4 satisfies this relation, since
Y B)
12 -184+12=2(3-0).
(o =)= (=€) = (s =5) = ' ¢
(12-9)—(18-17)—(3—-1)=0—-0
We can also verify some additional examples.

The solid in Figure 2.9(b) is composed of three tetrahedra. The first two tetrahedra are joined
at two vertices and an edge, and the third is joined to the first two at two vertices. This solid has
four vertices with nonmanifold neighborhoods and one edge with a nonmanifold neighborhood.

v —e+ f=2(s—g)
12-18+12=2(3-0)
(W' —v)—(—e)— (s —s8)=¢ —¢
(12—-8)—(18—-17)-(3—-1)=1-0.
The solid in Figure 2.10(b) is composed of two manifold solids joined at three vertices and three

edges. This solid has three vertices with nonmanifold neighborhoods. It also has three edges with
nonmanifold neighborhoods in a cycle, forming a nonmanifold chamber.

o' —e+ f=2(s—g)
10— 18 412 = 2(2 - 0)

(V' =v)=(—e)=(s'=s)=9g —¢c
(10-7)— (18 =15)—(2—1)=0— 1.

30

(a) (b)
Figure 2.11: Faces with multiple loops.

Multiple Face Loops

The Euler-Poincaré formula developed is restricted to faces represented as simple polygons. That
is, a face may have only one boundary. We would like to represent faces with multiple boundaries,
as shown in Figure 2.11.

Allowing faces with multiple boundaries requires an additional modification of the Euler-
Poincaré formula.

(@) (b)
Figure 2.12: Simple faces.

A modification of the Euler-Poincaré formula was introduced by Braid, Hillyard, and Stroud [4]
to additional face boundaries, which they denoted rings. Edges may be added to a face represen-
tation in order to connect the face boundaries. These edges are known as artifact or bridge edges.
Artifact edges are added to the faces of Figure 2.11 as shown in Figure 2.12. The modified form of
the Euler-Poincaré formula adds an artifact edge for each ring, denoted r,

v—(etr)+f=2s—g).

We can allow faces with multiple boundaries in the generalized Euler-Poincaré formula by adding

31

artifact edges. This extends the generalized Euler-Poincaré formula in a straightforward manner,

o' —(e'+ 1)+ f=2(s"—g).

We should also consider how multiple face loops affect the second equation. An artifact edge
will always have exactly one edge use. Thus the equation

(W =v)—('—e)=(s'=s) =g —c
is unaffected by the addition of multiple face boundaries.

It is sometimes convenient to consider the total numbers of face boundaries, or loops, instead
of the additional face boundaries, or rings. We can express the relationship between these three
quantities,

T:(l_f)v

where r, [, and f are the numbers of rings, loops, and faces.

32

Chapter 3

Generalized Split-Edge
Representation

In this chapter, we will discuss existing boundary representations of solids, and discuss their ad-
vantages and limitations. A new boundary representation is introduced that allows representation
of the desired domain of solids and is efficient for the given application.

A D 4

(a)
Figure 3.1: Elements of the boundary of a solid.

Solids may be represented by their bounding elements. For example, the tetrahedron in Fig-
ure 3.1(a) may be represented by its bounding faces (Figure 3.1(b)), its edges (Figure 3.1(c)), and
its vertices (Figure 3.1(c)). In addition to these elements, we need to know the relations which
describe the adjacencies of these elements, e.g. which faces are adjacent. The elements of the
boundary and their adjacencies are together considered the topology. We also must know the
dimensions and location of these elements, or geometry of the solids.

Since there are many ways to describe both the topology and geometry of solids, the choice
of topological elements, the specific set of adjacency relations, and representation of geometry is

33

critical to the amount of space needed to represent a solid, and the time needed to access information
about the solid. For example, the choice of adjacency relations that are used depends on a number of
factors: the set should be sufficient to fully determine all topological adjacencies; adjacency relations
that are used most often should be directly accessible for efficiency; and redundant relations should
not be included, except as required for access efficiency.

An extensive analysis of topological representations for manifold solids was conducted by Weiler
[57]. Representations for nonmanifold solids have been introduced by Karasick [25], and others.
These representations are discussed in this chapter, and a new representation for nonmanifold solids
is introduced.

3.1 Winged-Edge Data Structure

Edge next _face Next face of this edge
next_vertex Next vertex of this edge
next_cw_eh Next clockwise edge
next_ccw_eh Next counterclockwise edge

prev_face Previous face of this edge
prev_vertex Previous vertex of this edge
prev_cw_eh Previous clockwise edge
prev_ccw_eh Previous counterclockwise edge

Table 3.1: The winged-edge data structure.

ncew @ pcew
vstart vend
pcw ncw

Figure 3.2: Edge relations in the winged-edge data structure.

The first explicit boundary representation of polyhedra was the winged-edge data structure by
Baumgart [1]. Tt uses a record for each edge that contains the adjacencies between that edge and its
two adjoining faces, and the preceding and succeeding vertices, and the preceding and succeeding
edges in each of the faces.

34

v3

Figure 3.3: A simple solid.

edge vstart vend pcw ncw pcew neew few feew
el2 vl v2 eld e23 e24 eld 123 {124
el3 vl v3d eld e34 €23 el2 f134 £123
el4 vl vd el2 e24 e34 el3 124 {134
e23 v2 v3 el2 el3 e34 e24 123 {1234
e24 v2 vd e23 e34 eld el2 234 {124
e34 v3 vd eld eld 24 e23 134 {234

Table 3.2: The winged-edge data structure for a tetrahedron.

Figure 3.2 shows the edge relations in the the winged-edge data structure. As an example, the
tetrahedron in Figure 3.3 is represented using the winged-edge data structure in Table 3.2.

3.2 Split-Edge Data Structure

Edge-Half edgeh_1 The parent loop
cw_eh Next clockwise edge-half
ccw_eh Next counterclockwise edge-half
other_eh Other edge-half
edgeh_v Vertex of this edge-half

Table 3.3: The split-edge data structure.

35

other_eh

edgeh_v p—= —

eh o
ccw_eh cw_eh

edgeh_1

Figure 3.4: Edge relations in the split-edge data structure.

vl

v3

Figure 3.5: A simple solid.

The split-edge data structure is a variation of the winged-edge structure. It differs in that each
edge is separated into two edge-half structures. One face and one vertex is associated with each
edge-half, and each edge-half is associated with its other half.

Figure 3.4 shows the edge relations in the the winged-edge data structure. As an example, the
tetrahedron in Figure 3.5 is represented using the winged-edge data structure in Table 3.4.

We would like a data structure that allows representation of nonmanifold as well as manifold
solids. This is desirable since manifolds are not closed under the Boolean operations (or unary
shape operations, as we will see).

Nonmanifold solid representations have been introduced, including Karasick’s star-edge [25],
Vanecek’s fedge [56], and Laidlaw’s representation [29]. The star-edge and fedge representations
allow the more general definitions of faces we desire, but are not explicit (enough) to allow quick
access from any element in a model to any other. This was not necessary when used in CSG
modeling; however, is of utmost importance for matching and application of rules in boundary solid
grammars. Laidlaw’s representation is limited to triangulated faces. The next section introduces
the generalized split-edge representation.

36

edge-half edgeh.v c¢weh ccweh othereh edgeh.l

eh12 vl e¢h23 eh31 eh21 1123
eh21 v2 ch42 eh14 eh12 1124
eh13 vl ch34 ch41 eh31 1134
eh31 v3 e¢h23 eh12 eh13 1123
eh14 vl ch42 eh21 ch41 1124
ch41 v4 eh13 ch34 eh14 1134
e¢h23 v2 ch31 eh12 e¢h32 1123
e¢h32 v3 ech24 ch43 ch23 1234
eh24 v2 eh34 eh32 ch42 1234
ch42 v4 eh21 eh14 ch24 1124
eh34 v3 ch41 eh13 ch43 1134
ch43 v4 e¢h32 ch24 ch34 1234

Table 3.4: The split-edge data structure for a tetrahedron.

3.3 Generalized Split-Edge Representation

The generalized split-edge representation is an extension of the split-edge data structure. The
relationships of the generalized split-edge representation are summarized in Table 3.5.

A vertex-use structure in the generalized split-edge representation is equivalent to a vertex use,
as introduced in Chapter 2. A vertex of a solid is then represented by one or more vertex-uses.
These vertex-uses are related by next_vertex_use relations. Each vertex of a manifold solid has
exactly one vertex-use.

e «%K
(a) (b)

Figure 3.6: The Other_eh relations of edge-halves about two edges.

An edge use, as introduced in Chapter 2, is represented by exactly two edge-halves structures
in the generalized split-edge representation, one for each face associated with the edge-use. An

37

Solid next_solid Next solid (in the world)
prev_solid Previous solid (in the world)
solid _sh First shell (use) in the solid
Shell-Use shell _solid The parent solid
outside_sh Next outside shell (use) in the solid
connected_sh Next connected shell-use of this shell (nonmanifold)
inside_sh First shell (use) inside this shell (use)
shell f First face in this shell (use)
Face face_sh The parent shell (use)
next_shell f Next face in the shell (use)
prev_shell f Previous face in the shell (use)
facel First loop in the face
Loop loop f The parent face
next_facel Next loop in the face
loop_eh First edge in loop
loop_v Single vertex (use) in loop (only in edgeless loop)
Edge-Half edgeh_1 The parent loop
cw_eh Next clockwise edge-half
ccw_eh Next counterclockwise edge-half
other_eh Other edge-half (for nonmanifold - next in cycle)
edgeh_v Vertex (use) of this edge-half
Vertex-Use vertex.| The parent loop (in edgeless loop)
vertex_eh First edge-half of this vertex-use

next_vertex_use

Next vertex-use of the vertex

Table 3.5: The generalized split-edge representation.

edge of a solid is then represented by a pair of edge-halves for each of its edge-uses. The other_eh
relation denotes the adjacencies of the edge uses of an edge. Since each edge of a manifold solid

38

edge-half edgeh.v c¢weh ccweh othereh edgeh.l

eh12 vl e¢h23 eh31 eh21 1123
eh21 v2 ch42 eh14 eh12 1124
eh13 vl ch34 ch41 eh31 1134
eh31 v3 e¢h23 eh12 eh13 1123
eh14 vl ch42 eh21 ch41 1124
ch41 v4 eh13 ch34 eh14 1134
e¢h23 v2 ch31 eh12 e¢h32 1123
e¢h32 v3 ech24 ch43 ch23 1234
eh24 v2 eh34 eh32 ch42 1234
ch42 v4 eh21 eh14 ch24 1124
eh34 v3 ch41 eh13 ch43 1134
ch43 v4 e¢h32 ch24 ch34 1234

Table 3.6: The generalized split-edge representation for a tetrahedron.

other_eh

other_eh other_eh

other_eh other_eh

other_eh
(a) (b)
Figure 3.7: A cross section through two edges.

has a single edge-use, it is represented by exactly two edge-halves.

Shells are ordered in a tree by containment. Shells that are connected by one or more vertices
or edges with nonmanifold neighborhoods are linked using connected_sh relations. The shell uses
of the generalized split-edge representation correspond to the shell uses described in Chapter 3.

39

Chapter 4

Local Operations on Solids

Local modifications to solids are accomplished using local operations. Euler operations modify a
solid’s topology. Geometric operations modify the geometric description of a solid. This chapter
describes these local operations, with the primary emphasis on manifold and nonmanifold Euler
operations.

4.1 Euler Operations

Euler operations are a set of operators that manipulate graph representations of the topological ele-
ments and adjacencies of the boundary of solids. They modify a boundary representation by adding
and removing topological elements, while maintaining consistent topological adjacency relations.
Typical Euler operations split edges (Figure 4.1), and split faces (Figure 4.2).

=>

Figure 4.1: Splitting an edge.

Euler operations were introduced by Baumgart [2] for use on his winged-edge polyhedron repre-
sentation. They have since been adopted by several research groups [13, 4, 22, 33]. The topological
validity and completeness of Euler operations has been presented by Eastman and Weiler [14], and
demonstrated rigorously by Mantyld [34]. Fitzhorn demonstrated that Euler operators may be
represented as graph grammar productions [15].

40

=>

Figure 4.2: Splitting a face.

The Euler operators in this thesis follow the naming convention originally introduced by Baum-
gart. The names describe the effect the operators have on the creation and removal of topological
elements as well as the genus of the solid. An m stands for “make” or create, and k stands for “kill”
or remove. Each of these is followed by the letters signifying the types of topological elements cre-
ated or removed. v, e, 1, £, s and g stand for vertex, edge, loop, face, shell, and genus. Thus,
mev stands for “make edge, vertex”, and keml stands for “kill edge, make loop”. A few operators,
such as glue and esplit, have more descriptive names.

Manifold Euler Operations

< Nothing > :>

Figure 4.3: The mssflv operator

mssflv(NewS,NewSh,NewF,NewL,NewV)
“make solid, shell, face, loop, vertex” creates a new solid topology with a single shell (manifold
surface) with one face (containing a single loop) and one vertex. No edges are created.
This is the minimal topology needed to represent a shell, but is not sufficient to represent
a polyhedron. The identifiers of the new elements are returned as the values of “NewS”,
“NewSh”, “NewF”, “NewL”, and “NewV”. The mssflv operator is illustrated in Figure 4.3.

merge_solids(S1,S52)
merges the shells of two solids. The shells of “S2” are added to the solid “S1”, and the record
of “S2” is removed.

msflv(S,NewSh,NewF,NewL,NewV)
“make shell, face, loop, vertex” adds a new shell (manifold surface) to an existing solid. The

41

Figure 4.4: The msflv operator

new shell “NewSh” is added to the given solid “S”. The new shell, face, loop and vertex are
returned as the values of “NewSh”, “NewF”, “NewL.”, and “NewV”. As in mssflv, the new
shell consists of a single face, loop and vertex. The msflv operator is illustrated in Figure 4.4.

>V = >~—é
Eh Eh

Figure 4.5: The mev operator

mev(V,Eh,NewV,NewEh)
“make edge, vertex” creates a new edge and vertex as a strut edge in a face (see Figure 4.5).
For a shell with no edges, mev creates the first edge in the shell’s single face and loop. Both
sides of the new edge will be adjacent to the same face. “V” is the existing vertex which
will be at one end of the new edge. “Eh” is the edge-half that is counterclockwise from the
edge-half of vertex “V”. If there are no edges adjacent to vertex “V”, “Eh” will be null. When
mev is complete:

42

o the new edge-half “NewEh” will be clockwise to the given edge-half “Eh”;

o the new vertex “NewV” will be the vertex of the other_eh and the cw_eh of the new

edge-half “NewEh”.

The operation of mev is illustrated in Figure 4.5.

/b - 2

No= /L N\)/
/ Och

\ / Och NewOeh\

Figure 4.6: The esplit operator

esplit(Eh,NewEh,NewV)
“edge split” splits a given edge “Eh”, creating a new edge and vertex. esplit is a form of
mev.

When esplit is complete:

o the new edge-half “NewEh” will be clockwise to the given edge-half “Eh”;
o the second new edge-half will be the other_eh of the given edge-half “Eh”;

o the new vertex “NewV” will belong to both the two new edge-halves.
The esplit operator is illustrated in Figure 4.6.

mefl(V1,PredEh,V2,SuccEh,NewEh,NewL ,NewF)
“make edge, face, loop” splits a face and loop, creating a new face, loop, and an edge separat-
ing the new and old faces. The vertex “V1” belongs to the clockwise edge-half of “PredEh”.
If the vertex “V1” has no edge-halves, “PredEEh” will be null. The vertex “V2” belongs to
“SuccEh”. If the vertex “V2” has no edge-halves, “SuccEh” will be null. When mefl is
complete:

o the new edge-half “NewEh” will connect the vertices “V1” and “V2”, and will be clock-
wise to “PredEh”, and counterclockwise to “SuccEh”;

43

=

N/ R N o5/
/ AN VRN

NewF

Figure 4.7: The mefl operator

o the second new edge-half will be the other_eh of “NewEh”;
e the loop of the other_eh of “NewEh” will be the new loop “NewL”;

e the face of the new loop “NewL” will be the new face “NewF”.

