
 eCAADe 26 169-Section 04: CAAD Curriculum 1

A Perspective on Computer Aided Design after Four
Decades

Earl Mark 1, Mark Gross 2, Gabriela Goldschmidt 3
1 The University of Virginia, USA, 2 Carnegie Mellon University, USA, 3 Technion, Israel
1 http://faculty.virginia.edu/mark/, 2 http://www.andrew.cmu.edu/user/mdg2/, 		
3 http://architecture.technion.ac.il
1 ejmark@virginia.edu, 2 mdgross@cmu.edu, 3 gabig@tx.technion.ac.il

Abstract. We offer a summary view of competing theories that have guided and
inspired the development of computer aided design over the past forty years
with attention to how they support design processes. We identify eight distinct
approaches to design. We then speculate on what a collective view of these
schools posits with respect of the next generation of tools. This perspective
reflects our view as teachers and researchers at institutions with different
curricula, a first-hand role in the development of computer aided design
technology, and specialization in design theory and methods.
Keywords: Design theory and methods, computer aided design software,
constraints, parametric variation.

Introduction

It is said that to a man with a hammer the whole
world is a nail. Our tools shape the way we see the
world, and they shape the world we make. Comput-
er aided architectural design tools are no different.
They shape the way we see and reconstruct the built
and natural environment. Studies have compared
architects using traditional paper-based media with
those using computer aided design applications,
to see how the change in tools affects the designs.
Some have focused on specific media, for example
comparing desktop virtual reality with head mount-
ed displays; 3D computer graphics with tangible in-
teraction and so on. Here we are interested, not in
comparing design media, but in looking at how soft-
ware represents designs, and considering how the

choice of representation can affect the kinds of de-
signs and design processes that the software affords.
We observe complementary approaches to design
and propose that an open and loosely constructed
technology environment will continue to build upon
existing software technology and provide a fertile
ground for further exploration and development.

The computer aided design tools that are used
in professional design practice are the result of forty
years of research, development, and commercializa-
tion. They have advanced from managing 2D line
drawings displayed on vector screens to quite exqui-
site real time rendering of scenes with lighting, ma-
terials, and animation using raster scan technology.
The interface has advanced, though less dramatically,

170 eCAADe 26 - Section 04: CAAD Curriculum 1

from keyboard to mouse and windows to tablets and
three-dimensional capture of physical models. The
internal representations built into these tools have
also advanced, from simply managing points, lines,
and planes, to parametric and constraint represen-
tations such as those used by leading practitioners
such as Foster and Partners, KPF, Morphosis, and
Arup. To be sure, many of the ideas that are now
widely adopted, or considered leading edge have a
long history in research: building information model-
ing was conceived more than thirty years ago (East-
man 1987) likewise, capture of 3D input (Aish 1979,
Frazer et al 1980); pens and tablets were in use from
the earliest days (Mitchell 1977).

Until the fairly recent and still ongoing adoption of
parametric and constraint based software in design,
commercial computer aided design software sup-
ported designers in making and managing geom-
etry. The computer was understood as a medium
that the designer used to record and edit two- and
three-dimensional form. Parametric and constraint
based approaches add a layer in which the designer
expresses relationships and dependencies among
quantities (parameters) in the design. The com-
mercialization of these technologies has begun to
change architectural practice, and perhaps thereby
also architectural thinking.

Researchers in computer-aided design are famil-
iar with a range of approaches to computer-aided
design that have been explored by the research
community but not (yet) been developed and ad-
opted commercially. We believe the lack of adoption

in practice does not, in most cases, reflect the pov-
erty of the approach, but is due to marketplace fac-
tors that may be on the threshold of change. Each
approach, if and when it is adopted, might have a
profound effect on architectural design thinking and
practice as parametric design has had in recent years.
Therefore in the rest of this paper we review briefly
several of these approaches to design and reflect on
the underlying models of design that they embody.

