
A Tangible Construction Kit for Exploring Graph Theory

Eric Schweikardt1, Nwanua Elumeze2, Mike Eisenberg2, Mark D Gross3

1: Computational Synthesis Lab, Cornell University, Ithaca NY
2: Computer Science Dept, University of Colorado, Boulder CO

3: Computational Design Lab, Carnegie Mellon University, Pittsburgh PA

ABSTRACT
Graphs are a versatile representation of many systems in
computer science, the social sciences, and mathematics, but
graph theory is not taught in schools. We present our work
on Graphmaster, a computationally enhanced construction
kit that enables children to build graphs of their own and
investigate their properties by experimenting with
algorithms that operate on them. The system is distributed;
microcontrollers inside each node execute an interpreted
language in parallel. Graphmaster, with its magnetic
connectors, illuminated edges, and capacitive sensing,
encourages children to develop intuitions about
connectivity long before they are introduced to the notation
and formulas of graph theory.

Keywords
Graphs, education, tangible, toys, games.

INTRODUCTION: WHY WE CARE ABOUT GRAPHS
Graph theory is an important branch of modern
mathematics that is used throughout the physical, social,
and artificial sciences. For example, it is used in electrical
engineering to model circuits and in anthropology, to
represent family structures in a society. In computer
science, graph theory is fundamental to understanding the
properties of data structures and algorithms that operate on
them, for example, object hierarchies, Markov models and
Bayesian networks, minimum spanning trees, and so on.
An excellent popular introduction to important ideas of
graph theory, and how they can be applied to an immense
variety of deep and practical problems, can be found in [1].
In light of its importance in modern science and
engineering, it is regrettable that young people do not
encounter graphs in elementary or secondary school.
(Under the rubric of “graphing” students are taught to plot
functions on an x-y chart, but this is an entirely different
topic.) Some students take a graph theory course in college,
but most do not.
We aim to remedy this problem by providing a tangible toy
that can serve as an interactive platform for teaching,
learning about, and playing with, graphs. We describe here

Graphmaster, our first design for and implementation of a
tangible graph construction kit. The kit comprises physical
components for nodes and edges, and the means to program
graph constructions using a simple embedded language.

PLAYING WITH GRAPHS
Toys can give children valuable intuitions about complex
concepts before they learn about those concepts formally.
Architects, for instance, have described how playing with
construction toys as children gave them an intuitive sense
of structure and balance [2]. Andrea diSessa argues
convincingly that the “phenomenological primitives” that
children encounter during play are of the utmost
importance for future comprehension of scientific and
mathematical concepts [3]. The educational benefits of
learning a formal concept that relates to previous
experience (“oh, so that’s what you call it”) can be
significant. Although we don’t claim that GraphMaster
teaches the formal notation of graph theory, it serves to
expose children to graphs and their operations—to
strengthen the intuitions of children—before they encounter
the relevant mathematics.
There is a particular benefit to be gained by building graphs
and experimenting with graph algorithms, as opposed to
just studying their properties. In contrast to the idea of
teachers transferring knowledge to children, Piaget’s
constructivism describes how children create their own
knowledge based on their experience (including their
experience with teachers). Seymour Papert coined the term
constructionism to describe the benefits of actually building
something as part of that process [4]. Although knowledge
is invisible, a constructed object gives children and their
mentors something external to reflect on and critique.
Thoughtfully designed construction kits can provide pieces
that encourage kids to build meaningful assemblies.
Froebel’s “gifts,” from the mid-1800s, were an early
example [5], and have been followed by commercial
products like LEGO, Tinker Toys, and Erector Set.
More recently, the availability of tiny and inexpensive
microcontrollers has enabled embedded computation in
construction kits, bringing with it a wide range of
possibilities for interaction and feedback [6-8].
Graphmaster was inspired by light-up edge design of
Senspectra, a construction kit from the MIT Media Lab that
is intended to model structural strain in truss systems [9].
The spatial, and therefore visual, aspects of graphs lend
themselves to drawing. A variety of paper and pencil
games require users to manipulate graphs toward a certain

aim. In Sprouts [10], for example, players follow simple
rules to draw nodes and edges in an attempt to block the
other player. In “Planarity,” an interesting on-line graph
game [11], players drag connected vertices around on the
computer screen in an attempt to arrange the graph so that
none of the edges overlap. These games successfully
exploit the two dimensional nature of paper or a computer
display, but many interesting games and tasks dealing with
graphs are not as easy to represent on a planar surface. A
computationally enhanced construction kit, on the other
hand, offers a tactile and tangible way to interact with
graph theory concepts that can augment the experience
available with paper and pencil.

