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Abstract. We offer a summary view of competing theories that have guided and 
inspired the development of computer aided design over the past forty years 
with attention to how they support design processes. We identify eight distinct 
approaches to design. We then speculate on what a collective view of these 
schools posits with respect of the next generation of tools.  This perspective 
reflects our view as teachers and researchers at institutions with different 
curricula, a first-hand role in the development of computer aided design 
technology, and specialization in design theory and methods.  
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Introduction 

It is said that to a man with a hammer the whole 
world is a nail. Our tools shape the way we see the 
world, and they shape the world we make.  Comput-
er aided architectural design tools are no different. 
They shape the way we see and reconstruct the built 
and natural environment. Studies have compared 
architects using traditional paper-based media with 
those using computer aided design applications, 
to see how the change in tools affects the designs.  
Some have focused on specific media, for example 
comparing desktop virtual reality with head mount-
ed displays; 3D computer graphics with tangible in-
teraction and so on.  Here we are interested, not in 
comparing design media, but in looking at how soft-
ware represents designs, and considering how the 

choice of representation can affect the kinds of de-
signs and design processes that the software affords. 
We observe complementary approaches to design 
and propose that an open and loosely constructed 
technology environment will continue to build upon 
existing software technology and provide a fertile 
ground for further exploration and development.

The computer aided design tools that are used 
in professional design practice are the result of forty 
years of research, development, and commercializa-
tion.  They have advanced from managing 2D line 
drawings displayed on vector screens to quite exqui-
site real time rendering of scenes with lighting, ma-
terials, and animation using raster scan technology. 
The interface has advanced, though less dramatically, 
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from keyboard to mouse and windows to tablets and 
three-dimensional capture of physical models.  The 
internal representations built into these tools have 
also advanced, from simply managing points, lines, 
and planes, to parametric and constraint represen-
tations such as those used by leading practitioners 
such as Foster and Partners, KPF, Morphosis, and 
Arup.  To be sure, many of the ideas that are now 
widely adopted, or considered leading edge have a 
long history in research: building information model-
ing was conceived more than thirty years ago (East-
man 1987) likewise, capture of 3D input (Aish 1979, 
Frazer et al 1980); pens and tablets were in use from 
the earliest days (Mitchell 1977).

Until the fairly recent and still ongoing adoption of 
parametric and constraint based software in design, 
commercial computer aided design software sup-
ported designers in making and managing geom-
etry.  The computer was understood as a medium 
that the designer used to record and edit two- and 
three-dimensional form.  Parametric and constraint 
based approaches add a layer in which the designer 
expresses relationships and dependencies among 
quantities (parameters) in the design.  The com-
mercialization of these technologies has begun to 
change architectural practice, and perhaps thereby 
also architectural thinking.   

Researchers in computer-aided design are famil-
iar with a range of approaches to computer-aided 
design that have been explored by the research 
community but not (yet) been developed and ad-
opted commercially. We believe the lack of adoption 

in practice does not, in most cases, reflect the pov-
erty of the approach, but is due to marketplace fac-
tors that may be on the threshold of change.  Each 
approach, if and when it is adopted, might have a 
profound effect on architectural design thinking and 
practice as parametric design has had in recent years.  
Therefore in the rest of this paper we review briefly 
several of these approaches to design and reflect on 
the underlying models of design that they embody.

First Generation Tools
First generation computer aided design tools were 
intended to support a design process rather than 
provide for pre-conceived and ready-made solu-

tions. Sketchpad, the 1963 landmark system devel-
oped by Ivan Sutherland at MIT, demonstrated that 
a design process could be viewed as setting and re-
laxing geometrical constraints, building up a kit of 
object instances, and allowing for parametric control 
over their formation (Sutherland 1963).  Some later 
generation tools, in order to help automate design 
and documentation, focus constraints, instances and 
their variation on conventional architectural types, 
such as “wall types”, “window types” and other pre-
defined objects. These systems appear biased to-
wards commonly recognized building products. Still, 
their intention is to give the designer a free hand in 
the layout, scale, and relationships between a set of 
parts. 
On the one hand, designers value flexibility in explor-
ing form. On the other hand, they also constrain ob-
jects as they transform a sketch into a representation 

