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1.
Abstract

Collaborative design is a complex cognitive and social activity that requires 
coordination of both processes and products between its participants. Information 
required for this coordinative activity are descriptions of the various tasks and 
products found within a design project, and of the current state of these entities. 
State descriptions can arise from technical analysis, perhaps employing 
automated, machine-based methods, or can arise from a social process of 
consensual, collaborative assessment that results in design team members 
applying informal linguistic descriptions to processes. In the event that no 
automated process exists for state determination, then members of the design team 
must work together and find a mutually agreeable assessment of state. With this 
information designers are better able to determine the progress and status of a 
design process, and to assess their roles and responsibilities within a design team.

This research describes the design and implementation of a design support tool 
that enables distributed teams to collaboratively determine the state of design 
entities, such as tasks and products. The tool is role-based, and enables users to 
communicate simple looped state-transition models that they feel suitably describe 
the possible states and transitions that a design entity could experience. These state 
models can describe the degree of completion, degree of acceptance within a team, 
or progress with respect to a series of milestones. By attaching entities to simple 
state-transition loops, users make input based on simple questions about the state 
of individual entities, rather than complex ones arising from the interaction of 
entities. Complex branching process structures can be created by composing 
entities. The tool automatically handles state assessment of complex, linked 
compositions of entities, while users handle assessment of simple, non-linked 
entities. It provides users with information regarding design state and structure, 
and supports a form of bottom-up design coordination that requires no centralized 
policies or inputs, prior to deployment. 
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5.
Dissertation thesis

Collaborative design practice takes place within dynamic social and technical 
environments, involving complex interactions between wide varieties of 
interested parties. In order to manage collaborative design, and in order for 
designers to work successfully within it, it is necessary to have information on the 
content and structure of design entities such as tasks and products, as well as their 
current state. 

It is often difficult to determine this state, since most design entities do not have 
self-describing states, have no automated means of determining their state, or may 
have high degrees of ambiguity, even to well-informed design team participants. 
Without automated means of determining entity state, design team members must 
collaborate on deciding what the state should be. This should be role-based such 
that a person’s input is based on a specific role that has been assumed within the 
social context of the design team. This information is required for design 
coordination, both from a top-down and bottom-up perspective. Supporting design 
requires providing resources for coordinating design projects as a whole, as well 
as coordinating individual relationships between members of a design team.

At the beginning of design projects it may not be clear what the content, 
structure, or state of tasks and products should be. One aspect of collaborative 
design processes is how design task and product information structures are 
constructed incrementally, using the social and cognitive resources of the design 
team.

Collaborative design processes have both static and dynamic aspects. Processes 
can change substantially due to evolving design requirements, team participants, 
and other contextual factors. Processes can also remain static and can become 
design practice norms. In creative design practice it is often unclear whether to 
employ proven processes from the past, or to explore new ways of doing things. 

Processes such as those required to determine state and to assign roles are often 
expensive, since they are generally not computer supported, and often depend on 
face-to-face contact to arrive at common ground within the team. An important 
aspect of face-to-face contact between design team members—despite possible 
expense—is that team members are better able to construct common 
understandings of design problems that can be essential in avoiding 
misunderstandings and errors. Face-to-face contact between design team members 
is important, or is unlikely to be replaced by peer-to-peer on-line interactions. 
However, enabling designers to collaborate on determination of design entity state 
in a geographically distributed, and asynchronous fashion, can provide useful 
design support, whatever the geographical distribution of a design team.
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7.
1 Research definition

1.1 Motivation

1.1.1 Introduction

My motivation for this research comes primarily from my own experience of 
architectural design practice in Canada, the UK and Germany. During this time 
(1981-1994) it occurred to me that certain types of design support tools were not 
available to architects. The problems which these imagined tools would address, 
seemed to revolve around issues of design process:

1. How to represent design processes such that a designer could understand their 
overall structure, could plan them adequately, could predict which resources 
they would likely require, and could view how far along in a design process a 
particular design had progressed.

2. How to enable the lessons learned from past design processes to inform cur-
rent design processes. 

As I later learned, these are issues are of concern in many other domains, such 
as computer-supported collaborative work, software engineering, and of business 
management.

1.1.2 Coordination of complex processes

Complex design processes need to be coordinated. One of the motivations of this 
research is to try to generalize collaborative approaches such that they can be used 
to coordinate complex activity in a variety of domains. 

Often design processes if viewed in isolation may not seem that complicated. 
What can make them overwhelmingly complex are their linked dependencies to 
other products and processes. One approach to design support and design 
coordination is for software to deal with the semantic content of design processes, 
and to try to steer them in preferred directions. Another approach is to coordinate 
whatever processes designers might want to pursue, and attempt to support them 
in ways not dependent on their meaning. 

The first approach could be called a ‘semantic’ or ‘knowledge-based’ approach, 
while the second could be called a ‘syntactic’ or ‘interaction-based’ approach. The 
syntactic approach is based on the nature of collaborative mechanisms rather than 
the meaning of that which is being coordinated. A syntactic approach to design 
process coordination is explored in this research. This is also one the principal 
motivations of the field called coordination science in which general patterns for 
coordinating various types of work are explored. 
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1.1.3 Provision of design support while avoiding negative consequences

To manage a process is to provide, however implicitly, a theory about what is 
involved in design. There is not, however, wide consensus shared within academia 
and practice, of a theory about what is involved in collaborative design. Such a 
theory is still in development. Development of various types of design support 
software is seen as an attempt for working towards such a theory and to arrive at a 
profession-wide consensus, rather than a software implementation of established 
theory. 

Collaborative design is a difficult process to support, both because of its 
complexity, but because many designers, who are the consumers of design 
support, see their design processes as something not amenable to management or 
outside support. Designers’ objections to design management also concern issues 
of freedom, accountability, and effectiveness:
• whether management introduces prescriptions into a design process for which 

designers have not consented,
• whether it reduces the flexibility of design approach and actually make design 

teams less capable of handling complexity, and 
• whether design management has a negative effect on design quality, or 

encourages design processes to develop in less interesting ways.

These are legitimate concerns. However, collaborative design is a large industry 
in all developed nations and has a significant role to play in productive economies. 
Support must be forthcoming for these processes, because they are so 
economically significant. 

Collaborative design is not the only industry that has similar issues. It is not 
difficult to come up with examples of industries, which like collaborative design, 
seem to demand both high levels of creativity, combined with high degrees of 
organization and control. Examples of such industries are computer software 
development, media production, and product design. These industries demand 
intelligent and creative responses to enormously difficult problems, while also 
demanding that processes are organized in a such that their complexity does not 
overwhelm those participating in these processes. Since the design and 
construction industries are enormously important in most countries, managing 
their processes in a way that doesn’t decrease the quality or agility of these process 
is important. Computer-based tools and methods appear to be a promising way of 
doing this.

1.1.4 Gathering of process histories

Designers in practice acquire experience while they practice design. Their 
personal histories are important resources for them, as they maneuver through 
their design careers. These histories are often not recorded in archival type 
documents that future historians might be in a position to study. 

Organizations find that their organizational histories are a valuable resource that 
can help explain how processes and products evolved to their current 
configuration, and how similar problems were addressed and solved in the past. 
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Designers and the organizations that employ them, generally do not document 
this experience in any kind of systematized, or computer-readable format. 
Experience is recorded cognitively and conceptually in designers’ brains. This 
knowledge can quickly vanish when the designer dies or stops practicing. One 
advantage of process support tools is that they are in a position of gathering 
coherent historical data in a machine-readable format. If such data is gathered, it 
could become a useful resource for documenting and analyzing design practice, 
and for informing the design of future design support tools.

1.2 Research problems

1.2.1 Building flexible and dynamic online teams

Design teams, either virtual or real, are seen as the most important context in 
which collaborative design takes place. Without design teams, it is inconceivable 
that collaborative design could take place. Therefore, support for designers is seen 
as closely aligned with the issue of support for design teams. 

To support design teams, it is necessary to be able to form teams in a flexible 
manner, and to enable designers to join these teams easily. This need not be purely 
a top-down process. It is possible that design teams can be built incrementally as 
designers individually decide, and are allowed, to join them. All invitations to join 
a design team—that might come from a client or the partner in a design firm—are 
balanced by an acceptance or rejection of the invitation by the invited designer. 
How design teams are formed tends to be a highly interactive process that requires 
negotiation.

In addition to enable designers to construct teams, it is also necessary for team 
members to be able to communicate information required within the domain of 
design process coordination. This communication process should be an easy one, 
that doesn’t place undue cognitive or social burdens on designers. 

It makes sense to enable computer-supported teams to interact online, since the 
Internet is the dominant communication medium of our age. The types of 
information that can be gleaned from it, and the types of inter-personal interactions 
it enables and encourages, grows almost daily.
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Figure 1  Top-down and bottom-up design team-forming processes.

1.2.1.1 Problems identified

1. How can designers construct design teams in a flexible manner, while still 
supporting normal practices of team formation, membership, and organiza-
tion?

2. How can designers easily communicate information, useful for design process 
coordination?

1.2.2 Determining design entity states

Design entity state—that is, the states of design tasks and products, can have both 
machine mediated and socially mediated aspects. Sometimes it is most effective to 
refer to a machine to see what the state of an entity is. If that operational approach 
is not available, then it may become necessary to confer with one’s design 
collaborators, to see what they think the state of a design entity is. Therefore, state 
may be determined by automated machines with little human input, or may require 
a process of social negotiation and construction to determine state. 

For example, to determine whether one’s computer is in an acceptable state, all 
one needs to do is to refer to management tools built into the operating system. 
When something does go wrong, and the machine enters an abnormal state, the 
machine tends to inform the user of this fact. The machine itself attempts to be self-
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regulating. However, to determine the state of one’s family, it is usually necessary 
to confer with the family members themselves. The family is a collective entity 
like a design team, but it is not self-regulating in the same sense as a computer is. 
Its ‘management’ requires active communication between its members. 

As in many aspects of collaborative design, there are few tools to quantitatively 
assess the ‘state’ of such socially interactive systems as families and design teams. 
In such systems, the perceptions and interactive behaviors of individuals affect 
how they work as social units capable of problem solving. 

One way of automating collaborative design, or at least to encourage it to avoid 
abnormal states, is to fully plan it in advance. In this way the plan becomes a kind 
of deterministic machine that has explicit and well-defined representations of 
states and state transitions. However, it is difficult to fully pre-plan a design 
process, if the intention is to maintain it as a creative design process, and to enable 
various collaborators to make meaningful, contextually appropriate input into it.

In the absence of quantifiable, or operational methods of assessing state, social 
negotiation becomes necessary for deciding the state their projects are in. This 
consensual social process is needed both for knowledge acquisition: ‘what is the 
informed opinion’, as well as for risk management: ‘how can the risk of making 
this decision be shared amongst other willing participants.’

1.2.2.1 Problems identified

1. How can design entities be arranged to have both machine-mediated and so-
cially mediated states?

2. How can designers work together to determine the state of design entities?
3. How can an application provide state changing mechanisms?

1.2.3 Separating state-defining mechanisms from entity content

This research aims to enable the coordination of a variety of process content. This 
coordination process is based on the idea that designers need to know what the 
state of design entities is, and that designers themselves play a role in determining 
this state. 

In order to offer some kind of open, generalizable process, designers should be 
able to add their own design entities—ones appropriate for the design processes 
they experience. The application must provide state-changing mechanisms that 
can be applied to the variety of design content found in design practice. In this way 
the state-changing mechanisms can be generalized, while designers are free to add 
their own particular, context-dependent content. 

There are three components to design entity content:

1. Names, and other attributes of the design entity.
2. The structured relationships to other design entities, such as hierarchical rela-

tion, and other types of links.
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3. The state/transition model: the possible states and transitions that the design 
entity can enter into.

All of the above items should be modifiable by users of the application. The first 
two items are dependent on user input. The third point is a bit more challenging, 
and is less obvious how users might be able to contribute state/transition models. 
It is also not clear how the application can define either machine-based or socially-
based state change mechanisms. 

1.2.3.1 Problems identified

1. How do users add content to design entities? Of particular importance—how 
can they specify the states and transitions that entities can enter into?

1.3 Research scope

1.3.1 Concentration on entity state determination

This research concentrates on user-provided descriptions of state-changeable 
design entities, and the establishment of on-line communities that enable users to 
manage these entities collaboratively. This is seen as an important, even essential 
aspect of process management. However, there are other aspects of process 
management which could have been addressed, but have not been, such as:

1. Facilities for making detailed plans, and providing an ability to ‘re-plan.’ One 
problematic aspect of planning, is the cost of re-planning, which concerns the 
question about what to do when circumstances—assumed in the plan—
change. Aspects of creative, dynamic design processes tend to make them less 
amenable to detailed planning. However, it is possible that using similar types 
of ideas in this dissertation, a plan-based approach could be completed.

2. Facilities for deriving plans from smaller process-related components. 

1.3.2 Avoidance of handling the semantics of entity state

Users can add any kind of process content they want including state-transition 
‘loops.’ 

One of the early criticisms of AI research software is the use of state descriptions 
that imply that a knowledge-based application acquires an understanding of states, 
based on the meaning of their state names. William Clancey describes this kind of 
state labeling in the context of the influential medical diagnosis expert system 
MYCIN. Clancey promotes the intellectual separation of what the application 
might ‘know’, and the descriptive, if not rhetorical labels applied by intelligent 
software designers (Clancey, 1997). 

The application described in this research has been designed in this spirit. It 
works the same regardless of the content of any available state-transition loops. 
Since users can add any kind of loop, the application does not make any inferences 
about this user-added process content. 
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1.3.3 Avoidance of role semantics

In this research users base their input according to the roles they assume. It is the 
responsibility of users to come with role descriptions, and to base their 
involvement on the roles they have assumed. However, no attempt is made to 
match roles with any kind of semantics that might have an effect of the type of 
actions that a user could be capable of performing within the application. For 
example, if a user were to add the role of ‘client’ the application does not assume 
that this role description gives the user any privileges that might normally be 
afforded to client in design practice, such as hiring or firing of employees or 
dispersal of funds. 

Therefore, there is only class of user—the peer—and this user has the 
responsibility of defining her role, both in the types of interactions that she 
becomes involved in within the application, and also in interactions outside of the 
application.

Figure 2  Separation of state determination mechanisms from content.

State-changing
mechanism

Peergroup 1
Peergroup 1.1

Peergroup 1.1.1

Peergroup 1.1.2

Peergroup 1.1.3

Peergroup 1.1.3.1 Peergroup 1.1.3.1

Design entities as
members of
Peergroup sub-sets

Boundary between
entity structure and

state-changing
mechanism

All entities are
linked to the
state-changing
mechanism



14.



15.
2 Background

2.1 Integrated design systems
Integrated design system attempt to structure and coordinate complex design 
projects and processes in a rational, well-ordered manner. There have been many 
such systems within the domains of architecture and building-related structural 
design. Stouffs and Krishnamurti (2001) point out that these often adopt an a-
priori approach in which systems attempt to establish an agreement on concepts 
and their relationships, in order to offer a complete and uniform description of 
project data. Integration efforts are often inspired by the promise of computer-
based systems for rationalizing design processes and organizing complex data.

2.1.1 IBDE

The IBDE project began in the late eighties at the Engineering Design Research 
Center (EDRC) at Carnegie Mellon University (Fenves et al., 1994). IBDE was 
not seen as a prototype for a commercial design system, but more as an 
experimental test-bed for the exploration of issues such as integration and 
communication between design agents. IBDE combines the work of various 
computer-based design agents that mirrors the inter-disciplinary nature of building 
design. These agents are divided into two classes: generators—those that 
contribute towards developing and refining design descriptions, and critics—
agents that evaluate design descriptions as they emerge, and make redesign 
recommendations. The generator support tasks such as development of building 
design concepts (in the ARCHIPLAN module), to construction planning (in the 
PLANEX module). Critics include ones for providing constructability and 
structural evaluation. 

IBDE research is critical of an approach to integrated design systems it calls 
‘tool-centered.’ Tool-centered systems tightly couple available design tools and a 
design environment meant to integrate these tools. This is seen as restricting the 
evolution of tools, given that any tool is unlikely to fully address the range of 
problems found in practice, nor be standardized throughout an industry. Instead, a 
more flexible, more generalizable, and less prescriptive ‘problem-centered’ 
approach is taken in IBDE, in which tools can be integrated into a general 
framework as new tools develop. A problem-centered approach requires that tool-
independent representations of information and process be developed.

IBDE concluded that tighter integration of design processes should not 
necessarily result in more consolidated and integrated organizations addressing 
design projects, but that there should be a common, formalized language 
developed for use between design team participants. Such a language could be 
used to standardize the communication of designer intent, of downstream 
consequences of design decisions, and of descriptions of the multiple functions in 
which design products usually participate (Fenves et al., 1994, p.227).



16.
2.1.2 STEP and IFC’s

STEP, the Standard for the Exchange of Product Model Data, is a comprehensive 
ISO standard (ISO 10303) that describes how to represent and exchange digital 
product information (Step Tools, 2004). STEP was conceived to reduce design and 
manufacturing errors due to data incompatibility between the various agents 
involved in product design. STEP presents a unifying effort started under the 
International Standards Organization (ISO) to produce an international standard 
for all aspects of technical product data. Nearly every major CAD/CAM system 
now contains a module to read and write data defined by one of the STEP 
Application Protocols (AP's). 

The Industry Alliance for Interoperability (IAI) is a global, industry-based 
consortium for the construction and building management industries and aims to 
define object-oriented information models for data exchange. Its mission is to 
enable interoperability among processes of different professional domains, and to 
enable computer applications to share and exchange project information. The IAI's 
goals are to define, publish and promote a specification—called the Industry 
Foundation Classes (IFCs)—for sharing data throughout the project life cycle, 
globally, across disciplines and technical applications. The IFCs are used to 
assemble a project model in a neutral computer language that describes building 
project objects and represents common information requirements (IAI, 2004). 

As Stouffs and Krishnamurti (2001) assert, the STEP/IFC effort is a prime 
example of a top-down, a-priori approach (2001, p.78). Such efforts depend on 
diverse parties coming together and agreeing on the semantics of a wide variety of 
product concepts and configurations. This consensus-based approach appears to 
take much effort. Yet, it is debatable whether such semantic-based agreement will 
be able to handle new product or computer technologies as they emerge, or 
whether this standardization effort will ultimately result in greater industrial 
productivity, quality, or agility.

2.1.3 SEED project
‘The software Environment to Support the Early Phases in Building De-
sign (SEED) aims at providing computational support for the early phas-
es of in building design in all aspects that can benefit from such support. 
It especially intends to encourage an exploratory mode of design by mak-
ing it easy for designers to generate and evaluate alternative design con-
cepts and versions.’ (Flemming et al., 2000, p.1)

SEED is a computer-aided generative architectural design system, developed at 
Carnegie Mellon University, and at other institutions (Flemming & Woodbury, 
1995) (Snyder, 1998) (Fenves, Rivard, Gomez, & Chiou, 1995). It features an 
open-ended modular architecture, where each module provides support for design 
activities taking place in early design phases. Each module consists of five main 
components: input, specification, generation, evaluation, and output. These are 
supported by a database to store and retrieve information, as well as a user 
interface to support the interaction with designers. 
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Figure 3  In integrated generative systems, iterative processes involving Specification, 
Generation, and Evaluation phases are supported (Flemming et al., 2000, p.7).

The SEED project is relevant in this context because of its prominence and 
research achievement in studies of knowledge-based design support, its tangible 
software products and usefulness as a model for software development of complex 
design support systems, its coherent approach towards design process support in 
several architecturally-related design domains, and its hybrid combination of 
automated, machine-based processes, and interactions with designers and their 
cognitive processes.

The SEED system has the following basic domain objects:

1. Design unit (DU): A DU is a spatial or physical part of a building with an 
identifiable spatial boundary (e.g. a living room). A DU can contain other 
DUs such as other rooms or furniture. 

2. Functional unit (FU): A FU represents a combination of functions to be satis-
fied by a single DU and also serves as the repository of requirements to be sat-
isfied by that DU. These requirements often take the form of constraints re-
garding the shape, size, etc. of the DU. A FU can contain other FUs. 

3. Specification unit (SU): An SU collects the design intentions and criteria to 
be satisfied by one or more FUs. An SU can contain other SUs.

4. Technology: A technology is the final stage of design representation in 
SEED-Config and represent how a design alternative can be constructed, us-
ing available building technologies, or form generation principles.