If the vertices are the same (“V1” = “V2”), mefl creates an edge with the same vertex at
each end. The use of the mefl operator is illustrated in Figure 4.7.

keml (Eh,NewL)
“kill edge, make loop” removes an edge on a face splitting one loop into two separate loops,
creating a new loop of edges. If the edge is the only one in the loop, the result will be two
loops, each containing a single vertex. If the edge is a strut edge, one of the loops will contain
a single vertex. The edge-halves “Eh” and its other_eh will be removed. The counterclockwise
edge-half of “Eh” (or the vertex of “Eh”) will be contained in the new loop “NewL”. The
keml operator is illustrated in Figure 4.8.

glue(F1,F2)
“kill faces, loops” glues two faces together. The faces must have the same number of loops,
and the corresponding loops must have the same number of edges and vertices. The use of
the glue operator is illustrated in Figure 4.9.

Inverse Manifold Euler Operations
kssflevs(S)

“kill solid, shells, faces, loops, edges, vertices” deletes the existing solid “S” and all of its
elements, as illustrated in Figure 4.10.

44

[

- 4

_ = / N,
/

N T/ N

Figure 4.8: The keml operator

2 - Ly

Figure 4.9: The glue operator

NIV
I:> — Nothing! —
/N

’

Figure 4.10: The kssflevs operator

ksflevs(Sh)

“kill shell, faces, loops, edges, vertices” Remove the shell “Sh” and all its elements from an
existing solid. The ksflevs operator is illustrated in Figure 4.11.

kev(Eh)

45

S

—— ===

N P%

— No Shell!

AN

-

Figure 4.11: The ksflevs operator

Figure 4.12: The kev operator

“kill edge, vertex” removes a “strut” edge from a face, and the vertex belonging to it. The

use of the kev operator is illustrated in Figure 4.12.

ejoin(Eh)

“edge split” joins an edge, creating a new edge and vertex. ejoin is a form of kev. ejoin
applies when the vertex of “Eh” is adjacent to only two edge-halves, “Eh” and the cw_eh of
the other_eh of “Eh”. When ejoin is complete, “Eh” and the cw_eh of the other_eh of “Eh”
will be removed, as well as the vertex adjacent to these two edge-halves. The ejoin operator

is illustrated in Figure 4.13.

esqueeze(Eh)

“edge squeeze” joins two vertices, removing the edge between. esqueeze is a form of kev.
“Eh” and its other_eh will be removed, as well as the vertex belonging to “Eh”. The other

46

/3 - L)

N \ e/

SR e R

Figure 4.13: The ejoin operator

- A

/ - OV:R‘\« ~ / .m

Figure 4.14: The esqueeze operator

edge-halves adjacent to the vertex of “Eh” will now be adjacent to the vertex that belonged
to the other_eh of “Eh”. The esqueeze operator is illustrated in Figure 4.14.

kef1(Eh)
“kill edge, face, loop” joins a face and loop, removing the edge separating the two faces, and
the face and loop of that edge. The operation of kefl is illustrated in Figure 4.15.

mekl(V1,PredEh,V2,SuccEh,NewEh)

47

A-H

\ Eh ./ =
/ N\ /
Figure 4.15: The kefl operator
> //
Koo e
V4 "\ VA

Figure 4.16: The mekl operator

“make edge, kill loop” adds an edge between two vertices, V1 and V2, on different loops of a
face. The vertex “V1” belongs to the clockwise edge-half of “PredEh”. If the vertex “V1” has
no edge-halves, “PredEh” will be null. The vertex “V2” belongs to “SuccEh”. If the vertex

“V2” has no edge-halves, “SuccEh” will be null. When mek1 is complete:

o the new edge-half “NewEh” will connect the vertices “V1” and “V2”, and will be clock-

wise to “PredEh”, and counterclockwise to “SuccEh”;

e the second new edge-half will be the other_eh of “NewEh”;

48

The mekl operator is illustrated in Figure 4.16.

Figure 4.17: The unglue operator

unglue(Cycle0fEhs,NewF1,NewF2)
“make faces, loops” unglues a cycle of edges, creating two new faces and loops. Cycle0fEhs is
a list of the pairs of edge-halves to be separated. The use of the unglue operator is illustrated
in Figure 4.17.

Using Manifold Euler Operations

= =

mssflv mev

S
2!
SR

() (b) ©

Figure 4.18: Building a tetrahedron using Euler operations

We can illustrate the use of Euler operators with a simple example, the construction of a tetra-
hedron. The steps of the construction are presented Figure 4.18, with both plane models and
three-dimensional models.

The construction begins with a minimal topology, created with mssflv (a). The first and second
edges are then added with two applications of mev (b and ¢). At this point, the model has a single
face. By creating an edge between V2 and V3, we split the face using mefl (d). This gives us a
triangular lamina. V4 and the strut edge between V1 and V4 are created with mev (e). Two more
applications of mefl create the remaining two faces and two vertices, completing the topology of
the tetrahedron (f). In order to complete the description of the tetrahedron, we need to assign
coordinates to the vertices.

4.2 Nonmanifold Euler Operations

The Euler operators are complete and valid for manifold solids. We would like to extend the
Euler operators to allow the manipulation of both manifold and nonmanifold solids. Requicha
and Voelcker [44] conjectured that Euler operators could be extended to nonmanifold solids. This
section discusses existing Fuler operators on nonmanifold solids, and introduces new ones.

A set of generalized Euler operators for nonmanifold solids has previously been proposed by
Desaulniers and Stewart [11]. Their method uses manifold Euler operators to modify the topol-
ogy, while introducing infinitesimal edges and faces at points with nonmanifold neighborhoods.
Specifically, a nonmanifold Euler operation would be composed of zero or more applications of mev,
followed by one or more applications of mefl.

We introduce three nonmanifold Euler operations (and their inverses) to construct explicit rep-
resentations of nonmanifold solids using the generalized split-edge data structure. These maintain
the additional nonmanifold adjacency relationships: multiple loops of faces about a vertex; multiple
pairs of faces about an edge; and and multiple connected uses (components) of a shell.

=>

Vi A V1

V2

Figure 4.19: The ksv operator

50

ksv(V1,V2)
“kill shell, vertex” merges two vertices existing on different shells, and merges their shells.
“V1” and “V2” are the two vertices to be merged. When ksv is complete, “V1” and “V2”
will be uses of the same nonmanifold vertex, and will be on different uses of the same shell.

The operation of ksv is illustrated in Figure 4.19.

=
v1V2 > A

Figure 4.20: The kvimg operator

kvmg(V1,V2)
“kill vertex, make genus” merges two vertices existing on the same shell. This creates a
(nonmanifold) handle and increases the genus by one. “V1” and “V2” are the two vertices
to be merged. When kvmg is complete, “V1” and “V2” will be uses of the same nonmanifold
vertex, and will be on the same shell and shell use. The kvmg operator is illustrated in

Figure 4.20.

A A

Figure 4.21: The keg operator

keg(Eh1,Eh2)
“kill edge, genus” merges two edges that share their two vertices. This seals a (nonmanifold)
handle and decreases the genus by one, or creates a nonmanifold chamber. “Eh1” and “Eh2”

51

are halves of the two edges to be merged. When keg is complete, “Eh1” and “Eh2” will be
halves of the same nonmanifold edge. The use of the keg operator is illustrated in Figure 4.21.

Inverse Nonmanifold Euler Operations

. ‘
VI/V2 « Vlvz

Figure 4.22: The msv operator

msv(V1,V2)
“‘make shell, vertex” splits two vertex-uses of a vertex. The two vertex-uses are on the same
shell, but different shell-uses, and creates a shell. “V1” and “V2” are different uses of the
same vertex that are to be separated. “V1” and “V2” must be the only vertex uses joining
their shell uses. When msv is complete, “V2” will be removed from the vertex of “V1” and
will form a separate vertex, and will be on a separate shell. The msv operator is illustrated
in Figure 4.22.

=

Figure 4.23: The mvkg operator

mvkg(V1,V2)
“make vertex, kill genus” splits two vertex-uses of a vertex that exist on the same shell and
shell-use. This removes a (nonmanifold) handle and decreases the genus by one. The mvkg

52

operator is illustrated in Figure 4.23.

27

W

Figure 4.24: The meg operator

meg(Eh1,Eh2)
“make edge, genus” splits two edge-uses of an edge. This creates a (nonmanifold) handle
and increases the genus by one, or removes a nonmanifold chamber. The meg operator is
illustrated in Figure 4.24.

Using Nonmanifold Euler Operations

=

l ksv twice
(@) (b)

= L S k

(c) (d)

v

Figure 4.25: Building a solid using nonmanifold Fuler operations

53

We can illustrate the use of nonmanifold Euler operators with another example, constructing the
solid in Figure 2.4. The steps of the construction are presented Figure 4.25.

The construction begins with three tetrahedra (a). The three are connected with two applica-
tions of ksv (b). Two vertices are then joined with one application of kvmg, making a nonmanifold
handle (c). One application of keg joins the two edges and removes the nonmanifold handle (d),
and completes the solid.

Properties of Euler Operations

v e) f S
msflv +1 0 +1 +1 +1
mev +1 +1 0 0 0
mefl 0O +1 +1 +1 0
mekl 0 +1 -1 0 0
ksflevs —v —e -l —f -1
kev -1 -1 0 0 0
kefl o -1 -1 -1 0
keml 0 -1 +1 0 0

Table 4.1: The effect of manifold Euler operators on the numbers of topological elements

v e I f s h K c

glue; v, —e —2 -2 -1 0O 0 -1
gluey —v. —e. —2 =2 0 41 0 -1
unglue; +v. +e. +2 +2 41 0O 0 +1
ungluey; +v. +e. +2 +2 0 -1 0 +1

Table 4.2: The effect of the glue and unglue operators on the numbers of topological elements

The effect of the manifold Euler operators on the numbers of topological elements is presented in
Table 4.1. Technically, ksflevs is a nonmanifold Euler operations since it removes all the elements
with their manifold and nonmanifold adjacencies.

Both forms of glue remove the nonmanifold vertex uses v. and edge uses e. around the nonman-
ifold chamber. In addition, glue; presumes that the nonmanifold chamber separates two shell uses,
and therefore removes a shell use. gluey presumes that the nonmanifold chamber separates two
portions of the same shell use, and thus forms a (manifold) handles. The effect of Euler operators
on the numbers of topological elements is presented in Table 4.2.

54

v e s A c
ksv -1 0 -1 0 0
kvmg -1 0 0 +1 0
kegy 0 -1 0 -1 0
kegs 0 -1 0 0 +1
msv +1 0 +1 0 0
mvkg 41 0 0 -1 0
meg; 0 +1 0 +1 0
megy 0 +1 0 0 -1

Table 4.3: The effect of nonmanifold Euler operators on the numbers of topological elements

The effect of the nonmanifold Euler operators on the numbers of topological elements is pre-
sented in Table 4.3.

4.3 Geometric Operations

Modifications to the geometry of solids are implemented using geometric operations. For the pur-
poses of this thesis, we limit the scope of our geometric operations to vertex coordinate assignment.
From the vertex coordinates, we can derive edge equations and face equations.

=>

Figure 4.26: Moving a vertex.

The assignment of new coordinates to an existing vertex allows us to modify the description of
a solid, as shown in Figure 4.26. The set_vertex operation is used for this purpose.

set_vertex(V, [X,Y,Z])
Set the coordinates of the given vertex to [X, Y, Z].

55

Chapter 5

Unary Shape Operations

This chapter introduces the unary shape operations. In order to guarantee that we always have
models that represent solid objects, we need an operation that takes any model with a valid topology
and arbitrary (possibly invalid) geometry, and produces a valid model. The operation should leave
a valid model unchanged. Changes introduced to an invalid model should be consistent with the
given topology and geometry, while removing self-intersections of the surface. The unary shape
operations are designed to serve this purpose.

Modeling with Fuler operations allows us to modify models, while guaranteeing that the topol-
ogy of a model is valid. This allows us much freedom in creating and modifying the surfaces of
models. However, if we are allowed unrestricted assignment of geometry, we may construct models
that have self-intersections and inconsistent face descriptions.

Y

(a) () ©

Figure 5.1: Stretching the boundaries of a solid inward.

We can ask, “Why would the surface of a solid intersect itself?” One reason may be that two
surfaces of a solid stretch inward enough that they overlap. This situation occurs when constructing
“fractal” mountains (see Chapter 8). Local modification of the boundary allows caves to intersect
and to form holes through the mountain, as illustrated in Figure 5.1. The volume between the

56

two intersecting parts of the boundary is to the outside of both. Since the boundary separates
the outside from itself, we really have a hole through the solid. The intersecting portions of the
boundary are unwanted.

(@ (b) ()
Figure 5.2: Stretching the boundaries of a solid outward.

Alternately, two parts of a solid may stretch outward far enough to intersect. On the exam-
ple mountain, modification of the boundary creates spires that intersect back into the mountain,
forming arches. We can see this in Figure 5.2. Then we have parts of the boundary inside what we
think of as solid. Since the boundary separates interior points of the inside, the intersecting portion
of the boundary is unnecessary. It is also undesirable, since computation of the volume based on
the boundary would be incorrect.

The unary union of a solid (defined by its boundary) is the solid that contains all the points
enclosed at least once by the boundary. For example, the unary union of the solid in Figure 5.1(b)
is shown is Figure 5.1(c). The unary union of the solid in Figure 5.2(b) is shown is Figure 5.2(c).
The unary intersection of a solid is the solid that contains all the points enclosed more than once
by the boundary.

5.1 Winding Numbers

We can define the unary shape operations more precisely using winding numbers.

Definition 5.1 The winding number of a point p with respect to an oriented 2-manifold surface
S embedded in E>is the number of times the surface encloses the point, and is denoted w(S,p).
The winding number is defined for any point not on the surface.

Since 2-manifold surfaces are closed, we will always have integer winding numbers. The term
enclosing number is more intuitive when considering points enclosed by closed surfaces [7]. We are
also interested in representing solids with multiple bounding surfaces, so we need to expand our
definition.

57

D) @

(@ w=1 (b) w=0 () w=-=2

Figure 5.3: Winding numbers.

Definition 5.2 The winding number of a point p with respect to multiple surfaces is the sum
of the winding numbers of that point with respect to each of the individual surfaces, Y iy w(S;,p).
The winding number is defined for any point not on any of the surfaces.

st

(a) (b)

Figure 5.4: Classification of boundary elements using winding numbers.

5.2 Defining the Unary Shape Operations

In this section, we define the unary shape operations: unary union, unary intersection, and gener-
alized unary intersection. Unary union and unary intersection are special cases of the generalized
unary intersection. Therefore, we first define the generalized unary intersection, and then define
the two special cases.

Intuitively, the nth generalized unary intersection of a surface is the set of points that are
enclosed by the surface at least n times. The value of n can be an integer value since this corresponds
to the range of the winding numbers. However, we are interested in bounded point sets, and thus
restrict n to be greater than zero. We can give a more formal definition of the generalized unary
intersection as follows.

Definition 5.3 The n-th unary intersection of one or more oriented 2-manifold surfaces S,

58

f Yewes

(a) Point Set (b) Boundary of Point Set (c) Modified Boundary

1

QQ = Q\

(d) Winding Numbers (e) Point Set from (f) Closure of Point Set
Winding Numbers

Figure 5.5: A point set view of the unary union operation.

which we denote as N" (S), is the closure of the set of points with winding numbers greater or equal
to n,

k{plpgS,w(S,p) > n}.

The unary union of a surface is the closure of the set of points that are enclosed at least once
by that surface. We can then define the unary union in terms of the generalized unary intersection.

Definition 5.4 The unary union of one or more oriented 2-manifold surfaces is the 1st unary
intersection of those surfaces.

Figure 5.5(a) shows the original solid from Figure 5.2(a). We can then modify the boundary
(b) as we did before to produce the self-intersecting surface in Figure 5.5(c). We then compute the
unary union of that surface by calculating the winding numbers (d), producing the set {p | p &
S,w(S,p) > n} (e), and finding the closure of the set (f).

We can also define the unary intersection. The unary intersection of a surface is the closure
of the set of points that are enclosed at least twice by that surface. We can also define the unary
intersection in terms of the generalized unary intersection.