Fig 1: Ivan Sutherland’s 
Sketchpad system
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invested with specifically constructed materials and 
purposes. The state of the art is imperfect in address-
ing these at times contradictory demands. For ex-
ample, some tools focus on geometry only and allow 
for a great range of formal explorations. Other more 
automated computer aided design systems offer de-
sign lifecycle features that can quickly expedite as-
semblies of pre-defined architectural objects based 
upon limited libraries of architectural components 
(e.g., doors, windows, walls). We can join two walls 
together automatically provided that the software 
anticipates geometrical configurations, material at-
tributes, and part-to-part relationships.

Today it is difficult to find application software 
that provides both a capacity for open geometrical 
modeling and automated assembly of standard ar-
chitectural objects at the push of a button (e.g., Pella 
Windows, etc.). The automation works if the software 
designers anticipate the geometry of the objects that 
they are required to accommodate. Can we “train” a 
computer aided design system, as first proposed 
by Negroponte, to become more adept at enabling 
explicit architectural forms while still allowing for a 
more open geometrical description of objects, and, 
going further, to partner with us in defining a design 
process that is customized to each new design prob-
lem (Negroponte 1970)? The range of approaches 
and opinions varies widely. 

Eight approaches to design

We consider eight approaches to design through the 
lens of different ways of constructing computer-aid-
ed design software.  We have mentioned the first—
parametric and constraint based design—which (as 
a basis of both building information modeling and 
digital fabrication) is already transforming architec-
tural design practice.  The others are: shape gram-
mars, frame based design methods, object oriented 
design, generative systems, top-down design, knowl-
edge based design systems, and design and cogni-
tion.  These categories overlap and several may draw 
upon the same methods. However, we use them to 

draw out some distinct approaches. Although most 
readers will be familiar with these approaches we of-
fer a summary of each.

Design by Constraints
One can view architectural design as making a build-
ing to satisfy constraints and achieve objectives.  
Among the constraints are site, construction, and 
program requirements such as “it must be on this 
site,”  “it must stand up,” and “it must provide work-
ing, play, and living space for one hundred people.”  
Although the word “constraint” suggests something 
restrictive, a constraint can be anything the architect 
wants the building to satisfy.  An objective is like a 
constraint, but to be achieved to the greatest extent 
possible.   “As sunny a livingroom as possible,” “The 
smallest possible building footprint,” and so on.

Engineers think about design this way: as a 
problem to optimize an objective function while 
satisfying constraints. State the constraints and the 
objective function and you can apply mathematical 
machinery to crunch numbers and produce the solu-
tion.  For example, designing an airplane wing en-
tails producing the shape that gives maximum lift for 
minimum weight, subject to constraints on strength 
of materials. In architecture, we seldom can state the 
constraints and objectives at the outset.  We develop 
them as we go: problem and solution co-evolve.  
And the constraints and objectives of architectural 
design aren’t so easily stated as “maximum lift.”

But if we can describe some constraints—sizes 
of things, spatial relationships among built and open 
elements in the building—then we can program a 
computer to manage them.  Constraint-based de-
sign software records not only sizes and positions 
of physical elements but also the relationships that 
we want in the design. This window is in this wall. 
These two rooms are adjacent. When we change 
the design—move this column, resize a room—the 
software keeps the relationship we stated. Design 
by constraints views design as managing a large and 
complicated set of relationships.

A simpler variation is parametric design in which 
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some quantities (dimensions, positions, numbers of 
elements) are expressed as a mathematical function 
of others.  For example, the number of windows de-
pends on the length of the wall; the longer the wall, 
the more windows.  Parametric design sets up these 
dependent relationships, and when the designer 
changes key driving variables, dependent ones fol-
low. It’s like design by constraints, except that the 
dependencies only go one way.  Parametric design 
was championed in the 1980s and today many CAAD 
application offer the ability to relate one quantity to 
another. 