GRAPHMASTER
Hardware
Graphmaster is a computationally-enhanced construction
kit made up of a collection of edges and a collection of
nodes. Physically its nodes are small (approximately 10cm
in diameter) plastic hemispheres with embedded ports
where edges can connect. Edges are short lengths of
electro-luminescent (EL) wire with connectors at their ends
that snap magnetically into the nodes (see Figure 1). Nodes
communicate with their neighbors over connected edges.
Each edge can light up in blue or green, and uses capacitive
sensing to detect when it is being touched. When an edge
is connected between two nodes, microcontrollers in each
node detect the new link so that Graphmaster “knows”
about the connection. Depending on the program that
Graphmaster is running (actually, the program runs in a
distributed fashion in each of the nodes), the kit behaves
differently.

Figure 1. Each Graphmaster node is a plastic hemisphere with
four ports for connecting edges. Each edge is a length of
electroluminescent wire with a connector at each end.

As illustrated in Figure 2, each node contains a PIC 16765
microcontroller, a triac (solid-state relay) for powering the
EL wire, and connections to 4 ports. Each port contains five
conductors: one for bi-directional communication between

any two nodes (e.g North); two for power and ground
(globally shared), and a pair to distribute the high voltage
signal that powers each EL wire on command.

Figure 2. Circuit schematic of a single node.

Data Transfer
The nodes communicate using a homegrown return-to-zero
pulse train: each bit is encoded as a unique pulse whose
length depends on whether a one or a zero is being sent.
Pulses are separated by a short period during which the line
is low. When the line initially transitions from low to a high
level, a listening node perceives this as the start of a new
bit. The node then continuously examines the line until it
returns to a low level. It then determines whether the pulse
it just observed represents a one or a zero based on the
length of the pulse. The length for a one is three times that
for a zero, ensuring that the nodes can understand each
other even if their timing sources differ by as much as 20%.
In its quiescent state, the communication line is high;
thanks to weak pullup resistors, unconnected ports also
remain high. To communicate, a node first checks to see
that the line is high, then drives the line low to indicate its
intent to communicate. As the other nodes might be polling
other ports, it keeps the line low long enough, before
sending message pulses. To minimize collisions, each
node's unique ID is used to produce timing that affects
when and how the node can assert its signal on the line.
Messages consist of four pieces of information (each piece
is a byte):

the identification number of the sending node;
a sequence number for the message;
the message identifier; and
an argument.

Messages are lightweight yet generic enough to exchange
high-level instructions, including new programming code.

S
G
i
u
th
G
m
c
w
s
th
s
c
s
E
la
c

F
g
c

w

A
T
n
p
E
in
F
c

G
m

Software
Graphmaster is
s no central p

users build. R
hat runs a sma

Graphmaster p
microcontroller
connected, and
written and co
same program
hen be disco

standalone sy
construction i
simultaneously
Each node ha
anguage as a n

can be describe

For example, if
graph in Figu
compute:

node-n

whereas the sam
node-n

A program run
This is the set
neighboring no
paths: north-path

Each path is a
ncludes a cycl

For example,
computes:

(Paths)

Graphmaster al
multiple edges

s a distributed
rocessor that o

Rather, each no
all byte code in
programming l
r keeps track

d on which por
ompiled to byt
is downloaded
onnected and

ystem. The b
is the result

y (but asynchro
as a unique
number. Links
ed by the pair o

Figu

f the kit is ass
ure, a program

eighbors [2]
me query in no
eighbors [2 3

nning in a node
t of paths thro
odes. The fou
h, east-path, etc
a list of node
le, the last nod
a program ru