Definition 5.5 The unary intersection of one or more oriented 2-manifold surfaces is the 2nd
unary intersection of those surfaces.

59

The operations defined by the generalized unary intersection, including unary union and unary
intersection, constitute the unary shape operations.

5.3 Properties of Unary Shape Operations

It is important that the unary shape operations produce the intended results for the intended
domain. This section introduces properties of the unary shape operations and presents informal
proofs of their correctness.

The unary union ensures that any self-intersections of a surface are resolved. This next theorem
demonstrates that the unary union does not alter a valid solid, since its surface contains no self-
intersections.

Theorem 5.1 Any valid solid is identical to the unary union applied to its surface,
Nt (a5) = 9.

Proof. The winding number of any point in the interior of a valid solid is 1, and in the exterior of
the solid is 0. Therefore, the set

{plpgS,w(ds,p) >}

is identical to the interior of the solid. Since we are representing regular sets, the solid is equal to
the closure of its interior, and thus, equal to the unary union.

S =k(i(9))=nt(99).0
Since a valid solid cannot contain any self-intersections, its unary intersection is empty.

Theorem 5.2 Forn > 1, the nth unary intersection applied to the surface of a valid solid is empty,

forn >1,N"(35)= 0.

Proof. Again, the winding number of any point in the interior of a valid solid is 1, and in the
exterior of the solid is 0. Therefore, the set

{plp¢gS,w(ds,p)>1}

is empty, as is its closure.

N (88) = k(0) = 0.0

The unary intersection follows as a special case of the previous theorem. We can state this as
a corollary.

60

Corollary 5.1 The unary intersection applied to the surface of a valid solid is null,

n2(as) = 0.

Theorem 5.3 The n-th unary intersection of one or more oriented 2-manifold surfaces S is a
reqular set.

Proof. The set
{plpgS,w(S,p)>n}

defines an open set of points from the interior of the surface. It cannot contain any isolated points,
line segments, or “dangling” polygons. The closure of this set is therefore a regular set.O

If the oriented 2-manifold surface is semi-analytic, then the resulting regular set will also be
semi-analytic. Therefore the regular set produced will also be an r-set.

Theorem 5.4 Fvery set of oriented 2-manifold surfaces S has a unique n-th unary intersection.

Proof. Since every point p not on § has a unique winding number w(S, p) with respect to the
oriented surface, the set

{plpgS,w(S,p)>n}

is unique. The n-th unary intersection is the closure of this set, and since the closure of any point
set is unique, the n-th unary intersection must be also be unique.O

Theorem 5.5 R-sets are closed under local operations followed by unary shape operations.

Proof. Given an r-set, we can construct a boundary description of the surface of the r-set. (Indeed,
we generally represent the r-set by the bounding surface, or by primitive solids for which we have
boundary descriptions.) If the r-set has a manifold boundary, the winding number will be defined
for any point not on the boundary. If the r-set has a nonmanifold boundary, then we consider it to
be an immersion of several 2-manifold boundaries. Following the definition of r-sets, the boundary
will be semi-analytic.

Local operations transform the boundary description, while maintaining its boundedness, con-
tinuity, orientability, and semi-analyticity. From the definition of generalized unary intersection,
the set

{plpgS,w(S,p)>n}

(where § is the transformed boundary and n > 0) produces the interior points of the volume
enclosed n or more times by the boundary description, excluding any of the points on the bounding

61

(a) (b)
Figure 5.6: Nonmanifold condition at a vertex due to local operations.

surface(s). We then take the closure of this set. Since the resulting set is bounded, closed, regular,
and semi-analytic it is an r-set.O

We can modify the geometry of a solid such that a nonmanifold condition is created (Figure 5.6).
The unary shape operations will not modify the geometry of this solid, but will compute and record
the additional topological adjacencies.

Theorem 5.6 2-manifold r-sets are not closed under local operations followed by unary shape
operations.

Proof. This may be proven by example. Given the 2-manifold r-set in figure Figure 5.6(a), we can

modify the boundary description as shown. The resulting r-set does not have a 2-manifold surface.
O

5.4 The Inversion Operation

=

Figure 5.7: A tetrahedron and its inversion.
The inversion of the bounding surface of a solid describes a finite void or absence of material. When

an inverted solid is combined with the original solid, the two objects “neutralize” each other. When
considering valid solids, an inverted solid acts as a negative object, and the inversion operation is

62

identical to the negation operator, as defined by Braid [3]. The inversion operation and inverted
solids are useful for computing the Boolean difference of solids, to be discussed in the next section.

Definition 5.6 The inversion of one or more oriented surfaces S, denoted —(S), is the same
surfaces with their orientations reversed.

L L L

(@) (b) ©
Figure 5.8: A 2-D solid, its inversion, and its complement.

The inversion operation switches the orientation of the bounding surfaces of a solid. The inverted
surfaces will bound the same points as the original surfaces. Since the orientation of the surfaces
of the solid has changed, the sign of the winding numbers of all points relative to the surfaces will
also change. Tt is important to note that the inversion of a solid is not the same as the complement
of that solid. To illustrate this difference, the inversion and complement of a two dimensional solid
is shown in Figure 5.8.

5.5 Boolean Operations

Nearly all available solid modelers provide regularized Boolean operations (union, intersection, and
difference) for combining solids.

The union of two solids is the boundary of the volume contained by either of the objects. The
intersection is the boundary of the volume contained in both. The difference of two solids is the
boundary contained in the first solid, but outside of the second.

Boolean operations can be included in the modeling scheme in at least two ways. The two
methods produce identical results for valid representations, but may produce different results for
representations that are topologically valid, but not geometrically valid.

The first method is straightforward. Boolean operations require that the two input solids
are valid (both topologically and geometrically). Since the local operations may produce a solid

63

description that is not geometrically valid, we can use the unary shape operations to produce input
solids that are valid. The Boolean operations can then be applied in the usual way.

The second method uses the unary shape operations to compute the Boolean operations directly.
This section presents the methods used to compute the Boolean operations, and contains proof of
the correctness of this method.

L -

(a) (b) (c)
Figure 5.9: Solids A and B, their union AU* B, and their intersection AN* B.

Boolean union is computed by merging the two (valid) solids and computing the unary union
for the surfaces of the merged solid. This requires multi-shell solids. The merge_solids operation
is described in Chapter 4, and is denoted by +.

Theorem 5.7 The reqularized union of two solids is equal to the unary union of the combined

surfaces of A and B, AU* B = N'(9A + dB).

Proof. The regularized Boolean operations are only defined for valid solids. Therefore, the proofs
presented here only discuss those cases. The regularized union produces the closure of the set of
points that are in either the interior of A or the interior of B. Since the regularized union is only
defined for valid solids, then we know that A = Nn' (dA) and B = N' (dB). The winding number
of points in the interior of A and the exterior of B will be 1. The winding number of points in the
exterior of A and the interior of B will also be 1. The winding number of points in the interior of
A and the interior of B will be 2. The winding number of points in the exterior of both A and B
will be 0. From the definition of unary union, the set

{plpg(0A+9B),w((0A+0B),p) > 1}

will contain the points that are in the interior of A, the interior of B, or both, and do not lie on
the boundary of either A or B. The unary union produces the closure of this set of points, adding
all the points that are on the boundary of A and the points that are on the boundary of B. Thus
AU* B and N! (0A + 0B) are equal.O

64

Boolean intersection can be computed by merging the two solids and computing the unary
intersection of the merged solid.

Theorem 5.8 The reqularized intersection of two solids is equal to the unary intersection of the

combined surfaces of A and B, An* B =nN?(0A+ 9B).

Proof. This proof is similar to the previous one. The regularized intersection produces the closure
of the set of points that are in both the interior of A and the interior of B. The winding number of
points in the interior of A and the interior of B will be 2. The winding number of all other points,
if defined, will be 1 or less. From the definition of unary union, the set

{plp¢(0A+9B),w((0A+0B),p) > 2}

will contain the points that are both in the interior of A. The unary intersection produces the
closure of this set of points. Thus AN* B and N? (A 4+ dB) are equal.O

L L

(a) Aand B (b) A and -B (c) A-B
Figure 5.10: Solids A and B, A and the inverse of B, and the difference A—* B.

Boolean difference can be computed by inverting the solid to be subtracted, merging the solids,
and computing the unary union.

Theorem 5.9 The regularized difference of two solids, A and B, is equal to the unary union of

the combined surface of A and the inverted surface of B, A—* B = N' (A + (—9B)).

Proof. The regularized difference produces the closure of the set of points that are in the interior
of A but not in the interior of B. Since B is given to be a valid solid, B = N!'(dB), and the
winding number of each of the points in the interior of B is 1. When B is inverted, the winding
numbers switch sign. Once the surfaces of the solids are merged, the winding numbers of points
in the interior of A and the exterior of B will be 1. The winding number of points in the exterior
of A and the interior of B will be —1. The winding number of points in the interior of A and the

65

It -

(a) Aand B (b) -Aand B (c) B-A
Figure 5.11: Solids A and B, A and the inverse of B, and the difference A—* B.

interior of B will be 0. Finally, the winding number of points in the exterior of both A and B will
be 0. From the definition of unary union, the set

{rlp g (0A+0B),w(0A+(-0B)),p) > 1}

will contain the points that are in both the interior of A and the exterior of B. The unary union
produces the closure of this set of points. Thus A—* B and N' (A + (—dB)) are equal.O

The (traditional) Boolean operations are not defined for (surfaces of) solids that are topolog-
ically valid, but not geometrically valid. However, Boolean operations computed with the unary
shape operations produce identical resulting solids from valid input solids as the (traditional)
Boolean operations, and produce valid solids from input solids that are topologically valid, but
geometrically invalid.

Using the unary shape operations to compute Boolean operations increases the number of the
comparisons (you must compare all elements with each other). The results are guaranteed to be
valid with topologically valid input.

5.6 Computing the Unary Shape Operations

We can produce the unary union, unary intersection, regularized Boolean union, intersection, and
difference, all using the generalized unary intersection and the inversion operation. This section is
devoted to a sketch of an algorithm for the computation of the generalized unary intersection for
polyhedral surfaces.

The algorithm for computing the generalized unary intersection draws on existing methods for
computing Boolean operations, specifically those presented by Requicha and Voelcker [45], Mantyla
[35], Laidlaw, et al [29], and Karasick [25].

66

Maintaining Consistent Face Descriptions

Local operations can create inconsistent face descriptions. The types of inconsistency and ill-
formedness find several forms. For example, some of the vertices of the face may not all lie in
the same plane, or may lie outside of the boundary of the face. The vertices of the face may be
arranged such that the edges joining them self-intersect. We may also find the an internal loop of
a face in an inverted orientation, such that it does not define a hole in that face. We can then see
that the topological description of a face may be inconsistent with the geometry assigned to the
elements of that face.

Consistent face descriptions are required as preconditions for proper operation of the unary
shape operations. Since we allow the user the ability to construct inconsistent face descriptions,
we must have a method for removing these inconsistencies. We have two basic approaches.

The first approach is to detect an inconsistency and alert the user. Inconsistencies are generally
the result of an error due to the action of a user or a user’s routine. The user should be aware of
the problem, and generally knows best how to solve it.

The second approach is to automatically remove the inconsistency. This is useful when the dif-
ferences in the possible results are not meaningful. We introduce operations to convert inconsistent
face descriptions to consistent ones. This may be accomplished (in the worst case) by triangulating
the face.

An Algorithm for the Generalized Unary Intersection

The definitions of the unary shape operations presented map from a surface to a point set. Since
we are interested in representing point sets by their bounding surfaces, we would like the unary
shape operations to map from surface descriptions to surface descriptions (see Figure 5.12). We
can then say that the n-th unary intersection of a surface is the surface that separates points with
winding numbers less than n from points with winding numbers n or greater.

Once face descriptions are made consistent, the generalized unary intersection can be computed
using the following algorithm:

e Find all intersections between the faces, edges and vertices. (See Figures 5.13 to 5.16.)

e Modify the boundary representation with Euler operators to represent these intersections
explicitly in the topology, and reorganize the face adjacencies about the intersection. This
reorganization considers the normals of the faces, and modifies the adjacencies of the faces
about the edge of intersection such that the one pair of adjacent faces is (locally) contained
within the surface of the other pair of adjacent faces. The reorganization of adjacencies is
illustrated in Figure 5.17.

o Calculate the winding numbers of points within each separated shell (See Figure 5.18). This

67

fa-fa

(a) Boundary Representation (b) Find Self-Intersections
and Separate Surfaces

/8-

(c) Calculate Winding (d) Remove Unwanted
Numbers Surfaces

Figure 5.12: Computing the unary union.

A

(a) (b) (©)
Figure 5.13: A vertex intersecting a vertex, an edge, and a face.

calculation usually requires ray casting. Some of the ray casting tests can be avoided by
making use of local properties of connectivity and the sense of normals and edges. For
example, when two faces intersect and the adjacencies are reorganized, then the relative
winding numbers are known. The calculation of the winding number of points within one of
the shells will determine the winding number of the points within the other shell.

Remove all unnecessary shells. The n-th generalized unary intersection requires the removal
of all shells that do not separate points with winding numbers less than n from those with
winding numbers n or greater.

68

B

(@) (b)

Figure 5.14: An edge intersecting an edge.

(a) (b) (c)

Figure 5.15: An edge intersecting a face.

(a) (b)
Figure 5.16: A face intersecting a face.

The algorithm for generalized unary intersection allows us to compute the unary union and
unary intersection by simply computing the first unary intersection and second unary intersection.
It also allows us to compute the regularized Boolean union, intersection. Computing the regularized
Boolean difference may be accomplished by implementing an inversion operation, and using the
unary union. An efficient implementation of the inversion operation follows directly from the
definition.

69

(@) (b)

Figure 5.17: Reorganization of the adjacency relations for two intersecting faces.

q

S .g S
AESRIANE

Figure 5.18: Calculating the winding number of a point p.

70

Chapter 6

Modeling With Topologically Valid
Solids

In this chapter, we argue for a new approach to solid modeling using boundary representations.
In order to present our approach, we characterize the modeling space, representation space, and
the mappings of the modeling operations. We then characterize the existing approaches to solid
modeling and contrast them with the new approach.

6.1 Representation Schemes

The notion of representation scheme and the characterization of the constructive solid geometry
scheme were introduced by Requicha [43].

Definition 6.1 A representation scheme is a relation S : M — R. The domain of S is denoted
by D and the image of D under § is V.

Figure 6.1 illustrates the idea of a representation scheme. Models are abstract (existential,
representation-independent) mathematical entities that capture the physical essence of rigid solid
objects. Representations (models) are symbol structures used to represent solids. In Figure 6.1,
R is the set of possible symbol structures, T is the set of symbol structures that are topologically
valid, and V is the set of symbol structures that are both topologically and geometrically valid.

For the purposes of this discussion, we are interested in operations that allow us to create and
manipulate these representations. In terms of the illustration, these operations map from subsets
of R into other subsets of R.

71

R: Space of Representations

D: Domain of S
M: Modeling Space

T: Topologically Valid Reps
V: Valid Representations

Figure 6.1: A representation scheme.

6.2 Traditional Approaches

Constructive solid geometry uses a very direct representation scheme. The primitive solids are
a small set of valid representations of solids. The regularized Boolean operations combine valid
models to form new valid models, i.e.

Boolean Operations : V. — V.

The approaches to boundary representation come in two forms. The first is a variation on
the constructive solid geometry approach explained above. This uses a boundary representation
of solids, valid primitive solids, and an evaluated form of the regularized Boolean operations to
combine solids, i.e.

Boolean Operations : V. — V.

A second boundary representation approach has also been used. This allows the use of local
operations on geometry and Fuler operations on the topological representation, i.e.

Euler Operations : T — T,

Local Operations : T — T,

Since these operations may cause models to self-intersect, the user is responsible for ensuring that
the validity of the model is maintained. The regularized Boolean operations are generally provided,

72

but require valid models as input, i.e.

Boolean Operations : V. — V.

Even though local operations permit invalid results, these operations have shown their usefulness
and are provided in many commercial solid modeling systems. Boolean operations also have a long
history of use in the solid modeling literature. Because of their distinct uses, it is desirable to have
both local operations and Boolean operations in a solid modeling system.