2.1.4 The overall SEED approach

The SEED project is well known within the design research community for several 
innovative aspects:

SEED emphasizes the importance on the support of early phases of design. This 
phase is seen as the one during which the conceptual development of a design is 
most pronounced, and the one from which designers should derive the greatest 
downstream benefits from a systematic computer-aided approach. SEED takes an 
approach to design, based on constraint-based design grammars, and generative 
design processes. SEED was designed with the goal of unifying collaborative 
design processes using integrated, inter-operable tools, yet enabling various 
modules, each informed by a slightly different domain, to be designed relatively 
independently. This allowed SEED to develop in a modular fashion, and allowed 
SEED module designers the freedom to address design support issues flexibly and 
pragmatically; SEED modules share semantic constructs, enabling simplified data 

Specification EvaluationGenerationInput Output
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exchange between modules. In order to arrive at this common logic, the overall 
design process was divided into distinct tasks or phases. A common architecture 
and interface was based on a uniform problem solving view (Flemming & 
Woodbury, 1995). They also enable and encourage design exploration through 
design alternative management, and design iteration. This iteration can occur both 
within a module, and between modules. SEED modules also share an ability to 
store and retrieve past solutions and problem sets, in the manner of case-based 
reasoning systems.

The combination of the above factors meant that the SEED system benefited 
from an interdisciplinary view of design, and from an interdisciplinary view of the 
types of academic approaches that must be brought together to advance the state 
of the art in CAD research.

2.1.4.1 Existing SEED modules

SEED is divided into domain-specific modules. Modules are expected to work 
both as stand-alone applications and as components in the larger system. SEED 
modules, once connected by a communication channel via a shared database, 
could be used together within an integrated design support system.

SEED being a collaborative system, assumes that different modules address 
different tasks. The expertise contained within SEED-Config (SC), SEED-Layout 
(SL), and SEED-Pro (SP) is quite distinct and maps to different pre-computational 
knowledge domains such as structural, construction, architectural, and 
requirements design.

SEED-Pro (SP): Design requirements and user specification design. Supports a 
task normally done by architectural designers, or by professional design 
requirements programmers, who, within the construction industry produce a 
document of design requirements called the ‘architectural program.’ This module 
has been developed within the School of Architecture, at Carnegie Mellon 
University (CMU) (Akin, Sen, Donia, & Zhang, 1995).

SEED-Layout (SL): Conceptual 2D or 2 1/2 D layout design. Supports a task 
normally done by architectural designers. This module was developed within the 
School of Architecture at CMU (Flemming & Chien, 1995).

SEED-Config (SC): Conceptual structural, and construction detailing design. 
Supports a task normally done by structural engineers and architectural detailers. 
This module is being developed within the Department of Civil and Environmental 
Engineering at CMU, and at the University of Adelaide, in Australia (Fenves et al., 
1995).
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Figure 4  Overall SEED architecture (Flemming et al., 2000, p.13).

2.1.5 The SEED-Pro (SP) module

To support design generation, a well-defined set of explicit requirements is 
needed. This is handled by the SP module (SP). It was designed with the intention 
to support the modeling and generation of design requirements in a form usable by 
other modules of SEED. 

2.1.5.1 SP’s objectives

SP has the following objectives (Akin et al., 1995):
• Provide means of storing and handling all aspects of the requirements 

specification information including site characteristics, codes, client 
preferences, and different performance criteria and requirements.

• Enable the integration of building requirements specification and architectural 
design as a seamless process.

• Achieve a flexible way of interaction that does not tie the user to a specific 
requirements specification model.

• Enable the use of past architectural programs and requirements specifications in 
future projects.

Through the sharing of domain object classes, SP aims to provide a seamless 
interaction with all of the other modules of SEED and share data across these 
modules. SP positions itself as a good candidate for maintaining a robust record of 
design requirements, criteria, and constraints to be used persistently during design. 

SP provides several core functionalities in order to support facility requirements 
specifications. It shares data as well as methods of data manipulation with other 
modules of SEED. By providing the outputs that the other SEED modules require 
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as input and through the shared domain object classes and libraries in SEED, SP 
complements the basic steps of early design: architectural problem specification, 
two dimensional design and three dimensional configuration design. 

Sharing of domain object classes, which represent entities like Functional Unit 
(FU), Design Unit (DU), and Specification Unit (SU) to enable SP to translate 
between organizational, functional, and spatial concepts. 

2.1.5.2 Description of the programming process in SP

The basic programming process supported by SP consists of the following steps 
(Cumming, Akin, & Donia, 1998):

1. Define the building project.
2. Capture the requirements the planned building has to satisfy in terms of Speci-

fication Units. These specifications may or may not contain preconceived no-
tions about the spatial organization and form of the building.

3. Generate Functional units to be placed in the building, using different FU cat-
egories to express a desired spatial organization. One may experiment with 
different organizations (for example a 2- vs. a 3-story scheme) in SP before 
sending a program to SL. Conversely, one may leave all or some of the deci-
sions to the layout phase. 

4. This general process can be adapted in a wide variety of ways and would ac-
commodate, in principle, iterations between SP and SL. For example, a user 
may explore layout possibilities while programming and vice versa.
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Figure 5  Architectural programming process as supported by SEED-Pro (right), 
compared to a traditional process (left) (Akin et al., 1995, p.154).

2.1.6 Technologies in SEED-Config

SEED-Config is the module within SEED that supports configuration design. The 
term ‘configuration design’ refers to the design of a three-dimensional building 
model in terms of spaces, subsystems, and actual physical components (Flemming 
et al., 2000, p.47). The inputs to SEED-Config are the requirements, 
specifications, and constraints for the overall structure stemming from the 
architectural program, space layout, and the massing definition (Fenves & Rivard, 
2004, p.7).

Designs in SEED-Config are represented according to a generic information 
model called the Building Entity and Technology (BENT) model (Fenves & 
Rivard, 2004, p.7). Technologies are the final stage of design representation in 
SEED-Config and represent how a design alternative can be constructed, using 
available building technologies or form generation principles.

Technology nodes advance the design of a building entity in two ways: either 
by refinement, or by elaboration. Refinement branches represent ‘or’ relations in 
AND/OR trees, while elaboration branches represent ‘and’ relations. Choosing an 
‘or’ path represents making a choice amongst available alternatives, while an 
‘and’ path describes design aspects to consider, given the current technology. A 
technology tree can be viewed as a ‘universal’ collection of available mechanisms 
for creating structural descriptions that fulfill functional requirements (Fenves, et 
al., 1995) (Flemming et al., 2000, p.72).
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Figure 6  Relationship between a building entity and associations with nodes of a 
technology hierarchy. The technology tree represents available construction 
technologies; building entities are associated with appropriate ‘and’ or ‘or’ 
paths through this technology tree. Similar to: (Fenves & Rivard, 2004, Fig. 4, 
p.10). 

Advantages of technology tree is that they provide an intuitive representation of 
design knowledge, and are dynamically customizable such that existing 
technology nodes can be changed within a process, and new ones introduced. 
(Fenves & Rivard, 2004, p.11).

There are three nodes of user control in SEED-Config: manual, interactive, and 
automatic. The technology tree plays a central role in all three modes. In the 
manual mode, the user must click on successor nodes in the technology tree; in the 
interactive mode, the designer gets a guided tour of the available technologies, 
while in the automatic mode the user specifies the level for the system to go to in 
the technology tree, and the system automatically populates the design space with 
alternatives that satisfy the applicable constraints (Flemming et al., 2000, p.74).
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2.1.6.1 Discussion of the SEED-Config design process

SEED-Config processes are driven by technological norms. These norms are 
expressed in SEED-Config’s technology trees. A technology tree may deal with 
steel or concrete construction methods, and the knowledge contained within it is 
likely has developed over many years. For most users such norms appear to be a 
static body of knowledge, and for most purposes they can be considered as such. 
However, technologies—even those applied to routine designs—do change over 
time, sometimes substantially. In this case the technology trees will have to be 
revised. In some cases it is conceivable that a technology tree might have to be 
completely rearranged in order to handle a new technological or regulatory 
environment. Therefore, it is not always clear that technology trees can be kept up 
to date with incremental changes—such as adding new refinement or elaboration 
nodes to existing trees. In some cases fundamental reorganization might be 
required. 

SEED-Config technologies are seen as available resources that can be used, 
rather than something that has to be developed within a design process itself. For 
many non-routine design projects, it may not be clear their designers know how to 
solve problems with existing technologies. In that case, a new technology may 
have to developed. 

In SEED-Config functional and technological factors lead in the design process. 
This, of course is quite typical in engineering design contexts. However, it is not 
always the case in architectural design processes, in which formal and spatial ideas 
are sometimes explored with less concern about the construction technologies that 
might be required to instantiate these ideas. 

SEED-Config emphasizes the engineering inputs and decision-making while 
placing less emphasis on the interactions between others on the design team such 
as architects. Ideally, architectural design processes seems to work best when there 
are early interactions between those on the team whose input might affect the 
design in fundamental ways. In the building and construction industry, structural 
engineers and architects are the two most prominent examples of such 
participants. Therefore, in principle design projects that require at least two 
different disciplines at the earliest stages—say at minimum the structural engineer 
and the architect. The manner in which these two parties interact needs to be a part 
of the basic user process for a design support application. Developments of SEED-
Config in this direction are taking place in the work of Hugues Rivard (Fenves & 
Rivard, 2004, p.14).

2.1.7 Process aspects of SEED

Design processes are not explicitly modeled in SEED modules. That is, they do 
not present to their users models of actions that users are expected to perform, or 
representations of what the application is performing. They do have available 
paper-based reference and tutorial manuals describing how to use the applications 
to perform design tasks (Cumming et al., 1998; Donia, Flemming, Akin, Sen, & 
Cumming, 1998; Flemming, 1998; Flemming & Chien, 1998).
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SEED modules do not provide a deterministic process model for design, and do 
provide a large degree of flexibility in how design problems can be solved, using 
these tools. Despite this lack of determinism, all SEED modules though, share a 
similar approach to the design process. This approach is based on one of the basic 
ideas behind generative design: that one of the first tasks in design should be an 
attempt to formally define design problem requirements. Once this is done, these 
requirements provide input for automated or semi-automated generation of design 
solutions, based on constraints found within the requirements. 

Each SEED module contains a problem specification component that enables 
designers to specify and modify dynamically the design problem to be solved. In 
addition, all have generation and evaluation components (Flemming & Chien, 
1995).

For many processes in which requirements can be defined unambiguously, and 
generation algorithms are available, the generative approach is powerful and very 
productive. This is especially true in constraint-based layout generation, in which 
topological constraints between required spaces can be defined clearly, and 
relatively easily.

2.1.7.1 Designer control of the design process

SEED modules were designed from the beginning to have a clear idea of aspects 
of a design process that should be under the designer’s control and those that can 
easily be automated without loss of design quality or intelligent control. In SEED, 
human users provide intelligent control.

In generative systems, the basic idea is to automate some aspects of the design 
process. Therefore, it should be clear which aspects are controlled algorithmically, 
and which humans should control. In a SEED module the two aspects explicitly 
controlled by designers are:

1. the definition of problems and requirements, and 
2. selection of preferred generated alternatives, such that they can be further re-

fined and elaborated.

This in general seems to be a good approach: leverage the capabilities of human 
designers using generative techniques, yet maintaining a clear position that the 
human designers still need to be in control.

The generative approach tends to be highly interactive: if the results generated 
are less than satisfactory (a common occurrence in generative design), then users 
adjust input constraints to see how they might affect the generative process. One 
of the interesting aspects of the behavior of generative systems is the aspect of 
unpredictability in their results: surprises that result from slight tweaking of the 
inputs, can be intellectually gratifyingly, and can help define the real meaning of 
the input constraints. 

Design processes in generative systems such as the SEED modules, are hybrid 
manual/machine supported processes: they can move quickly, and iterate often 
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between different modules, and within various process aspects within each 
module. 

2.1.7.2 Routine design and SEED

‘The SEED-Config project (Woodbury & Chang, 1995) clearly demon-
strated the promise of a generative design system for routine design 
tasks, which present a good starting point for work in this direction not 
only because they are conceptually and computationally manageable 
with current technologies, but also because so much of the daily practice 
of an architect is routine design’ (Flemming, 2004, p.10).

Design processes can be characterized by their level of innovation. The standard 
classification scheme involves the categories creative, innovative, and routine. See 
for instance (Dym & Levitt, 1991) and (Coyne, Rosenman, Radford, & Gero, 
1987). These levels either can be decided at the outset, or can be an emergent 
product of the design processes themselves. These categories are not fixed—there 
exists a continuum between design processes that might change substantially from 
design project to project, to those that are quite stable and exhibit little change. 

Innovation and creativity imply unpredictably in a design process. The greater 
the design team desires to pursue innovative design processes, the greater is the 
uncertainty among the design participants about how a design project should 
proceed, and how it might turn out.

Providing design process support in situations where the processes never change 
is much easier than in situations where they do. SEED modules tend to emphasize 
their utility within routine design projects. In routine design processes, the 
participants may have long experience, and work within conceptual frameworks 
that are unlikely to change dramatically. In routine design, the issue of design 
freedom is not normally relevant. Preconceived goals in such design situations are 
not really unwelcome constraints, but rather an essential feature of this type of 
design.

Routine design tends to occur when designers handle recurring building types 
(Flemming & Woodbury, 1995, p.147). These building types are common in the 
building industry, since they reuse tested design processes, design team 
configurations, materials, and assemblies. This reuse can save significant amounts 
of money. Designers though, must be careful not to allow the attractions of routine 
practice blind them to the improvements needed to maintain design 
competitiveness. As Klein points out, a reliance on routine design is certainly 
economically useful—especially in the short term—but can lead to antipathy 
towards innovation and the search for, perhaps subtle, improvements in product 
and process (Klein, Sayama, Faratin, & Bar-Yam, 2001). 

An open question in design support systems is whether a design process support 
that is useful in routine situations can also be applied to more creative or 
intentionally innovative types of design processes. 



26.
2.1.7.3 SEED’s changes to a traditional design process

The SEED generative design support tools encourage the early documentation of 
spatial data and assembling it into computer readable form. This data covers the 
names, areas, number, and spatial constraints for all the spaces to be included in 
the building. This data is usually available at an early design stage from a 
building’s design program—if one exists. In normal design practice it is the 
client’s responsibility to either provide this building program for the architect, at 
the start of her design process, or to contract this task to the architect or some other 
consultant.

In SL, once spaces are documented, they then can be laid out graphically 
according to their spatial constraints. This layout process in SL can be fully 
automated. This is in contrast to current design practice when using either manual 
or CAD tools, there is generally no automation in the layout of spaces: all required 
areas must be placed manually into a drawing.

This layout automation in SL enables the creation of alternative layouts very 
quickly, all satisfying given spatial constraints. SEED encourages the modeling of 
various alternative organizational and spatial structures, using the spaces which 
are to be included in the building. This automation of the layout process in SL is a 
fundamental change in how design is performed using SL. More empirical study 
is needed to come a deeper understanding of its advantages and disadvantages.

The SEED system is a multi-disciplinary system. It assumes a highly iterative 
process in which partially completed design entities can be communicated to other 
SEED modules, and to external tools and process. Therefore, it doesn’t assume a 
strict sequential process. However, it does assume that large amounts of 
information are gathered at the start, and constraints are constructed according to 
this information. Therefore, it is an information-led process: the greater the 
quantity and the quality of the information at the beginning, the greater the quality 
of the generation that takes place downstream. 

2.2 Process modeling in design

2.2.1 Introduction to the concept of ‘process’

Notions of ‘process’, and ‘design process’ can be broad and wide-ranging. These 
notions do not necessarily converge into a concept that is compact and 
illuminating for current research purposes.

One definition of process: Etymology: Middle English ‘process’ from Middle 
French, from Latin ‘processus’, f, from ‘procedere.’ Date: 14th century. 1. 
Something going on. 2.A natural phenomenon marked by gradual changes that 
lead toward a particular result. 3.Aseries of actions or operations conducing to an 
end... (Merriam-Webster Inc., 1999).

Some definitions stress the operational or action-related aspect of design, such 
as Herbert Simon’s definition of a designer as “Everyone...who devises courses of 
action aimed at changing existing situations into preferred ones” (Simon, 1984). 
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While others emphasize the cognitive activity required for designing that requires 
mental representations, search processes and strategies, to find solutions to design 
problems. Akin writes that a design process “connotes a comprehensive concept: 
the totality of the cognitive activities that occur during design” (Akin, 1991). Or 
“a reflective conversation with the situation” (Schön, 1983).

Design processes are usually seen as activities that are created and are 
developed in a social context, where social behaviors such as conflict, conflict 
resolution and consensus, are important factors in determining the nature of the 
design product produced. Lu and Jin write that engineering design and practice 
“consists of collaborative negotiation” (1998). While Lu writes that collaborative 
design is “...a socio-technical co-constructive process” (Lu, Udwadia, Burkett, 
Cai, & Jin, 1998). 

“The activity of design (as in a design process) is commonly thought to 
be what the designer does, alone, at the drawing board... imagine instead 
that every individual with a voice in the design process is a kind of de-
signer—the client, the engineer, the contractor, the inhabitants, the col-
lege president, the fund-raiser and so on. The architect-designer, among 
other individuals, has the added responsibilities of coordinating all con-
tributions and giving them some spatial expression. Design, then, is tak-
ing place whenever any of these actors makes plans about the future en-
vironment” (Cuff, 1991).

Processes also have a distinct meaning in computer science referring to an entity 
created during execution of a computer application: Hoare writes that a process is 
“The behavior pattern of an object insofar as it can be described in terms of the 
limited set of events selected by its alphabet... The actual occurrence of each event 
in the life of an object should be regarded as an instantaneous or an atomic action 
without duration” (1985). While Silberschatz and Peterson state: “a process is a 
program in execution... a program is a passive entity, while a process is an active 
entity. The execution of a process must progress in a sequential fashion” (1988).

2.2.2 Process representations

There are many different representations for processes. This is because the 
concept of process is a very broad one, which almost all domains address in some 
way. This is because most knowledge domains deal with events or activities that 
occur over time. This survey has a bias towards process representations with 
graphic representations, rather than more data structure oriented representations 
such as object oriented, e.g. (Gorti, Gupta, Kim, Sriram, & Wong, 1998), or 
knowledge-based ones, e.g. (Genesereth & Fikes, 1992). This bias is due to the 
position that architects, being often visually oriented, would probably prefer to 
manipulate processes graphically within an application, in the manner of modern 
GUI interfaces rather than as lower level data structures.

2.2.3 Simple representations

Architects in education and practice usually produce simple diagrams, which 
include boxes and arrows. These can be found in all professional practice 
handbooks e.g. (Canadian Architectural Councils, 1995), (American Institute of 
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Architects, 1994), (SAA, 1984), (McGinty, 1979), and in most prescriptive 
theories of design, e.g. (Lawson, 1990), (Jones, 1984, 1992).

The problem with such representations is that they have no formal basis. Beyond 
providing a general idea of the nature of the process, there are no standardized 
meanings given to the boxes, or to the arrows connecting them. For instance, the 
boxes can mean various things: as discrete activities, as projects states, as mental 
states etc. They may be drawn as rectangular boxes, rounded boxes, circles, simple 
lists, etc. The arrows have a similar variability. They may be indicators of 
sequences of activities, or they may be transitions of some sort, from one state to 
another. The exact conditions which might enable a process, a project, or a 
designer—that entity which occupies a box—to move along the arrow from one 
box to another, usually is not specified.

Figure 7  Simple node and arrow process diagram for a lump sum architectural design 
contract (Canadian Architectural Councils, 1995, vol.2, p.4).

2.2.4 Network representations such as CPM

A more formal representation compared to simple prescriptive models is a network 
representation (Carmichael, 1989), (Hendrickson & Au, 1989), (Blazewicz, Ecker, 
Pesch, Schmidt, & Weglarz, 1996). These are used extensively in construction 
project management. With these types of representations, the syntax and semantics 
is usually clear enabling the design of sophisticated applications that depend on 
them. In them there are two types of components: nodes, and links between nodes. 
When drawn together they form a type of directed graph, typically without cycles. 
These representations work on the idea that dependencies link events. That is, for 
an event to occur, all it predecessor events must have first occurred.

There two fundamental types of these networks (Carmichael, 1989):

1. Activity on arrow: Where the events are the links, and the dependencies be-
tween the events are the nodes.

2. Activity on node: Where the events are the nodes, and the dependencies are 
the links.
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Figure 8  Activity-on-arrow process diagram.

Figure 9  Activity-on-node process diagram.

In theory, both of these types of representations have advantages and 
disadvantages, so it is up the particular application that determines which type 
should be used. 

The use, and standardization, of these network techniques, which were initially 
developed in the late 1950s, has had a dramatic effect on the ability of the 
construction industry to manage large complex projects. The goals of using tools 
based on these process representations, such as Critical Path Method (CPM) was 
in addition to modeling the required activities for a construction process, was to 
determine how long a project is likely to take, and also to identify critical activities 
that are especially important to manage closely.