) (2 3 4 2) (2 4

Figu

lso allows loop
between two n

construction k
operates on co
ode contains a
nterpreter in E
language. The
k of what ot
rts. Graphmast
tecode on a P
d into every no
d Graphmaste
behavior of
t of the pro
nously) on all
identity, repr
do not have id

of nodes they c

ure 3

embled to des
m running in

ode 4 yields a d
]

e can also refe
ough the tree,
ur port node
.
identifier num

de in the path r
nning in node

4 3 2)

ure 4

ps, and the cons
nodes (Figure 4

kit; that is, the
onstructions th

microcontroll
EEPROM for th
e kernel on th
ther nodes a
ter programs a
PC and then th
ode. The PC ca
r works as
a Graphmast
ogram runnin
the nodes.

resented in th
dentities but the
connect.

cribe the simp
node 1 cou

different result:

er to its “paths
beginning wi
maintains fou

mbers. If a pa
repeats the firs
e 1 in figure

struction of
4).

ere
hat
ler
he
he

are
are
he
an
a

ter
ng

he
ey

ple
uld

:

s”.
ith
ur

ath
st.
3

A prog
functio

Examp
Even a
Graphm
founda
presen
progra
we cal
neighb
own p
this m
of its
edges
cycle w
before
(or the
whethe
“reach
that it
connec
identif
Here i
in a gr

The G
follow

Figure
electric
and sup

gram can illum
on with the des

(turn-on north

ple: Detecting
at a relatively
master allow
ational and im
nce of a cycle
amming each v
ll “paths” in th
bors is asked
aths (not inclu
essage). If a ve
own paths (an
between verti

within the grap
ehand with the
e total number
er the graph

hable set” inclu
is in a conne

cted but with
fy that it is in a
s a piece of a

raph the user bu
(if (contains?
 (turn-on no
 (turn-off no

Graphmaster
wing byte code

0x1f //if
0x1a // conta
0x07 // ID hap
0x02 // how m
0x0a // turn o
0x01 // jump o
0x0b // turn o

5. Edge con
cally to the ports
pplies power to t

minate an edg
sired port as an
h-edge)

g Cycles
small scale, a

ws for an
mportant ideas
in a graph can

vertex ask for i
he Graphmaste
to identify bo

uding the imme
ertex finds that
nd assuming th
ces), we know

ph. Likewise, i
e identities of
of vertices in t
is connected

udes all vertice
ected graph, al
out cycles, ea

a graph known
simple program
uilds (Figures
north-path my-id

orth-edge)
orth-edge))

compiler on
for the fragme

ains north-edge
ppens to be 7

many instructions
n north edge
over next instruc
ff north edge

nnectors snap
s on the nodes. O
the others.

ge, by calling
n argument:

an interactive k
initial encoun
s in graph th
n be naturally
ts “reachable s
er language. E
oth themselves
ediate neighbo
t it is within on
hat we disallow
w that this ver
f each vertex i
all vertices in

the graph), then
by seeing w

es. Should one
ll will; and if
ach vertex can
as a tree.
m that illumin
5 and 6).
d)

the PC pro
nt above:

s to skip if condit

ction

magnetically a
One node contai

the turn-on

kit such as
nter with

heory. The
derived by
set”, which
Each of its
s and their
or who sent
ne or more
w multiple
rtex is in a
s equipped

n the graph
n it can tell

whether its
vertex see
a graph is
n likewise

ates cycles

oduces the

ion not met

and connect
ins a battery

Figure 6. A cycle has been detected in the graph and Graphmaster
lights up the cycle’s edges.