6.3 A New Modeling Approach

We propose a new modeling approach. Local operations on geometry and Fuler operations produce
topologically valid models, i.e.
Euler Operations : T' — T,

Local Operations : T — T.

These models may have self-intersecting surfaces. The unary shape operations are then used to
convert any topologically valid model into a (topologically and geometrically) valid model, i.e.

Unary Operations : T — V.

The Boolean operations are implemented in terms of unary shape operations. Therefore, they also
map topologically valid representations into valid representations,

Boolean Operations : T — V.

This approach provides the utility of using both local and Boolean operations, while assuring
the topological and geometric validity of the generated models.

73

Part 11

Generative Geometric Design

74

The second part of the thesis explores generative geometric design within a grammatical paradigm.

The shape grammar formalism of Stiny [52] has been particularly influential in architecture.
This formalism uses a representation of “shapes”. Rewrite rules are defined by two shapes, the
first, when matched, is removed and replaced by the second. Boundary solid grammars draw on the
ideas of shape grammars, while using a solid modeling representation and parametric rule matching
and application.

Much of the application of shape grammars has been for composition and analysis in architec-
tural design, including Palladian villas [53], Frank Lloyd Wright’s Prairie Houses [28], Queen Anne
houses [17, 18], bungalows [12], modern Italian apartments (after the Casa Giuliani Frigerio) [16],
and Japanese tea houses [27]. Additional shape grammars have been written to generate Chinese
ice ray designs [51], Moghul gardens [54], and chair-back designs [26].

Graph grammars and L-systems, although not geometric representations, have been used to
generate graphs or arrays that are mapped to polygons, lines, or primitive solids. Much of this
work has been directed at describing biological growth, especially of plants and trees [40, 39, 10].

Checking match conditions for applying a solid grammar rule is equivalent to recognizing fea-
tures of a solid. Some of the recent feature recognition research uses methods similar to those
used in boundary solid grammars. De Floriani used a face-based boundary representation and fea-
tures described as topology graphs [9]. Pinilla used an edge-based representation augmented with
arcs representing primitive geometric relations (parallel and perpendicular), and located subgraphs
generated from a graph grammar description of features [38]. The method of feature recognition
presented here allows a flexible description of features.

75

Chapter 7

Boundary Solid Grammars

The term “grammar” is used here as the generative specification of families of models. A grammar
may be said to consist of a representation, an initial model in that representation, and a set of
rules. A rule is applicable to a model if it can match on features of that model, in which case it
transforms the model to a new form. Rules may be applied to an initial model, and to models
produced thereof, to produce new models. Thus, applying different rules, and applying them in
different ways, allows us to generate a family or language of different models.

The representation used in boundary solid grammars is a boundary representation of solids.
The initial model is then a (possibly empty) collection of solid models. The rules of a boundary
solid grammar modify the solids to generate languages of solid models. This chapter introduces the
boundary solid grammar formalism, detailing the representation, initial solids, and the formulation
of solid rules. It then describes boundary solid grammars and the languages that they generate. A
simple grammar is presented to illustrate the ideas explained in this chapter. Additional grammars
are presented in Chapter 8.

7.1 Representation of Solids

A boundary solid grammar uses a boundary representation of solid objects. The topology is repre-
sented as a graph composed of nodes and arcs. The nodes of these graphs are topological elements,
and the arcs represent the adjacencies between elements. The geometry used in this thesis consists
of vertex coordinates for polyhedral solids. The topology and geometry together define a boundary
representation solid model.

The boundary solid grammar detailed here uses a representation consisting of:

e a topology graph with vertezr, edge-half, loop, face, shell and solid nodes, corresponding to
the generalized split-edge data structure introduced in Chapter 2, and arcs representing their

76

adjacencies;
e coordinate geometry in R> associated with each vertex; and
o sets of labels associated with topology nodes, as desired; and

e a state associated with each instance of the representation.

vl

v3

Figure 7.1: A simple solid.

In order to explain our notation for our boundary representation, we will present the represen-
tation in four steps. The first will define the graphs of topological elements and their adjacencies.
The second will define the coordinate geometry associated with vertices, providing a complete def-
inition of the boundary representation. The third step will define how to associate non-geometric
data to topological elements. The final step will define how to associate a current state to the
representation.

To illustrate this representation on a concrete example, we will show the four incremental
representations of the tetrahedron shown in Figure 7.1. In the figures, the vertices are labeled v1
to v4, the edge-halves are labeled by the vertices at either end (the “from” vertex listed first),
the loops and faces are labeled by the cycle of vertices about it (in clockwise order as viewed from
outside), the shell is labeled sh1, and finally the solid is labeled s1. The visible vertices, edge-halves,
and faces are labeled in this fashion in Figure 7.1.

Definition 7.1 A topology graph over the alphabet ¥ 5q. U0, is a tuple TG = (K, (pa)acSare)
where

1. Y,0de = {VERTEX, EDGEHALF, LOOP, FACE, SHELL, soLID } S the alphabet of topological element types;

7

2. The following specifies the alphabet of relations between topological elements:

vertex_l, edgeh_l, loop_f, face_sh, shell_solid, solid_shell,
vertex_eh, cw_eh, next_face_l, mnext_shell f, outside_sh,
Earc = next_vertex_use, ccw-_eh, loop_eh, prev_shell.f, connected_sh,
other_eh, loop_v, face_l, mnside_sh,
edgeh_v, shell_f

3. K; with t € Y,04e specifies a finite set of nodes of element type t. The sets K; are disjoint.
K = Ues,,,. Kt is the set of all nodes; and

4. pa C© K x K are relations (arcs) over K, one for each a in L.

o ®© 6 © O

Figure 7.2: The nodes of a topology graph for a tetrahedron.

The topology graph defines a graph of topological elements and their adjacencies. The nodes
are the topological elements of our generalized split-edge representation. The arcs are the topology

78

Figure 7.3: The topology of a tetrahedron represented with a topology graph.

graph are the topological adjacencies between these elements. For the details of these topological
elements and their adjacency relations, refer to Chapter 3.

The nodes of the topology graph of the tetrahedron in Figure 7.1 are shown in Figure 7.2. They
include the four vertices (the black nodes), twelve edge-halves (two for each of the six edges), four
loops and four faces (each face has a single loop of edges and vertices), one shell (surface), and one

solid.

The topological adjacencies are added as directed arcs in Figure 7.3. Although the arcs are not
labeled, it is not difficult to infer the adjacency relation from the node types. For example, the arc
from the shell sh1 to the solid sl containing it is a skellsolid arc, and the arc from sl to the first
shell shl is a solid_shell arc.

Definition 7.2 A boundary graph over the alphabet ,,,q.US 0, c UR? is a tuple BG = (K, (pa)aesares V),
where

79

1. (K,(pa)acsa,.) is a topology graph; and

2. v: Kyprrex — R is a function that maps vertez nodes to vertex coordinates.

v1: (0, 0, 2.8)
v2: (0, 2,0)
v3: (1.7, -1, 0)
v4: (-1.7,-1,0)

Figure 7.4: A tetrahedron represented with a boundary graph.

A boundary graph is a topology graph with coordinate geometry associated with each vertex.

The boundary graph for our tetrahedron is shown in Figure 7.4. The mapping from vertices to

vertex coordinates is shown in the upper right corner of the figure.

Definition 7.3 A labeled boundary graph over the alphabet X, 04 U Lore U R3 U Xigper is a

tuple LG = (K, (pa)acSa e, ¥, A), where

1. (K,(pa)acSares7) is a boundary graph;

2. Yattrivute 18 an alphabet of label attributes; Y,qme s an alphabet of label values; Yijgpe; =

Sattrivute X (Zpaiue U R) is the set of labels;

80

3. A: K — 2%abet s g function from nodes to sets of labels;

v1: (0, 0, 2.8)
v2: (0, 2, 0)
v3: (1.7, -1, 0)
v4: (-1.7,-1,0)

f123: {(mark,a)}
fl124: {(mark,a)}
f134: {(mark,a)}
f234: {(mark,a)}

Figure 7.5: A tetrahedron represented with a labeled topology graph.

Labels provide a mechanism for associating non-geometric data with topological elements of
solids. They have several uses in boundary solid grammars. Labels may be required as conditions
in rules to restrict rule application. This is illustrated in an example grammar presented later in
this thesis. Labels may be used to reduce search by marking conditions needed in future operations.
They also allow completed constructions of solids to terminate, while prohibiting termination of
incomplete or invalid solids.

In Figure 7.5, a “(mark,a)” label is associated with each of the four faces. This is an attribute-
value pair to indicate that there is a “mark” of a type “a” on a face. These attribute-value pairs
are also used, for example, to indicate the type of material from which a solid is composed. If we
want to indicate that the tetrahedron in Figure 7.5 is made of steel, then we would use a label
on the solid such that A(sl)= {(material, steel)}. This information could then be accessed for the
computation of the mass of the solid. It could also be used in order to render the solid with the

81

appropriate texture and color.

Finally, we associate a state, from a finite set of states, to the representation. We could refer
to this final representation as a “finite state labeled boundary graph”. However, we have chosen to
use the shorter term, b-graph, to refer to this representation.

Definition 7.4 A b-graph owver the alphabet ¥, = Y,,4. U Sgre U R? U Bjgper U S is a tuple
B = (K,(pa)acSarer Vs N, 0), where

1. (K,(pa)a€Sares V> A) is a labeled boundary graph;

2. S = Sintermediate U {start,done} is a finite set of states; and

3. o € 5 is the current state.

v1: (0, 0, 2.8)
v2: (0, 2,0)
v3: (1.7, -1, 0)
v4: (-1.7,-1,0)

f123: {(mark,a)}
f124: {(mark,a)}
f134: {(mark,a)}
f234: {(mark,a)}

state: start

Figure 7.6: A tetrahedron represented with a b-graph.

82

A state is associated with each labeled boundary graph. The state is used to determine if a
given b-graph is a member of the language of the grammar. This will be discussed in greater detail
in the discussion of the language of a grammar, later in this chapter. This finite state mechanism
is similar to the state mechanism found in the programmed grammars of Rosenkrantz [46, 47], and
the programmed graph grammars of Bunke [5, 6].

The state is also useful as a label on the graph indicating or restricting which rules may apply
at the current time. It is also a useful and computationally efficient mechanism for determining if
the b-graph is a member of the language of a grammar. Figure 7.6 illustrates the representation of
a b-graph of a tetrahedron.

Let B(X,) denote the set of all b-graphs over the alphabet ¥, , and B, denote the empty b-graph.
The empty b-graph has a state o € 5 as its current state, but contains no nodes, arcs, or labels.

Not all b-graphs represent rigid solid objects. A b-graph may have nodes and arcs that do not
correspond to a physical solid. For example, we can construct a b-graph with an epgeraLr node
connected to more than one verrex node with edgehv arcs. This is clearly invalid, since an edge
connects exactly two vertices. Even if such simple discrepancies are avoided, it is still possible to
generate b-graphs that do not correspond to valid plane models and have faces with inconsistent
orientations. Fuler operators are used in order to construct only topologically valid b-graphs.

7.2 The Initial Solid

An initial solid of the boundary solid grammar formalism is a valid b-graph. This b-graph may be
the empty b-graph, B., or it may be a b-graph consisting of an number of (arbitrarily complex)
solids.

vl: (0, 0, 2.8)
v2: (0, 2, 0)
v3: (1.7,-1,0)
v4: (-1.7,-1,0)

vl

f123: {(mark,a)}

{

ve v2 £124: {(mark,a)}
{
{

: f134: {(mark,a)}
state: done Y 234: {(mark,a)}

Figure 7.7: An initial solid.

For illustration purposes, we will use a tetrahedron as the initial solid of our example grammar.
This tetrahedron, shown in Figure 7.7, is represented by the b-graph presented in Figure 7.6.

83

In a boundary solid grammar, rules match on portions of the initial solid and apply operations
to modify the solid or generate additional solids. The next section introduces the formulation of
solid rules and discusses how they are applied.

7.3 Reasoning About Solids

We express conditions or features of solids as clauses in first order logic. Explicit conditions of a
given b-graph correspond to axioms about the boundary representation of a set of solids. Clauses
(in the form of Horn clauses) allow deduction of complex conditions of the solids from simpler
conditions. In this way, arbitrarily complex conditions may be specified using deductive reasoning
on the solid representation. Locating a condition of a solid then becomes a matter of satisfying a
goal clause that specifies the desired condition. An introduction to logic programming may be found
in Sterling and Shapiro [50]. An account of the mathematical foundations of logic programming is
presented by Lloyd [31].

Primitive Conditions

In order to express graph conditions as relations in first order logic, we present a mapping between
the graph notation already presented and a relational notation, specified in Table 7.1. These
relations are denoted primitive conditions. We use a logic programming notation [8] for these
relations.

Graph Notation Relational Notation

Nodes ke Ky t(k)
Arcs (k1,k2) € pa a(kq, k2)
Geometry Y(v)=c¢ v_coord(v,)
Labels (a,v) € A(k) label(k,a,v)
State og=3s state(s)

Table 7.1: Conversion from graph notation to clausal notation.

Determining the type of topological elements may be represented as a relation t(k), which
denotes k € K;. For example, a vertex node k € Kyggrrex is denoted by the relation vertex(k).
Similarly, adjacency relations between topological elements (k1,k2) € p, may be denoted by re-
lations a(kq, k). Then the relation edgeh_v(e,v) denotes an edgeh-v arc from e to v in peigen_y-
Coordinates of a vertex y(v) = ¢ are denoted by the relation v_coord(v,c). For labels, the relation
label(k,a,v) denotes (a,v) € A(k). The current state of a b-graph, ¢ = s, is denoted by the
relation state(s). Relations that directly relate topological element types and adjacency relations,
coordinates, and labels are considered primitive conditions.

84

Satisfying primitive conditions of b-graphs is a straightforward task of locating nodes and arcs,
and accessing their type, labeling, and geometric functions. These serve as axioms for deducing
additional conditions.

For example, we can specify that there exists a specific edge-half e in a given b-graph by
edge_half(e) which corresponds to finding a node € € Kyparuarr- We can find the vertex v associ-
ated with that edge-half by the clause edgeh_v(e,v) This corresponds to locating an edger_varc
in the b-graph from e to »v. The coordinates of the vertex can be accessed with the clause
v_coord(v, (z,y,2)) which corresponds to the geometric function v, where (z,y,z) = y(v). A
label [on an edge-half e can be found by specifying label(e,!) and locating ! in the set of labels
associated with that edge-half, [€ A(e). Finally, the state of a given b-graph may be found by
specifying state(s).

Constructing Complex Conditions

Conditions may be combined using clauses in first order logic. A clause

A4<—B1,...,Bn.
can be constructed to specify the conjunction of By,..., B,. Operationally, the satisfaction of A
results as the sequential satisfaction of By,..., B,. For example, the implicit other_v relation, the

Figure 7.8: The implicit other_v relation.

relation between an edge-half and the vertex associated to its other edge-half, is a conjunction of
the other_ehrelation and the edger_vrelation:

other_v(Eh, Vertex):-
other_eh(Eh, OtherEh),
edgeh_v(0OtherEh, Vertex).

Similarly, we express the length of an edge-half as the distance between the coordinates of the
vertices associated with that edge-half and its other edge-half:

85

\izor/
/] e |\

Figure 7.9: The length of an edge-half.

eh_length(Eh, Length):-
edgeh_v(Eh, V1),
other_v(Eh, V2),
distance_v(V1, V2, Length).

where distance_v(V'1,V2, Length) calculates the Euclidean distance between the coordinates of
two vertices V1 and V2.

In this way, diverse graph conditions and conditions on the geometry can be combined to form
higher level conditions. Some of these conditions include:

e the lengths of edges (as demonstrated), areas of faces, volumes and masses of solids;
o angles between edges and faces;

e orientations of faces and solids;

o coincident, colinear or coplanar vertices, edges and faces;

o the centers of edges, faces and solids;

e the moment of inertia of faces and solids;

o intersections of lines, planes, surfaces, edges, faces, and solids, including the intersection of
two solids (Boolean intersection) and self-intersection of a solid (unary intersection - described
later in this thesis).

A single condition may be used to express the conditions of an infinite set of graphs using
recursive definitions. Alternately, a condition may match greatly varied topology graphs using
several clauses with the same head.

