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ABSTRACT 
Graphs are a versatile representation of many systems in 
computer science, the social sciences, and mathematics, but 
graph theory is not taught in schools.  We present our work 
on Graphmaster, a computationally enhanced construction 
kit that enables children to build graphs of their own and 
investigate their properties by experimenting with 
algorithms that operate on them.  The system is distributed; 
microcontrollers inside each node execute an interpreted 
language in parallel.  Graphmaster, with its magnetic 
connectors, illuminated edges, and capacitive sensing, 
encourages children to develop intuitions about 
connectivity long before they are introduced to the notation 
and formulas of graph theory. 
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INTRODUCTION: WHY WE CARE ABOUT GRAPHS 
Graph theory is an important branch of modern 
mathematics that is used throughout the physical, social, 
and artificial sciences.  For example, it is used in electrical 
engineering to model circuits and in anthropology, to 
represent family structures in a society. In computer 
science, graph theory is fundamental to understanding the 
properties of data structures and algorithms that operate on 
them, for example, object hierarchies, Markov models and 
Bayesian networks, minimum spanning trees, and so on.  
An excellent popular introduction to important ideas of 
graph theory, and how they can be applied to an immense 
variety of deep and practical problems, can be found in [1]. 
In light of its importance in modern science and 
engineering, it is regrettable that young people do not 
encounter graphs in elementary or secondary school.  
(Under the rubric of “graphing” students are taught to plot 
functions on an x-y chart, but this is an entirely different 
topic.) Some students take a graph theory course in college, 
but most do not.  
We aim to remedy this problem by providing a tangible toy 
that can serve as an interactive platform for teaching, 
learning about, and playing with, graphs.  We describe here 

Graphmaster, our first design for and implementation of a 
tangible graph construction kit. The kit comprises physical 
components for nodes and edges, and the means to program 
graph constructions using a simple embedded language. 
 

PLAYING WITH GRAPHS 
Toys can give children valuable intuitions about complex 
concepts before they learn about those concepts formally.  
Architects, for instance, have described how playing with 
construction toys as children gave them an intuitive sense 
of structure and balance [2].  Andrea diSessa argues 
convincingly that the “phenomenological primitives” that 
children encounter during play are of the utmost 
importance for future comprehension of scientific and 
mathematical concepts [3].  The educational benefits of 
learning a formal concept that relates to previous 
experience (“oh, so that’s what you call it”) can be 
significant.  Although we don’t claim that GraphMaster 
teaches the formal notation of graph theory, it serves to 
expose children to graphs and their operations—to 
strengthen the intuitions of children—before they encounter 
the relevant mathematics. 
There is a particular benefit to be gained by building graphs 
and experimenting with graph algorithms, as opposed to 
just studying their properties.  In contrast to the idea of 
teachers transferring knowledge to children, Piaget’s 
constructivism describes how children create their own 
knowledge based on their experience (including their 
experience with teachers).  Seymour Papert coined the term 
constructionism to describe the benefits of actually building 
something as part of that process [4].  Although knowledge 
is invisible, a constructed object gives children and their 
mentors something external to reflect on and critique.  
Thoughtfully designed construction kits can provide pieces 
that encourage kids to build meaningful assemblies.  
Froebel’s “gifts,” from the mid-1800s, were an early 
example [5], and have been followed by commercial 
products like LEGO, Tinker Toys, and Erector Set. 
More recently, the availability of tiny and inexpensive 
microcontrollers has enabled embedded computation in 
construction kits, bringing with it a wide range of 
possibilities for interaction and feedback [6-8].  
Graphmaster was inspired by light-up edge design of 
Senspectra, a construction kit from the MIT Media Lab that 
is intended to model structural strain in truss systems [9]. 
The spatial, and therefore visual, aspects of graphs lend 
themselves to drawing.  A variety of paper and pencil 
games require users to manipulate graphs toward a certain 

 
 
 
 



aim.  In Sprouts [10], for example, players follow simple 
rules to draw nodes and edges in an attempt to block the 
other player.  In “Planarity,” an interesting on-line graph 
game [11], players drag connected vertices around on the 
computer screen in an attempt to arrange the graph so that 
none of the edges overlap.  These games successfully 
exploit the two dimensional nature of paper or a computer 
display, but many interesting games and tasks dealing with 
graphs are not as easy to represent on a planar surface.  A 
computationally enhanced construction kit, on the other 
hand, offers a tactile and tangible way to interact with 
graph theory concepts that can augment the experience 
available with paper and pencil. 
 