The CPM methods do this by running shortest path algorithms on the network 
to see those activities, which if delayed, should be expected to delay the entire 
project. Such activities are said to ‘lie on the critical path.’

Although these are sophisticated methods, there appears to be one aspect that 
would make them unsuitable candidates for the desired application of design 
process modeling. Network models typically disallow cyclical dependencies. The 
usual assumption in construction projects is that the project network describes 
activities that are done one and only once. If activities are to be done multiple 
times they appear in the network as separate activities. This means that modeling 
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of iteration, which is seen as a major feature of design activity, cannot be done 
transparently.

2.2.5 IDEF methods

IDEF (Integrated Definition Methods) were originally developed in the 1970s and 
comprise a whole suite of methodologies and representations. Originally 
developed under contract for the US Air Force, they are now being developed by 
the company Knowledge-Based Systems Inc. (KBSI, 1998).

The IDEF system models the following aspects of organizations and enterprises 
(KBSI, 1998): IDEF (Integrated Computer-Aided Manufacturing (ICAM) 
DEFinition) is a group of methods used to perform modeling in support of 
enterprise integration. It was originally developed by the US Air Force Program 
for Integrated Computer Aided Manufacturing (ICAM). 

There are actually 16 IDEF methods, running from IDEF0 through IDEF14 (and 
including IDEF1 and 1x). In practice, three IDEF methods form the core of IDEF 
use in the field. They are IDEF0: Systems from a functional and organizational 
perspective, IDEF1x: Design of data models and conceptual schema, and IDEF3: 
Process flows and object states and captures all temporal information, including 
precedence and causality relationships associated with enterprise processes.

For the purpose of process modeling, the IDEF3 method is the most suitable and 
is intended to capture the behavioral aspects of systems. It comprises two types of 
models: 1. a process flow description, and 2. an object state transition description. 
Process flow descriptions are composed of two elements: nodes and links. The 
nodes, represented as boxes, are termed ‘Units of Behavior’ (UOBs). These can be 
hierarchically composed of other UOBs. As well they can be ‘elaborated’ such that 
the participating objects and their relations are shown. Circles represent object 
states, and lines connecting circles are the state transition links (KBSI, 1998).

The IDEF methods are static modeling environments and construction of 
executable process models is not possible. According to the documentation for a 
colored Petri net (CPN) modeling application (Meta Software Corp., 1993), 
IDEF0 methods are similar to those of Petri nets, except that IDEF is a static 
modeling method and is unable to represent system behavior over time.

It is apparently common for CPNs and IDEF0 models to be used together to do 
systems modeling. The parts of a system design which can be understood statically 
are modeled using IDEF0, while the parts which require a dynamic execution, can 
be modeled using CPNs. The use of IDEF0 for the purpose of modeling sequences 
of activities is not recommended according to KBSI, Inc. (1998), although this 
usage is possible using the representation.
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Figure 10  IDEF3 process representation (KBSI, 1998).

2.2.6 Statecharts

David Harel invented statecharts for the purpose of modeling of software systems 
(Harel, 1988). In this representation a graph called a ‘higraph’ is proposed which 
is like a state diagram but also has some of the topological qualities of a Venn 
diagram. Venn diagrams are often used to represent sets of elements, together with 
some structured relationship between them—for instance, how two sets partition 
a larger set.

Statecharts are higraph-based versions of finite-state machines and their 
transition diagrams. With this representation, states can be partitioned into 
overlapping or subsumed states, and also arcs, which represent transitions, can be 
drawn between any of these states—at any level of the state hierarchy.

Higraph and statecharts have been given formal definitions by Harel. They are 
intended to be static modeling methods, and do not enable the view of the change 
of state of a system over time, as do Petri nets.

Figure 11  Simple statechart.

2.2.7 Petri nets

A Petri net is a graphical language first developed by Carl Petri, in Germany, in 
the1960s (Petri, 1962). This technology has developed widely, particular as a 
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means to model and simulate a wide variety of discrete systems—especially ones 
that display degrees of parallelism.

Petri nets come in various types and build upon their most generic form called 
Place/Transition (P/T) nets. For a good description of how the P/T nets were 
extended to form the basis for more sophisticated types of Petri nets see Reisig 
(1998). 

Petri nets are now available in a wide variety of types including: colored 
(Jensen, 1997), timed (Meta Software Corp., 1993), object (Lakos, 1994), 
hierarchical (Biberstein & Buchs, 1998), and stochastic (Kusumoto et al., 1997).

They have been used to model processes in a wide variety of domains including: 
computer operating systems and algorithms (Reisig, 1998), telecommunications 
systems (Jensen, 1997), collaborative design (Ferber, 1999), software design 
(Maia, Haeusler, & Lucena, 1996), manufacturing process planning (Kiritsis, 
Xirouchakis, & Gunther, 1998) (Silva & Valette, 1989), collaborative workflow 
(Ferraro & Rogers, 1997), office communication systems (Cindio, Michelis, & 
Simone, 1992), construction industry processes (Li, 1998), and pilot behavior 
(Ruckdeschel & Onken, 1994). Petri nets form so-called bipartite directed graphs 
composed of two types of nodes: places and transitions. Between these two types 
of nodes are arcs, which connect the nodes. The rules of construction of these nets 
are that places can only be directly connected to transitions, and vice versa. 
Graphically, places are normally drawn as circles, while transitions are drawn as 
boxes or bars.

Colored Petri nets (CPNs) have the added feature of handling tokens of various 
types (or colors). The use of colors in CPNs is totally analogous to the use of types 
in programming languages (Jensen, 1996, p.9).

Figure 12  Simple place/transition Petri net before and after firing of a transition, showing 
input and output places (Reisig, 1998, p.17).

2.2.8 CPNs and hierarchical decomposition

Petri nets, when they have more than a few nodes, become difficult to understand, 
especially for people not skilled in reading them. Similar to the design of object-
oriented programs, CPN developers prefer to work in small, semantically clear sub 
units, which can be easily composed together to form complex systems. For this 
reason techniques that enable hierarchical composition were added to the CPN 
model.
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With CPNs there are two common techniques (Jensen, 1996) (Meta Software 
Corp., 1993):

1. Transition substitutions: Here a transition in a CPN can be substituted for an 
entire sub-CPN. In this way CPNs of arbitrary depth can be constructed (Fig-
ure 13).

2. Fusion places: Here a set of places in a CPN are grouped together, such that 
are seen by the CP net to be multiple instances of the same place type (Meta 
Software Corp., 1993).

It is proposed that in addition to these two CPN-specific hierarchical 
mechanisms, there is also the possibility that a specialization hierarchy of 
processes may also be required. In this way process models can inherit 
characteristics of parent classes. This mixing of CPNs with object-oriented 
techniques such as inheritance, is a common approach taken within the CPN 
community.

Figure 13  Hierarchical Petri net using transition substitution.

2.3 Collaborative design theory

2.3.1 Introduction

Collaborative design is a common way of designing. It is also a very complex 
social and technical activity. Collaborative design depends on the successful 
interaction of many different parties. The nature and outcome of these interactions 
can be quite ad hoc, and specific in nature, and therefore difficult to predict, or 
generalize.

Design problems are also becoming more complex, with increasing integration 
demanded between diverse, and possibly novel functional requirements. 

Increased complexity in design has both social and technical aspects. Not only 
are the technical problems becoming more difficult, such as learning to work with 
new materials, or learning to cope with changing regulatory environments, but the 
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social demands that they bring is also changing. People from different cultures, 
who may have never worked together before, are brought together and expected to 
quickly bridge their cultural differences and become productive with one another 
(Cross & Cross, 1996). 

The concept of the ‘stakeholder’ is becoming more prominent in collaborative 
design. In the domain of software engineering they can be defined as: “individuals 
or organizations who stand to gain or lose from the success or failure of a system” 
(Nuseibeh & Easterbrook, 2000). Stakeholders are people involved in design 
processes who previously may have had little input into a design process. 
Increasingly, they demand that their concerns and opinions be heard, and that these 
concerns are somehow incorporated into design products (Evan, 1993). With 
design processes where the input of stakeholders is taken seriously, the situation 
can arise in which any stakeholder within a design process could conceivably 
affect that process. Therefore, in order to manage design processes well, such that 
all those affected by them are included, design processes should include all parties 
who are stakeholders within them. 

Stakeholders come to design processes with various levels of design experience 
and expertise, and can have profoundly diverse conceptual perspectives on the 
design process and product. This variation is not only a function of their roles 
within the design process, their professional and educational experience, but is 
also a function of their own personal histories. Since these influences vary so 
much, and can come in many unforeseen dimensions, the only way of 
understanding the motivations of stakeholders, and the effect they might have on 
a design process, is to communicate directly with them. 

2.3.2 Design methodologies

There have been many models of the design process that have arisen from design 
domains such as engineering, architecture, and industrial design. According to 
Roozenburg and Cross, in engineering design, these models have converged on 
what they call a ‘consensus’ model (Roozenburg & Cross, 1991, p.217), based on 
German engineering theory such as that by Pahl and Beitz (Pahl, Beitz, Wallace, 
Blessing, & Frank, 1996). Such a consensus model involves a rational, linear, 
progressive series of tasks in which activities are grouped into four phases: 

1. clarification of the task,
2. conceptual design,
3. embodiment design, and 
4. detail design. 

In architectural design circles, overly prescriptive linear process structures were 
replaced by spiral models, in which designers could revisit tasks and iterate 
processes (Cross, 1993). 
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Figure 14  Spiral model of design as applied to software development (Boehm & Hansen, 
2001, p.6).

Models by Darke (1984) questioned the idea that exhaustive problem analysis and 
specification is always a necessary precursor to design synthesis. Here, 
unpredictable ideas and biases that individuals might bring to a design process 
were seen to play an important role. 

Greater flexibility in the order of design activities was promoted by Guidon 
(1990). He suggested that so-called opportunistic behaviors, in which design 
activities were interleaved in complex behavioral and cognitive structures, are 
common in design. These were seen not as corruptions of a rational process, but 
rather as appropriate designer responses to the ill-defined nature of design, in the 
context of limited cognitive resources.

The work of Donald Schön criticized the notion that design is a process that is 
ruled by explicit and rational problem solving knowledge, and argues that 
designers know more than they can say (Schön, 1983). Schön calls this a kind of 
‘knowing-in-practice’, which is a form of tacit knowledge. Instead of a 
deterministic process driven by technical requirements, he views design more as 
iterative ‘meaning-forming’ one. In such a model of design, designers alternate 
between action, and reflecting on that action, in order to construct for themselves, 
meaningful representations of design problems and solutions. 

Figure 15  Action and reflection cycles in design (Smith, 2004).
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The work of Louis Bucciarelli also deviates substantially from standard 
accounts of collaborative design (Bucciarelli, 1994, 2003). He argues that iterated 
social processes, such as narrative construction, are seen in collaborative design 
situations. In constructing stories, design teams attempt to make sense of their 
design problems, and to imagine plausible solutions. He also argues against 
viewing the structure of objects, such as those of the artifacts that are being 
designed, as appropriate for structuring a collaborative design process. Instead, he 
focuses on the social processes themselves, as being the most relevant factor in 
determining how design processes actually turn out.

2.3.3 Cognitive models of design
Cognition: thinking skills that include perception, memory, awareness, 
reasoning, judgment, intellect, and imagination (NIDCD, 2004).

The academic domain that studies cognition is called cognitive science, however, 
due to the general nature of cognition and its relation to high-level mental activity 
of any kind, most other academic domains have things to say about cognition. One 
of the agendas of cognitive science is to create psychologically plausible 
computational representations of human cognitive processes. In the design domain 
such research informs the design of design support systems that engage and 
possibly augment the cognitive capacities of designers. 

Cognitive models of design tend to emphasize the internal cognitive 
mechanisms of individual designers, and sees design processes as intellectual 
challenges that designers tend to pursue in private. Design studies related to 
cognition tend to take a descriptive, rather than a prescriptive view. 

One of the most useful ways that research has been conducted in cognitive 
studies of design has been through the techniques of the design protocols analyses. 
These observe designers in controlled environments, and gather data by having 
designers talk-aloud and inform the researcher about which directions and moves 
the designer chooses to make (Cross, Christiaans, & Dorst, 1996; Ennis & 
Gyeszly, 1991). Such studies have been useful in determining how designers 
decompose design problems, identify types of design problems expected to require 
higher cognitive loads than others, and identify useful design heuristics employed 
by designers at various levels of professional competence. 

Cognitive studies of design have traditionally been closely aligned with 
information processing theories of cognition. This theory definitively stated by 
Newell and Simon (Newell & Simon, 1972), proposes that humans operate as 
information process systems. The information processed is encoded as symbols 
that represent both internal states and objects of the external world. 

...the hypothesis is that a physical symbol system... has the necessary and 
sufficient means for general intelligent action... such data imply that all 
known intelligent systems (brains and computers) are symbol systems. 
(Simon, 1981, p.28).
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Figure 16  Components of a cognitive information processing system (Akin, 1986, p.13).

Information processing theories of cognition often put great importance on the 
cognitive loads of design processes. This is based on the idea that certain types of 
mental operations can be expected to require more attention and resources from 
the subject, much in the same way that a complex algorithm in a computer 
program might take longer and use greater amounts of memory and processing 
resources than others. 

Cognitive study of designers, and the states that they enter into is useful for the 
design of computer-based systems, because such states can be mapped to the states 
of computer applications. The information processing of cognition is useful in this 
regard because there is such a close parallel between cognitive structures and 
structures of computer architecture and applications. 

2.3.4 Handbooks of professional practice

Professional bodies that regulate the architectural profession, such as the 
American Institute of Architects (AIA) (American Institute of Architects, 1994), 
The Royal Institute of British Architects (RIBA), and the Royal Architectural 
Institute of Canada (RAIC) (Canadian Architectural Councils, 1995), produce 
standards of practice for their members. These documents inform their members 
what the standards of conduct are expected within the profession, and educate 
novice architects in preparation for their licensing examinations. These standards 
often include a number of prescriptive design theories.

These handbooks show the design process as a neat linear sequence that is 
divided into clearly defined phases. This type of organization is sometimes called 
a ‘staged process model.’ These design process models often map into the design 
payment schedules for architects, as stipulated by standard client-architect 
employment contracts.

In these contracts design is split into several phases, such as Schematic Design, 
Design Development, and Construction Documents. These phases estimate how 
much of the total job the architect is deemed to have completed at each phase, and 
inform the involved parties how much the architect should be paid at that point. 
Between each of these major design phases, is an important client review and 
approval meeting in which the client reviews the completed work, agrees to pay 
the architect the amount specified in the contract, and enables the architect to 
proceed to the next phase.
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Figure 17  Process model based on a professional contractual arrangement (Canadian 
Architectural Councils, 1995, vol.2, p.7).

These phases are shown as linear, sequential affairs. Once, for instance, the 
Schematic Design phase has been competed, it is assumed that iteration back into 
a previous phase will neither be necessary nor professionally prudent.

The genesis of such professional design practice models is related to the notion 
of design as a professional activity, and as a contractual obligation. The goal is to 
organize design activity such that architectural firms can expect predictable 
remuneration as a result of this activity. For this reason such models tend to hide 
the complex iteration and the chaotic nature common in even well managed design 
practice.

2.3.5 Social processes in design

Usually design process models assume that design is a rational, problem solving 
process, in which the cognitive abilities of individual designers are paramount in 
coming to appropriate solutions. Less attention is paid to the complexities of 
collaborative design, in which a large number of people, with possibly divergent 
conceptual outlooks on the process and product, must learn to interact 
productively. According to Whitney, it is possible to view design process in two, 
quite different ways. One, as a technical process to be accomplished, and two, as 
an organizational process to be managed. The first tends to focus on the individual 
whereas the second focuses on the group (Whitney, 1990). 

In collaborative design, both these aspects are important, and are worthy of 
support. It is perhaps in the complex interactions between the technical, and the 
social or organizational aspects of a design process that presents the biggest 
challenges to a fully integrated design methodology.

Collaborative design involves many parties acting out a variety of roles. These 
roles may be formally assigned, and with clear-cut responsibilities and processes, 
or they may be informally adopted by the participants themselves as the process 
proceeds. Such informal role-adoption was noted by Cross and Cross in group 
design protocols (Cross & Cross, 1996). 

It can also be seen in social groups in general, that dominant and submissive 
social roles such as leadership positions may not be a simple matter who gets 
assigned to do what. It often involves an emergent social process of competitive 
role-adoption. How such role emergence works is a process involving necessity 
(what roles ought to be filled), opportunity (what roles are open to be filled), and 
competition (who appears to be the best candidate to fill a role). 
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2.3.6 Coordination theory

Coordination science is a new discipline that has been developed to help explain 
and manage complex collaborative situations that tend to overwhelm existing 
process management theory and technique. Whitfield, Coates, Duffy, and Hills 
(2000), Klein (1998), and Malone and Crowston (1992) provide excellent 
overviews. Coordination of action is required, according to Klein (1998), when 
distributed activities, such as those found in collaborative design, are 
interdependent. 

Malone and Crowston provide a good, concise definition of coordination: “the 
act of working together harmoniously” (1992). Malone and Crowston also provide 
a list of technical definitions others have proposed for the term. A useful 
discussion is provided by Jennings (1996) regarding the three main reasons why 
the actions of multiple agents need to be coordinated. 1. because there are 
dependencies between agents' actions, 2. because there is a need to meet global 
constraints, and 3. because no one individual has sufficient competence, resources, 
or information to solve the entire problem. 

According to Klein (1998), the most fundamental aspect of support for 
coordination comes through communication. That is, it is inconceivable that in 
whatever design coordination regime, whether software-based or otherwise, that 
agents will be able to coordinate their work without actually communicating with 
one another. In hierarchical control situations, this communication may be 
indirect, through, for example, an agent's manager or controller, while in 
distributed cases it occurs directly between agents. 

Jennings proposes that coordination is built upon four main structures: 
commitments, conventions, social conventions, and local reasoning capabilities. If 
an agent commits to performing a particular action, then, if circumstances do not 
change, it will endeavor to honor that pledge (Jennings, 1996). Non-performance 
of a commitment, made in a social setting, can entail social costs, which people 
sometimes go to extraordinary lengths to avoid. However, commitments are not 
irrevocable, since the circumstances that inspired them in the first often change. 
The longer the time between making a commitment, and the time that action is 
required, increases the likelihood that the commitment may need revision. From a 
distributed systems perspective, commitment by agents to a course of action adds 
a degree of certainty to future events. This is an important consideration in such 
systems, since due to their distributed nature they experience a great deal of 
uncertainty. 
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2.3.6.1 Centrality of commitments and conventions hypothesis 

Jennings offers a hypothesis that has the potential of providing structure and order 
within the domain of collaborative design. Jennings proposes the following 
(1996):

1. all coordination mechanisms can ultimately be reduced to commitments and 
their associated (social) conventions, 

2. commitments are viewed as pledges to undertake a specified course of action, 
and 

3. conventions provide a means of monitoring commitments in changing cir-
cumstances.

The work of Terry Winograd incorporates well-known criticisms of the 
rationalist approach to design, cognition, and intelligence (Winograd & Flores, 
1987). He emphasizes, like Schön (Schön, 1983) and Bucciarelli (Bucciarelli, 
1994), the social processes required for groups to come to some common 
understanding. He sees the interactive nature of language use, such as described in 
speech act theory (Searle, 1991), to be a primary factor in such social processes. 

2.3.6.2 'Plans-as-programs' vs. ‘plans-as-communications’

Agre and Chapman in their influential report “What are plans for?” distinguish 
between two uses for symbolic plans: one as ‘plans-as-programs’, and ‘plans-as-
communications’ (Agre & Chapman, 1989). 

Plans-as-programs are intended as algorithmic accounts of the steps to be 
followed in order to fulfill certain goals. This approach is consistent with the 
theories of an influential faction in cognitive science, which posits that following 
symbolic plans is necessary to enable rational, goal-directed activity. Plans-as-
communication are seen as much more informal, linguistically based accounts of 
what should be done. They suggest that complex activity depends both on 
symbolic descriptive models, as well as real-time, situated improvisation. For the 
symbolic-modeling side of this vigorously debated issue see Vera and Simon 
(1993) while for the opposing, situated view see Clancey (1993).

According to Agre and Chapman, the plans-as-program approach suffers from 
the following problems: 1. it poses computationally intractable problems, 2. it is 
inadequate for a world characterized by unpredictable events such as the actions 
of other agents, 3. it requires that plans be too detailed, and 4. it fails to address the 
problem of relating the plan text to the concrete situation (Agre & Chapman, 
1989).

Plans-as-programs are seen as being insufficiently flexible, in that appropriate 
real world activity depends on real-time adaptive responses to uncertainties. These 
uncertainties are difficult or impossible to predict in advance. How to deal with 
uncertainties and contingencies is especially important in the field of robotics. A 
central problem within robotics is how to design robots capable of negotiating 
real-world environments. One approach to this problem is the work of Brooks, in 
which non-deliberative, reactive interactions between robots and the 
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environmental stimuli they might encounter is favored, instead of plan 
construction and plan following (Brooks, 1991). 