Shape Grammar
Shape Grammar (Stiny 1980) derives from the work 
of mathematician Emil Post (Davis 1989), whose 
production systems form the basis of modern com-
puter language parsers as well as rule-based expert 
systems in artificial intelligence. Shape Grammar 
trades on the idea of a “language of form,” and the 
use of grammar to describe the structure of natural 
language.  Languages have syntax and semantics. If 
we speak of languages of form, a shape grammar de-
scribes its syntax.

The key idea in shape grammar is the shape 
replacement rule that says, “whenever you see this 
shape, you may replace it by that shape.”  A shape 
grammar is a set of replacement rules.  Grammars 
can be designed to begin with a single dot, to be re-
placed by a line, the line by a rectangle, and so on 
until quite complicated forms appear.  A carefully de-
signed grammar can capture a design style, as many 
examples show. Researchers have designed gram-
mars that produce all manner of forms: Japanese 
traditional tea houses, Frank Lloyd Wright prairie 
houses, coffee makers, soda bottles, microelectronic 
mechanical systems, and plant forms.  By exercis-
ing production rules, one after another in different 
sequences, a grammar generates a different variant 
within a universe of forms.  

Frame based design methods
The key idea in frame-based design is that 

design proceeds by retrieving and specifying design  
“frames” (Minsky 1986), each of which consists of a 
collection of “slots” that represent attributes.  The 
frame (like a prototype, object instance, or even a 
case) represents knowledge about a typical design.  
For example, the frame for “school” might include 
slots for classrooms, playground, principal’s office, 
teacher’s lounge, and auditorium.  When the design 
software “instantiates” the frame, it brings into play 
previous knowledge about schools: what to expect 
in a school design and what decisions must be made.  
Some slots may hold default values, for example: un-
less the designer specifies otherwise, a classroom 
will hold approximately 30 children. A frame based 
design system has three main parts: a mechanism 
to retrieve frames from memory that match—more 
or less—the design problem at hand; a means to 
adapt the frame by adding detail or overriding de-
faults, specifying the frame for the problem—and a 
mechanism to store new designs as frames.  A fully 
realized frame system would enable the designer to 
retrieve, apply, and combine frames at different lev-
els and aspects of design.  For example, the school 
design might be composed of a frame for site de-
sign, a frame for structural design, frames for class-
rooms, offices, and play areas, and so on.  Case based 
design (Oxman 1993; Zimring et al 1995; Heylighen 
and Neuckermans 2001) can be considered a kind of 
frame-based design.  The idea is that a designer sel-
dom works from scratch.  Rather, a designer begins 
with a known example (a case, or precedent) of the 
desired design, and then adapts the case to respond 
to the particularities of the problem at hand.   For ex-
ample, an architect designing a school might begin 
with a known school design, and then make changes 
to the design based on site, program, and other local 
conditions.

Object oriented design
The paradigm of object oriented design derives 
from the basic concept that an object carries within 
it the processes it requires to adapt or situate itself 
in response to information that is passed along to it. 
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Object oriented code thus consists of objects that 
contain knowledge about the processes and data 
needed to define it within a larger programming 
language. Correspondingly, an object oriented com-
puter aided design system might allow a designer to 
think in terms of the placement of objects that are 
adaptive rather than need to be fully instructed as 
to how they react. The approach includes classes of 
objects that perform according to inherited proper-
ties and behaviors. Within more complex and some 
commercially successful systems (e.g., Revit), object 
oriented design includes objects that contain infor-
mation about cost, specification of materials, and 
geometry that is adaptive to design process and 
documentation strategies used in practice. 