First Generation Tools
First generation computer aided design tools were
intended to support a design process rather than
provide for pre-conceived and ready-made solu-

tions. Sketchpad, the 1963 landmark system devel-
oped by Ivan Sutherland at MIT, demonstrated that
a design process could be viewed as setting and re-
laxing geometrical constraints, building up a kit of
object instances, and allowing for parametric control
over their formation (Sutherland 1963). Some later
generation tools, in order to help automate design
and documentation, focus constraints, instances and
their variation on conventional architectural types,
such as “wall types”, “window types” and other pre-
defined objects. These systems appear biased to-
wards commonly recognized building products. Still,
their intention is to give the designer a free hand in
the layout, scale, and relationships between a set of
parts.
On the one hand, designers value flexibility in explor-
ing form. On the other hand, they also constrain ob-
jects as they transform a sketch into a representation

Fig 1: Ivan Sutherland’s
Sketchpad system

 eCAADe 26 171-Section 04: CAAD Curriculum 1

invested with specifically constructed materials and
purposes. The state of the art is imperfect in address-
ing these at times contradictory demands. For ex-
ample, some tools focus on geometry only and allow
for a great range of formal explorations. Other more
automated computer aided design systems offer de-
sign lifecycle features that can quickly expedite as-
semblies of pre-defined architectural objects based
upon limited libraries of architectural components
(e.g., doors, windows, walls). We can join two walls
together automatically provided that the software
anticipates geometrical configurations, material at-
tributes, and part-to-part relationships.

Today it is difficult to find application software
that provides both a capacity for open geometrical
modeling and automated assembly of standard ar-
chitectural objects at the push of a button (e.g., Pella
Windows, etc.). The automation works if the software
designers anticipate the geometry of the objects that
they are required to accommodate. Can we “train” a
computer aided design system, as first proposed
by Negroponte, to become more adept at enabling
explicit architectural forms while still allowing for a
more open geometrical description of objects, and,
going further, to partner with us in defining a design
process that is customized to each new design prob-
lem (Negroponte 1970)? The range of approaches
and opinions varies widely.

Eight approaches to design

We consider eight approaches to design through the
lens of different ways of constructing computer-aid-
ed design software. We have mentioned the first—
parametric and constraint based design—which (as
a basis of both building information modeling and
digital fabrication) is already transforming architec-
tural design practice. The others are: shape gram-
mars, frame based design methods, object oriented
design, generative systems, top-down design, knowl-
edge based design systems, and design and cogni-
tion. These categories overlap and several may draw
upon the same methods. However, we use them to

draw out some distinct approaches. Although most
readers will be familiar with these approaches we of-
fer a summary of each.

Design by Constraints
One can view architectural design as making a build-
ing to satisfy constraints and achieve objectives.
Among the constraints are site, construction, and
program requirements such as “it must be on this
site,” “it must stand up,” and “it must provide work-
ing, play, and living space for one hundred people.”
Although the word “constraint” suggests something
restrictive, a constraint can be anything the architect
wants the building to satisfy. An objective is like a
constraint, but to be achieved to the greatest extent
possible. “As sunny a livingroom as possible,” “The
smallest possible building footprint,” and so on.

Engineers think about design this way: as a
problem to optimize an objective function while
satisfying constraints. State the constraints and the
objective function and you can apply mathematical
machinery to crunch numbers and produce the solu-
tion. For example, designing an airplane wing en-
tails producing the shape that gives maximum lift for
minimum weight, subject to constraints on strength
of materials. In architecture, we seldom can state the
constraints and objectives at the outset. We develop
them as we go: problem and solution co-evolve.
And the constraints and objectives of architectural
design aren’t so easily stated as “maximum lift.”