Composition and Decomposition of Elements

86

-

(@) (b) ()
Figure 7.10: The decomposition of elements.

Locating features of solids is complicated by the composition and decomposition of elements, as
described by Stiny [55]. We can illustrate the problem with the following example. Consider that
we have a solid with one (straight) edge with a length of four units. We can then successfully
locate that edge with the description given. However, we can split the edge into two edges (using
esplit), and assign the coordinates of the new vertex to be the midpoint of the edge. We will
still be representing the same physical solid, but we will not find an edge that is four units long.
Instead, we have two adjacent edges, each two units long. We can have non-unique representations
of the same object, and this complicates the description of our conditions.

S

(a) (b) (©)
Figure 7.11: Composing elements.

This same problem occurs with elements of other dimensionalities. Coincident vertices, colinear
edges, and coplanar faces are illustrated in Figure 7.10.

Two approaches may be used to address this problem. The first approach merges the elements.
For example, the coincident vertices, colinear edges, and coplanar faces shown in in Figure 7.10
are shown merged in Figure 7.11 Unfortunately, these elements may be needed, so systematically
reducing them may be counterproductive. For example, a portion of a face can be split off and
labeled as a mating face of an assembly. Merging these faces would then incorrectly indicate the
size and shape of the mating face.

The second approach uses flexible descriptions of conditions that allow for contiguous elements

87

as if they were merged. It is straightforward to create and use an operator for this purpose. For
example, the non_colinear_eh predicate used in the example rule in Chapter 7 and the generalized
snowflake grammar in Chapter 8 traverses colinear edges as a single edge. The non_colinear_eh
predicate finds the clockwise non-colinear edge half from the current one. The definition of the
non_colinear_eh predicate is presented below.

cw_non_colinear_eh(Eh, CwNCEh):-
cw_eh(Eh, CwEh),
edgeh_v(Eh, V1),
edgeh_v(CwEh, V2),
v_coord(V1, C1),
v_coord(V2, C2),
cw_non_colinear_eh1(C1, C2, CwEh, CwNCEh).

cw_non_colinear_eh1(C1, C2, Eh, Eh):-
other_v(Eh, V3),
v_coord(V3, C3),
not(colinear([C1l, C2, C3])).

cw_non_colinear_eh1(C1, C2, Eh, CwNCEh):-
cw_eh(Eh, CwEh),
cw_non_colinear_eh1(C1, C2, CwEh, CwNCEh).

The colinear predicate determines if the points in a list are colinear.

7.4 Operations on Solids

Operations are used to transform one b-graph into another. Primitive operations modify the topol-
ogy using Euler operations, modify the geometry using vertex coordinate assignment, add and
remove labels, and modify the current state. Primitive operations are expressed as extra-logical re-
lations, that directly modify the b-graph representation as a side-effect of being satisfied. Complex
operations may be constructed from conditions and operations as clauses in first order logic. Com-
plex operations may then produce a different effect depending on the context of their application.

Applying an operation to a solid then becomes a matter of satisfying a goal clause that specifies
the desired operation.

Primitive Operations
Primitive operations have several forms. Euler operations modify boundary representation by

adding and removing topological elements and relations, while maintaining valid topological ad-
jacencies. They may be viewed as graph productions, and graph productions of several Fuler

88

operations are presented in Appendix A. Assigning coordinates ¢ to a vertex v is equivalent to
changing v to 7’ such that v'(v) = ¢. Adding a label [to an element e is accomplished by modify-
ing the labeling function A to A’ such that A’ = A(e) U {/}. Killing a label [modifies the labeling
function A to A’ such that A’ = A(e) — {l}. Assigning coordinates ¢ to a vertex v is equivalent
to changing v to 7’ such that 7/(v) = ¢. modifying the current state of the b-graph is equivalent
to modifying o to o’ such that ¢/ = s. The Euler operations, coordinate assignment, labeling
operations, and state modification comprise the primitive operations.

Fuler operations are specified as extra-logical relations corresponding to the operations pre-
sented in Chapter 4. The relational form of these FEuler operators are listed in Table 7.2.

mssflv(NewS,NewSh,NewF,NewL ,NewV)
merge_solids(S1,S52)
msflv(S,NewSh,NewF,NewL,NewV)
mev(V,Eh,NewV,NewEh)
esplit(Eh,NewEh,NewV)
mefl(V1,PredEh,V2,SuccEh,NewEh,NewL,NewF)
keml (Eh,NewL)

glue(F1,F2)

kssflevs(S)

ksflevs(Sh)

kev(Eh)

ejoin(Eh)

esqueeze(Eh)

kef1(Eh)

mekl (V1,PredEh,V2,SuccEh,NewEh)
unglue(Cycle0fEhs,NewF1,NewF2)
ksv(V1,V2)

kvmg (V1,V2)

keg (Eh1,Eh2)

msv(V1,V2)

mvkg(V1,V2)

meg(Eh1,Eh2)

Table 7.2: Euler operations as primitive operations.

For example,
mev(V,Eh,NewV,NewEh)

is equivalent to the mev Euler operation shown in Figure 4.5.

89

The inversion operation, described in Chapter 5, is specified as
invert(S,NewS).
The generalized unary intersection is specified as

unary(N,S,NewS).

Vertex coordinates are assigned using
set_vertex(v,c),
which is equivalent to modifying v to 7 such that 7/(v) = ¢. Element labels are created using
make_label(e, a,v),
which is equivalent to changing A to A’ such that X'(e) = A(e) U {(a,v)}, or
kill label(e,a,v)
which modifies A to A’ such that A'(e) = A(e)—{(a,v)}. The current state of the b-graph is modified

with
set_state(s).

which is equivalent to modifying o to ¢’ such that o’ = s.

Primitive operations derive one b-graph from another according to the following definition:
Definition 7.5 A b-graph b’ € b(¥,) is directly derivable from another b € b(X,) by a primitive
operator O (abbreviated b - b') iff

o

1. the arguments to O have valid types and adjacencies for that particular operation;

2. O applied to b produces b'.

Constructing Complex Operations

Complex operations are specified by sequences of conditions and operations. Primitive operations
modify the topology, geometry, labels, and state of a b-graph. Conditions, as described above, are
used to control the use of operations in modifying the given b-graph. Clauses define high level
operators from existing operators and conditions. The conditions allow an operator to respond to
the context in which it is applied.

90

=>

Figure 7.12: The point_face operator.

Conditions and operations may be combined using clauses in first order logic. A clause
A4<—B17...7Bn.

can be constructed to specify the conjunction of By,..., B,. Operationally, the satisfaction of A
results as the sequential satisfaction of By,..., B,.

For example, the point_face operator, illustrated in Figure 7.12, will pull any face out into a
point, correctly modifying the topology while considering the number of edges and vertices of the
face. The clauses for the point_face operator are listed below.

point_face(Face, Height):-
face_eh(Face, Eh),
ccw_eh(Eh, LastEh),
edgeh_v(Eh, V),
face_normal(Face, Normal),
face_center(Face, Center),
mev(V, LastEh, VTop, EhBt),
other_eh(EhBt, EhTb),
scalar(Height, Normal, Direct),
vecplus(Center, Direct, CTop),
set_vertex(VTop, CTop),
point_face_1(LastEh, Eh, VTop, EhTb).

point_face_1(EndEh, EndEh, _, _).
point_face_1(EndEh, Eh, VTop, EhTb):-
cw_eh(Eh, NextEh),
edgeh_v(NextEh, V),
v_coord(V, C),
mefl(V, Eh, VTop, EhTb, NewEhBt, _, _),
other_eh(NewEhBt, NewEhTb),
point_face_1(EndEh, NextEh, VTop, NewEhTb).

General operators, such as offsetting, Boolean, and unary shape operators, may be constructed

91

in this way. In addition, we can construct a single operation to be used in place of a set of rules.

7.5 The Composition of Solid Rules

A solid rule is specified by a set of match conditions, and a sequence of operations. The match
conditions of a rule determine when the rule may be applied to a given b-graph. Each of the
rule’s conditions must be satisfied with respect to the given b-graph, and bindings for all the
free variables must be found. When the rule is applied, the sequence of operations transform the
b-graph, modifying the representation of the solid(s) or creating additional solids.

Definition 7.6 A solid rule R is a pair a = 3, where

o a is a goal clause — C1,...,C,, where each condition C; is a subgoal that must be satisfied
in order to apply the rule; and

o 3 is a goal clause — Oq,...,0,, where each operation O; is considered a subgoal. If the
operations O1,...,0, of 3 are not satisfied with respect to the given b-graph then 3 does not
modify the b-graph (i.e. [is equivalent to the identity transformation).

Figure 7.13: A simple solid rule.

We can clarify the idea of a solid rule with a simple example.

description(point_1, ’Modify a face.’).

lhs(point_1, [F123], [F123]):-
face(F123).

rhs(point_1, [F123]):-

face_eh(F123, FirstEh),
cw_non_colinear_eh(FirstEh, Eh12),

92

cw_non_colinear_eh(Eh12, Eh23),
eh_distance(Eh12, Eh23, Length),
face_midpoint_esplit(F123),
point_face(F123, Length/2.449489743).

The left hand side (lhs) of the rule matches on any face of a b-graph. The matched face will
bind to the variable F123. The first argument of 1hs is the name of the solid rule, the second
argument is a list of common variables between the 1hs and rhs, and the third argument is a list
of topological elements that will be highlighted in the graphical display of the solids when the rule
matches.

When the rule is applied, the operations and matching of the right hand side (rhs) will be
executed in sequence. face_eh will find the first edge-half of the face bound to F123 and bind it to
the variable FirstEh. cw_non_colinear_eh finds the first edge-half that is clockwise about the loop
of edges of the face, and is not colinear with the given edge-half. This condition is applied twice
to find a maximal edge of the face. eh_distance is used to calculate the length of this maximal
edge. facemidpoint_esplit is an operation that splits each of the maximal edges of a face at
the midpoint, if a vertex does not already exist at that point. Finally, point_face splits the given
face, and pulls out the newly created vertex by the given amount, as shown in Figure 7.12. The
constant 2.449489743 is an approximation of the square root of 6. The application of the rule to a
triangular face is illustrated in Figure 7.13.

Solid rules derive one b-graph from another according to the following definition:

Definition 7.7 A b-graph b’ € b(¥,) is directly derivable from another b € b(X,) by a solid rule
R (abbreviated b == ') iff
R

1. the goal ap is satisfiable with respect to the primitive conditions derivable from b and the
clauses in Pg;

2. one of two cases holds:

(a) the goal fr is satisfiable with respect to the primitive conditions derivable from b and
subsequent b-graphs as modified by the operations in Or, and with respect to the clauses
in Po and Po; and b’ is directly derivable from b by the sequence of primitive operations
applied in satisfying Pr; or

(b) the goal Br is unsatisfiable and b’ = b.

Match Complexity

The complexity of rule matching in boundary solid grammars is specific to the underlying repre-
sentation and access procedures. The complexity of each of the primary access methods for the

93

Genesis boundary solid grammar interpreter (see Chapter 9) is listed in Table 7.3, where [, is the
number of labels on a specific element, and I; is the total number of labels. These complexities are
based on analyses of the algorithms used to implement the access routines.

item to find complexity

any element O(1)
a specific element O(1)
the type of an element O(1)
an element adjacent to a specific element O(1)
the coordinates of a vertex O(1)
the equation of a face O(1)
the bounding box of a face O(1)
the bounding box of a solid O(1)
any label O(1)
a specific label on specific element O(le)
a specific label on any element o(ly)

Table 7.3: Access complexity of various elements

Conditions can have a wide range of complexity. Simple conditions may be satisfied in constant
time complexity. For example, the sample solid rule given above may be applied to any face. The
match complexity of that rule would depend only on the complexity of the access routine to find
any face, O(1). Match conditions may have exponential or factorial time complexity.

To demonstrate a NP-complete match condition, we will use a decision problem related to the
traveling salesman problem [19]:

Traveling Salesman
Instance: A finite set V = {vq,vq,...,0,,} of vertices, a distance d(v;,v;) € RT for each pair of
vertices v;,v; € V, and a bound B € Rt (where RT denotes the positive real numbers).
Question: Is there a tour of all the vertices in V' having total length no more than B, that is, an

ordering (Vx(1), Vr(2), -+ Un(m)) Of V such that B > d(vx(m), vr(1)) + st d(Vr(i)s Vr(i4+1))

This translates to a match condition with the following clauses:

traveling_salesman(B, D, VertexList):-
vertex(V),
B > 0,
traveling_salesman_1(B, D, VertexList, 0, [V]),
not(vertex_not_used(VertexList)).

traveling_salesman_1(B, D, VertexList, Dlast, [Vlast | Rest]):-

94

vertex(V),

not (member(V, [Vlast | Rest])),

distance_v(V, Vlast, Dadd),

Dnew = Dadd + Dlast,

B >= Dnew,

traveling_salesman_1(B, D, VertexList, Dnew, [V, Vlast | Rest]).

traveling_salesman_1(B, D, VertexList, D, VertexList).

vertex_not_used(VertexList):-
vertex(V),
not (member(V, VertexList)).

This problem is of course NP-complete. We will not want to use this match for models with
large numbers of vertices, however it is useful to demonstrate the descriptive power of the formalism
and the complexity of possible matches.

Fortunately, all the grammars investigated so far have rules with low match complexities.

7.6 Boundary Solid Grammars

With the representation, initial solids, and solid rule definitions in hand, we can now define bound-
ary solid grammars.

Definition 7.8 A boundary solid grammar is a tuple G = (X,, 1, P, R), where

1. X, is as defined for b-graphs;
2. T €b(X,)U{b.} is a topologically valid initial b-graph;

3. P = PoU Pp is a finite set of clauses, where Pg is a set of clauses specifying conditions, and
Po is a set of clauses specifying operations; and

4. R is a finite set of solid rules.

The initial solid is a topologically valid solid or collection of solids in the above representation.
Modifications of the initial solid, and subsequent solids, are accomplished by the application of the
set of solid rules.

We can abbreviate § = (X, 1, P, R) to G = (I, P, R) since X4, Yare, B° (of 3y) are fixed for
a given boundary representation, and ¥, may be a fixed alphabet of labels.

95

7.7 Languages of Solids

The sentential set S(G) of a boundary solid grammar G is the set of b-graphs (sentential b-graphs)
which contains the initial b-graph and all b-graphs which can be generated from the initial b-graph

using the solid rules of the grammar.

A boundary solid grammar G generates a language L(G) of b-graphs. The language of a
boundary solid grammar is the set of sentential b-graphs where the current state is done, i.e.,

={be S(G = done}.

Figure 7.14: A portion of the language of snowflakes.

The example initial solid and solid rule define a boundary solid grammar. A language of
snowflakes or crystal forms is produced by this solid grammar that includes both regular and
irregular examples. A portion of this language is shown in Figure 7.14. A more detailed snowflake,
shown in Figure 7.15, was produced by the Genesis boundary solid grammar interpreter. It is
interesting to note that that the members of the language of this grammar may have very complex
forms, and that there is an infinite number of members in this language. However, the description

of the grammar is quite concise.

The boundary solid grammar formalism is intended to provide a mechanism for generating
languages that satisfy some design criteria, specified as constructive rules of design.

96

Figure 7.15: Another snowflake.

97

Chapter 8

Applications of Boundary Solid
Grammars

Several grammars have been developed that demonstrate the ideas and utility of boundary solid
grammars. These grammars are presented in this chapter.

Figure 8.1: Three stages of generation of the Koch snowflake.

The first boundary solid grammar that was constructed generates a three dimensional variant
of the Koch snowflake. The Koch snowflake, shown in Figure 8.1, was introduced in 1904 by
Helga von Koch as an example of a curve of infinite length that contains a finite area. The 3-D
snowflake, illustrated in Figure 8.2, has an infinite surface area and contains a finite volume. We
have developed snowflake grammars that generate both uniform and non-uniform snowflakes. An
associated grammar generates uniform subdivisions of octahedra. Solid models of mountains are
generated by a third grammar (a variant of the uniform snowflake grammar). A large variety of
conch-like shells are generated by a spiral grammar. Another grammar automatically generates
supports for models to be made by a stereo lithography (sla) process. The final grammar presented
here generates 3-D designs for Queen Anne houses.