While object oriented approaches have reached 
a level of industry wide use and acceptance, imple-
mentations vary widely. Some systems afford an 
open ended environment in which the definition of 
architecture objects is relatively fluid and unencum-
bered by pre-defined rules. Other systems capture 
industry knowledge and processes at the cost of 
limits to their flexibility. These later systems require a 
large investment in structuring formal and spatial re-
lationships that may not fit the quickly changing per-
spectives that occur in schematic design. The ability 
to dynamically create objects within such a system 
then becomes a limiting factor on use.   

Generative Systems
In generative systems, a set of rules or formulae es-
tablishes the framework for a computer based pro-
duction process. The author-designer sets up the 
rules and the resulting computer process generates 
shapes and designs without the designer individu-
ally determining each solution.  For example, Bentley 
Systems’ relatively new commercial system, Genera-
tive Components sets into play a series of user defined 
transactions and parameters, generates forms, and 
then allows the designer to make dynamic modifica-
tions in order to adjust the results. Most generative 
systems focus on form generation or solving specific 
structural or space planning problems, but some 

also include setting up design evaluation or feed-
back systems. Within generative systems, strategies 
include those found in shape grammars, such as 
rule-based systems, and also strategies associated 
with design and cognition, such as neural network 
approaches. Researchers have also applied genera-
tive systems retroactively to reviewing a past proj-
ect (Caldas and Rocha 2001). A celebrated example 
is Foster and Partners’ Swiss Re Tower in London, 
where so-called “dimension driven cells” were rigged 
and then parameters varied to realize the distinct flat 
diamond geometry of the exterior of the skin.  

Top Down Design
In top down design an abstract overview is the be-
ginning point towards realizing a set of objectives. 
In architecture, a top-down methodology might 
consist of a larger formal massing study before any 
specific materials or more detailed development of 
objects begins. In product design an overview as-
sembly of a project is developed at the beginning of 
a design process prior to sub-assembly and thinking 
through details on a finer grained level. The Pro/En-
gineer software is a commercially used technology 
that has been optimized for this approach.

Yet, in practice, the top down approach is not de-
livered in absolute terms. The technology may pro-
vide for libraries of parts, parametric approaches, and 
additional techniques associated with other meth-
ods. In “The Art of Computer Graphics Programming: 
A Structured Introduction for Architects and Design-
ers”, Mitchell, Liggett, and Kvan (1987) developed a 
top-down adaptation of Turbo Pascal for architec-
tural case studies. The structuring of the case studies 
is based upon top-down reasoning and methods of 
exercising parameters that control the size, number 
and placement of elements. For example, a classi-
cal column is initiated with a blank template, and 
then, as a layout is developed, is further detailed as 
Doric, Ionic or an alternative type. The later part of 
the production process thus considers the detailed 
development of individual components. Working 
with such a system, the designer can still engage in a 
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combination of top-down and bottom-up thinking. 
Yet, the prevalent direction of the exercises places 
value on top-down considerations in assembly. If 
such an approach is applied too rigidly, the discov-
ery of problems at the detailed level that require 
reconsideration of the entire top-down structure 
may occur later than it would in a more balanced ap-
proach. Conversely a designer who becomes lost in 
the details, or takes on details at too early a stage, 
may fail to see larger schematic options.  Optimized 
use of this method is then a process of reconciling 
larger assemblies with detailed elements in a mutu-
ally adjustable process.

Knowledge Based Design Systems
Knowledge based design systems (Coyne et al 1989) 
have the implicit premise that a design process does 
not begin tabula rasa, but rather builds upon what 
has come before, either in precedents for the project 
or in the history of a design project itself. Capturing 
and flagging this information appropriately may 
remind the designer of considerations related to 
current design decisions. In this approach, specially 
trained knowledge engineers elicit knowledge from 
domain experts to develop the software. In some im-
plementations, the system uses the acquired knowl-
edge base to generate candidate formal or spatial 
layouts for the designer to select from. 