But if we can describe some constraints—sizes
of things, spatial relationships among built and open
elements in the building—then we can program a
computer to manage them. Constraint-based de-
sign software records not only sizes and positions
of physical elements but also the relationships that
we want in the design. This window is in this wall.
These two rooms are adjacent. When we change
the design—move this column, resize a room—the
software keeps the relationship we stated. Design
by constraints views design as managing a large and
complicated set of relationships.

A simpler variation is parametric design in which

172 eCAADe 26 - Section 04: CAAD Curriculum 1

some quantities (dimensions, positions, numbers of
elements) are expressed as a mathematical function
of others. For example, the number of windows de-
pends on the length of the wall; the longer the wall,
the more windows. Parametric design sets up these
dependent relationships, and when the designer
changes key driving variables, dependent ones fol-
low. It’s like design by constraints, except that the
dependencies only go one way. Parametric design
was championed in the 1980s and today many CAAD
application offer the ability to relate one quantity to
another.

Shape Grammar
Shape Grammar (Stiny 1980) derives from the work
of mathematician Emil Post (Davis 1989), whose
production systems form the basis of modern com-
puter language parsers as well as rule-based expert
systems in artificial intelligence. Shape Grammar
trades on the idea of a “language of form,” and the
use of grammar to describe the structure of natural
language. Languages have syntax and semantics. If
we speak of languages of form, a shape grammar de-
scribes its syntax.

The key idea in shape grammar is the shape
replacement rule that says, “whenever you see this
shape, you may replace it by that shape.” A shape
grammar is a set of replacement rules. Grammars
can be designed to begin with a single dot, to be re-
placed by a line, the line by a rectangle, and so on
until quite complicated forms appear. A carefully de-
signed grammar can capture a design style, as many
examples show. Researchers have designed gram-
mars that produce all manner of forms: Japanese
traditional tea houses, Frank Lloyd Wright prairie
houses, coffee makers, soda bottles, microelectronic
mechanical systems, and plant forms. By exercis-
ing production rules, one after another in different
sequences, a grammar generates a different variant
within a universe of forms.

Frame based design methods
The key idea in frame-based design is that

design proceeds by retrieving and specifying design
“frames” (Minsky 1986), each of which consists of a
collection of “slots” that represent attributes. The
frame (like a prototype, object instance, or even a
case) represents knowledge about a typical design.
For example, the frame for “school” might include
slots for classrooms, playground, principal’s office,
teacher’s lounge, and auditorium. When the design
software “instantiates” the frame, it brings into play
previous knowledge about schools: what to expect
in a school design and what decisions must be made.
Some slots may hold default values, for example: un-
less the designer specifies otherwise, a classroom
will hold approximately 30 children. A frame based
design system has three main parts: a mechanism
to retrieve frames from memory that match—more
or less—the design problem at hand; a means to
adapt the frame by adding detail or overriding de-
faults, specifying the frame for the problem—and a
mechanism to store new designs as frames. A fully
realized frame system would enable the designer to
retrieve, apply, and combine frames at different lev-
els and aspects of design. For example, the school
design might be composed of a frame for site de-
sign, a frame for structural design, frames for class-
rooms, offices, and play areas, and so on. Case based
design (Oxman 1993; Zimring et al 1995; Heylighen
and Neuckermans 2001) can be considered a kind of
frame-based design. The idea is that a designer sel-
dom works from scratch. Rather, a designer begins
with a known example (a case, or precedent) of the
desired design, and then adapts the case to respond
to the particularities of the problem at hand. For ex-
ample, an architect designing a school might begin
with a known school design, and then make changes
to the design based on site, program, and other local
conditions.

Object oriented design
The paradigm of object oriented design derives
from the basic concept that an object carries within
it the processes it requires to adapt or situate itself
in response to information that is passed along to it.

 eCAADe 26 173-Section 04: CAAD Curriculum 1

Object oriented code thus consists of objects that
contain knowledge about the processes and data
needed to define it within a larger programming
language. Correspondingly, an object oriented com-
puter aided design system might allow a designer to
think in terms of the placement of objects that are
adaptive rather than need to be fully instructed as
to how they react. The approach includes classes of
objects that perform according to inherited proper-
ties and behaviors. Within more complex and some
commercially successful systems (e.g., Revit), object
oriented design includes objects that contain infor-
mation about cost, specification of materials, and
geometry that is adaptive to design process and
documentation strategies used in practice.