In agreement with the position of Brooks, Agre and Chapman view the problem 
with the plan-as-program view is that it understands activity as a matter of problem 
solving and control, rather than one that involves fashioning real-time adaptive 
responses to constantly changing situations. Similar issues are relevant in the 
domain of design process support, in which adaptive, 'opportunistic' responses to 
complex, dynamic situations are also important. Yet, Agre and Chapman do not 
see plans-as-programs as necessarily ineffectual: in situations that have relatively 
static, well-defined semantics, and low levels of uncertainty, they can be very 
useful. 

In contrast, the plan-as-communication approach sees plans as resources, 
among many other resources, which agents may choose to use or not to use, in the 
context of complex activities. Additional resources could be many things such as 
the opinions of others, clues from the environment, the contents of other plans, etc. 

Here, the contents of a plan are not directly connected to a cognitive, perceptual, 
and motor system that depends on access to detailed plans in order to function at 
all—which is the case with plan-directed robots. Therefore, items in a plan have a 
much less central role to play than in the plans-as-program view, where plan 
contents are used not only to inform, but also to structure and to effect activity. The 
plans-as-communications approach assumes the existence of a general cognitive 
ability beyond that of plan construction and execution, and depends on an agent 
understanding the meaning of an item on a plan. 

Plans-as-programs are useful in agents that inhabit simple, static environments 
in which the execution of relatively static symbolic plans is suitable. This assumes 
that there exists some agent who is capable of creating the plan in the first place, 
and that once created, the plan will not have to be re-planned at every step of its 
execution, due to unforeseen contingencies. 

These criticisms are relevant to collaborative design where there is usually no 
one party that is capable of devising a plan that will enable all the activities of a 
design team to be structured. In addition, even if a plan did exist it is unclear how 
closely a design team would want or be capable of following it. Finally, due to the 
unpredictable nature of collaborative design, it is clear that any plan will have to 
be under constant revision, in order to cope with the changing circumstances, re-
interpretations of requirements, and design opportunism common within design 
teams. Therefore, the plans-as-communications approach appears to be a more 
realistic model of how plans are actually used in collaborative design. 

2.3.6.3 Recurrent social processes

Collaborative design involves both the search for solutions to artistic and technical 
problems, and also the specification and coordination of the recurrent social 
interactions encountered during a collaborative design process. These interactions 
involve many activities: the assembly of the collaborative team, the generation and 
communication of relevant ideas to other team members, the resolution of design 
conflicts—which seem to inevitably arise from most collaborative activity—and 
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the negotiation required to assess whether a design proposal is an appropriate 
solution given a perceived set of design requirements. Within collaborative design 
all of these processes are seen as socially mediated ones, depending crucially on 
interpretation, negotiation, and the construction of meaning in a social context. 

Collaborative design process should not be seen as a problem that can be viewed 
objectively, or one that exists independently, of the people who are asked to solve 
it. Rather, both architectural problems and design processes require interpretation. 
This interpretation must be communicated to others in the team, and various 
consensuses must be arrived at within the team for the design problem to be solved 
adequately, and to everyone’s satisfaction. 

This socially mediated and constructed process however, is seen to be one that 
is greatly constrained by the patterns of social and technical interactions that 
design team participants bring to the table. The sources of such patterns of 
behavior are thought to be their previous experiences working in design teams, and 
by their experiences working in collaborative social situations in general. Since 
designers usually have similar experiences of doing design, this is expected to 
converge into recurrent social patterns of interaction.

This approach—that social behaviors such as collaborative design are both 
socially constructed by their participants while they occur, as well as constrained 
by the participants experiences performing related activities in the past—can be 
found in many domains, for instance, cognitive science (Varela, Thompson, & 
Rosch, 1991), theory of the collaborative use of language (Clark, 1996), and 
accounts of engineering design processes (Bucciarelli, 1994). 

2.3.7 Design processes from a top-down perspective

Collaborative design has important top-down aspects that can structure both 
product and process. Top-down, or centralized process control can be derived from 
many factors, including:
• Social and cultural factors: a strong personality or common culture that drives 

teams to perform design in a certain way.
• Technical factors: a focused expertise that has a strong effect on the design 

direction.
• Organizational factors: when the hierarchy of organizations is reflected in the 

structure of a design product or process. 
• Financial factors: when the money flows from centrally controlled sources. 
• Contractual factors: when parties agree in a legally binding manner to submit to 

some central authority.
• Consensual factors: make parties commit themselves to an agreed course of 

action.

From a product perspective, certain global aspects of a design product are 
normally required to facilitate management of collaborative design, such as the 
total cost, or the quantities of materials used in a proposed product model. 

However, centralized process control and product representation do have their 
limitations. As Klein notes (1998), centralized control requires that a single person 
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or software system have some deep understanding of the entire design. As noted 
above, this is not so difficult for small projects, but becomes impractical for large 
ones, with large dependency networks. 

It is especially difficult for projects that require inputs from multi-disciplinary 
teams who often speak different ‘languages.’ In order to understand and 
participate in the coordination of various contributions, a central controlling party 
therefore must be ‘multi-lingual.’ This is a tall order if the composition of a design 
team includes a wide variety of experts, each speaking very specialized languages. 
Here, a practical expectation is that outsiders will only be able to understand a 
small subset of what is what is important within such domains of expertise. It 
might be feasible to standardize languages such that everyone speaks the same 
one, but this, as Stouffs and Krishnamurti (2001) note, is likely to be at the expense 
of expressiveness and flexibility. 

In theory then, centralized control may become impractical once design projects 
attain a certain size and complexity. If centralized control is impractical in certain 
situations, which may not be that uncommon, then forms of distributed, localized 
control may become necessary.

2.3.8 Design processes from a bottom-up perspective

From a bottom-up perspective, collaborative design can be modeled as a complex 
system. Complex systems research addresses at a fundamental level, the behaviors 
of interdependent entities (Klein et al., 2001). Complex systems typically have no 
central controller, and the global behaviors they exhibit, emerge because of local 
concurrent actions. Biological systems, such as ecosystems and organisms, are 
perhaps the most commonly presented examples of complex systems (Resnick, 
1994). Concepts from complex system theory can also be applied to social 
systems, in which individuals forming social groups are seen as interdependent 
entities (Axelrod, 1997). Complex systems can be inorganic, or non-biological, as 
well.

According to Klein (2001), designers, as well as design issues, can be modeled 
as 'nodes' in dependency networks. In such a view, completing a collaborative 
design process, involves designers attempting to maximize the value of a 
(hypothetical) global utility function. This usually takes place in the context of 
extremely large design spaces. One difficulty in collaborative design is knowing 
what the global utility of a proposed design might be, prior to actually building a 
completed artifact. Even with a completed artifact, interpretations regarding the 
global utility of a design can vary.

Klein notes that the problem with collaborative design in general, is that the 
networks that most realistically model how collaborative design is done in 
practice, and ought to be done in practice, are also the ones that display the most 
complicated behaviors. 

Dependency networks can have a variety of dynamics including non-linear, 
asymmetric, and non-convergent ones. Linear networks are those with single 
attractors. This situation is helpful in a collaborative design process, since it 
means, despite complex interdependencies and interactions between nodes, design 
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solutions converge to a single point. This point corresponds to a global optimum. 
Klein notes that only routine design processes have been successfully modeled as 
linear networks. 

Networks that exhibit non-linear network dynamics complicate the situation 
considerably, in that their utility function can have many peaks instead of single 
ones. These peaks represent local optima. Since local optima are often surrounded 
by valleys, search for global optima is made much more difficult. This applies to 
both software-supported design processes, as well as manual ones. 

In collaborative design, this situation means that incremental improvements to 
a given design configuration, such as product models as they currently appear, 
may improve the designs, but will not necessarily lead to global optima. To 
discover global optima, design teams may need to consider radically different 
configurations of design components. This is often an expensive and risky 
proposition. The history of product development often shows such dramatic re-
configurations, in addition to incremental improvement of existing configurations 
(Bijker, 1995). 

Hogg notes the prevalence of non-linear interactions in distributed systems 
(1998). He states that such systems can display a wide range of behaviors 
including stable equilibria, continual oscillations, and chaos. Chaos is considered 
a destructive aspect of distributed systems in that it introduces global 
unpredictability into the system. Hogg proposes that simple reward mechanisms, 
based on the assessed performance of software-based agents, can help eliminate 
such chaos. 

Within the Distributed Artificial Intelligence (DAI) community, the strategy of 
distributing control, data, as well as knowledge sources, is now widely supported 
(Whitfield et al., 2000). Such an approach has been shown to have several 
advantages, including the reduction of performance bottlenecks, the increase in 
reliability, and the soft, rather than steep or complete degradation of performance 
when systems are under stress. 

Distributing control and data can also have disadvantages according to Jennings 
(Jennings, 1996), in that 1. each agent only has a partial and imprecise perspective, 
2. there is increased uncertainty about each agent's actions, 3. it is more difficult 
to attain global behavior, and 4. the dynamics of such systems become extremely 
complex.

However, distributed control when placed in a design context is a concept that 
may not have much appeal to designers. Designers are usually trained to view their 
primary job description as ‘controllers of design processes.’ The traditional 
expectation is that in order for a designed product to have some kind of aesthetic 
or functional coherence and integrity, a single cognitive entity such as a designer, 
must conceive and coordinate the design in its entirety. For smaller design 
problems, this is quite possible. For more complex problems, or for those that take 
place over an extended period, it becomes more difficult. For example, the centers 
of old European cities, or vernacular settlements such as Italian hill towns, may 
take several hundred years to be designed. Their design processes involve the 
accumulation of contributions from many designers. Despite the distributed nature 
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of their conception and construction, such designed products are considered by 
many to be the height of western architectural achievement. The reason that they 
are seen to exude such charm seems related to how each local contribution is 
coordinated with that of its neighbors, such that the whole exhibits an ‘organic’ 
quality. Such adaptable and locally coordinated design processes are quite difficult 
to emulate using centrally controlled processes.

Complex collaborative design processes can indeed be centrally controlled. 
However, once design projects get to a certain degree of complexity, central 
control introduces limitations into the collaborative process. This is especially true 
if this complexity is combined with designers' attempts to be innovative and 
creative, such that new global design optima might be discovered.

A similar argument could be made for the desirability of market-based rather 
than centrally planned economies. Once the number of economic transactions 
reaches a certain level, the ability of any central authority to allocate resources 
effectively, becomes compromised. Thereafter, more distributed, emergent, 
‘invisible hand’ approaches become necessary.

2.4 Peer-to-peer software

2.4.1 Introduction

Peer-to-peer (P2P) involves having computers on a network—peers—acting as 
both suppliers, as well as consumers of information. P2P does not constitute a new 
idea—it has been around as long as computing itself. 

The idea behind P2P technology is to enable the sharing of information between 
distributed peers, without the necessity of first setting up a centralized system to 
do this. One promising approach to the P2P is the JXTA initiative by Sun 
Microsystems (Sun Microsystems, 2002). This standardized, open-source 
initiative provides a protocol, with language bindings for several languages that 
enables for the easy design and implementation of secure P2P applications. 

2.4.2 What does P2P mean for computing?

The supporters of P2P list its many apparent advantages (Oaks, Traversat, & 
Gong, 2002) (Peer-to-Peer Working Group, 2002):
• Scalability: the ability of P2P applications to increase their performance as more 

users are added, rather than to decrease it.
• Robustness and fault tolerance: the ability of P2P to degrade gracefully when 

network connections, or computing resources in general become unavailable or 
corrupted.

• Dynamic behavior: the ability to handle and dynamically adjust to the presence 
or absence of specific computer resources.

• Spontaneity: the ability of applications to respond to changes brought to 
computer systems by inputs from new peers and new computing resources, 
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without having to preconceive these changes or to do special work to handle 
them when they do occur.

• Self-organization: the ability of people working on a P2P network to organize 
into specific peer groups of their own design, without the requirement of any 
centralized interventions.

2.4.3 JXTA by Sun Microsystems

JXTA (a term meaning ‘juxtapose’) is a standardized, open-source initiative that 
provides a protocol, with language bindings for several languages, that enables the 
design and implementation of secure P2P applications. JXTA is based on open-
source, standards-based protocol specification, and can be implemented in Java or 
any other languages (Oaks et al., 2002). JXTA also provides a generic 
infrastructure to deploy P2P services and applications (Gong, 2001). JXTA is built 
out of five key abstractions: uniform peer ID addressing, peergroups, 
advertisements, resolvers, and pipes (Oaks et al., 2002).

2.4.3.1 Peers

Peers are the basic unit of JXTA. Peers can be both the consumers as well as 
producers of services found on a JXTA network. As defined in the JXTA 
specification, a peer is a device that implements one or more of the JXTA 
protocols. From the user’s point of view, a peer is the user of a P2P application. 
One of the basic ideas of P2P is to reduce the barriers to communication by 
flattening communication hierarchies and making everyone a potential 'peer'.

2.4.3.2 Peergroups

Peergroups in P2P systems act as virtual social spaces in which peers can interact 
and exchange information. In the JXTA protocol, the technical definition of a 
peergroup is a collection of peers that have agreed upon a common set of services 
(Sun Microsystems, 2002). It is up to cooperating peers to define groups, join 
groups, and leave groups (Oaks et al., 2002, p.16). 

The purpose of peergroups is to:

1. Define a set of services and resources

For instance, the ‘dpmNet’ peergroup created by the application in this thesis has 
specialized services that enable peers to vote on the state of design entities. Other 
peergroups could have other services, such as access to secure information 
sources, or ways to interact with their fellow peers. 

2. Provide a secure region

Peers must be members of the same peergroup in order to share information. 
Peergroups can be designed with strict membership requirements. Therefore, 
peergroups can be designed such that they are suitable to share sensitive 
information if they are configured to enable only qualified peers to join the 
peergroup. By default, all peers become members of a ‘world’ peergroup when 
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they first join the P2P network. This top-level peergroup is open to anyone.

3. Create a scoping environment

One of the primary purposes of peergroups is to partition the set of possible users 
into definable groups that provide a limiting scope for search and discovery of 
resources. Messages within a peergroup are propagated only to peers that are 
members of the peergroup (Oaks et al., 2002, p.16). This increases the efficiency 
of the distributed interactions considerably. Peers thereafter can either join 
existing peergroups, or can create new ones. Any peer can set up any peergroup 
she wishes, and any peer can be a member of multiple peergroups. Membership in 
one peergroup, gives a peer no rights, privileges, or access to other peergroups. 

Figure 18  Peergroups as logical partitions of the top-level ‘world’ peergroup.

2.4.3.3 Information exchange between peers

In JXTA, all messages are encoded as hierarchical XML messages, in which text 
or binary data can be embedded. This embedded data is called ‘payload data.’ The 
JXTA protocols themselves are specified as a set of XML messages exchanged 
between peers. An advantage of XML encoding is that XML messages enable the 
addition of a large variety of metadata, such as credentials, certificates, and public 
keys (Oaks et al., 2002). Therefore the type, size and hierarchical organization of 
the content that gets communicated between peers is completely up to the peers, 
and is not prescribed by the protocol.

2.4.3.4 Issues of hierarchy in P2P systems

P2P computer systems are useful in creating dynamic on-line social environments 
that do not necessarily have any ‘center of control’, or in-built social hierarchies. 
This is not to say that such centers of control or social hierarchies do not form 
within P2P communities, only that these hierarchies are more likely to be aspects 
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of the social interactions themselves, rather than a reflection of the design of 
software systems that support these interactions. This lack of inherent hierarchy is 
clearly a useful feature for domains that depend on the easy transfer of information 
between ordinary users, and on the flexible and dynamic construction of social 
groups online. 

P2P systems appear to have promise within collaborative design support, since 
collaborative design requires the dynamic construction and re-construction of 
various social environments and groups, such as design teams and sub-groups 
within design teams. The concept of peergroup enables such social construction to 
take place in an on-line, geographically distributed fashion. 
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2.5 Wisdom of crowds
In his book The Wisdom of Crowds: Why the Many are Smarter than the Few, 
James Surowiecki (2004) explores the decision-making capability of 
decentralized, distributed groups of people. He writes “under the right 
circumstances, groups are remarkably intelligent, and are often smarter than the 
smartest people in them. Groups do not need to be dominated by exceptionally 
intelligent people in order to be smart.” (p.xiii) 

Surowiecki focuses on three types of problems: 

1. Cognition problems: problems involving conceptualization of appropriate 
problems and solutions alternatives. According to Surowiecki, these are prob-
lems that have or will have definitive solutions. 

2. Coordination problems: problems involving adapting their behaviors to the 
behaviors of others, so that people can work productively together. 

3. Cooperation problems: these involve getting people to work together on com-
mon projects that involve the self-interest of multiple parties. 

It is clear that collaborative design also involves these three types of problems: 
designers must solve problems involving the conceptualization of alternatives to 
complex problems, they must adapt their behavior to the behaviors of others such 
that some kind of collaborative order is created, and they must cooperate with their 
peers, such that self-interested parties manage to work together. 

His argument is mainly supported from finding from psychological research and 
the world of business and finance, and he sees his basic message as somewhat 
counter-intuitive. He does emphasize that groups are not always smarter, just that 
in some specific circumstances, they can become smarter. The conditions that 
must be present for ‘wise crowds’ to result, are the following:

1. Diversity of opinion: what people know and believe, or the conceptual and 
cognitive perspective they have on events of common interest, is different to 
that of others. 

2. Independence: people are in a position to think about events in a way not un-
duly influenced by the opinions of others.

3. Decentralization: people have access to local or specialized knowledge.
4. Aggregation: A mechanism exists to covert distributed private judgments into 

a collective decision—which may not correspond to the opinion of any one 
contributor to the decision (Surowiecki, 2004, p.10).

As a mathematical explanation of how this mechanism works: 
At heart, the answer rests on a mathematical truism, If you ask a large 
enough group of diverse, independent people to make a prediction or es-
timate a probability, and then average those estimates, the errors each of 
them makes in coming up with an answer will cancel themselves out. 
Each person’s guess, you might say, has two components: information 
and error. Subtract the error, and you’re left with the information (p.10).
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The first three conditions are quite similar and distinguish groups of people in 
which members are in a position to think for themselves and whose opinions are 
valued. Such is the case with the normal collaborative design team, members of a 
design team are chosen normally for their diversity of opinion, and their 
specialized knowledge. Structural engineers are seen as valuable and necessary 
colleagues for architects precisely because engineers’ professional training and 
experiences enable them to propose structural solutions and solve problems that 
architects are not specialized to perform. 

Being on a team, however may work against this independence of thought. To 
become part of a team implies that a certain degree of individual autonomy is lost 
in order to conform to the social norms that the team creates. Working together 
with people, as a design team implies must occur, by definition reduces the 
independence of each individual member. 

The fourth condition, however, is quite different than the first three in that it 
involves a technical mechanism rather than a social structure. The first three 
conditions are commonly found when people are in a position to view distributed 
events, or acquire specialized knowledge, and therefore perspectives. As 
Surowiecki points out, teams often get the first three points right, but not the final 
one. Teams often allow intelligent people to come with sufficient resources to 
make ‘wise’ collective decisions, but do not provide a mechanism for translating 
this diversity into specific decisions that takes into account everyone’s 
contribution.

The three most common aggregation mechanisms are: 

1. Voting, or rating systems: found in democratic elections, the page-ranking al-
gorithm of Google, or self-organizing web sites in which highly-rated content 
can ‘bubble to the top’ (Hafner, 2001).

2. Markets, in which buyers and sellers coordinate their behavior. This is found 
in financial markets of all kinds including stock and commodity markets, and 
also in decision markets such as the Iowa Electronic Markets (Iowa Electronic 
Markets, 2004).

3. Imitation and influence systems: in which people base their behavior by imi-
tating what others do. This can be found in fads, stylistic movements, trends, 
fashions, and riots. Such behaviors can often turn out badly since each mem-
ber loses independence of decision-making, and may do things that if they 
were independently considered, the member would not have done.

2.5.1 Relevance to collaborative design

Collaborative design exhibits all three types of problems identified above: 
cognitive, coordination, and cooperation. Design teams come in various sizes and 
often only have a small pool of ‘voters.’ The smaller is the pool from which 
information can come, the less is the effect of the ‘wisdom on the crowd.’ 
Collective wisdom appears to depend on a large sample size. There is also tension 
between independence and conformity: In collaborative design teams, members 
are both expected to work independently and provide ideas and information 



51.
informed by specialized knowledge. In contrast, designers are also expected to 
conform to the design team’s objectives and behaviors, and learn to get along with 
others on the team. This tension between wanting to be independent of the group, 
as well as cognizant and respectful of the team’s emerging social norms, appears 
to be an essential aspect of collaborative design. It reflects the fact that designers 
must in the end produce a conceptually, unified artifact informed by the 
aggregated contributions of agents with varying degrees of conceptual and social 
independence. 