Still, design activity may require a response to 
a distinct set of problems that calls upon relatively 
novel approaches and solutions. Building a knowl-
edge based design system in such circumstances is 
more challenging. Varied techniques have included 
rule-based if-then statements for capturing knowl-
edge, neural-nets where nodes and connections are 
made to capture knowledge, and fuzzy logic for han-
dling imprecise circumstances.  Still, individual varia-
tion in design method is complex and is probably 
difficult for even the best system to generalize. A 
number of implementations are devoted to solving 
specific types of design problems, e.g., a knowledge 
based system to assist in space-frame design. 

Design and cognition
The study of design and cognition bridges the disci-
plines of cognitive science, artificial intelligence and 
computer based design methods. Research meth-
ods include capturing and observing human design 
activity. It includes methods of form finding and 
reasoning. Scholarship can include computer gener-
ated agent based activities, providing insights into 
human interaction with design tools or architectural 
places. Advances in collaborative design methods 
are also cited in this area. Thus, design and cogni-
tion often draws upon, feeds into, or overlaps with 
technologies associated with the first seven areas. 
The work varies widely from speculating upon or 
evaluating human behavior to the incorporation of 
observable design problem solving paradigms into 
computer aided design tools.

Observations

Reflecting upon these approaches to computer aid-
ed architectural design, we find common ground in 
some observations:

Design process in architecture is intimately asso-1.	
ciated with geometric modeling.
Geometric models must be mutable with less 2.	
predefined representations.
Variation does not proceed only at the whimsy 3.	
of the designer but is informed and can be con-
trolled via a set of established relations between 
objects and invented rules.
A design proceeds from ambiguous and loosely 4.	
defined relationships among objects to deliber-
ately associated relationships. 

This yields some cautiously offered propositions 
about the next generation of tools:

Geometric modeling processes should at times 1.	
re-engage the histories of how individual ob-
jects have been created.  
Knowledge-based approaches or rule-based 2.	
systems must not be fully deterministic.
The development of smarter design tools will 3.	
continue to beckon research and theory well 
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into the future, as each generation discovers 
new paradigms to more tightly connect design 
activity with the acts of making and building.
Given our present view of the state of the art 

in design tools, what direction might development 
of technology take? In this brief survey we have at-
tempted to summarize a pattern of achievements 
over the divergent history of computer-aided design. 
We propose that the next generation of design tools 
emphasize diversity of specialized approaches rath-
er than comprehensive technology solutions. Design 
and Cognition is not so much one of a distinct num-
ber of methodologies, but perhaps guides a great 
combination of working methods and strategies.

Martin Woolley (2004) argued that in the “post-
IT era” tools must be developed ad hoc as needed, 
where (unlike today) the designer is the tool builder. 
In this respect the tool is not selected, but created 
contingent on the type of design task, the stage it 
is in, and adapted to circumstances. This may have 
more implications for interfaces than for the actual 
output of the particular tool, for databases that are 
fluid, and for tools that offer an open architecture, 
rather than those that make automated construction 
simpler and easier for all. 

The growing acceptance of computer technol-
ogy in the discipline and profession of architecture 
has motivated putting the present state of the art in 
perspective. The most significant contribution of the 
first generation of computer aided design tools was 
to set into place a kind of geometry embodied with 
reason. The first such system recognized the value 
of constraints, parametric variation and instances 
in the deliberative processes required of a designer. 
The history of the technology has been enriched by 
varied attempts to articulate the reasoning used to 
construct a geometric model.  In this sense, com-
puter aided design allows for the highest-level dis-
cussion of intention. We predict it will continue to 
develop according to the ways in which we are able 
to expand upon the means to construct geometry. 
This may occur through increasing integration of 
computer aided geometrical modeling and direct 

physical form making (e.g., CNC fabrication). Or, it 
may occur through a growing number of techniques 
(e.g., scripting, associative geometrical modeling 
tools, constraint managers) that empower the end 
user with an increased ability to independently con-
struct a model of the design.  
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