While object oriented approaches have reached
a level of industry wide use and acceptance, imple-
mentations vary widely. Some systems afford an
open ended environment in which the definition of
architecture objects is relatively fluid and unencum-
bered by pre-defined rules. Other systems capture
industry knowledge and processes at the cost of
limits to their flexibility. These later systems require a
large investment in structuring formal and spatial re-
lationships that may not fit the quickly changing per-
spectives that occur in schematic design. The ability
to dynamically create objects within such a system
then becomes a limiting factor on use.

Generative Systems
In generative systems, a set of rules or formulae es-
tablishes the framework for a computer based pro-
duction process. The author-designer sets up the
rules and the resulting computer process generates
shapes and designs without the designer individu-
ally determining each solution. For example, Bentley
Systems’ relatively new commercial system, Genera-
tive Components sets into play a series of user defined
transactions and parameters, generates forms, and
then allows the designer to make dynamic modifica-
tions in order to adjust the results. Most generative
systems focus on form generation or solving specific
structural or space planning problems, but some

also include setting up design evaluation or feed-
back systems. Within generative systems, strategies
include those found in shape grammars, such as
rule-based systems, and also strategies associated
with design and cognition, such as neural network
approaches. Researchers have also applied genera-
tive systems retroactively to reviewing a past proj-
ect (Caldas and Rocha 2001). A celebrated example
is Foster and Partners’ Swiss Re Tower in London,
where so-called “dimension driven cells” were rigged
and then parameters varied to realize the distinct flat
diamond geometry of the exterior of the skin.

Top Down Design
In top down design an abstract overview is the be-
ginning point towards realizing a set of objectives.
In architecture, a top-down methodology might
consist of a larger formal massing study before any
specific materials or more detailed development of
objects begins. In product design an overview as-
sembly of a project is developed at the beginning of
a design process prior to sub-assembly and thinking
through details on a finer grained level. The Pro/En-
gineer software is a commercially used technology
that has been optimized for this approach.

Yet, in practice, the top down approach is not de-
livered in absolute terms. The technology may pro-
vide for libraries of parts, parametric approaches, and
additional techniques associated with other meth-
ods. In “The Art of Computer Graphics Programming:
A Structured Introduction for Architects and Design-
ers”, Mitchell, Liggett, and Kvan (1987) developed a
top-down adaptation of Turbo Pascal for architec-
tural case studies. The structuring of the case studies
is based upon top-down reasoning and methods of
exercising parameters that control the size, number
and placement of elements. For example, a classi-
cal column is initiated with a blank template, and
then, as a layout is developed, is further detailed as
Doric, Ionic or an alternative type. The later part of
the production process thus considers the detailed
development of individual components. Working
with such a system, the designer can still engage in a

174 eCAADe 26 - Section 04: CAAD Curriculum 1

combination of top-down and bottom-up thinking.
Yet, the prevalent direction of the exercises places
value on top-down considerations in assembly. If
such an approach is applied too rigidly, the discov-
ery of problems at the detailed level that require
reconsideration of the entire top-down structure
may occur later than it would in a more balanced ap-
proach. Conversely a designer who becomes lost in
the details, or takes on details at too early a stage,
may fail to see larger schematic options. Optimized
use of this method is then a process of reconciling
larger assemblies with detailed elements in a mutu-
ally adjustable process.