98

SR

Figure 8.2: Three stages of generation of a 3-D snowflake.

At the time of writing, two additional grammars are under development. One grammar con-
structs computer housings for single board computers for the MICON project. The second grammar
generates structural designs of high rise buildings.

8.1 Generalized Snowflake Grammars

A I

Figure 8.3: Alternative initial solids.

The rule presented as an example in Chapter 7 is much more general than it might first appear.
(A listing of the rule is repeated below.)

description(point_1, ’Build a point on a face.’).

lhs(point_1, [F123], [F123]):-

99

point_1

=
point_1

=
point_1

=
point_1

=

Figure 8.4: The generalized snowflake rule applied to various faces.

face(F123).

rhs(point_1, [F123]):-
face_eh(F123, FirstEh),
cw_non_colinear_eh(FirstEh, Eh12),
cw_non_colinear_eh(Eh12, Eh23),

100

point_1

Figure 8.5: The generalized snowflake rule applied to a concave face.

eh_distance(Eh12, Eh23, Length),
face_midpoint_esplit(F123),
point_face(F123, Length/2.44949).

In addition to the triangular faces illustrated, Rule point_1 matches on any face regardless of the
number of edges and vertices, or if it is convex. The application of the rule to faces with different
numbers of edges and vertices is shown in Figure 8.4. The application of the rule to a concave face
is shown in Figure 8.5.

We can vary the grammar by using different initial solids. The original grammar used the
tetrahedron in Figure 7.7 as its initial solid. Since the rule can match on any face, we can construct
grammars using any solid as the initial solid. For example, we could use any of the Platonic solids,
as in Figure 8.3. In this way, we can create families of grammars with a common rule set.

8.2 Uniform Snowflake Grammars

Figure 8.6: An initial solid for the uniform snowflake grammars.

If we want the language of the snowflake grammar to include only uniform snowflakes, as in Fig-
ure 8.2, then we need to modify the grammar. We can generate uniform snowflakes using four
variations of the rule from the previous snowflake grammar, and the addition of a label to the
initial solid. The new initial solid is shown in Figure 8.6, and the new rules are presented in
Figure 8.7.

The definition of snowflake_2 from Figure 8.7 is listed below.

101

snowflake_1
b b
m
b
snowflake_2
b b
b
snowflake_3
b b
b
snowflake_4 ;

Figure 8.7: Rules for the uniform snowflake grammars.
description(snowflake_2, ’Modify an inner (one B) triangular face.’).

lhs(snowflake_2, [F123, Eh12,Eh25,Eh53,Eh31, V5], [F123]):-
state(tetra2),
label(V5, mark, b),
edgeh_v(Eh53, V5),
cw_eh(Eh53, Eh31),

102

Figure 8.8: A uniform snowflake.

cw_eh(Eh31, Eh12),
cw_eh(Eh12, Eh25),
cw_eh(Eh25, Eh53),
edgeh_f(Eh12, F123).

rhs(snowflake_2, [F123, Eh12,Eh25,Eh53,Eh31, V5]):-
face_sh(F123, Shell),
esplit_midpoint(Shell,Eh12,Eh42,V4),
esplit_midpoint(Shell,Eh31,Eh61,V6),
mefl(Shell,V6,Eh31,V4,Eh42,Eh64,1.146,F146),
mefl(Shell,V4,Eh64,V5,Eh53,Eh45,1.254,F254),
mefl(Shell,V5,Eh45,V6,Eh64,Eh56,1.365,F365),
eh_length(Eh12, Length),
point_face(F123, Length/1.2247449),
kill_label(V5, mark, b),
make_label(V4, mark, b),
make_label(V6, mark, b).

Rule snowflake 2 modifies a triangular face (with 4 vertices) that is labeled with “(mark,a)”
edge labels and “(mark,b)” vertex labels, dividing it at the midpoints of the original three edges,
and relabeling it with new “(mark,a)” labels. (The figures abbreviate labels of the form “(mark,a)”

103

to “a”.) The constant 2.44949 is approximately the square root of 6, and 1.2247449 is half of the
square root of 6.

The four rules of the new grammar propagate labels around the snowflake starting from a single
face of the initial solid.

8.3 Uniform Octahedron Grammar

Figure 8.9: Initial solid for the uniform octahedron grammar.

Figure 8.10: A uniform octahedron.

The octahedron grammar generates solids that are recursive assemblies of octahedra. However,
they are created by recursive subdivision of a initial octahedron. The patterns of indentations on
the sides of the octahedron correspond to the Sierpinski gasket [32].

104

The grammar uses another variation of the uniform snowflake grammar. It starts begins with an
octahedron as the initial solid, as shown in Figure 8.9. Instead of pulling out a face, the octahedron
rules pushes an indentation into the face. The rules for the uniform octahedron grammar are similar
to those illustrated in Figure 8.7.

8.4 Mountain Grammars

(a) (b)

Figure 8.11: Initial solids for the uniform mountain grammars.

The “fractal” mountain grammars follow directly from the uniform snowflake grammars already
presented. They assign random geometry to the vertices of the faces modified, and limit the
application of rules to within marked boundaries (to keep the mountains from growing into the
adjacent “foothills”).

The first of these two changes requires a minor modification to the four rules of the snowflake
grammar. The second requires four additional rules to handle the boundary conditions. Figure 8.12
and Figure 8.13 illustrate the rules of this grammar.

Rule mount_2 in Figure 8.12 modifies a triangular face (with 4 vertices) that is labeled with
“(mark, a)” edge labels and “(mark, b)” vertex labels, dividing it at the midpoints of the original
three edges, and relabeling it with new “(mark, a)” labels.

description_mount (mount_2, ’Modify an inner (one B) triangular face.’).

lhs_mount (mount_2, [Eh12,Eh25,Eh53,Eh31, V5], [F123]):-

state(mount),

label(V5, mark, b),

edgeh_v(Eh53, V5),

cw_eh(Eh53, Eh31),

no_label(Eh31, mark, a),

cw_eh(Eh31, Eh12),

no_label(Eh12, mark, a),

105

mount_1

mount_2

not(a)

Sl

not(a)

mount_3

oL
b

not(a)

mount_4

not(m)

Figure 8.12: Basic rules for the uniform mountain grammars.

cw_eh(Eh12, Eh25),
cw_eh(Eh25, Eh53),
edgeh_f (Eh53, F123).

rhs_mount (mount_2, [Eh12,Eh25,Eh53,Eh31, V5]):-

esplit_midpoint(Eh12,Eh42,V4),
esplit_midpoint(Eh31,Eh61,V6),

106

mount_5
b a
a
mount_6
b a
not(a)
mount_7
b not(a)
a
mount_8
b b
a a a

Figure 8.13: Border rules for the uniform mountain grammars.

mefl1(V6,Eh31,V4,Eh42,Eh64,1.146,F146),
mefl(V4,Eh64,V5,Eh53,Eh45,1.254,F254),
mefl(V5,Eh45,V6,Eh64,Eh56,1.365,F365),
move_vertex_random_eh(Eh53),
kill_label(V5, mark, b),
make_label(V4, mark, b),
make_label(V6, mark, b).

107

8.5 Spiral Grammars

The spiral grammar illustrates the flexibility of matching and operations in boundary solid gram-
mars. The single rule of this grammar will apply to any face, without regard for the number of
loops, edges, or vertices. However in making spiral forms, the rule is restricted to apply only to a

face with a labeled edge-half).

description(spiral_1, ’Add growth to the spiral.’).

lhs(spiral_1, [StartEh], [Face]):-
state(go_spiral),
label(StartEh, mark, start),
edgeh_f (StartEh, Face).

rhs(spiral_1, [StartEh]):-
offset_factor(0factor),
scale_matrix(Smatrix),
rotate_matrix(Rmatrix),
eh_length(StartEh, RefDist),
edgeh_f(StartEh, Face),
face_center(Face, Center),
face_normal(Face, Normal),
Dist = Ofactor * RefDist,
scalar(Dist, Normal, Ndist),
mattranslate(Ndist, Nmatrix),
mattranslate(Center, Cmatrix),
matinverse(Cmatrix, InvCmatrix),
matmult([Cmatrix, Rmatrix, Smatrix, InvCmatrix, Nmatrix], Matrix),
extrude_face_nonplanar_eh(StartEh, Matrix, NewEh),
kill_label(StartEh, mark, start),
make_label(NewEh, mark, start).

The application of spiral_1 rule is illustrated in Figure 8.16.

8.6 Hunting The Spiny Icosopus

New grammars may be formed by combining existing grammars. This section illustrates the idea
of combining grammars with an example derivation, the “spiny icosopus”. Our spiny icosopus is
generated using the spiral, uniform snowflake, and mountain grammars already presented in this

chapter.

108

We begin with an icosahedron “egg” of the spiny icosopus as the initial solid, as shown in
Figure 8.18. The spiral grammar is used to generate spiral “arms” from each of the faces of the
icosahedron, resulting in the model shown in Figure 8.19. This model is used as the initial solid
of the uniform snowflake grammar. The rules of the uniform snowflake grammar generate the
tetrahedra “spines”, as shown in Figure 8.20. The resulting model is used as the initial solid of the
mountain grammar, which gives some irregularity to the surface of the icosopus. The completed
spiny icosopus is illustrated in Figure 8.21.

The possibilities of combining these grammars in different ways is virtually limitless. We could
use different initial solids, apply the grammars in different orders, and use different derivations, to
generate an endless stream of distinct solids.

The grammars and geometric forms discussed thus far in this chapter are of academic inter-
est. The next two sections discuss applications of boundary solid grammars that address existing
modeling problems.

8.7 Stereo Lithography Support Grammars

A stereo lithography apparatus (SLA) allows the construction of epoxy prototypes directly from
a solid model. Prototypes are produced by hardening epoxy resin with a computer directed laser.
This process is accomplished a layer at a time, working from the lowest layer on the model upward.
In order to support portions of the model that are not connected to the lowest layer (and the
platform that supports it) support structures are needed.

The stereo lithography support grammars generate structures to support a model given as the
initial solid of the grammar. Two rules of this grammar are presented below.

sla_2 locates edges that will need support during the stereo lithography process. When the
rule is applied, the make_edge_support operation is invoked to generate an edge support structure.

description(sla_2, ’Support an edge of a solid.’).

lhs(sla_2, [Eh], [Eh]):-
state(go),
label(S, sla, original),
s01id(S),
face_solid(F, S),
face_normal(F, [_,_,z]),
Z < -0.5,
not(label(F, sla, supported_f)),
edgeh_f(Eh, F),
not(label(Eh, sla, supported_e)),
other_eh(Eh, Oeh),

109

not(label(Oeh, sla, supported_e)),
min_unsupported_span(Span),
eh_length(Eh, Length),

Length > Span.

rhs(sla_2, [Eh]):-
make_edge_support (Eh),
make_label(Eh, sla, supported_e).

sla_3 locates vertices that are not supported, and generates a vertex support structure.

description(sla_3, ’Support a vertex of a solid.’).

lhs(sla_3, [V], [V]):-
state(go),
label(S, sla, original),
s01id(S),
face_solid(F, S),
face_normal(F, [_,_,z]),
Z < -0.5,
vertex_f(V, F),
not(label(V, sla, supported_v)).

rhs(sla_3, [V]):-
make_vertex_support(V),
make_label(V, sla, supported_v).

Applications of Rule s1a_2 and Rule sla_3 are illustrated in Figure 8.22. A model with support
structures generated by Genesis is shown in Figure 8.23.

8.8 Queen Anne Grammar

The grammar for Queen Anne houses is based on Flemming’s shape grammar [18, 17]. Queen Anne
houses are generated with rules for layout, room naming, roofs, room articulation, and porches
Building details are generated by additional rules, including interior walls, porch columns, window
layout and details, chimney placement and construction, and roof dormers. The current grammar
contains 136 rules. Based on a conservative combinatorial analysis, the Queen Anne grammar
generates more than 5 trillion different houses. Examples of Queen Anne houses generated by
the grammar are presented in Figures 1.1, 8.28, and 8.29. A sample of rules of the Queen Anne
grammar is presented below.

110

Rule qa_1 adds a room by extending a plan towards the side or back. It looks for a side face
of the hall which is not the front face, and checks if there are no more than 2 rooms at the side
or back. When qa_1 is applied, it adds a room to that (back, left, or right) face of the hall, and
transfers labels to the right places. The application of qa_1 is illustrated in Figure 8.24.

description(qa_1, ’Add a room adjacent to the hall.’).

lhs(qa_1, [Eh, Depth, V1, Vr, Cl, Chl, Chr, Cr, X1, Xr], [Side]):-
state(rooms),
label(Hall, name, hall),
bottom(Floor, Hall),
side_not_front(Side, Hall),
edgeh_f (Eh, Side),
othereh_f(Eh, Floor),
edgeh_v(Eh, Vhl),
other_v(Eh, Vhr),
v_coord(Vhl, Chl),
v_coord(Vhr, Chr),
label(V1l, mark, X1), member(X1l, [back, front]),
label(Vr, mark, Xr), member(Xr, [back, front]),
not_same(V1l, Vr),
member_once(back, [X1, Xr]),
v_coord(Vl, Cl1),
v_coord(Vr, Cr),
colinear([Cl, Chl, Chr, Cr]l),
ordered([Cl, Chl, Chr, Cr]),
distance(Cl, Cr, Distance),
other_eh(Eh, 0OEh),
room_shorter_width(Hall, Width, OEh),
room_depth(Depth),
Distance < Depth*2 + Width.

rhs(qa_1, [Eh, Depth, V1, Vr, Cl, Chl, Chr, Cr, X1, Xrl):-
stack_solid(Eh, Depth, Room, [_, _, _, Right, _, Left],
L, V2, ., v3 | _1),
distance(Chl, Cl, Left_pull),
distance(Chr, Cr, Right_pull),
pull_face(Left, Left_pull),
pull_face(Right, Right_pull),
kill_label(V1l, mark, X1),
kill_label(Vr, mark, Xr),

111

make_label(V2, mark, X1),
make_label(V3, mark, Xr),
make_label(Room, name, room),
room_color(RColor),
set_solid_color(Room, RColor).

qa-6 designates a front room as a parlor. It looks for a room at the front of the house (but not
the hall), and marks the room as parlor. This is illustrated in Figure 8.25.

description(qa_6, ’Locate the parlor to the front of the house.’).

lhs(qa_6, [Parlor], [Parlor]):-
state(rooms),
label(Parlor, name, room),
vertex_solid(V, Parlor),
label(V, mark, front).

rhs(qa_6, [Parlor]):-
set_state(parlor),
kill_label(Parlor, name, room),
make_label(Parlor, name, parlor),
parlor_color(ParColor),
set_solid_color(Parlor, ParColor).

Rule qa_11 selects a room to be the dining room. The rule matches on an unnamed room which
is adjacent to the kitchen, and marks the room as a dining room. The application of qa_11 is shown
in Figure 8.26.

description(qa_11, ’Locate the dining room next to the kitchen.’).

lhs(qa_11, [Dining], [Dining]):-
state(kitchen),
label(Kitchen, name, kitchen),
label(Dining, name, room),
adjacent_solids(Kitchen, Dining).

rhs(qa_11, [Dining]):-
set_state(stair),
kill_label(Dining, name, room),
make_label(Dining, name, dining),

112

dining_room_color(DColor),
set_solid_color(Dining, DColor).

Rule qa_16 creates a 2nd floor room on top of each 1st floor room. It looks for any first floor
room except the stairway, and stacks a room on top of the first floor room. Rule qa_16 is illustrated
with Figure 8.27.

description(qa_16, ’Add a second floor room above a existing room.’).

lhs(qa_16, [Top, Height, Room], [Room]):-
state(second),
label(Room, name, S),
member(S, [room, parlor, kitchen, dining, hall, pantry]l),
not(label (Room, mark, stacked)),
top(Top, Room),
room_height (Height).

rhs(qa_16, [Top, Height, Room]):-
stack_solid(Top, Height, NewRoom),
make_label(Room, below, NewRoom),
make_label(NewRoom, floor, second),
room_color(RColor),
set_solid_color(NewRoom, RColor).