In design teams, the lack of technical aggregation mechanisms is not necessarily 
a problem. In normal practice, design teams do not have access to technical 
intervention of aggregating mechanisms such as elections, rating systems, or 
markets. Decisions are made based on available alternatives and on the intellectual 
resources of the team. This means that it is conceivable for good decisions to be 
made, despite the lack of technical aggregation systems, if contributions provided 
by individuals are taken into account when making final decisions. 

In summary, Surowiecki writes:
Decentralization’s great strength is that it encourages independence and 
specialization on the one hand while still allowing people to coordinate 
their activities and solve difficult problems on the other. Decentraliza-
tion’s great weakness is that there’s no guarantee that valuable informa-
tion, which is uncovered in one part of the system, will find its way 
through the rest of the system (2004, p.71).

2.6 Centralized and distributed systems compared
Information systems that support collaborative design, can be designed either as 
centralized or decentralized systems. Up to now the tendency has been to build 
centralized systems, such as those that employ client-server architectures. 

P2P are seen as one end of a spectrum of available network topologies, in which 
completely centralized systems are at the other end. Here, the author attempts to 
analyze the implications of the two ends of the spectrum, rather than spend time 
discussing the myriad shades of grey in between. It seems likely that the most 
profitable approach in design systems will be to make hybrid systems that take 
advantage of the inherent advantages of both the distributed and centralized 
approaches.

2.6.1 Factors that promote the centralized approach to collaborative design

2.6.1.1 The suitability of centralized architectures in development of 
centralized, integrated product models

As it is usually a single unified artifact that is the intended result of a collaborative 
design process, it seems to make sense to attempt to make unified design 
representations from the beginning stages of design. Since the goal is to produce 
a single unified model, it makes sense to keep this model in one, centralized 
location. Integrated product models have the potential advantage of having a high 
level of internal consistency and rationality in their design. Models in which all 
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design description information resides in one location, can be, for instance, very 
convenient when checking for completeness and consistency of design product 
models (Flemming & Woodbury, 1995).

2.6.1.2 An approach towards collaborative design that favors rationally 
planned processes

The dominant design paradigm within the computer-aided design community has 
been one inspired by the promise of rational and scientific reasoning and planning 
in solving complex problems. One goal of technical reasoning is to provide a 
supportable rationale for design decisions, such that the overt subjectivity and 
biases of individuals are avoided. When design problems are seen primarily as 
ones that can be solved by application of technical or scientific reason, then it 
becomes important that the actors involved in a design process have technical or 
scientific reasoning, and problem solving skills. A rational, defensible design path 
then should be clear to most of the participants engaged in the design process, 
provided they are competent thinkers and professionals. Therefore, with a rational 
approach, specific actors, and their attendant biases, are seen as less important, and 
it becomes more acceptable that a reasoning engine that orders a complex design 
process, be located in a single, centralized location. 

2.6.1.3 The lack of credible alternatives to centralized systems, such as P2P

Popularity of P2P depends on both a conceptual shift, such that they can be seen 
to useful in theory, as well as a technological shift, such that P2P computer systems 
become practical to develop. P2P in its modern embodiment is a relatively new 
idea that has failed to achieve a ‘critical mass’ of popularity among users, 
researchers and developers—except in domains such as on-line file sharing or 
instant messaging (IM). Until recently, there has been a lack of reliable P2P 
technology and of suitable P2P application development frameworks. These 
frameworks enable a standards-based, non-proprietary approach for P2P 
application development, which is seen as an important factor in popularizing P2P 
theory and applications. It is the author’s opinion that the appearance of JXTA by 
Sun has changed this situation, and that there are now few technical impediments 
to discourage the growth of P2P. However, there appears to some legal ones, 
which could impede development of P2P systems, especially in the short term.

2.6.1.4 Accessibility of unified design representations

Having a centralized representation means that this representation is available 
without any additional effort on the part of the administrators of this data. 
Therefore, the documentation process does not require the burden of a process of 
assembly of documents, from their variety of authors, such as from the various 
consultants involved in a collaborative design process. Such an assembly process 
can sometimes be prohibitively expensive. This means, for instance, that historical 
records of building projects can be maintained much more easily when there are 
integrated and centralized design representations.
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2.6.1.5 Rational design of information infrastructures

Despite the fact that various design agents may have different conceptualizations 
of design data and of the design process, there remains the fact that information 
infrastructure design, such as database design, can be helped enormously when 
people skilled in this domain design it. Distributed logic may enable design 
participants in theory to express anything they wish to express. However, this kind 
of freedom may not be necessary in many cases. Simple logical structures may 
satisfy most, if not all of the design participants. 

2.6.1.6 Usefulness in routine design processes

In the context of design systems, the intended degree of innovation in the design 
process is an important factor. In routine design processes—ones in which the 
participants may have long experience, working within conceptual frameworks 
that are unlikely to change dramatically—centralized systems can obviously 
provide useful support for designers. In routine design, the issue of design freedom 
is not normally relevant. Preconceived goals in such design situations are not 
really unwelcome constraints, but rather an essential feature of this type of design.

2.6.2 Disadvantages of centralized systems

2.6.2.1 Covert conceptual prescriptions

The process of conceptual design usually involves coming to a consensus with 
your design collaborators as to what an appropriate conceptual organization for the 
project should be. In centralized design systems, this type of consensual pre-
design work is often contained implicitly within the design of the computer system 
itself. In some cases this pre-definition of the semantics of design objects of 
interest, could conceivably have an unwelcome and constraining effect on the 
types of solutions that could result from the use of such a system. The same could 
be true of P2P systems, although it is expected that the type of covert prescriptions 
might be of a different type.

2.6.2.2 Location of proprietary data

Centralized systems usually assume that participating designers in the 
collaborative design process are willing, or able, to submit their design 
contributions to a party, or a computer-based system, that maintains a central data 
store or representation. In order to conform to a central representation, data 
translation and formatting work may be involved on the part of individual 
contributors. Some designers and consultants may have a proprietary interest in 
not allowing their specialized design representations to reside in any location other 
than their own private and secure databases. They may only share a subset of their 
data such that design collaboration is possible, without offering the full richness 
of the data, they may use internally within their own organizations (Snyder, 1998).

2.6.2.3 Necessity of 'up-front' work

Centralized architectures tend to depend on substantial quantities of 'up-front' 
work to build suitable information infrastructures. Centralized systems, by 
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definition, require the people they might affect—their 'stake-holders'—get 
together and work out what would be an appropriate, supportive system. Such 
consensus-building work takes much effort, and ideas what constitutes an 
appropriate system may vary widely, even among skilled professionals acting in 
good faith. Work on computer-based information infrastructure is usually work of 
a technical nature that designers in many domains may be unqualified to perform, 
without support from specialized information professionals. Such work, especially 
with centralized systems, tends to require making prescriptive and predictive 
assumptions about the nature of the information to be exchanged, as well as the 
composition and organizational hierarchy of the design team. Such aspects of 
collaborative practice may become clear to the design team only once a design 
process is well established. 

This is commonly recognized problem with design, especially in early design 
support systems: how to support a design process without unduly shaping it to 
conform to a computer system designer’s preconceptions. In order for a computer 
system to be useful in supporting design, the system must exist. The same is true 
for both centralized or distributed systems. What is important is the effort required 
to get useful systems working, and whether these systems support or unduly shape 
the nature of a design process. It appears that centralized systems tend to be weak 
in both these respects. However, with the absence of complex P2P design systems 
to compare them to, it is difficult to determine at this time whether P2P systems 
would be any better.

2.6.3 Advantages of distributed systems

2.6.3.1 A better model of data sharing?

In collaborative design, similar to what happens in P2P systems, individual agents 
often assume the roles of information providers as well as information consumers. 
The fact that P2P systems enable this process to occur transparently is seen as a 
major advantage of this technology.

2.6.3.2 Distributed control

Decentralized systems do not require that one party assumes a position of control 
over the work of others. This may or may not be the organizational approach that 
is appropriate for a specific design project. However, recent managerial trends that 
emphasize the advantages of flatter, leaner management hierarchies in developing 
more agile and productive organizations, suggest it is a trend growing in 
popularity.

In complex, collaborative design projects, where the input of specialized design 
experts may be crucial to finding acceptable solutions, hierarchical control of such 
experts may not be, for instance, politically appropriate. Instead, complex systems 
rely on independent or autonomous agents interacting with each other in plausible 
ways, generally without access to global knowledge. Some would argue that this 
approach better simulates the behavior of real designers as they perform their 
jobs—especially in complex, non-routine design situations. 
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2.6.3.3 Chance of creative emergence

Decentralized systems work by enabling independent agents to interact in a 
manner that does not rely on pre-articulated or pre-conceived goals. In complex 
systems research, of which design of decentralized systems is a part, mechanisms 
of self-organization have been used to explain behaviors and constructions that 
appear to have resulted from hierarchically controlled, top-down processes, but in 
fact were not. In nature, ant colonies are prime examples of such a ‘design without 
designers’ phenomenon (Gordon, 1999). 

2.6.3.4 No requirement for 'global' knowledge

Decentralized systems do not require a top-level party who is responsible for 
acquiring and maintaining 'global knowledge' within the context of what may be a 
dynamic, distributed, and highly interactive process. In the complex systems 
literature, the idea of global knowledge is questioned on practical as well as on 
theoretical grounds. In practice, it is often difficult for any one party to actually 
have sufficient insight, and objectivity to acquire such knowledge. What 
individual design agents 'know' tends to be influenced by their specific educational 
and professional backgrounds. Usually this diversity of conceptual outlooks is 
considered a positive feature of multi-disciplinary design teams. In theory, the 
basic idea that there exists global knowledge that is qualitatively more reliable or 
objective than the subjective knowledge that any single agent might acquire is also 
questioned. 

2.6.3.5 Multiple knowledge sources rather than singular ones

Designers of P2P applications tend to view on-line resources as something that 
increase in quality with the increased diversity of these resources. For instance, if 
a user is on the hunt for specific music files by a particular artist, it is probably 
preferable to him if there are a variety of these types of files available for him to 
download. In this situation, a little bit of data redundancy is also not a bad thing. 
With diversity of data resources, of course there is the possibility that the quality 
of some of these resources may be inadequate. 

2.6.4 Disadvantages of distributed systems

2.6.4.1 Lack of a central representation

The most salient feature of distributed systems is that their control and data are 
distributed. To maintain data integrity and consistency in distributed environments 
is usually much more difficult, than in centralized situations (Ferber, 1999). Since 
construction of centralized data models is often seen to be an important aspect of 
collaborative design practice, it appears that P2P is best suited for tasks other than 
the development of consistent and logical product representations. 

2.6.4.2 Lack of central control

As described above, distributed systems suffer from the locality and limited 
visibility of each agent’s perspective. 
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2.6.4.3 Possibility of behavioral chaos

Distributed systems since they lack central control, often exhibit non-linear 
interactions, as noted by Hogg (1998). Obviously, in collaborative design, the goal 
is usually to avoid such chaos.

2.6.5 Conclusions regarding centralization and decentralization

Situations that appear to favor the centralized approach to design are ones where 
one party assumes a central, authoritative role. This, of course, happens frequently 
in collaborative design. When design processes and the conceptual organization of 
product models are well understood, and are unlikely to evolve significantly, this 
suggests that local knowledge will be of less importance to a design process. When 
design collaborators understand appropriate roles they should assume, rather than 
having these roles defined dynamically within a design process, and when there is 
a requirement for complete data reliability and coherence, this tends to favor 
centralized design process approaches, in which designers usually have access to 
standardized and centralized data models.

Situations that favor the decentralized approach are ones in which the intention 
of the design team is to design in a highly innovative fashion, or when the design 
problem presents great conceptual or technical challenges. In such cases suitable, 
time-tested design approaches may not be available and team members may have 
little conclusive knowledge about their current design problem, and may lack 
experience working together as a design team.

2.7 Related work: design support and coordination systems

2.7.1 Adaptive workflow

Adaptive workflow involves a similar approach to that presented in this thesis. 
Workflow applications are a popular type of software for which there are many 
vendors, developers, and academic researchers (Workflow Management 
Coalition, 2004). The importance of workflow lies in its centrality to many 
business processes: how to inform people about what to do while they perform 
their job, in a context-sensitive manner. 

In the 1990s workflow was often used as part of a business process 
reengineering exercise to automate ‘reengineered’ business processes. 
The emphasis was on technology, i.e. applications and systems, with less 
thought towards human interaction within the process and, as a result, 
workflow developed a poor reputation. However, with the ability for 
business processes to be modeled and monitored in real time, and for 
those processes to be more easily changed in response to volatile market 
trends and technology, interest is again growing in business process man-
agement (Prior, 2004, p.17).

Workflow management of processes requires a process definition tool, a 
process execution engine, user and application interfaces to access and 
action work requests, monitoring and management tools, and reporting 
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capabilities... Process modeling tools allow business users to coordinate 
business activities, people and applications, and to model routing of work 
requests within a process and across processes (Prior, 2004, p.20-21).

The term Workflow Management actually refers to the logistics of busi-
ness processes. Workflow management does not focus on what informa-
tion is being passed in a business process, but more on the control of the 
activity chain that is necessary to execute the business process (Aalst et 
al., 1999, p.37).

Like coordination of work of any type workflow has top-down and bottom-up 
control aspects. Some types of enterprise are inherently top-down oriented, while 
others are more bottom-up. Most, such as collaborative design, have a 
combination of the two. 

In business, as in design, changes to processes are common and workflow 
management systems must be able to adapt to these changes, in an intelligence 
way. Adaptive workflow aims at providing process support like normal workflow 
systems do, but in such a way that the system is able to deal with certain types of 
changes (Aalst et al., 1999, p.36). 

Change is seen an inevitable result of technological advances, changes in 
business environments, new laws governing business, new market requirements, 
or simply, unanticipated situations that require ad-hoc responses. These types of 
ad-hoc changes are referred to in the workflow literature as ‘exceptions.’

Business processes such as those addressed in workflow modeling, usually have 
a top-down emphasis. In business especially, employees expect to be told what to 
do in many situations. In management, the job of a manager is to manage. This job 
often entails definition of effective work processes that can benefit both the 
enterprise’s customers as well its employees. This inherent top-down nature of 
business management greatly affects the design of workflow systems meant for 
this domain. 

2.7.2 Action workflow approach to process coordination

The design of the groupware application the ‘Coordinator’ is based on a theory of 
‘language as social action’ (Flores, Graves, Hartfield, & Winograd, 1992; Medina-
Mora, Winograd, Flores, & Flores, 1992). In its current commercial version, it 
comprises a suite of workflow tools called ActionWorks:

After years of studying human interaction, Action Technologies, Inc.'s 
founders, Terry Winograd, Ph.D. (Stanford) and Fernando Flores, Ph.D. 
(UC Berkeley), mapped every state and act in which people can work to-
gether. Based on exhaustive research, they developed the closed-loop 
Business Interaction Model (set forth in their 1983 book, Understanding 
Computers and Cognition) (Winograd & Flores, 1987) that is at the heart 
of ActionWorks Business Process Management software...The solution 
coordinates interactions between an individual or group making a request 
(the Customer) and the individual or group who is the recipient of that 
request (the Performer) in four phases:
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1. Preparation: The Customer plans work to be completed by the Per-
former and issues a request. 2. Negotiation: The Customer and Performer 
negotiate until they reach an agreement (commitment) about the work to 
be fulfilled. 3. Performance: The Performer fulfils the agreement and re-
ports completion. 4. Acceptance: The Customer evaluates the work and 
either declares satisfaction or points out what remains to be done to fulfill 
the agreement (Action Technologies, 1998). 

Figure 19  Commitment-based process loops found in ActionWorks (Action 
Technologies, 1998). 

This application is based on the idea that in organizations, processes between 
people are often motivated by the commitments that have been made to perform 
these actions. These commitments are the ‘glue’ that hold the social process 
together. The processes’ life cycle ends when commitments are seen to be 
satisfied, by the involved parties. 

The work of Winograd in particular is based on a critique of approaches towards 
technology and information systems. He proposes that management of 
organizations does not depend on management of information, but on management 
of interpersonal interactions (Winograd & Flores, 1987). This idea has foundations 
in speech act theory (Bach, 1995; Searle, 1969), and studies of the pragmatics of 
language use. In the ‘action approach’ to language (Clark, 1996) the interactive 
processes that occur between users of language are studied. This is contrasted with 
to the more traditional ‘product approach’ found in the work of Chomsky 
(Chomsky, 1969). The product approach tends to study language use with respect 
to the structure of grammatical utterances, in a way that sometimes abstracts them 
from their situational meaning.

The Coordinator is therefore similar to the DPM application described later, 
except for the following differences: 1. The Coordinator has a fixed protocol of 
interaction—comprising the four states detailed above. 2. Users are not able to add 
their own ‘loops’ to this protocol, and 3. The coordinator is not a distributed 
system, but one based on client-server technology.
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2.7.3 Thesis by Tay-Sheng Jeng

Tay-Sheng Jeng’s Ph.D. thesis: ‘Design Coordination Modeling: A Distributed 
Computer Environment for Managing Design Activities’ (Jeng, 1998) has similar 
goals to this thesis. His goal is “to develop an effective multi-user computer 
environment that supports design collaboration.” 

He does this through proposing new representations for design process capable 
of reasoning about design process, managing dependencies between activities, and 
supporting dynamic coordination protocols for interaction. His emphasis is on 
management of remote collaboration, and distributed coordination, under a 
knowledge-based approach. The software developed is implemented using a 
three-tier approach with application interface, model server, and server database 
components.

The research sees visibility of coordination logic to be an important goal. A 
design coordination model (DCM) that takes a rules-based approach that attempts 
to ‘capture all meaningful process semantics used by designers to effectively 
realize work.’ (p.2) 

The thesis focuses on the coordination level of design-related processes. He 
states that an important aspect of coordination is to bridge the gap between high-
level project scheduling, and actual design operations (p.5). The process of design 
is seen as an activity in which tasks are articulated, and these tasks are composed 
or decomposed into task hierarchies. Therefore, he sees design management as 
fundamentally a top-down process in which a central authority assigns tasks for 
others, rather than a self-organizing activity between peers. His software prototype 
is called Design Back Office, which is described as a “distributed and persistent 
object system focusing in the design of computer environments supporting, 
managing, and controlling activities.” (p.70)

This work emphasizes coordination of design activities in a general way. How 
it differs from this thesis is its assumption that a top-down process should always 
be present to define and articulate design processes, rather than enabling bottom-
up processes to also perform these functions.

2.7.4 Peer-to-peer projects in JXTA
JXTA technology is a set of open protocols that allow any connected de-
vice on the network ranging from cell phones and wireless PDAs to PCs 
and servers to communicate and collaborate in a P2P manner. JXTA 
peers create a virtual network where any peer can interact with other 
peers and resources directly even when some of the peers and resources 
are behind firewalls and NATs, or are on different network transports 
(JXTA, 2004).

There are many developments and research projects, in various stages of 
completion, under the JXTA umbrella. At the moment there appear to be no 
JXTA-based P2P applications under development that specifically address the 
design domain, nor ones that attempt to create structured role-based interactions, 
as described in this thesis. The examples below though give one a flavor of 
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applications that the JXTA community are working on, and which do have some 
relevance to the current research. 

2.7.4.1 Jxcube: Jxta eXtreme Cube - Fully Distributed Collaboration 
Platform

JXCube is a fully distributed collaborative application that enables users 
to collaborate, using various functions such as chat, messenger, file shar-
ing or schedule management. It adopts a group-based communication 
style. Once a user joins in the group, the group space will be given. Each 
collaborative function added into JXCube is deployed to that group 
space. Features: 1. No explicit servers are needed. 2. collaborative func-
tions can be added in plug-in form. 3. users can use same id on different 
machines (clone peer). 4. user can check other user's presence in real 
time. 5. support for auto configuration. 6. provide for the mediation ser-
vice that mediate synchronization, consistency, sequencing, delay differ-
ences (Jxcube, 2004).

2.7.4.2 P2pconference: A tool to conduct remote, text-based conferences

P2PConference is a tool developed using the Java binding of the JXTA 
P2P platform. It is based on an existing project, eWorkshop, from Ce-
BASE. While it uses a web-based, chat application, eWorkshop is struc-
tured to accommodate the needs of a workshop without becoming an un-
constrained, on-line chat discussion. Goal: The original project's main 
idea is to develop a simple, web-based, collaboration tool to organize and 
conduct remote, text-based workshops, in order to synthesize knowledge 
from a group of invited experts. Assuming that direct, face-to-face dis-
cussion cannot be totally avoided or replaced by the remote, text-based 
one, eWorkshop proved it can be effectively used to reduce the number 
of real meetings (and the economic costs they imply) by running several 
eWorkshops and, eventually, one or more unavoidable, real workshops 
(P2pconference, 2004).