DISCUSSION
More technological refinement is necessary before we can
test the Graphmaster with users. Still, based on our
prototype, we are optimistic about the utility of the kit.
Even at a relatively small scale, it seems plausible that an
interactive kit such as Graphmaster affords direct
experience with the primitives of graph theory.
We illustrated Graphmaster with a simple algorithm to
detect cycles. Yet another (standard) example involves
graphs with Eulerian circuits (this is a path that traverses
every edge in the graph exactly once, returning to the
starting vertex; the notion is usually introduced through the
famous Königsberg Bridge problem investigated by
Leonhard Euler). As it happens, a graph has an Euler circuit
if and only if each vertex has an even number of edges
connected to it; this too is a plausible question to ask of a
Graphmaster vertex (though in this case, most sample
graphs do in fact allow for multiple edges between vertices;
thus a Graphmaster vertex must be able to identify not just
its neighboring vertices, but also the number of edges
connecting it to each neighbor).
FUTURE WORK
We have thought of a number of enhancements that we
plan to add to the Graphmaster project, both hardware and
software. For hardware, we plan to add an output (LED or
simple LCD display) on each node. This would provide an
additional for users to debug their programs, and it might
also be useful for programs to be able to highlight not only
edges, but also nodes. We also plan to add touch sensing to
the edges, a feature that we had implemented in an earlier
prototype. Similarly, we intend to provide each node with a
sensor input (touch or switch). With sensing on each node
and edge as well as actuation, we expect that users will be
able to write more interesting and interactive programs.
Somewhat more challenging will be to add continuous
(analog) sensing to the edges. Many interesting problems
can only be modeled with weights on the edges, for
example modeling connection strengths, or flows, between
nodes. This entails designing an analog sensor that can be
elegantly embedded in the edge, and visually echoing the

edge’s weight. We might indicate the edge weight with the
EL wire brightness, although this poses another set of
hardware issues.
Regarding software, we plan to build a more
comprehensive language, PC based programming
environment, and the supporting bytecode interpereter. It
might be useful, for example, to provide a mode where the
graph kit is connected to the PC for design and debugging;
the graph is modeled on the PC screen as well as
physically, and the PC environment can watch and probe
individual nodes. Once the user is satisfied with the
program the kit would be untethered and work in
standalone mode.

ACKNOWLEDGMENTS
This research was supported in part by the National Science
Foundation under Grant ITR-0326054. We thank Ben
Wojtyna, an undergraduate industrial design student who
helped design and prototype the physical connectors and
the EL wire edge hardware.

REFERENCES
[1] P. M. Higgins, Nets, Puzzles, and Postmen. Oxford:

Oxford University Press, 2007.
[2] E. J. Kaufmann, Nine Commentaries on Frank Lloyd

Wright. Cambridge, MA: MIT Press, 1990.
[3] A. A. DiSessa, Changing Minds: Computers, Learning,

and Literacy. Cambridge, MA, USA: MIT Press, 2000.
[4] S. Papert, "Situating Constructionism," in

Constructionism, I. Harel and S. Papert, Eds. Norwood,
NJ: Ablex Publishing Company, 1991, pp. 1-11.

[5] N. Brosterman, Inventing Kindergarten. New York:
Abrams, 1997.

[6] M. Resnick, F. Martin, R. Berg, R. Borovoy, V. Colella,
K. Kramer, and B. Silverman, "Digital manipulatives:
new toys to think with," in SIGCHI conference on
Human factors in computing systems, Los Angeles, CA,
1998, pp. 281-287.

[7] E. Schweikardt and M. D. Gross, "Learning About
Complexity with Modular Robots," in DIGITEL 2008:
The First IEEE International Workshop on Digital
Game and Intelligent Toy Enhanced Learning, Banff,
Canada, 2008.

[8] M. Eisenberg, L. Buechley, and N. Elumeze,
"Computation and Construction Kits: Toward the Next
Generation of Tangible Building Media for Children,"
in Proceedings of Cognition and Exploratory Learning
in the Digital Age (CELDA), Lisbon, Portugal, 2004.

[9] V. LeClerc, A. Parkes, and H. Ishii, "Senspectra: A
Computationally Augmented Physical Modeling Toolkit
for Sensing and Visualization of Structural Strain," in
CHI 2007, San Jose, CA, 2007.

[10] E. R. Berlekamp, J. H. Conway, and R. K. Guy,
Winning Ways for your Mathematical Plays vol. 2. New
York: Academic Press, 1982.

[11] J. Tantalo, "Planarity, http://www.planarity.net/," 2005.