The Queen Anne grammar constructs a geometric representation as well as symbolic information
about the geometric entities. For example, some solid represent rooms and are intended for a specific
purpose (kitchen). This information is recorded in the label database.

In order to model the current state of many Queen Anne houses, additional rules are needed to
convert these single family residences into apartments for subsequent rental to graduate students.

113

Figure 8.14: Two mountains.

114

(mark,start)

(mark,start) i i
(b)

(a)

Figure 8.15: Possible initial solids for spiral grammars.

spiral_1

Figure 8.16: Rule for the spiral grammars.

Figure 8.17: A spiral form.

115

Figure 8.18: An icosopus egg.

Figure 8.19: A developing spiny icosopus (without spines).

116

Figure 8.20: A developing spiny icosopus (with spines).

Figure 8.21: An adult spiny icosopus.

117

sla_2

sla_3

Figure 8.22: Rules for locating vertex and edge supports.

Figure 8.23: Stereo lithography supports for a solid.

118

qa_l

P R

Figure 8.24: A basic layout rule for Queen Anne houses.

6
n => ﬂ
£ £

Figure 8.25: A rule for locating the parlor in a Queen Anne house.

qa_|

qa_l1

Kitchen Kitchen

Room

Figure 8.26: A rule for locating the dining room in a Queen Anne house.

qa_l6

|::> Room
Room

Figure 8.27: A rule for adding the second floor to a Queen Anne house.

119

Figure 8.28: Two Queen Anne houses.

120

Figure 8.29: Additional Queen Anne houses.

121

Chapter 9

Genesis : A Boundary Solid
Grammar Interpreter

Genesis is an implementation of the boundary solid grammar formalism. It provides facilities
for representation and display of solids, match conditions, solid modeling operations, rule and
grammar definition, and searching through the language of a grammar. Genesis has been under
development since December 1988. The first version was operational in early January 1989, and
three distinct versions have preceded the current implementation.

This chapter introduces the Genesis boundary solid grammar interpreter, including its user
interface and modeling facilities, system architecture, and performance. A detailed discussion of
Genesis can be found in the Genesis Reference Manual [20].

9.1 Using Genesis

Users interact with Genesis in several ways. They may use Genesis as a boundary represen-
tation solid modeler, using local operations, unary shape operations, and Boolean operations.
Genesis provides facilities for defining matching conditions and operations, defining rules, con-
structing initial solids, applying rules, and searching for derivations in the language of a grammar.
These facilities allow the user to experiment with generative grammars, creating alternative initial
solids, defining new rules, and applying rules in different ways to generate interesting and useful
models.

Users can interactively locate features of solids, and modify solids with operations. They can
construct conditions and operations as described in Chapter 7. A user can then use these conditions
and operations to define solid rules. Solid rules are described with three components: a description,
a left-hand side, and a right-hand side. The description is a textual description of the rule that will
be presented to the user as the rule is matched. The left-hand side is the set of match conditions

122

that must be satisfied in order to apply the rule. The right-hand side is the sequence of operations
and match conditions that transform the matched solids.

There are several ways to generate solids using the rules that users have defined. The primary
facilities are describe below.

o Apply a specific rule once and display the results. This is useful primarily for debugging new
rules.

e Apply the applicable rules to the current solids. Genesis displays the current solids with the
matched elements highlighted for a given match, and the user is queried to allow or disallow
the application of the rule.

e Apply any applicable rules a given number of times (depth-first) and display the result after
each rule application.

Genesis provides several ways to search through the space of derivations of a grammar.

o Search depth-first for a member of the language of the grammar (which occurs when the
current state equal to done).

o Search depth-first for a derivation of the grammar with has a given state State as the current
state.

e Search randomly for a member of the language of the grammar (with the current state equal
to done). A given rule is applied if a random number is (between 0 and 1) is less than
Probability.

e Search randomly for a derivation of a grammar which has a given state State as the current
state.

A user may mix these various interaction modes. For example, one may apply rules to generate
a model, then manually modify the model using solid modeling operations. The new model may
then be used as an initial solid for further detailing and development with another rule set. A user
may also generate a model with another solid modeler, read it into Genesis from a file, and use it
as an initial solid in a grammar to generate additional detail, or related solids.

9.2 Genesis System Architecture

Genesis consists of a boundary representation solid modeler, a database for non-geometric in-
formation, a logic programming interpreter/complier, graphics facilities for display of solids, and
a graphical user interface. Genesis was written by the author in the C programming language,
and consists of approximately 20,000 lines of C code, including the solid modeler, graphics, and

123

GENESIS
Search Predicates
Rule Application Predicates
Solid Rules
. - . CLP(R)
Application Match Conditions and Operations
Genesis Match Conditions and Operations
Assess Routines (with backtracking)
CLP(R) Interpreter
Built-in Predicates
Modeler CLP(R) Predicates Graphics
Unary Operations File Consulting Graphical User Interface c
Euler Operations Unification Display Graphics
Low-Level Access Routines Constraints Access Routines
Topological Adjacencies .
Geometric Description ’ Starbase Routines

Figure 9.1: The architecture of Genesis .

label database. Portions of the rule interpreter are constructed on top of CLP(R), implemented
with about 7,000 lines of CLP(R)source code. (The IBM CLP(R)Complier consists of an addi-
tional 15,000 lines of C.) The architecture of the current implementation of Genesis is presented
in Figure 9.1. The data structures used within Genesis are illustrated in Figure 9.2.

Solid Modeler

The solids modeler in Genesis uses the generalized split-edge data structure to represent manifold
and nonmanifold solids (described in Chapter 2). Routines provide access from any element to any
of its adjacent elements, with most of the accesses in constant time. A complete set of manifold and
nonmanifold Euler operations are provided, including the nonmanifold Euler operators (described
in Chapter 4). The unary shape operations are provided, and Boolean operations are computed
using the unary shape operations.

Label Database

The labeling mechanism of the boundary solid grammar formalism allows non-geometric informa-
tion to be associated with topological elements. A database for this non-geometric information is
provided in Genesis . In order to provide efficient access, the database has indexes directly from
topological elements into the label database.

124

Identifiers

Type:v
Labels
Topo Next »| Next » Next

Nextld Nextld Nextld

Type:f
Labels
Topo

Geometry

Plane Eq
Extent

Extent

Display

Next
Polygon
Color
Highlight

Trans

Figure 9.2: Data structures within Genesis (a simplified view).
Graphics and User Interface

A graphical user interface allows the user to move the position and direction of the camera and
viewpoint, modify the brightness, color, and position of directional lights, modify the brightness
and color of the ambient light, and modify the amount of specular reflection and color of specular
highlights. The user interface also controls the culling of back-facing polygons, depth-cueing, the
display of objects with wireframe or shaded surface rendering, the default color of objects, and
the background color. The graphical user interface is constructed with widgets in the X window
system.

125

The graphics routines are written in C. These routines access and maintain additional structures
for polygon display. Hidden surface removal is accomplished using a hardware z-buffer, and HP
Starbase graphics routines.

Logic Programming Interpreter / Complier

Genesis uses IBM’s compiler-based implementation of the CLP(R) programming language [24].
Rule matching and application is accomplished using three mechanisms. At the lowest level, primi-
tive access of the boundary representation, primitive match conditions, and modeling operation are
accomplished in the Genesis solid modeler. These routines are accessed by the CLP(R) complier
as built-in predicates. Access to the label database is also accomplished this way. The graphics
routines are called as built-in predicates, and interact directly with the solid modeler. At the next
higher level, unification and backtracking mechanisms are provided within the CLP(R) complier.
CLP(R) code provides the access and backtracking of the low level modeling representation and
operations. Complex matching conditions and operations, rule application, and search facilities are
constructed on this framework (written in CLP(R)).

9.3 Performance

Grammar Rule Applications Faces Minutes
Uniform Snowflake 500 2504 3:26
Mountain 25 87 0:09
Mountain 100 312 0:29
Mountain 300 912 1:35
Mountain 500 1512 3:19
Mountain 1000 3012 13:47
Mountain 3500 10512 104:20
Mountain 8000 24012 352:00
Queen Anne 67 1218 2:35
Queen Anne (no graphics) 67 1218 2:03

Table 9.1: Performance benchmarks on Genesis .

Genesis constructs a detailed Queen Anne house, composed of about 135 solids and 1200 faces,
in 2 to 3 minutes (clock time). This time includes updating the graphical display of the model after
each of approximately 70 rule applications. Generating a mountain with 1500 faces takes about
3 minutes. Mountain models with over 24000 faces have been generated with Genesis (see Fig-
ure 8.14). Table 9.1 summarized the times needed to generate derivations of various grammars.
These performance figures are for Genesis running on a Hewlett-Packard 835 workstation config-

126

ured with 32 Megabytes of physical memory and 160 Megabytes of virtual memory. They include
graphical display of the solids after each rule application, with hidden surface removal and three
directional light sources plus ambient light, except as noted.

127

Part 111

Conclusion

128

Chapter 10

Contributions of the Thesis

This research was undertaken to investigate one of “the grand challenges in three-dimensional
graphics ... to make simple modeling easy and to make complex modeling accessible to far more
people” [49]. In this light, the thesis has provided a detailed look at the fundamental concepts and
operations of solid modeling, and the automatic generation of solid models based on a grammatical
paradigm. This chapter considers the material of the thesis and discusses the various contributions
to theory, implementations, and applications.

10.1 Formalizations

The thesis makes several contributions to a formal understanding of topics in areas of solid modeling
and generative geometric design. These contributions are listed below:

o A formal definition of boundary solid grammars

The unary shape operations

The generalized split-edge representation

Generalized Fuler operations

o A generalized form of the Euler-Poincaré formula

A formal definition of boundary solid grammars was presented. This includes a boundary
representation for solids, a paradigm for reasoning about solids, a method of constructing opera-
tors, definitions of solid rules and boundary solid grammars, and a formal method for generating
languages of solids.

129

The unary shape operations allow any topologically valid boundary model to be interpreted
as a valid boundary representation. The regularized Boolean operations may be computed using
the unary shape operations. The use of local operations, the unary shape operations, and Boolean
operations on boundary representations constitutes a new solid modeling approach.

A new boundary representation has been introduced for the representation of (regular) non-
manifold solids, the generalized split-edge representation.

Generalized Euler operations have been presented to allow direct manipulation of the nonman-
ifold topological adjacencies of boundary representations of solids.

A generalized form of the Fuler-Poincaré formula has been introduced, expressing the relation-

ship between the boundary elements of manifold and nonmanifold solids.

10.2 Implementations

The research undertaken for this thesis has produced some practical results. These contributions
take the form of usable software and algorithms, and are listed below:

¢ Genesis boundary solid grammar interpreter
¢ Genesis solid modeler

e Unary shape operations algorithm

The thesis presents Genesis , an implementation of a boundary solid grammar interpreter.

A solid modeler representing manifold and nonmanifold solids has been presented. The modeler
provides local modification of the topology using both traditional (manifold) and nonmanifold Euler
operations.

An algorithm for the computation of the unary shape operations has been presented in the
thesis. This algorithm has been implemented in the Genesis boundary solid grammar interpreter.

10.3 Applications

The thesis presents a number of grammars to demonstrate the concepts and usefulness of the
formalism.

e Various geometric forms

e Stereo lithography support structures

130

e Queen Anne houses

Grammars generate simple geometric forms including snowflakes, recursive octahedra, moun-
tains, and spirals. Automated construction of supports for solid models being built using stereo
lithography is accomplished using another boundary solid grammar. An extensive grammar is
presented that characterizes Queen Anne houses.

131

Chapter 11

Future Directions

The work presented here has uncovered at least as many interesting topics as it has addressed. In
this chapter, I present some of these topics and comment on their nature.

11.1 Generative Grammars

There are many interesting and useful areas for investigation in the area of generative grammars.
These generally fall into two areas: alternative representations, and user interfaces.

Boundary solid grammars using non-linear representations
e Boundary solid grammars using non-homogeneous representations

e Boundary solid grammars using constrained models

Alternative search strategies

Boundary solid grammars that use curved surface representations would provide capabilities
needed in a large variety of engineering and manufacturing domains. There is enormous potential for
automating the design of manufacturing dies and equipment from the engineered part descriptions.
Additional work is needed to allow parametric matching on curve surfaces, and provide facilities
for modifying the surfaces.

There has been much recent interest in non-homogeneous (“nonmanifold”) representations.
Non-homogeneous modelers allow solid, surface, and wireframe models to be incorporated into a
single representation. Initial investigations indicate that the boundary solid grammar formalism
is amenable to non-homogeneous representations. Grammars could then be used, for example, to
generate 3-D models from a 1-D or 2-D abstraction.

132

It would be interesting to develop grammar systems that allow the representation and generation
of constrained models without grounded geometry. The user of such a system would then explore
both the space of constrained models and the limits of the constraints of individual models.

Generating models with constrained geometry will require addressing difficult problems. First
of all, the number of possible rule matches explodes as models become less constrained. There is a
combinatorial explosion of the size of the space of designs as we allow additional degrees of freedom
in the design. This seems to be an inherent problem in design. New tools will be needed to allow a
designer to selectively constrain and explore the space of possible designs generated by a grammar
of this type. Another difficulty is in displaying the constrained models. It is clear how to display
a model with grounded geometry. However, when our model is not fully constrained, then it is
difficult to convey to the user of the system what range of instances is described.

To allow a user to better explore the language of a grammar, alternative search strategies would
be useful. First, a breadth-first strategy would allow a user to examine all the derivations generated
by a given rule. This would be especially useful for testing rules. Breadth-first search would also
be useful for viewing the entire language of a grammar (when sufficiently small). For designing,
using and branch and bound or best-first strategy would allow a more focused search. These later
strategies would require the definition of some (domain dependent) evaluation criteria. The most
useful approach will probably require several of these search techniques to be used simultaneously.

11.2 Solid Modeling

The most immediate directions leading from the thesis involve the implementation and use of the
unary shape operations.

Unary shape operations

Incremental unary shape operations

Unary shape operations on non-linear boundary representations

Unary shape operations on non-homogeneous representations

Offsetting operations

Additional work is needed to show the soundness of the unary shape operations. The proofs
presented in the thesis are intended to provide outlines of the necessary arguments, but do not
constitute rigorous proofs. The thesis reports an algorithm for the computation of the generalized
unary intersection. Additional algorithm development is desirable, as well as presentation of proofs
of correctness and the computational complexity of the algorithms.

An incremental form of the unary shape operations could determine which elements of a solid
could have intersections due to local modifications of geometry and topology that have occurred

133

since the most recent unary shape operation. This could be accomplished by recording the local
modifications that have been made since the most recent unary shape operation and recording
which element could be affected. Since the operation would not need to consider the intersection
of every element with every other, this would reduce the total number of comparisons and thereby
reduce the overall complexity.

Algorithms are needed for computing the generalized unary intersection for non-linear surfaces.
In particular, the generalized unary intersection will be very useful when applied to NURBS (non-
uniform rational b-spline) surfaces. This would provide the foundation for integrating geometric
(surface) modeling with boundary representation solid modeling.

It would be useful to incorporate the unary shape operations into non-homogeneous represen-
tations. Unary shape operations would allow local modifications of elements of non-homogeneous
models, while guaranteeing that the resulting models can be returned to a valid state. This would
require a non-regularized definition of the unary shape operations, including a characterization of
the winding number (or something like it) for points on the bounding surfaces.

When a sphere is moved across a surface, it produces a volume bounded by the offset of the
surface. Offsetting can be viewed as an operations on solids or on surfaces, and has been used to
define global blending operations on solids in which all edges are rounded or filleted.

Much of the difficulty of constructing offsetting operations is caused by the potential of self-
intersections of the offset surfaces. Instead of viewing offsetting operations as global operation, it
may be useful to consider offsetting as two separate operations: local offsetting of the surface of a
given solid, followed by the unary union operation applied to the offset surface. The local offsetting
would compute the offset surface, with possible self-intersections. The unary union would take the
offset surface and resolve the self-intersections to produce the offset solid.

134

Appendix A

Euler Operators as Graph
Productions

This appendix presents graph productions of Euler operations on our b-graph representation of
solids. The Euler operations included here create minimal solids (msflv), insert strut edges (mev),
split edges (esplit), and split faces (mefl). A detailed discussion of the Euler operations may be
found in Chapter 4.