2.7.4.3 AngeloPeerRendezvous: p2p-based software for intra-enterprise 
communication

A complete p2p based software for intra-enterprise communication. The 
motivation for doing this project is that companies disallow/discourage 
the use of instant messengers like MSN and Yahoo and though there exist 
custom made software for intra enterprise communication, they are ex-
tremely expensive. So we have developed Peer Rendezvous, which is 
open-source software built on the JXTA platform for intra-enterprise 
communication purposes. Currently, Peer Rendezvous supports the fol-
lowing features: 1. Instant Messaging with Buddy List capability. 2. Off-
line Messaging. 3. Event Notification. 4. Bulletin Board. 5. Discussion 
Board. Peer Rendezvous was undertaken as a part of the Distributed Sys-
tems (DS) course at Carnegie Mellon University (CMU) this spring (An-
geloPeerRendezvous, 2004). 

2.7.4.4 Coalesce: A seedbed for growing ideas

The goal of this group is to track down, assemble and use the best avail-
able tools to catalyze creative thinking in virtual communities... Our oth-
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er strong interest is in A.I., which we see as having an important role to 
play in aggregating and coalescing ideas, and providing relevant content 
links via trainable search agents. We are looking to synergise with other 
project developers with hopeful advantage to all involved projects, ac-
cording to the principle of social synergy (Coalesce, 2004). 
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3 Application requirements

3.1 Introduction
Prior to this chapter relevant background research has been presented. However, 
there is yet no definition of application requirements, use cases, or required 
objects. By the end of this chapter conceptual requirements for the application are 
defined. Use cases and objects used for implementation are defined in Chapter 4. 

3.1.1 Application content

This research concerns itself with design process support: how to support 
designers as they go about their jobs as designers. Emphasis is on the interactive, 
interpersonal aspects of collaborative design, and the need to coordinate the action 
that takes place between people working together on a design team. Several inter-
related ideas have been presented that need to be translated into software 
requirements: 

1. The idea that design coordination requires communication between design 
team members. This communication helps to create a social context that pro-
vides useful information.

2. The need to provide designers, on a real-time basis, representations of the 
tasks they need to perform. 

3. The need to represent the state of tasks, and to inform the user at all times what 
action is required, dependent on this state.

4. The usefulness of structured representations of tasks, to help organize the de-
sign process.

As requirements are discussed, they are enumerated in summaries. Once the 
overall conceptual approach to the domain is discussed, required actors and use 
cases will be described in the next chapter.

3.1.2 Application development method

Software development method used is based on a ‘use-case driven’ approach in 
which the needs of a software application’s users are taken to be of paramount 
importance to software design (Jacobson, Christerson, Jonsson, & Overgaard, 
1992). The primary description of users’ needs using this method is the ‘Use Case’ 
(Jacobson, 1995). This software development method is sometimes referred to as 
‘OOSE’—an acronym for Object Oriented Software Engineering—the title of 
Jacobson’s book (1992). OOSE is based-on a late-commitment strategy, such that 
requirements are well defined and well understood before specific software 
implementations are considered and decided upon. This means that requirements 
analyses can become useful analytical tools, even if these requirements are not 
subsequently translated into software applications. 
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OOSE ideas have largely been incorporated and standardized in UML, which is 
now the industry standard as a general purpose software design methodology 
(Oestereich, 1999). The following chapters document an abbreviated version of 
the OOSE process with the most salient decisions and aspects presented: 

Chapter 3: Description of requirements in a general and abstract way, that 
avoids dealing with particular software, or software implementation issues.

Chapter 4: Description of how a potential user will interact with the proposed 
system: This describes actors and use cases—how users interact with the proposed 
system, as described in OOSE. This forms a shortened version of the 
‘requirements model’ found in OOSE.

Chapter 5: A design and implementation model that describes specific design 
decisions and implementation-specific issues. This is similar to the ‘design and 
implementation model’ found in OOSE.

3.2 Creation of a social context

3.2.1 Complex processes and distributed control

Design teams are subject to a variety of control mechanisms, which stem from 
various contractual, legal, and professional commitments. Sometimes, clients in a 
design process are dominant, and may steer the design process according to their 
own specific goals. As clients and their representatives generally pay the bills in 
collaborative design, such a situation is not uncommon. 

Often, though in collaborative design a dominant party has neither the desire nor 
the ability to control a design process completely, and design team members must 
work together to come to some mutual understanding of what goals are appropriate 
in their current design context. This process of cooperation involves 
communication between actors. If successful, leads to a perception within the 
group of the growth of mutually-held common understandings, or ‘common 
ground’ (Clark, 1996, p.12). 

Req’t 1 Enable design team members to interact in a flexible and agile way, 
without assuming, a-priori, that certain role-players necessarily have 
the means or desire to control the process. However, do not assume 
collaborative design ought to necessarily be a ‘democracy.’

3.2.2 Process management involves communication of process content 
between involved parties

In design teams, especially ones with decentralized configurations, it is important 
that designers are able to communicate with each other easily such that their 
common design work is well coordinated. The current system focuses on 
representation of design processes. Therefore, the process content it communicates 
between these parties is computable representations of processes.
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When communicating design information between designers, it is important to 
select its recipients carefully, in order to avoid inundating people with possibly 
irrelevant design information. There are two ways of approaching the issue of who 
to send information to in a design team: 1. Communicate directly to those who you 
know have an interest in these processes, or 2. Communicate to an open forum in 
which these processes are discussed. The first approach maximizes security of 
information and only sends it to particular parties, while the second tends to create 
a more open ‘peer-reviewed’ social context that can be helpful in coordinating 
work (Cumming, 2003). 

Req’t 2 Enable users to communicate information relevant to design processes.
Req’t 3 Maximize the chance of creating ‘common ground’ by having people 

communicate in a public or semi-public forum, rather than privately 
between individuals.

3.2.3 Collaborative design processes involve ‘stakeholders’ assuming roles

Design processes exist in social environments, and may involve many parties 
playing the roles of:

Client
Someone who want tasks to be performed by others, for the client’s benefit.

Performer
Someone wanting to perform tasks for others, and to benefit in some manner for 
successful performance.

Observer
Someone involved in a task, but not directly as a client or performer.

Author
A person who originally writes or articulates the content of process 
representations.

The above list is not exhaustive of course. Design projects often have particular 
technical and administrative requirements that can multiply the number of 
stakeholders, and therefore the number of required roles considerably. These actor 
categories are similar to those found in the interactive groupware tool described 
in: (Medina-Mora et al., 1992). 

In routine collaborative design processes, role such as architect, client, structural 
engineering consultant, mechanical engineering consultant, and statutory official, 
etc. are commonly found. In non-routine design work, a certain role may not be 
anticipated, but suddenly emerge as a result of a design decision, or because of the 
discovery of a technical problem. For example, if a design team decides that a 
cable-supported roof is the most appropriate way to cover a sports arena, then the 
role of ‘cable-supported roof consultant’ may suddenly arise.

Some authority can either assign roles, or the role-players themselves can 
assume them. With a distributed approach in which no higher authority is 
necessarily assumed, users should be in the position to judge for themselves 
whether they should be involved in a process or not. As in most professional and 
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business relationships, involvement in a design team on the part of the various 
parties is voluntary. Presumably they interact on the basis of their own perceived 
self-interest. Therefore, assumption of a role should be the responsibility of the 
user. 

Users express their involvement in a task by assuming roles in it. Therefore, 
knowing which roles have been assumed by which actors, is an important piece of 
information needed for users, to help coordinate the work they do together.

In many design projects, especially ones with a non-routine nature, or with 
complex or emergent technical requirements, there may be a complex mapping of 
roles to various actors, that may change during a design process: 1. People may 
play more than one role, at the same time, or during different phases of a design 
process, 2. Certain roles may be assumed by more than one actor, 3. The roles to 
be filled in a design process may not be clear from the outset of a process, but may 
emerge only once the process is underway, 4. Conventional role names, if they 
exist, may not necessarily be suitable descriptions of the actions a particular actor 
may perform.

Figure 20  UML diagram of peers and their roles.

Req’t 4 Enable users to express their involvement in a task by assuming roles 
in it. 

Req’t 5 Inform users of the roles they have assumed for each task.
Req’t 6 Users should be able to add any roles that describe their involvement. 

The application should suggest conventional roles, but also handle non 
pre-conceived roles supplied by users.

Req’t 7 Enable actors to assume one, or multiple roles for a particular task.
Req’t 8 Allow roles to be assumed by multiple actors.
Req’t 9 Enable actors to change the roles they assume during a design process.
Req’t 10 Roles that people assume should be public knowledge to all users of the 

system.
Req’t 11 Users should only be able to assume roles for themselves, but not for 

others.

3.3 Structured representations in design
Deep hierarchies of products, processes, and people can represent collaborative 
design. The trees, or networks that these descriptions form, can be ordered by 
various relations such as: ‘a child of’, ‘contained by’, ‘a component part of’, ‘an 
interacting component to’, ‘an employee of’, ‘reports to’, ‘is paid by’, ‘a proper 
subset of’, etc.

Peer Role

may assume 0..*

is assumed by 0..*
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3.3.1 Product hierarchies

Product hierarchies are useful in describing the conceptual organization of design 
artifacts. Such descriptions are useful for design, for reorganization of concepts 
and configuration, and for understanding the quantities of materials in designed 
artifacts.

Figure 21  A product hierarchy, under the relation ‘componentOf.’

3.3.2 Process Hierarchies

Process hierarchies are useful in representing a conceptual organization of 
processes. Often these are containment hierarchies in which top-level categories 
represent wrappers for lower level task leaves. 

Process hierarchies are informative as they can provide clear categorization of 
process stages. However, process hierarchies can represent a burden, and a barrier 
to opportunistic behaviors, if the cost of reorganizing them to deal with unforeseen 
contingencies is too high. Therefore, unless the cost of re-planning such process 
hierarchies is quite low, they tend to be best suited to processes that are well 
understood, and are unlikely to change substantially.
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Figure 22  A process hierarchy, under the relation ‘doBefore.’

3.3.3 Organizational hierarchies

Organizational hierarchies show various types of relations between members of an 
organization, such as: ‘employedBy’, ‘reportsTo’, or ‘isSupervisedBy.’

Figure 23  An organizational hierarchy under the relation ‘reportsTo.’

3.4 Changing state of design entities

3.4.1 Design entities defined

Two salient process-related concepts found in collaborative design are:

Tasks: descriptions of activities to be performed to complete a design project.

Products: descriptions of the physical configurations of designed objects. 
Traditionally, one of the primary tasks of designers is to produce design product 
descriptions. 

Tasks and products are intertwined in design: if a designer completes a design 
task, a design product may reflect this work, and vice versa. Views of tasks and 
products are not sufficient on their own to fully describe what goes in a design 
process. For instance, descriptions of the state changes of a product may omit what 
occurred to motivate of these changes, while task state descriptions may be 
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insufficient to give an idea of what the design, that is a product description of the 
design, looks like at each stage. 

To capture the richness of a collaborative design process or to record what was 
done and why it was done, both tasks and products must be managed. Tasks and 
products are seen as two mutually dependent entities naturally created within a 
collaborative design process. Design entities are entities that have explicit states, 
determined on a real-time basis. 

Req’t 12 Track both products and tasks, considered as state-changeable design 
entities. Both are needed to represent and manage collaborative design 
processes.

Figure 24  Interdependency of tasks and products in design descriptions.

3.4.2 Entities must be able to change state

Process support should not only include the exchange of process representations, 
but should also include some indication what state these representations are at any 
given time. It is important for all those with an interest in this process, to be 
informed, for instance, whether a task was begun and completed on time, and 
whether it was performed in a manner that might satisfy all its ‘stakeholders.’ In a 
distributed, collaborative environment, the people who must ultimately decide 
such state-related issues are the stakeholders themselves. 

Collaborative design is normally a phased activity, in which tasks and products, 
if they progress, go past milestones that are either conventional to standard design 
contracts, or are some kind of custom state configuration devised by the design 
team. For example, once a design team has agreed on a basic design approach for 
a project, they may agree that the project move from the ‘preliminary design’ to 
the ‘detailed design’ phase. This transition may be marked with presentations to 
the client, and with agreements between client and architect that the transition is 
justified. 

Changes in the state of design entities demonstrate that a collaborative design 
process of which they are a part is moving forward. Therefore, the collaborative 
design process can be said to be the process of encouraging design-related state-
changeable entities (tasks and products), to change their state.

Req’t 13 Design entities must be able to change their state in order to capture the 
dynamism of collaborative design.

Tasks Products

dependent on

dependent on
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3.4.3 Explicit state change mechanisms for design entities

In order to determine the state of design entities, explicit state change mechanisms 
must be in place. All design entities should have explicit states that can be 
dynamically determined. In this application these mechanisms are based on a Petri 
net representational approach in which both states and state transitions are 
explicitly represented. With a Petri net approach, an entity’s state is governed by 
whether specific named transitions within a state model are enabled.

Req’t 14 Provide explicit state change mechanisms based on Petri net 
formalisms.

Figure 25  State change based on Petri net-based constraints in which incoming arrows 
represent constraints.

3.4.4 Role, input and policy attributes for design entities

In order to enable a Petri net-based state mechanism to function, the following 
attributes are required, which inform the nature of design entities.

Role
A term that describes a particular perspective that a user assumes when helping to 
manage a design entity.

Input
Notification from a user, who has assumed a particular role in a design entity that 
the current transition for a design entity should be enabled, in the opinion of the 
user.

Policy
A constraint specification stating that a transition of a design entity must have 
input from a specific role in order for the transition to be enabled.

This division is based on the following ideas:

1. The main task for users when managing a design entity is for them to give 
their opinion whether the design entity is in the position to change its state.

2. Roles that users play should be separated from the users themselves. This en-
ables users to assume multiple roles when managing a design entity.

3. Input provided by users is balanced by the constraint Policies that may exist 
for each state transition of a design entity. Policies represent what inputs are 

Incoming constraint links

Design entity state-transition loop

Transition to be enabled
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required for a single state transition, while Inputs represent inputs that users 
are willing to provide.

All of the above should be implemented in a voluntary, non-prescriptive 
fashion.

3.4.5 Basing state changes on user input

The most salient input that a design collaborator can make is to agree that a design 
entity can change its state, and to communicate this agreement to others on the 
design team. In normal design practice, making an input to a task may involve such 
behaviors as attending meetings, completing design drawings, offering opinions, 
approving design approaches, etc. State change may require much background 
work, in addition to the social tasks of attending meetings and making agreements. 

Req’t 15 Enable users to provide input based on whether design entities can 
change their state, and to communicate this input to others on a design 
team.

3.4.6 Linking and ‘bundling’ of entities

Having stakeholders make inputs to advance state can place a large burden on 
users. If all design entities require input from many users, this may demand more 
user input than some users may be willing to provide. Normally in design practice, 
an entire project goes through a state change, for instance from preliminary, to 
detailed design. What is often important for designers is some indication that the 
project is progressing (and that the client is willing to continue employing the 
design team). This progress is indicated by state changes to the whole project. 
Therefore, there must be some way to ‘bundle’, or link design entities together 
such that if one entity manages to get sufficient user input to change its state, then 
dependent entities can also change their state as well. 

For instance if a project changes into ‘detailed design’ this might imply that the 
designers have considered, in a preliminary way, such things as site and building 
planning, structural systems, overall style, and appropriate materials. Therefore, it 
should be possible with a single coordinated input from users, for many entities to 
change their state as a result of one entity changing its state. In this way the input 
of users can be leveraged or multiplied by linking their action automatically to 
other actions. 

Note that when we talk of a project here, it concerns two concepts: one of linking 
design entities and their state-change behaviors, and another of organizing design 
entities into structured entities, such that users can view them in a conceptually 
ordered way. Both of these requirements can be implemented separately, since 
conceptually they are separate issues. 

Req’t 16 Enable the state change of design entities to be linked with the state 
change of other design entities.
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3.4.7 Socially mediated and automated state change

The enabling of transitions of design entities can be done in two ways: one is based 
on the inputs of stakeholders who elect to participate in these design entities, while 
another is based on the state of other design entities to which these transitions are 
linked. 

3.4.7.1 Socially mediated state change

A socially mediated mechanism based on the inputs of participating peers, requires 
that users participate with the system, and with each other, for design entities to 
change their state. If there is no user participation, then there is no state change. 
This appears suitable for design process coordination, since in many design 
situations there may be no automated means of determining a design entity’s state, 
without conferring with the stakeholders involved in the design entity. 

3.4.7.2 Automated state change

The second is a mechanism in which the state change of one entity can be designed 
to trigger state changes in other linked entities. Using this mechanism semi-
automated processes can be designed, which though ultimately based on user 
inputs, could have complex, cascading effects on other design entities. Users can 
choose to use the social-input features of the application, the semi-automated 
features, or could use some mix of the two. 

3.4.8 Task dependencies

In project management, tasks are structured in relation to other tasks. For example, 
in a construction project, before pouring concrete it might be necessary to have the 
concrete framework ready, and the electrical conduits in place. 

These form the normal branch-out, branch-in dependencies found in project 
management: Once one task is finished, others can proceed; or once many tasks 
are finished, one specific task can proceed (Hendrickson & Au, 1990). 

Req’t 17 Enable the representation of ‘branch-in’, and ‘branch-out’ tasks.

3.4.9 Variability of state-transition models

An important aspect to the design of an entity is the content of the state-transition 
model to which the entity is linked. Often entities have conventional state models, 
such as those specified by building design contracts that usually specify well-
defined state models, and include states such as ‘Requirements Gathering’, 
‘Construction Review’, etc. These state models are common in design 
management, and are promoted and standardized by national architectural 
associations.

However, such models have the following qualities: First, they are not 
universally applicable. They may be appropriate in a particular country, or region, 
but none can be said to apply everywhere, as a matter of rational principle. Second, 
there is no indication that some model—for instance the one promoted by the 
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American Institute of Architects—is becoming a standard for all design practice, 
in places outside the US. The cultural, business, and technical differences between 
different places seem to discourage such standardization. Third, such models tend 
to be specific to particular industries. The states that an architectural design project 
might enter into may be quite distinct to those that a product design project might 
enter into. Given the differences that might occur between local contexts and 
situations, users should be in the position to set state-transition models themselves, 
in order to specify the intended behavior of any design entity.

Req’t 18 State change models should depend on the entity, and users should be 
able to specify different state-transition models for each design entity.

3.4.10 State models as simple state-transition loops

Simple loops are seen as the simplest state-transition model. In that: 1. Design 
entity can only be in one state at a time, 2. States and transitions are connected by 
single incoming and outgoing arcs, thus eliminating indeterminism or complexity 
in transitions, and 3. Final states (e.g. ‘Retired’) connect with initial states (e.g. 
‘New’). Looped state configurations encourage the idea that design entities are 
intended to be reused, and that design processes are often recurrent ones.

Req’t 19 To reduce complexity and indeterminism in entity state changes, 
represent state-transition models as simple state-transition loops.

3.5 Structured representations of design entities

3.5.1 Hierarchies of design representations

Deep, information-rich hierarchies can be very informative because they describe 
concepts and configurations of arbitrary depth, and can have arbitrary degrees of 
detail and refinement. Such descriptions can be essential in acquiring a conceptual 
overview with respect to an entire artifact, organization, or process. For example, 
contractors who construct buildings usually require an accurate picture of all the 
parts in a building, and what their aggregate costs will be. Individual parts of 
design configurations must be represented one way or another, when building 
complex artifacts in a modern industrial society. In computational design, 
information hierarchies are a standard way of doing this.

Req’t 20 Enable design entities to be arranged in information hierarchies, and 
enable these hierarchies to be rearranged to reflect changing 
circumstances.
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3.6 Communication between users

3.6.1 Communication of large amounts of information

Design coordination, both in general and with respect to the above requirements, 
means that designers when working together on a design team communicate large 
amounts of information. This information concerns both design entities such as 
tasks and products, but also the interaction that characterize how the team works 
together. This information concerns both individual designers communicating 
between themselves in a point-to-point fashion, but is also needed for the team as 
a whole to come to some common view of the design project’s progress.

It is assumed that this communication should be computer-mediated, and that it 
uses the Internet as its transport network. 

Req’t 21 Provide a communication network that connects users together, and 
enables them to view the work of their design colleagues.

When people do work together over a computer network they need to have their 
identities known to each other, and that there be some assurance that users are who 
they say they are. This involves creation of online identities, in which there are 
some security provisions such that users’ identities cannot be easily borrowed or 
stolen. 