GRAPHMASTER 
Hardware 
Graphmaster is a computationally-enhanced construction 
kit made up of a collection of edges and a collection of 
nodes. Physically its nodes are small (approximately 10cm 
in diameter) plastic hemispheres with embedded ports 
where edges can connect. Edges are short lengths of 
electro-luminescent (EL) wire with connectors at their ends 
that snap magnetically into the nodes (see Figure 1). Nodes 
communicate with their neighbors over connected edges.  
Each edge can light up in blue or green, and uses capacitive 
sensing to detect when it is being touched.  When an edge 
is connected between two nodes, microcontrollers in each 
node detect the new link so that Graphmaster “knows” 
about the connection. Depending on the program that 
Graphmaster is running (actually, the program runs in a 
distributed fashion in each of the nodes), the kit behaves 
differently. 
 

 
Figure 1.  Each Graphmaster node is a plastic hemisphere with 
four ports for connecting edges.  Each edge is a length of 
electroluminescent wire with a connector at each end. 

As illustrated in Figure 2, each node contains a PIC 16765 
microcontroller, a triac (solid-state relay) for powering the 
EL wire, and connections to 4 ports. Each port contains five 
conductors: one for bi-directional communication between 

any two nodes (e.g North); two for power and ground 
(globally shared), and a pair to distribute the high voltage 
signal that powers each EL wire on command. 
 

 
Figure 2.  Circuit schematic of a single node. 

Data Transfer 
The nodes communicate using a homegrown return-to-zero 
pulse train: each bit is encoded as a unique pulse whose 
length depends on whether a one or a zero is being sent. 
Pulses are separated by a short period during which the line 
is low. When the line initially transitions from low to a high 
level, a listening node perceives this as the start of a new 
bit. The node then continuously examines the line until it 
returns to a low level. It then determines whether the pulse 
it just observed represents a one or a zero based on the 
length of the pulse. The length for a one is three times that 
for a zero, ensuring that the nodes can understand each 
other even if their timing sources differ by as much as 20%. 
In its quiescent state, the communication line is high; 
thanks to weak pullup resistors, unconnected ports also 
remain high. To communicate, a node first checks to see 
that the line is high, then drives the line low to indicate its 
intent to communicate. As the other nodes might be polling 
other ports, it keeps the line low long enough, before 
sending message pulses. To minimize collisions, each 
node's unique ID is used to produce timing that affects 
when and how the node can assert its signal on the line. 
Messages consist of four pieces of information (each piece 
is a byte):  

the identification number of the sending node; 
a sequence number for the message; 
the message identifier; and 
an argument.  

Messages are lightweight yet generic enough to exchange 
high-level instructions, including new programming code. 
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Figure 6.  A cycle has been detected in the graph and Graphmaster 
lights up the cycle’s edges. 

DISCUSSION 
More technological refinement is necessary before we can 
test the Graphmaster with users. Still, based on our 
prototype, we are optimistic about the utility of the kit. 
Even at a relatively small scale, it seems plausible that an 
interactive kit such as Graphmaster affords direct 
experience with the primitives of graph theory. 
We illustrated Graphmaster with a simple algorithm to 
detect cycles. Yet another (standard) example involves 
graphs with Eulerian circuits (this is a path that traverses 
every edge in the graph exactly once, returning to the 
starting vertex; the notion is usually introduced through the 
famous Königsberg Bridge problem investigated by 
Leonhard Euler). As it happens, a graph has an Euler circuit 
if and only if each vertex has an even number of edges 
connected to it; this too is a plausible question to ask of a 
Graphmaster vertex (though in this case, most sample 
graphs do in fact allow for multiple edges between vertices; 
thus a Graphmaster vertex must be able to identify not just 
its neighboring vertices, but also the number of edges 
connecting it to each neighbor). 
FUTURE WORK 
We have thought of a number of enhancements that we 
plan to add to the Graphmaster project, both hardware and 
software.  For hardware, we plan to add an output (LED or 
simple LCD display) on each node. This would provide an 
additional for users to debug their programs, and it might 
also be useful for programs to be able to highlight not only 
edges, but also nodes.  We also plan to add touch sensing to 
the edges, a feature that we had implemented in an earlier 
prototype. Similarly, we intend to provide each node with a 
sensor input (touch or switch).  With sensing on each node 
and edge as well as actuation, we expect that users will be 
able to write more interesting and interactive programs. 
Somewhat more challenging will be to add continuous 
(analog) sensing to the edges.  Many interesting problems 
can only be modeled with weights on the edges, for 
example modeling connection strengths, or flows, between 
nodes.  This entails designing an analog sensor that can be 
elegantly embedded in the edge, and visually echoing the 

edge’s weight. We might indicate the edge weight with the 
EL wire brightness, although this poses another set of 
hardware issues. 
Regarding software, we plan to build a more 
comprehensive language, PC based programming 
environment, and the supporting bytecode interpereter. It 
might be useful, for example, to provide a mode where the 
graph kit is connected to the PC for design and debugging; 
the graph is modeled on the PC screen as well as 
physically, and the PC environment can watch and probe 
individual nodes.  Once the user is satisfied with the 
program the kit would be untethered and work in 
standalone mode. 
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