A graph production has three parts: a subgraph that will be matched and removed from the
graph being matched; a subgraph that will be inserted in place of the removed subgraph; and an
embedding which specifies the connections between the inserted subgraph and the original graph.
Although the subgraph matching, removal, and substitution are straight-forward, the embedding
requires further explanation. The embedding is specified using graph operators, and these graph
operators are defined below. The notation and definitions for graph operators and graph production
are adapted from Levy and Yueh [30], which was originally introduced by Nagl [36, 37].

Definition A.1 For the node set K of any labeled boundary graph with the node set K' of a given
subgraph and any node x € K, the graph operator A yields a subset of K, written as A(x)
according to the following recursive definition:

1. Li(z)={y € K- K'| (y,x) € pi} specifies the set of nodes with i-labeled arcs that terminate
nx.
2. Ri(z)={y€ K — K'|(z,y) € p;} denotes the set of nodes with i-labeled arcs leaving x.

3. AB(z) ={y|y€e K — K',32(z € K — K',z € B(z),y € A(2))} specifies the subset of nodes
of K — K' which are generated by sequencing graph operators.

135

4 (AU B)(x) = Alx) U B(x),
specifies the subset of nodes of K — K' which are generated by the branching of operators.

Definition A.2 A graph production is a triple P = (b;,b,, E) with b;,b, € b(X,) and an em-
bedding transformation E = ((la,74))aexa,., With the embedding components l, and r, having the
following form:

=

Aj(y;) x {z;}

I, =

1

To = U{Zj} x Aj(y;)

where y; € Ky, z; € K,, A; is an graph operator, and p,q > 1.

The labeled boundary graph b; is the left hand side and b, the right hand side of the graph
production. K;, K, are the sets of nodes in b;, b,, respectively.

We may abbreviate A(y) x {z} by (A(y);2) and {z} X A(y) by (z; A(y)). (A;a,b) is used to

represent (A;a)U (A;b) with a similar notation for r-operators.

Informally, I, specifies the a-labeled arcs from the existing graph to the newly inserted subgraph.
A;(y;) selects a subset of nodes in ' — K, and connects these nodes to each of the nodes {z;} in
the new subgraph with an a-labeled arc. Similarly, r, specifies the a-labeled arcs from the subgraph
to the existing graph.

F
< Nothing > ::> L f)\ H
A\ @ > S

Figure A.1: The msflv graph production.

E: < none >

Graph productions implementing Fuler operators for the generalized split-edge data structure
are presented in Figures A.1 through A.6. These graph productions are used as operators by
requiring that the nodes of b; are bound to specific nodes in a b-graph, as specified by the operators.

Definition A.3 A labeled boundary graph b’ € b(X,) is directly derivable from another b € b(¥,)
by an operator O (abbreviated b == b') iff
@]

136

- E: Tedgeh_l = (El,Eg;LOOPLIOOp_,U(Vl))

@\ loop_eh = (LOOPLloop_v(Vl)?El)
Vi V1 \\o
o =>

Figure A.2: The mev graph production when there are no edges in the loop.

Tedgeh_v (El;VERTEXRedgeh_,U(El))
gcw_eh = EEDGEHALFEcw_eh EE% E ;
= (EDGEHALF 2
E2 E2 E4 Tc::__r;};l = (E4;EDGEHAI€$R€C}ZUJ eh(1))
() () () T ew_eh = (E2;EDGEHALFR,,, 2))
‘\\\ gccu:_eh = EEDGEHALFéccw eh(% g E4§
= (EDGEHALF 2); Eq
V1° = Vlo\\ V2° chccz__zl;l = (El;EDGEHAf%%:fw_Eh(Eq))
Teew.eh = (E2;EDGEHALFR .. .5 (E2))
El e El O B3 Tedgeh 1 = (E17E37E4;LOOPRed‘qeh_l(E)
Tedgehi = (F2;000PR 405 1(F2))
lloop_eh (LOOPLloop_eh(El);El)
lloop_eh (LOOPLloop_eh(EQ);EQ)

Figure A.3: The general mev graph production.
1. b, Cbandb, C¥;
2.b—b;=0b—b,; and
3. Ing(b,b') =1, and Outy(b,,b") = 1y for a € ¥y

where Ing(b,,b') is the set of all a-labeled incoming arcs originating in b' — b, and terminating in b,
and Outy(b,,b") is the set of all a-labeled outgoing arcs originating in b, and terminating in b—b

137

E2 E4 E2

E2®

p~Y T\ g3

= (E1;vBRTEXR 440p_, (E1))
= (E2;vBRTEXR 4,05, (E2))
(EDGEHALFL Eq1);Eq)

E.);E
EEMEDGEHAfgﬁC}i_SZ)(E;)))
(Es;epGEHALFR,,, 5 (E1))
(EDGEHALFL (%1);]33)
(
(
(
(
(
(
(

cw-eh(
EDGEHALFL

ccw-eh
EDGEHALFL .., 5 (E2); Ey)

Ei;EpGEHALFR), .5 (E1)
E;;EDpGEHALFR), .p (E2)
El,Eg;LOOPRedgeh_l(El))
= E2’E4;LOOPR€d‘qeh_I(E2))
LOOPLIOOp_eh(El);El)
LOOPLloop_eh(Eg);EQ)

— —
~— —

Figure A.4: The esplit graph production.

L1 L1

E:

lface_l
Tloop-f
Tface_sh

= (FACELy, ., 1(L1); L)
= (L1;raceRy,,, ¢(L1))
= (Fy; SHELLRfaCE_ShR]oop_f(Ll))

Figure A.5: The mefl graph production when there are no edges in the loop.

138

El
L1

V2 Vi

E2 E5

L1

L2

0]

=
S
O
=

0}

other_eh
Vother_eh
Tother_eh
Tother_eh
Tother_eh
lface_l
Tloop-f
Tface_sh

ledgeh_l
{
edgeh_l

Tloop-eh
Tloop-eh
lface_l
lface_l
Tloop-f
Tloop_f

E1;vERTEXR g0, (E1))
EDGEHALFL cg00p o (V1); V
EDGEHALFL cg0p o, (V2); V
EDGEHALFL ., .1 (E1);
EDGEHALFL ., .1 (E2);

(

(

E;;EDGEHALFR , .},
Es;EDGEHALFR,
EDGEHALFL i:lf

EDGEHALFL

ccw- eh

ccw-eh
Eq; EDGEHALFRccw_ehE

(

(

(

(

(

(

(

(

(

(
(E4;EDGEHALFR), eﬁ}
(BDGEHALFL 4 o0 o (B1); Eq
(BDGEHALFL 4 .0 op (F2); Eg
(BDGEHALFL 4 .0 op (Es); Es
(E1;EDGEHALFR 4, eh(El
(E2;EDGEHALFR 4, o5 (E2
(Es;EDGEHALFR, er-eh(E5
(FACEL 400 1(Ln); 1]%

(
(F

L1 3 FACERIOO}) f (L1))
DHELLRface_shR]oop_f (Ll))

(EDGEHALF

Ui, (Lcw_ehLedgeh_.’(Ll); Ll)
(EDGEHALF

Ui, (Lcw_ehLedgeh_.’(Lﬁ; L2)
(L1;EDGEHALF Ry, o (L))
(L2;EDGEHALF R, o (L2))
(FACELface_I(Ll); Ll)
(FACELface_I(LQ); LQ)

(L1 H FACERIOOp_f (L1))

(Lg; FACERIOOp_f (LQ))

Figure A.6: General mefl as two sequentially applied graph productions.

139

Bibliography

[1] B. G. Baumgart. Winged-edge polyhedron representation. Technical Report CS-320, Stanford
AT Laboratory, Stanford University, October 1972.

[2] B. G. Baumgart. A polyhedron representation for computer vision. In AFIPS Conf. Proc.,
volume 44, pages 589-596, 1975.

[3] I. C. Braid. Designing with Volumes. PhD thesis, Computer-Aided Design Group, University
of Cambridge, Cambridge, England, February 1973.

[4] 1. C. Braid, R. C. Hillyard, and I. A. Stroud. Stepwise construction of polyhedra in geometric
modeling. In K. W. Brodlie, editor, Mathematical Methods in Computer Graphics and Design,
pages 123,141. Academic Press, New York, 1980.

[5] Horst Bunke. Programmed graph grammars. In Lecture Notes in Computer Science, volume 56,
pages 155-166, Berlin, 1977. Springer-Verlag.

[6] Horst Bunke. Attributed programmed graph grammars and their application to schematic
diagram interpretation. IFEFE Transactions on Pattern Analysis and Machine Intelligence,
4(6):574-582, 1982.

[7] W. G. Chinn and N. E. Steenrod. First Concepts of Topology. Random House, New York,
1966.

[8] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer-Verlag, Berlin, 1984.

[9] Leila De Floriani. Feature extraction from boundary models of three-dimensional objects.
IFEFE Transactions on Pattern Analysis and Machine Intelligence, 11(8):785-798, 1989.

[10] Philippe de Reffye, Claude Edelin, Jean Francon, Marc Jaeger, and Claude Puech. Plant
models faithful to botanical structure and development. Computer Graphics, 22(4):151-158,
1988.

[11] H. Desaulniers and N. F. Stewart. Generalized Euler operators for r-sets. Technical Report
649, Department d’Informatique et de Recherche Operationnelle, Universite de Montreal, April
1988.

140

[12] F. Downing and U. Flemming. The bungalows of Buffalo. FEnvironment and Planning B,
8:269-293, 1981.

[13] C. Eastman, J. Lividini, and D. Stoker. A database for designing large physical systems. In
Proc. 1975 National Computer Conference, pages 603-611. AFIPS Press, New Jersey, 1975.

[14] C. M. Eastman and K. Weiler. Geometric modeling using the euler operators. In Proc. First
Ann. Conf. Computer Graphics and CAD/CAM Systems, pages 248-254, Cambridge, Mass.,
April 1979. M.I.T. Press.

[15] Patrick Fitzhorn. A linguistic formalism for engineering solid modeling. In Graph-Grammars
and Their Application to Computer Science, pages 202-215, Berlin, 1987. Springer-Verlag.

[16] U. Flemming. The secret of the Casa Guiliani Frigerio. Environment and Planning B, 8:87-96,
1981.

[17] U. Flemming. More than the sum of parts: the grammar of Queen Anne houses. Environment
and Planning B, 14:323-350, 1987.

[18] U. Flemming, Robert Coyne, Shakunthala Pithavadian, and Raymond Gindroz. A pattern
book for Shadyside. Technical report, Department of Architecture, Carnegie Mellon University,
December 1985.

[19] Michael R. Garey and David S. Johnson. Computers and Intractability. W. H. Freeman and
Company, New York, 1979.

[20] Jeff A. Heisserman. Genesis reference manual. Technical Report EDRC 48-77-91, Engineering
Design Research Center, Carnegie Mellon University, August 1991.

[21] Michael Henle. A Combinatorial Introduction to Topology. W. H. Freeman and Company, San
Francisco, 1979.

[22] Robin Hillyard. The build group of solid modelers. IEEE Computer Graphics and Applications,
2(2):43-52, March 1982.

[23] Christoph M. Hoffmann. Geometric and Solid Modeling. Morgan Kaufmann Publishers, San
Mateo, 1989.

[24] Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Rolland H. C. Yap. The CLP(R) language
and system. Technical Report CMU-CS-90-181, Department of Computer Science, Carnegie
Mellon University, October 1990.

[25] Michael Karasick. On the Representation and Manipulation of Rigid Solids. PhD thesis,
Department of Computer Science, McGill University, Montreal, Canada, November 1988.

[26] T. W. Knight. The generation of Hepplewhite-style chair-back designs. FEnvironment and
Planning B, 7:227-238, 1980.

141

[27] T. W. Knight. The forty-one steps. Environment and Planning B, 8:97-114, 1981.

[28] H. Koning and J. Eizenberg. The language of the prairie: Frank Lloyd Wright’s prairie houses.
Environment and Planning B, 8:295-323, 1981.

[29] David H. Laidlaw, W. Benjamin Trumbore, and John F. Hughes. Constructive solid geometry
for polyhedral objects. Computer Graphics, 20(4):161-170, 1986.

[30] L. S. Levy and Kang Yueh. On labelled graph grammars. Computing, 20:109-125, 1978.
[31] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, Berlin, 1984.
[32] Benoit B. Mandelbrot. The Fractal Geometry of Nature. W. H. Freeman, New York, 1983.

[33] M. Mantyla and R. Sulonen. GWB: A solid modeler with Euler operators. IEFEE Computer
Graphics and Applications, 2(7):17-31, September 1982.

[34] Martii Mantyla. A note on the modeling space of Euler operators. Computer Vision, Graphics,
and Image Processing, 26(1):45-60, April 1984.

[35] Martti Mantyla. Boolean operations of 2-manifolds through vertex neighborhood classification.
ACM Transactions on Graphics, 5(1):1-29, January 1986.

[36] M. Nagl. Formal languages of labelled graphs. Computing, 16:113-137, 1976.

[37] M. Nagl. Graph rewriting systems and their application in biology. In Lecture Notes in
Biomathematics, volume 11, pages 135-156, Berlin, 1976. Springer-Verlag.

[38] J. M. Pinilla, S. Finger, and F. B. Prinz. Shape feature description and recognition using an
augmented topology graph grammar. In NSF Fngineering Design Research Conference, pages
285-300. University of Massachusetts, Amherst MA, June 11-14 1989.

[39] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The algorithmic beauty of plants.
Springer-Verlag, New York, 1990.

[40] Przemyslaw Prusinkiewicz, Aristid Lindenmayer, and James Hanan. Developmental models of
herbateous plants for computer imagery purposes. Computer Graphics, 22(4):141-150, 1988.

[41] A. A. G. Requicha. Mathematical models of rigid solids. Technical Report TM-28, Production
Automation Project, University of Rochester, November 1977.

[42] A. A. G. Requicha. Mathematical foundations of constructive solid geometry: General topology
of closed regular sets. Technical Report TM-27a, Production Automation Project, University
of Rochester, 1978.

[43] A. A. G. Requicha. Representation of rigid solids: Theory, methods, and systems. ACM
Computing Surveys, 12(4):437-464, 1980.

142

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

A. A. G. Requicha and H. B. Voelcker. Solid modeling: Current status and research directions.
IEEE Computer Graphics and Applications, 3(7):25-37, October 1983.

A. A. G. Requicha and H. B. Voelcker. Boolean operations in solid modeling: Boundary
evaluation and merging algorithms. Proceedings of the IEFE, 73(1):30-44, January 1985.

D. J. Rosenkrantz. Programmed grammars: and new device for generating formal languages.
In 8th IFEFE Annual Symposium on Switching and Automata Theory. IEEE, Austin, Texas,
1967.

Daniel J. Rosenkrantz. Programmed grammars and classes of formal languages. Journal of
the Association for Computing Machinery, 16(1):107-131, January 1969.

George F. Simmons. Introduction to Topology and Modern Analysis. McGraw-Hill, New York,
1963.

Robert F. Sproull. Parts of the frontier are hard to move. Computer Graphics, 24(2):9, March
1990.

Leon Sterling and Ehud Shapiro. The Art of Prolog. MIT Press, Cambridge, Massachusetts,
1986.

George Stiny. Ice-ray: a note on the generaation of Chinese lattice designs. Environment and
Planning B, 4:89-98, 1977.

George Stiny. Introduction to shape and shape grammars. Fnvironment and Planning B,
7:343-351, 1980.

George Stiny and William J. Mitchell. The Palladian grammar. FEnvironment and Planning
B, 5:5-18, 1978.

George Stiny and William J. Mitchell. The grammar of paradise: on the generation of Mughul
gardens. FEnuvironment and Planning B, 7:209-226, 1980.

George Stiny and William J. Mitchell. A new line on drafting systems. Design Computing,
1:5-19, 1986.

George Vanecek Jr. Protosolid: an inside look. Technical Report CSD-TR-921, Computer
Science Department, Purdue University, November 1989.

Kevin Weiler. Topological Structures for Geometric Modeling. PhD thesis, Rensselaer Poly-
technic Institute, August 1986.

143