Knowledge Based Design Systems
Knowledge based design systems (Coyne et al 1989)
have the implicit premise that a design process does
not begin tabula rasa, but rather builds upon what
has come before, either in precedents for the project
or in the history of a design project itself. Capturing
and flagging this information appropriately may
remind the designer of considerations related to
current design decisions. In this approach, specially
trained knowledge engineers elicit knowledge from
domain experts to develop the software. In some im-
plementations, the system uses the acquired knowl-
edge base to generate candidate formal or spatial
layouts for the designer to select from.

Still, design activity may require a response to
a distinct set of problems that calls upon relatively
novel approaches and solutions. Building a knowl-
edge based design system in such circumstances is
more challenging. Varied techniques have included
rule-based if-then statements for capturing knowl-
edge, neural-nets where nodes and connections are
made to capture knowledge, and fuzzy logic for han-
dling imprecise circumstances. Still, individual varia-
tion in design method is complex and is probably
difficult for even the best system to generalize. A
number of implementations are devoted to solving
specific types of design problems, e.g., a knowledge
based system to assist in space-frame design.

Design and cognition
The study of design and cognition bridges the disci-
plines of cognitive science, artificial intelligence and
computer based design methods. Research meth-
ods include capturing and observing human design
activity. It includes methods of form finding and
reasoning. Scholarship can include computer gener-
ated agent based activities, providing insights into
human interaction with design tools or architectural
places. Advances in collaborative design methods
are also cited in this area. Thus, design and cogni-
tion often draws upon, feeds into, or overlaps with
technologies associated with the first seven areas.
The work varies widely from speculating upon or
evaluating human behavior to the incorporation of
observable design problem solving paradigms into
computer aided design tools.

Observations

Reflecting upon these approaches to computer aid-
ed architectural design, we find common ground in
some observations:

Design process in architecture is intimately asso-1.	
ciated with geometric modeling.
Geometric models must be mutable with less 2.	
predefined representations.
Variation does not proceed only at the whimsy 3.	
of the designer but is informed and can be con-
trolled via a set of established relations between
objects and invented rules.
A design proceeds from ambiguous and loosely 4.	
defined relationships among objects to deliber-
ately associated relationships.

This yields some cautiously offered propositions
about the next generation of tools:

Geometric modeling processes should at times 1.	
re-engage the histories of how individual ob-
jects have been created.
Knowledge-based approaches or rule-based 2.	
systems must not be fully deterministic.
The development of smarter design tools will 3.	
continue to beckon research and theory well

 eCAADe 26 175-Section 04: CAAD Curriculum 1

into the future, as each generation discovers
new paradigms to more tightly connect design
activity with the acts of making and building.
Given our present view of the state of the art

in design tools, what direction might development
of technology take? In this brief survey we have at-
tempted to summarize a pattern of achievements
over the divergent history of computer-aided design.
We propose that the next generation of design tools
emphasize diversity of specialized approaches rath-
er than comprehensive technology solutions. Design
and Cognition is not so much one of a distinct num-
ber of methodologies, but perhaps guides a great
combination of working methods and strategies.

Martin Woolley (2004) argued that in the “post-
IT era” tools must be developed ad hoc as needed,
where (unlike today) the designer is the tool builder.
In this respect the tool is not selected, but created
contingent on the type of design task, the stage it
is in, and adapted to circumstances. This may have
more implications for interfaces than for the actual
output of the particular tool, for databases that are
fluid, and for tools that offer an open architecture,
rather than those that make automated construction
simpler and easier for all.

The growing acceptance of computer technol-
ogy in the discipline and profession of architecture
has motivated putting the present state of the art in
perspective. The most significant contribution of the
first generation of computer aided design tools was
to set into place a kind of geometry embodied with
reason. The first such system recognized the value
of constraints, parametric variation and instances
in the deliberative processes required of a designer.
The history of the technology has been enriched by
varied attempts to articulate the reasoning used to
construct a geometric model. In this sense, com-
puter aided design allows for the highest-level dis-
cussion of intention. We predict it will continue to
develop according to the ways in which we are able
to expand upon the means to construct geometry.
This may occur through increasing integration of
computer aided geometrical modeling and direct

physical form making (e.g., CNC fabrication). Or, it
may occur through a growing number of techniques
(e.g., scripting, associative geometrical modeling
tools, constraint managers) that empower the end
user with an increased ability to independently con-
struct a model of the design.