Req’t 22 Enable users to create secure online identities.

3.6.2 Asynchronous contributions

Design teams, especially those working on complex, multi-disciplinary projects, 
often have members from more than one country. This means that design teams 
may be geographically distributed, and may work at different times during the day, 
due to time-zone variations. Designers therefore, may not be in the position to 
work synchronously on items of common interest with fellow members of their 
design teams. 

Req’t 23 Enable users to make asynchronous contributions to all domain 
objects.

3.6.3 Decentralized configuration of software and information

With the geographical distribution of design team members, and with the 
possibility of non-hierarchical nature of design team configurations, it may not be 
clear where software components should be situated or where generated data 
should be stored.

This tendency towards decentralization is given more power with a non-
prescriptive approach to design process management in which no party—with the 
possible exception of the software developers themselves—are in a position of 
power or authority with respect to other users.
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From the technical point of view however, the required functionality could be 
completed in either a centralized or decentralized software implementation. From 
a user’s point of view, such implementation details may not make any difference 
to their experience, even those with concerns about social hierarchies and how 
they are manifested in software. 

From a developer’s point of view, however, in the current domain decentralized 
software has some compelling advantages: 

1. Ease of communication system development: P2P frameworks provide com-
munication facilities that link users, and enable them to build social forums 
(i.e. peergroups) for their interactions. 

2. Modularization of communication components: using P2P all of the commu-
nication requirements are implemented in the P2P component, and are sepa-
rated from other domain components such as those concerned with roles and 
inputs from users.

3. Reduction of the number of software components: using P2P technologies, 
only one software package has to deployed or maintained—the client por-
tion—rather than two or more. 
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4 Actors, use cases, and required objects

4.1 Introduction
This chapter describes the design of the application, in terms of software 
development constructs such as actors and use cases, without specifying particular 
software implementations or technologies.

4.2 System actors
The actor construct describes roles that a user can play when using the application. 
Therefore, individual users could play various actor roles while using the 
application. Actors represent the outside world when it interacts with the software. 
As Jacobsen points out, unlike other objects in the application, an actor’s actions 
are non-deterministic (Jacobson et al., 1992, p.127).

4.2.1 Peer
• Someone who uses the software in the context of a collaborative distributed 

design team.
• A Peer models design entities, assumes roles in them, and provides inputs. This 

user action enables them to change their state.
• Peers connect to other Peers, using this system and an Internet connection.

4.2.1.1 Discussion

How to define actor in a system is an important decision because choice of actors 
indicates how processes are structured outside of the relatively abstract and ideal 
world of the software system itself. 

Currently there is only one class of user, or actor—that of the ‘Peer.’

A peer, which comes from the domain of P2P software, reflects the basic 
approach found in P2P computing, which tends to collapse multiple user 
categories into single ones. This approach is a result of the basic technology of P2P 
computing, but also reflects non-technical concerns common in the P2P 
community, such as reduction of the social stratification of users, encouragement 
of open processes, and provision of resources to enable distributed phenomena to 
self-organize. In general, technical systems of this sort, especially ones that deal 
with distributed social processes, cannot be designed without consideration of 
these types of non-technical issues. 

However, the intention in this chapter is to describe a system design without 
assuming that a particular implementation is required. Therefore, despite being 
named ‘peer’ which suggests that P2P implementations should be used, it should 
still be possible to implement the described system and its functionality using a 
non-P2P implementation. 
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What though, are the technical implications of making only class of user, for 
collaborative design management? The technical implication is:

1. All functionalities are open to all peers, and that all peers have the same level 
of privilege to access resources. 

2. Peers provide all information that the system might acquire over time. There-
fore, there are no specialized ‘information providers’ with the specialized role 
of providing usable and sanctioned information—information deemed to be 
of adequate quality—for the system. 

3. The peers do all maintenance of the system.

4.3 Use cases
These use cases are intended to give a high level overview of the system’s 
functionality. They are intended to be implementation independent. Those below 
are the most salient use cases—ones that give suggestions how to implement these 
user action requirements. 

4.3.1 Create design entity

A new design entity (for instance, a design task or product) is created by a Peer and 
is communicated to other Peers.

Figure 26  Interaction diagram: Create design entity.



79.
4.3.1.1 Flow of Events

1. User highlights an existing EntityContainer in the ContainerTreeWindow, to 
be used as the new entity’s container (a container can be implemented as a 
node in a tree display).

2. User selects ‘New Entity’ from the application’s main menu.
3. A NewEntityForm opens. In this form:
4. The Peer specifies for the new design entity:

• Simple string attributes: name and description
• Date attributes, if appropriate: start date, finish date.
• StateTransitionModel the entity uses for its state changes.
• Policies: which roles must make input to each transition in the entity’s state-

transition model.
5. The Peer clicks ‘OK’ on the form once all its attributes are set.
6. The form closes, and the newly created DesignEntity is stored locally, and 

communicated to other Peers indicating its current (i.e. initial) state.

4.3.1.2 Participating Objects

Peer, MainApp, DesignEntity, EntityContainer, NewEntityForm, 
ContainerTreeWindow, DesignEntityTree, StateTransitionModel, 
ContentStorage, Communicator

4.3.1.3 Pre-conditions

User has selected an existing EntityContainer in which to place the new design 
entity.

4.3.1.4 Post-conditions

The design entity is stored locally and communicated remotely to other peers. 

4.3.2 Create a structured container for process-related information

Create a general purpose EntityContainer that holds process-related information, 
using a structured (recursive) representation, such as a tree display.
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Figure 27  Interaction diagram: Create a structured container for process-related 
information.

4.3.2.1 Flow of Events

1. A Peer selects an existing EntityContainer in the ContainerTreeWindow. This 
container acts as the parent node for the new container.

2. User selects ‘New Container’ from the Main App’s main menu.
3. The NewContainerForm opens.
4. User specifies a name and description for the EntityContainer.
5. User clicks ‘OK’ in the NewContainerForm.
6. This new EntityContainer is stored locally in ContentStorage, and communi-

cated to other Peers. 
7. The ContainerTreeWindow is updated to show the newly created EntityCon-

tainer. 

4.3.2.2 Participating Objects

Peer, Main App, EntityContainer, NewContainerForm, ContainerTreeWindow, 
ContentStorage, Communicator. 

4.3.2.3 Pre-conditions

An existing EntityContainer has been selected in the ContainerTreeWindow, to act 
as the parent of the new EntityContainer.

4.3.2.4 Post-conditions

All connected Peers, including the author, are informed that a new EntityContainer 
has been created by seeing it displayed in their ContainerTreeWindow.
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4.3.3 Assume role in a design entity

A Peer signs up for a role in an existing design entity. This role applies to all 
transitions of this design entity.

Figure 28  Interaction diagram: Assume role in a design entity.

4.3.3.1 Flow of Events

1. User highlights an existing DesignEntity in the ContainerTreeWindow (a De-
signEntity can be implemented as a leaf node in a tree display).

2. User selects ‘New Role’ from the Main App’s main menu.
3. A NewRoleForm opens.
4. The user either selects an existing Role, or adds a new Role term.
5. The user clicks ‘OK’ and the NewRoleForm closes. 
6. The new Role that links the DesignEntity to the role and its author is commu-

nicated to other Peers. 
7. The DesignEntity’s display in the ContainerTreeWindow is updated to reflect 

the new role addition.

4.3.3.2 Participating Objects

Peer, MainApp, DesignEntity, NewRoleForm, Role, RoleName, 
DesignEntityTree, ContainerTreeWindow, Communicator.

4.3.3.3 Pre-conditions

The ContainerTreeWindow is open, and a DesignEntity is selected within it.

4.3.3.4 Post-conditions

Peers are informed that the Peer, who authored the new Role, has assumed a Role 
in the entity.
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4.3.4 Make input for design entity state change

A Peer makes a (potentially state-changing) input for an existing design entity. 
This input only applies to the current transition of the entity. The current transition 
is that which is directly after its current state. This means that timing is an issue for 
a Peer when making inputs.

Figure 29  Interaction diagram: Make input for design entity state change.

4.3.4.1 Flow of Events

1. User highlights an existing DesignEntity in the ContainerTreeWindow (a De-
signEntity can be implemented as a leaf node in a tree display).

2. User selects ‘New Input’ from the Main App’s main menu.
3. If the Peer has assumed roles in the entity, a NewInputForm opens; else a mes-

sage opens, which states that the user has not yet assumed a role in the entity, 
and therefore is not qualified to make an input.

4. In the NewInputForm the roles that the user has assumed are shown.
5. The user selected each role he wishes to make an input for. Inputs are created 

for each role selected.
6. These new Inputs are stored locally in ContentStorage, and are communicated 

to other Peers. 
7. These new inputs could possible change the entity’s state. If so, the entity’s 

state display is updated in the ContainerTreeWindow.

4.3.4.2 Participating Objects

Peer, MainApp, DesignEntity, NewInputForm, Input, Policy, 
DesignEntityTree, ContainerTreeWindow, ContentStorage, Communicator.

4.3.4.3 Pre-conditions

The ContainerTreeWindow is open, and a DesignEntity is selected within it.
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4.3.4.4 Post-conditions

Peers are informed that the Peer has made an input, and if this new input satisfies 
remaining state-change constraints, the DesignEntity’s state is changed.

4.3.5 Link design entity to another design entity

Create a link that connects two design entities together. These links can either be 
simple ‘information links’ in which the link attributes are simple strings, or 
‘constraint links’ which link together specific state and transitions of 
DesignEntities.

Figure 30  Interaction diagram: Link design entity to another design entity.

4.3.5.1 Flow of Events

1. A Peer selects an existing EntityContainer in the ContainerTreeWindow.
2. User selects ‘New Information Link’, or ‘New Constraint Link’ from the 

Main App’s main menu.
3. The NewLinkForm opens.
4. User selects a ‘source’ DesignEntity, and a ‘target’ DesignEntity from two 

separate ContainerTreeWindows displayed in the NewLinkForm.
5. If an information link, the user selects an existing link name, or creates a new 

one; if a constraint link, then the use specifies the source state of the source 
DesignEntity, and the target transition of the target DesignEntity needed to 
define the ConstraintLink.

6. User clicks ‘OK’ in the NewLinkForm. 
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7. This new Link is stored locally in ContentStorage, and communicated to other 
Peers. 

8. The ContainerTreeWindow is updated to show the newly created Link. 

4.3.5.2 Participating Objects

Peer, MainApp, DesignEntity, EntityContainer, NewLinkForm, InformationLink, 
ConstraintLink, DesignEntityTree, ContainerTreeWindow, ContentStorage, 
Communicator.

4.3.5.3 Pre-conditions

An existing EntityContainer has been selected in the ContainerTreeWindow.

4.3.5.4 Post-conditions

All connected Peers, including the author, are informed that a new Link has been 
created by seeing it displayed in their ContainerTreeWindow.

4.3.6 Create a state-transition model

Create a StateTransitionModel that specifies, the names and configuration of all 
states and transitions that an entity can enter into. These models apply to the whole 
of a design entity. Once a StateTransitionModel is linked to a DesignEntity, this 
link cannot be modified. 

Figure 31  Interaction diagram: Create a state-transition model.
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4.3.6.1 Flow of Events

1. User selects ‘New State Transition Model’ from the Main App’s main menu.
2. A PetriNetModelingApplication opens that enables the user to model using 

places and transition—the basic objects found in Petri nets. The user is not 
free to design any net he wishes—it must be in the form of a simple loop, and 
may have other minor restrictions. An easy way to make a new 
StateTransitionModel would be to modify an existing one, and then use ‘Save 
As’ within the PetriNetModelingApplication.

3. Once the model is complete, the user saves it as a normal file on his computer.
4. He then selects ‘Convert State Transition Model into an Advertisement’, from 

the Main App’s main menu. 
5. The user specifies the file location of the newly created model, and it is con-

verted into a StateTransitionModelAdvertisment.
6. This new StateTransitionModelAdvertisment is stored locally, and communi-

cate to other Peers. 
7. The ContainerTreeWindow is updated to show the newly created StateTran-

sitionModelAdvertisment. 

4.3.6.2 Participating Objects

Peer, MainApp, StateTransitionModel, DesignEntity, NewInputForm, 
DesignEntityTree, ContainerTreeWindow, FileChooserForm. PetriNetFile, 
PetriNetAdvertisement, ContentStorage, Communicator. 

4.3.6.3 Pre-conditions

None.

4.3.6.4 Post-conditions

All connected Peers, including the author, have access to an 
StateTransitionModelAdvertisment that contains the same content as the Petri net 
model itself. They can link this advertisement to new DesignEntities.

4.4 Required objects as described in use cases

4.4.1 Domain objects

4.4.1.1 ContentStorage

A data structure that provides local storage for process-related information. This 
information is either created by a Peer, or is discovered online, such as Design 
Entities, Roles, Inputs, and Links.

4.4.1.2 DesignEntity

A representation of a design task or a product that always has an explicit state. This 
state is determined by the behavior of Peers who can assume roles in the entity, 
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and make state-changing inputs to them. A DesignEntity’s state changes are 
modeled by a state-transition model that is specified at its construction. 

4.4.1.3 EntityContainer (Peergroup)

A data container that holds various types of process-related information. 
EntityContainer can be implemented as a folder in a hierarchical tree display. 

4.4.1.4 Input

Notification from a user, who has assumed a particular role in a design entity that 
the current transition for a design entity should be enabled, in the opinion of the 
user.

4.4.1.5 Link

A directed edge that links two design entities together. Links have a named value. 
Links are of two types: information links, and constraint links. Information links 
connect whole entities together, while constraint links connect the state of a source 
entity to the transition of the target entity.

4.4.1.6 Peer

The user of the application. Peers are responsible for providing information for the 
application, and for providing appropriate inputs, which allow DesignEntities to 
change their state. Peers exchange process-related information between 
themselves. 

4.4.1.7 PetriNetAdvertisement

A text-based document exchanged between Peers that represents the content of a 
state-transition model.

4.4.1.8 PetriNetFile

The binary file that represents a state-transition model for use by a Petri net 
application. A PetriNetFile is used to create a PetriNetAdvertisement, which can 
be shared between Peers. 

4.4.1.9 Policy

A constraint specification stating that a transition of a design entity must have 
input from a specific role, in order for the transition to be enabled.

4.4.1.10 Role

A name that describes a particular perspective that a user assumes when helping to 
manage a design entity.

4.4.1.11 StateTransitionModel

A model that explicitly represents the states and transition that a DesignEntity can 
enter into, throughout its life span. These models form simple closed state-
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transition loops. State-transition models can be modeled using Petri nets, which 
explicitly model both states and transitions. 

4.4.2 Interface Objects

4.4.2.1 ContainerTreeWindow

A window that displays a hierarchical representation of EntityContainers, and 
shows the process-related information that EntityContainers can contain.

4.4.2.2 DesignEntityTree

The hierarchical tree representation that has EntityContainers as its nodes, and 
various types of process-related information as its leaves.

4.4.2.3 FileChooserForm

A form that enables users to choose a binary file from a file directory.

4.4.2.4 NewContainerForm

A form that enables users to specify a name and description of a new 
EntityContainer.

4.4.2.5 NewEntityForm

A form that enables a Peer to specify all needed attributes for a new DesignEntity. 
The most important of these are its name, and the state-transition model that 
governs its state changes. 

4.4.2.6 NewInputForm

A form that enables a Peer to make a potentially state-changing input for a 
DesignEntity, from the perspective of a Role that the Peer has previously assumed.

4.4.2.7 NewRoleForm

A form that enables a Peer to assume a Role in a DesignEntity. Peers can choose 
existing role names, or they can create new ones. 

4.4.2.8 Petri net Modeling Application

An application that enables a Peer to model and view state-transition loops.

4.4.3 Control Objects

4.4.3.1 Communicator

The object that enables process-related information to be communicated with 
other Peers over the Internet. 
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4.4.3.2 Main App

The application that provides users with access to needed forms to create all 
required domain objects, and enables Peers to communicate with each other.
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5 Application design and implementation

5.1 What was implemented
The software implementation side of this research developed with the idea that 
P2P software, and distributed processes in general, can be used and extended, to 
serve the domain of design process management. Some ideas in the research could 
be implemented using a variety of technologies, while others are dependent on the 
P2P approach to make them viable. 

5.1.1 Role of JXTA

The application is based on the open-source JXTA point-to-point (P2P) protocol-
based framework. It would be possible to build a traditional non-decentralized 
client/server application using the same use cases of this dissertation. However, 
JXTA and how it operates, is more in line with the basic intent of the dissertation, 
which favors non-prescriptive and decentralized design communication and 
coordination. 

JXTA is an open-source development project of Sun Microsystems Inc. that 
provides all the necessary infrastructure to build secure P2P applications in Java 
and in other languages. The objectives of JXTA are: 
• Interoperability: to enable different peer-to-peer systems and communities to 

interact.
• Platform independence: to enable P2P communication between multiple/

diverse languages, systems, and networks. 
• Ubiquity: to handle interactive communication between a wide range of digital 

devices (Sun Microsystems, 2002).

The JXTA framework appears well designed and comprehensive from a 
software engineering perspective. JXTA is also an active area of research and 
development, with many active projects concerning various aspects of distributed 
computing. Its open source nature enables easy customization and reuse of its 
code. The current application leverages and expands the functionality of JXTA to 
suit the domain of design process coordination. 

5.1.2 Design Process Modeler (DPM) application

The DPM application is conceived as an application that enables users to model 
and coordinate their design processes. This enables users to define collaboratively 
the state of so-called design entities, such as Design Tasks and Products.

Users of the DPM application can customize the use of the application to suit 
their particular design processes. One of the most important ways that users can 
customize the application is the ability of users to define their own state-transition 
models (‘loops’) for each design entity they define. 
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5.1.3 Peergroups

In JXTA, peers can self-organize into groups called peergroups. Peergroups are 
used as venues of interaction for groups of stakeholders interested in various 
aspects of a design project. Within the bounds of peergroups, all communication 
and data exchange takes place. Using peergroups, member peers are able to easily 
share specialized information. To do this peers must become members of the 
peergroup. 

Peergroups enable the creation of a well-defined scoping, security, and 
monitoring environment (Oaks et al., 2002). Without the construct of a peergroup, 
sharing information within a distributed community is much less efficient, since 
then all information would have to be shared with all known peers, rather than a 
smaller subset of these peers.

5.1.3.1 Peergroups as data containers and online social venues

Peergroups enable the integration of both design data, and people who have some 
kind of interest or stake in these design data. Types of entities that can be published 
and displayed in peergroups include: 
• member peers of the peergroup,
• sub-peergroups of the peergroup,
• advertisements that represent design entities,
• links that define both so-called information and constraint links between design 

entities in the peergroup, and
• Petri net models that represent state-transition loops.

In this application, hierarchical peergroups are used as containers for design 
data. The hierarchies described by peergroups do not have any formal semantics 
associated with them, beyond that which the users choose to apply to them.

5.1.3.2 Peergroups as forum for advertisements

In JXTA, documents called ‘advertisements’ are used to represent persistent and 
semi-persistent design data. Advertisements are the principal data communicated 
between peers. In JXTA, advertisements are implemented as text-based XML-
encoded documents. An important core of the functionality of JXTA is the 
conversion of these XML documents from a simple text-based form, which is 
stored and communicated between peers to a Java (or other language) object 
representation that is used internally within JXTA-based applications.

The data foundation of this application is various advertisement representations. 
These are sub-classes of the advertisement classes found in JXTA. All entities that 
form the contents of peergroups have advertisements associated with them. For 
example, Peers are represented by PeerAdvertisements, DesignEntities by 
DesignEntityAdvertisements, and Links by LinkAdvertisements. These 
advertisements are communicated in a P2P manner between peers. 

There are two basic ways of sending information in a P2P system: peers can 
send messages to other peers directly, or peers can publish advertisements within 
peergroups, where other peers who might frequent these peergroups can view 
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them. In the message-passing approach, users communicate with individuals, 
while with the peergroup and advertisement approach users communicate with 
self-organizing social forums, represented by the peergroup. The DPM application 
uses the peergroup and advertisement approach. 

5.1.3.3 DPM peergroups are distinguished

DPM instantiates a peergroup called ‘dpmNet’ when it opens. All DPM users join 
the same DPM peergroup (rather than a peergroup with simply the same name). 
To do this DPM must have access to a persistent, that is text-based record of the 
peergroup ID for this DPM peergroup, in order to re-create it each time a user 
opens the DPM application. In JXTA various entities are distinguished by unique 
IDs, rather than by their names. 

5.1.4 Peergroup hierarchies

DPM enables users to build peergroup hierarchies and thereby define areas of 
interest in a structured, organized way. Users describe these areas of interest by the 
names they give to peergroups, and sub-peergroups. Hierarchically structured 
peergroups combine the conceptual modeling capability of hierarchies—which 
form a core of computational support for design, with the ability for people to self-
organize these peergroups into any configuration they wish. 

