
Working Draft

Technical Requirements/Criteria for UI Prototyping and Implementation Environment1

Technical Requirements/Criteria for
UI Prototyping and

Implementation Environment

SEED: Design for Usability Project
Project Members: Sheng-Fen Chien, Shang-chia Chiou,

 Bongjin Choi, Rana Sen,

Engineering Design Research Center
Carnegie Mellon University

Pittsburgh, PA 15213
schien+@cmu.edu

(412) 268-6271

1 Introduction
This document describes the technical requirement/criteria for the UI (User Interface) implementation and

prototyping environment. It is intended that this document be used by all future developers of SEED

related graphical user interface. Chapter 2 describes the technical requirements and criteria established for

the selection of UI implementation and prototyping environment. Chapter 3 will presented the tools chosen

for evaluation based on availability and recommendations of the DFU group.

2 Technical Requirements/Criteria
We decided not to consider high-level conceptual criteria, but rather decided to consider the technical

requirements and criteria specific to the established or expected needs of the SEED environment. Separate

requirements/criteria have been established for the UI prototyping environment and the UI

implementation environment. The reason behind this decision is simple. The envisaged functionality of

SEED is novel. Consequently, much iteration of the user interface and interaction design are anticipated. We

would like to separate the short-term UI prototype from imposing on the long-term actual UI

implementation. The following two sections outline the requirements/criteria selected for the respective

environments.

2.1 UI Prototyping Environment

UI prototyping environments refer to UI builder and any environment that may support the rapid

prototyping of the user interface including a mock-up of the interactions. The requirements/criteria for the

prototyping environment are listed in their of order of importance. Each requirement/criterion are

accompanied by a brief description

1. Easy to learn and use. The environment should require minimum time for the users to familiarize

themselves. Its interface should be easy to use.

1. Support incremental modification. The environment should support as much as possible the

expected iterations in design. For instance, interface layouts and color and widget spacing may be

changed often. A good example of incremental modification support is the packer in Tk. The packer is

a smart geometry manager of widgets. The user need not explicitly specify the geometry and place-

ment of the widgets, but rather only specify their relative positions.

2. Support interaction simulation. The environment should have facilities to support interaction simu-

lations. This may be provided via a high level language such as Hypertalk of Hypercard or some other

fancy techniques.

3. Support direct widget manipulation. The environment should provide direct widget manipulation

such as drag-n-drop.

Working Draft

Technical Requirements/Criteria for UI Prototyping and Implementation Environment2

4. Easily generate complex/compound widgets. The environment should provide support for easily

generating complex/compound widgets. Such widgets will facilitate reuse of interface components.

5. Free. Last, the environment should be free. Since UI prototyping would most likely be a short-term

endeavor, any capital investments are not justified.

2.2 UI Implementation Environment

UI implementation environments refer to the interface implementation language and widgets sets. It may

also refer to any UIMS or UI builders that support the generation of application linkable code. The

requirements/criteria for the implementation environment are listed in their of order importance. Each

requirement/criterion are accompanied by a brief description.

1. Easily generate/maintain complex/compound widgets. (i.e., reuse)

2. Support objects and inheritance. (data structure)

3. Support Model-View-Controller paradigm. (i.e, event notification and separation of interface from

the domain)

4. Supports advanced interactions. (e.g., drag-n-drop)

5. Portable across Unix platforms.

6. Inexpensive.

• Interpreted versus compiled environment. (turnaround time and execution speed)

• Support incremental modification.

3 Environments Considered and Evaluation

3.1 UI Environments

Environment Type of Supports Language

Alpha UIMS /wo UI Builder C++

ET++ Framework /w class library C++

Hypercard Prototyping tool Hypertalk

iLog Framework /w class library C++

Interviews UI Builder /w 2-D Xlib widgets C++

Tk/Tcl Interpreted toolkit Tcl

Xf UI Builder Tcl

Winterpa UI Builder xlisp

Wxwindows UI Builder C++

Working Draft

Technical Requirements/Criteria for UI Prototyping and Implementation Environment3

3.2 Evaluation

a. xlisp

b. modified version of ET++

a. Prices listed in this row are taken from Brad Myers’ User Interface Software Tools <http://www.cs.cmu.edu:8001/afs/

cs.cmu.edu/user/bam/www/toolnames.html>

Zinc UI Builder C++

Escaranteb Visual programming environment C++

alpha iLOG Inter
Views XF Wx-

windows Zinc Escalante Tk/Tcl WIN-
TERP ET++ Hyper

Card

learn/
use

✔ ▲ ✘ ✘ ▲ ✔ ✔ ✔

incr.
mod.

✔ ▲ ✘ ✔ ✔ ✔ ✔ ✘

interac-
tion

✔ ✘ ✔ ✔ ✔ ✔

drag/
drop

✘ ✔ ✘ ✔ ✔ ✘ ✘ ✔

widgets ✔ ✔ ✘ ✔ ▲ ✘ ✔ ✘

free ✘ ✔ ✔ ✔ ✘ ✔ ✔ ✘

reuse ✔ ▲ ✔ ✔

data
struc.

✔ ▲ ✔ ✔

MVC ✘ ✔

adv.
inter.

✔ ✔ ✔

portable ✔ ✔ ✔

inexp.a $7,000 $$ free $300+ free free free free

Environment Type of Supports Language