Acknowledgement

We thank Alexander Koutamanis for providing the
incentive to write this article as part of a planned
book on “the architectural image and the computer.”
Due to the tragic fire that consumed Alexander’s of-
fice in the Bouwkunde at the TU Delft, the book proj-
ect is no longer active.

References

Aish, R.: 1979, 3D input for CAADsystems, Computer-
Aided Design.

Caldas and Rocha: 2001, A Generative Design System
Applied to Siza’s School Of Architecture at Oporto,
Proceedings of CAADRIA, 2001, pp. 253-264.

Coyne, R. D., Rosenman, M. A., Radford, A. D., Balachan-
dran, M. and Gero, J. S. (eds.): 1989, Knowledge-
Based Design Systems, Addison-Wesley Longman.

Davis, M.: 1989, Proceedings., Fourth Annual Sympo-
sium on Logic in Computer Science, LICS ‘89, IEEE.

Eastman, C., Lividini, J. and Stoker, D.: 1975, A Database
for Designing Large Physical Systems, in Proceed-
ings of the 1975 National Computer Conference,
AFIPS Press, Montvale NJ.

Eastman, C.: 1986, Fundamental Problems in the Devel-
opment of Computer Based Architectural Models,
Proceedings of the Computers & Design Research
Symposium, M.I.T., August 4.

Frazer, J. H., Frazer, J. M. and Frazer, P. A.: 1980, Intelligent
Physical Three-Dimensional Modelling System,
Computer Graphics 80 Conference, Conference Pro-
ceedings, Online Publications, pp. 359-70.

Heylighen, A. and Neuckermans, H.: 2001, A case base of
Case-Based Design tools for architecture. Comput-
er-Aided Design, 33(14), pp. 1111-1122.

176 eCAADe 26 - Section 04: CAAD Curriculum 1

Minsky: 1986, Society of Mind, MIT Press.
Mitchell, W. J.: 1977, Computer-Aided Architectural De-

sign. Petrocelli/Charter, New York.
Mitchell, Liggett and Kvan: 1987, The Art of Computer

Graphics Programming: A Structured Introduction
for Architects and Designers, Van Nostrand Rein-
hold.

Negroponte, N.: 1970, The Architecture Machine, MIT
Press.

Negroponte, N.: 1975, Reflections on Computer Aids to
Design and Architecture, Petrocelli/Charter.

Oxman, R.: 1993, PRECEDENTS: Memory structure in
design case libraries, in CAAD Futures ‘93, Elsevier
Science Publishers.

Schon, D.: 1983, The Reflective Practitioner: How Profes-
sionals Think in Action, Basic Books.

Stiny, G.: 1980, Introduction to Shape and Shape Gram-
mars, Environment and Planning B, 7, pp. 343-351.

Sutherland, I.: 1963, SKETCHPAD: A Man-Machine
Graphical Communication System, Proceedings of
the AFIPS Spring Joint Computer Conference, De-
troit, Michigan, May 21-23, pp. 329-346.

Woolley, M.: 2004, The thoughtful mark maker, in G.
Goldschmidt and W. L. Porter (eds.), Design Repre-
sentation, Springer Verlag, London, pp. 185-201.

Zimring, C. M., Do, E., Domeshek, E. and Kolodner, J.:
1995, Supporting case-study use in design educa-
tion: A computational case-based design aid for ar-
chitecture. in J. P. Mohesen (ed.), Computing in Civil
Engineering, American Society of Civil Engineers,
New York, pp. 1635-1642.