Peergroups can form hierarchical structures of arbitrary depth. They can provide 
a social environment in which to share a wide variety of information. They can 
thus serve as a metaphorical ‘place’ in which various types of information can be 
shared between self-selected parties. 

The application does not however prescribe a tree-structuring relation that 
would lend formal meanings to peergroup hierarchies. This is up to users to do 
themselves. The application does not infer any semantics from the peergroup a 
design entity is located. Therefore, hierarchies created by users are descriptive, 
informal ones, rather than ones with formal properties, such as inheritance. This 
informality causes no confusion within JXTA itself, since it identifies each 
peergroup as a unique entity through reference to its unique ID.

This informal approach gives users the freedom to label peergroups any way 
they wish, and also enables them to experiment with various hierarchical 
structures. On the negative side, it enables users to create hierarchies that may be 
arranged in a disorderly, or conceptually confusing manner. As the information 
sciences clearly show, formation of conceptually clear information categorization 
schemes is surprisingly difficult—even for professionals—and requires iterated 
processes of negotiation between interested parties before they are properly 
designed (Bowker & Star, 1999).

5.1.4.1 Hierarchical aspects of peergroups found in JXTA

Hierarchical aspects of a DPM peergroup take their basic hierarchical nature from 
JXTA. In JXTA, all peergroups are created based on a parent peergroup. DPM 
uses this fact to create and re-create hierarchical peergroups. Therefore, peergroup 
hierarchies are built into JXTA’s implementation, although JXTA applications 
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generally do not yet make use of this feature. In order to create any peergroup in 
JXTA you must first have an existing peergroup to act as its parent. A method of 
the parent peergroup called newGroup() is used. For example:

PeerGroup newChildPeerGroup = 
parentPG.newGroup(childPgAdv);

Here, a new peergroup called ‘newChildPeerGroup’ is created using a 
peergroup advertisement called ‘childPgAdv.’ 

A peergroup advertisement describes a peer group, and references additional 
information required for instantiating it. The PeerGroup method newGroup 
performs the task of instantiating a PeerGroup given its advertisement. Peergroups 
are formed as a collection of peers that have agreed upon a common set of services. 
Each peer group is assigned a unique peer group ID and a peer group 
advertisement. The peer group advertisement contains a ModuleSpecID, which 
refers to a module specification for this peer group (Sun Microsystems, 2002).

Once a new child peergroup is created, it can be published both locally and 
remotely. This involves a peergroup advertisement being created by JXTA and 
communicating it to other peers. 

5.1.5 State change mechanisms

5.1.5.1 Two separate state constraint mechanisms

Design entities change state according to two separate constraint mechanisms. If 
both of these mechanisms provide no constraint, then the entity is allowed to 
change state to its ‘next state.’ This next state is determined by the content of a 
state-transition loop that is linked to the entity by its author at the time of its 
construction.

The first mechanism involves so-called Input Constraints, while the second 
involves Link Constraints. Input constraints are ones that require peer input to an 
entity, while link constraints are constraints imposed by the state of other design 
entities.

Links constraints specify that a linked object (the source of the link) must attain 
a certain state before a specific transition of an entity (the target of the link) can be 
enabled. For example, a peer could specify that a task must be ‘retired’ (fully 
completed) before another task’s transition ‘agree to perform’ can be enabled. 
Link constraints do not need user input except when they are first defined, and as 
implemented enable a fine degree of constraint specification. This enables a 
greater level of control then simply stating a task must be ‘done’ before another 
can be started. 
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Figure 32  Link constraints.

Input constraints, on the other hand, require user monitoring and input to work. 
They are similar to idealized design meetings, in which various peers who have 
assumed roles, provide input whether an entity can change its state. Such inputs 
may be based on considered opinion and technical analysis, or based on less 
rational grounds such as peer pressure from other design team members. This 
aspect is seen as a useful capability in architectural design, where there is often no 
automated or machine-assisted way of determining the state of design entities, 
without the input of the entity’s stakeholders. 

Figure 33  Input constraints that specify which roles must contribute to specific transitions 
of an entity’s state-transition loop.

Each time a design entity is displayed on the screen, typically as a leaf item in a 
tree display, DPM checks whether the entity’s state can change. If it can, then a 
so-called HistoryAdvertisement is created which documents the change of state 
and the peers who played a role in this state change. This advertisement is then 
published both locally (into the peer’s local cache) and remotely (communicated 
and propagated to all peers that the peer knows about). The user is able to gain 
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immediate feedback to his input, whether his input has effected a state change for 
a design entity. 

/**Considers whether state can change from both a local 
perspective (entity's inputs and roles), and links from other 
design entities */

    public boolean stateCanChange() {
        return

stateCanChangeLinks()
        &&

stateCanChangeInputs();
}

Figure 34  Top-level state change method from DPM’s Java code.

5.1.5.2 Input constraints

Input constraints involve the constructs of Roles, Policies, and Inputs. These 
concepts are implemented as PolicyAdvertisements, RoleAdvertisements, and 
InputAdvertisements respectively. 

Roles
Roles are the description of parts (roles) that a peer can play in a design entity, such 
as ‘performer’ and ‘client.’ Roles can be applied to any type of design entity. User 
can create any role name they require and these roles apply to the whole entity, not 
to specific transition or states within it. The user is informed of all roles he plays 
in each design entity. The application has no notion of the semantics of these roles 
beyond their representation as simple strings. 

Policies
Policies are defined as the Roles that must provide input before a particular design 
entity transition can be enabled. As currently implemented in DPM, anyone 
assuming a relevant role can satisfy a policy, rather than requiring every user who 
has assumed the role to make input. Policies are under full user control. User can 
specify them at entity creation, or add to them later. However, if a Policy is added 
to an entity’s transition that has already been enabled, they will have no 
constraining effect. 

Inputs
Inputs are notification from a specific peer who has assumed a particular role in a 
design entity, that in the peer’s opinion, the entity can change state. A peer can 
only make inputs for design entities for which he has already assumed a role. An 
input for which a peer is qualified to make, due to the role he has previously 
assumed, is known internally in the application’s code as a ‘valid input.’

5.1.6 Process of defining input constraints

Assuming that a design entity exists which is of interest to a peer, the typical input 
procedure for the user comprises:
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1. A peer assumes a role in the entity (otherwise the peer is unable to make an 
Input). The peer can assume one role or multiple roles for an entity.

2. The peer attempts to make an input to the design entity. The Policy Input 
Form determines whether the peer is qualified to make an Input and to which 
transition an Input is required. The application is configured to allow Inputs 
only for the next transition the entity is waiting to be enabled. This is always 
the next transition after the entity’s current state. Recall that with Petri nets 
transitions are always connected to states (places), and vice versa.

3. If the peer has assumed multiple roles, he can make inputs for all of the roles 
at the same time, or one at a time. The normal process is for separate peers to 
assume various roles and for them to make separate inputs asynchronously 
from distributed locations. 

4. The peer clicks on the roles that he wishes to provide an input and closes the 
Input form.

5. The application redraws the tree in which the entity is displayed for the user. 
It determines, whenever trees are displayed, whether sufficient inputs are 
present to allow the entity to advance its state. Therefore the user receives im-
mediate feedback from his input action.

5.1.6.1 Link constraints

Links provide a constraint similar to policy constraints. They inform the 
application whether a particular transition in a particular design entity can be 
enabled. To define a link constraint, users must define two things:

Source state
The state a particular design entity (called the source entity) must attain for the 
constraint to be satisfied.

Target transition 
The transition of a particular design entity (called the target entity) for the 
constraint to be relevant. As with Policy constraints, link constraints do not 
become relevant until the target entity attains the state situated just prior the 
transition named in the constraint. Before the target entity’s transition is the one 
waiting to be enabled, then the link constraint provides no restriction.

Once that transition is the ‘next transition’, then the application determines 
whether the source entity is at or before the source state named in the constraint. 
If it is not, then the entity is prevented from changing state.
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Figure 35  Link constraint.

5.1.6.2 Process of defining link constraints

The typical link constraint procedure for the user comprises:

1. Select a node in a tree display that represents a Peergroup. 
2. The Link form opens which shows two panels: the left hand to show the 

Source entity, while the right one will describe the Target entity. Both show 
tree structures that can be browsed to the entities to serve as sources and tar-
gets. 

3. The source state, and the target transitions are chosen from drop-down lists. 
The content of these lists is updated to show the states and transitions that are 
a part of these entities. Each entity carries its own state-transition loop. There-
fore, the drop-down lists are updated to reflect the loops of the selected source 
and target entities.

4. The user after having chosen the four variables: source entity, source state, 
target entity, and target transition, clicks on a button and the link constraint is 
created as a LinkAdvertisement. This advertisement is published both locally 
and remotely.

5.1.7 Information links

The application provides two types of links: constraint links and information links. 
Constraint links, as described above, and information links that link two entities 
by a simple link term. Constraint links have a linking term is known internally to 
the application as a ‘doBefore.’ This is similar to process plans which prescribe 
some tasks should be ‘done before’ other ones. 

Information links link two design entities, but do not constrain their state 
change. They represent simple relations between two entities. 

Information links can be used for a variety of purposes. For example, users could 
build parent-child hierarchies between tasks, by creating information links 
between parents and children (using ‘childOf’ as a link term), or build whole-part 
hierarchies that links wholes with their parts (using ‘partOf’ as a link term). Such 
hierarchies could be quite informative for users, however, as with hierarchical 
peergroups, no semantics are currently inferred from such links. 

Source entity Target entity

Source state

Target transition

Link
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Information links are represented with three parts:

1. A source entity
2. A link string that defines the link. For example: ‘related to’, ‘composed of’, 

‘part of’, ‘depends on’, etc.
3. A target entity

Users are free to add any kind of link string they wish. Therefore information 
links define labelled edges between design entities, in which the entities are nodes 
in a graph. 

Information links have the advantage of linking two entities that may be situated 
in distant peergroups, and connecting them in an easily accessible manner. This 
can provide useful information for process coordination and planning.

5.1.8 Managing data with ‘Content Storage’

With this application there is need for management of the large amount of data—
XML-encoded advertisements—communicated between peers. This is 
accomplished in the application using a custom data structure called Content 
Storage. Content Storage is not a part of JXTA but was designed and implemented 
by the author using the data structure resources of the Java language.

The Content Storage object is a composition of a HashMap, in which object 
values are accessed using string keys, and a sorted TreeSet—that is a set (meaning 
repeats are not allowed), which is sorted according to various types of 
comparators. Comparators are objects in Java that define how to sort various types 
of user-defined objects so they can be placed in a linear order (java.sun.com, 
2004). This combination of a sorted set with a mapped access enables 
advertisements to be ordered according to which peergroup they are a member, 
and which design entities they concern. 

Whenever advertisements are communicated in the application, they not only 
make it to the local JXTA cache, but they are also placed in the user’s various 
Content Storage instances. This speeds access to relevant data, that design entities 
need to determine their current state in real-time. Maintaining sorted and easily 
accessible ContentStorages has proven to be useful for taming the complexity of 
managing advertisements—which are the core of the data representation used in 
the application. 

5.2 Implementation decisions and alternatives
The current application is the result of many design decision made at various 
points during its design and implementation. These major decisions are 
documented below due to reasons that: 1. they may be difficult for researchers to 
infer the content of these decisions from either the application, or its code, and 2. 
they could lead to other kinds of applications, and suggest future research agendas, 
by taking different branches in this decision tree.
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5.2.1 Peergroups

5.2.1.1 Have one type of peergroup, then filter the display

Peergroups are used as general purpose containers for all various types of 
information found in the application, such as Peers, DesignEntities, Links etc. An 
alternative approach would be to specialize the peergroup class so that different 
types would hold one type of information. For instance, one type of peergroup 
could hold only Peers, another only Design Entities, etc. Instead of having 
different types of peergroups holding only one type of thing, the approach taken 
was to enable the user to filter the display such that the user can choose which 
types of information are shown, for instance only Peers, etc.

5.2.1.2 Model design projects as peergroups

Both peergroups and design projects are seen simply as flexible containers for a 
wide variety of design-related information. One type of peergroup could be 
distinguished as a ‘design project’ type peergroup. This was not done, however, 
since currently there are no behavioral differences identified between the concepts 
of ‘peergroup’ and that of ‘design project.’ With no behavioral differences, there 
is no compelling reason to distinguish them. This situation could change if one 
wanted to add some differences. This could then be implemented by sub-classing 
the PeerGroup class in JXTA. Therefore, users need to know that as far as the 
author is concerned, if one wants to model a design project, then using a peergroup 
is currently the most appropriate approach. 

5.2.2 Stakeholder involvement: peers, roles, and policies

5.2.2.1 Apply roles to whole design entity rather than specific transitions 
within it

In the current application, roles apply to the whole of a design entity, including all 
of its state transitions. A more detailed degree of constraint specification could be 
achieved if peers could assume roles for single transitions, rather than for whole 
entities. It could be argued that with some design processes, people do assume 
multiple roles depending on the state transition. It does however place a higher 
burden on users to specify what these roles are for each transition. In the interest 
of reducing user burdens, roles were limited to the whole entity. It would not entail 
much change to the code however to make them specific to single transitions. 

5.2.2.2 Enable users to add roles and policies after an entity’s creation

In DPM, roles describe a relationship between a peer and design entity, while 
policies are in effect simple attributes of a design entity. With roles in DPM, it is 
normal practice that one peer constructs a design entity, while a possibly different 
peer later decides to participate in this design entity, by signing up for a role in it. 
Therefore, the act of constructing a design entity is separate from the act of signing 
up for a role in it, and can be performed at different times. 

Policies, however, all could conceivably be done at the time of construction of 
the design entity. However, this would mean that the peer who constructs a design 
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entity be in the position to know what appropriate policies should be, at the time 
of construction. It is difficult to decide at an entity’s creation what its policies 
should be, for the entire life of that entity. It is quite conceivable that changing 
circumstances, or evolving design team perspectives, may encourage adding 
policies after the fact. Requirements that emerge without being anticipated are 
quite common in design practice. 

5.2.2.3 Suggest policies for each entity transition, rather than prescribe 
them

Design entities can be assigned any state-transition loop. Therefore, policy 
prescriptions that rely on the content of these loops are not possible, since users 
have the freedom to assign any state-transition loop they wish, for any design 
entity. All DPM can do, is to make policy suggestions, which users are free to 
adapt to their own situation and purpose.

5.2.3 State change

5.2.3.1 Separate the content of state-transition loops from state change 
mechanisms

With the application, the content of a state-transition loop and the mechanisms 
used to change state are separate. This enables users to substitute their own loops 
for the ones provided, without affecting the functioning of DPM’s state change 
mechanism.

5.2.3.2 Enable each design entity to have different state-transition loops, if 
desired

Each design entity has its own state-transition loop. This is a consequence of 
separating the content of state change from its mechanism. It is a topic for future 
research whether this approach provides users with excessive freedom or not.

An alternative approach would be to enable users to add various types of design 
entities, which they could name, each with their own particular state-transition 
loop, which users could not alter. 

5.2.3.3 Enable users to design and specify their own state-transition loops

Giving users the freedom to specify different state-transition loops for design 
entities requires that they also have the ability to design their own loops, within 
DPM. Users can do this using the Petri net application Renew, which is built into 
DPM (Renew, 2004).

5.2.3.4 Use internal Java code, instead of Petri nets, to change state

Currently, all state change is done using internal Java code, to which ordinary 
users have no access. Algorithmically, a Petri net model that performs the same 
state-constraining function could replace this code. By using Petri net model-
based state changes, users could conceivably have a graphical overview of the 
state change process, and could design their own state change mechanisms. 



100.
Actually, this Petri net-based approach was partially implemented. However, 
this approach was not pursued due to concerns about performance—it was 
unwieldy to open a Petri net each time one wanted to check if a DesignEntity could 
change its state. This checking for state changes occurs extremely frequently in 
DPM: every time a peergroup’s content is re-displayed. It was decided that users 
would prefer adequate performance, and real-time assessment of state, rather than 
visible representations of state-change mechanisms. 

5.2.4 DPM’s single path approach

In DPM entities can only be at a single state within the loop process model 
attached to the entity. This approach assumes that this single model has some 
relevance to users. This could be called the ‘single path’ approach. The advantage 
of this approach is that it is relatively straightforward to assess what state the entity 
is in, despite the complexity of recording inputs from distributed peers. 

5.2.4.1 Alternatives to the single path approach

An alternative approach would be to enable users to assign multiple models to a 
single entity. Thus each entity could be in several well-defined states at a time. 
However, this would increase the burden of the user to assume roles and make 
input into several loops referenced to the same entity. It is unclear whether this 
increase in complexity would provide comparable rewards for the user. 

In DPM instead of many states for a single entity, the approach is to have many 
entities with single states. If these multiple entities are to interact in process flows, 
then they must be linked together using constraint links. An example of this is the 
technique for modeling choice points in DPM.

5.2.5 Choice points

In process management systems entities often have choice points. Choice points 
define what happens when a process model reaches a specific juncture. With 
choice points entities can switch between various paths, depending on input either 
from users, or from some control test.

Choice points are used to create a multiple-exclusion scope for a set of process 
paths. Creating a choice point set of options means that selecting one option turns 
off all other options in the set. This is similar to radio buttons in user interfaces, 
where selecting one radio button disables all other buttons in the selection set.

DPM currently does not have an automated choice point feature—although it is 
conceivable that this could be useful in future versions of the software. It is unclear 
whether choice points are needed, and whether existing techniques in DPM don’t 
provide adequate choice point functionality.

5.2.5.1 Choices that users of DPM can make

In the absence of automated choice points, users of DPM can still make the 
following choices: 
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1. Whether to participate in a particular entity by assuming a role or roles in it.
2. Whether to make input into a particular transition to enable a state change.
3. Whether to abandon or delete entities which she has authored, once they are 

seen as unnecessary.

In DPM failure to do any of the above does not necessarily have any negative 
consequences.

5.2.5.2 Choice points using available DPM features

A choice point in DPM involves making input with a chosen entity, and disabling 
the possibility for making inputs into other entities that are part of an exclusion set. 
One way that this can be implemented using DPM is to automatically abandon a 
set of entities once a certain transition in a single entity is enabled. Such automatic 
abandonment is a type of action that is not present in DPM. Users can manually 
disable entities by abandoning them, deleting them, or failing to make inputs into 
them. If users wish to model the choice point behavior such that this same effect 
is assured by how entities and links are constructed, users can do the following:

1. Created multiple entities in DPM, and having as many entities as conceivable 
output paths from an intended choice.

2. Add Choice Point entities. These entities have state-transition loops with two 
states: choiceMade, and choiceNotMade. Their initial state is choiceNot-
Made.

3. In order to enable one entity, its linked Choice Point entity must be made in 
its favor. This prevents the other entities from changing state due to the con-
straining cross-links shown below.

Figure 36  Choice point constructed using a mutual exclusion structure.

Creation of such links and entities could be automated, but it unclear what the 
nature of this choice should be given the current structure of DPM.

In conclusion therefore, it remains unclear whether having automated choice 
features is a needed feature, or whether current manual choice techniques are 
sufficient.
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5.2.6 Security and privileges

5.2.6.1 Enable any user to contribute peergroups, roles, policies or inputs

Currently the application has no security in place other than the log-on procedure 
in JXTA that gives users secure users names and passwords, and enables them to 
access the JXTA system. This is basic level security and it applies to all JXTA-
based applications. 

Users of DPM also have the capability of creating peergroups and design 
entities, and adding roles, policies and inputs to these design entities. Additional 
security procedures could conceivably be put in place to handle all these types of 
user actions, to assure for instance that only qualified peers can make certain inputs 
and create certain types of objects.

What prevents chaos in the use of DPM is that normal social constraints can 
provide a degree of security. Peers when they make contributions, publish 
contributions in a semi-public forum. In design processes, reputations are 
important assets that designers usually work to protect. This is seen as a powerful 
constraining force, with the condition that the identity of those who provide inputs 
to the system are known to other users, at all times. 

5.2.6.2 Possible security problems

1. Lack of authority or competence

Description: A user creates entities, signs up for roles, or defines policies for 
which they are unqualified to provide.

Discussion: Further work would be required to provide a system in which users 
could gain qualifications from some authority. In a distributed system it is not clear 
how to do this, or whether it is a desirable feature.

2. Masking of identity

Description: Someone uses the application pretending to be someone else.

Discussion: It is assumed that the basic security of JXTA, which requires login by 
all users, is sufficient to prevent this at a basic level.

3. Error in input

Description: User simply makes mistakes in the information they enter into the 
system.

Discussion: This is possible in all information systems in which input is not tested 
as it is entered. This is difficult since the information added in DPM is difficult to 
test for correctness, since its correctness depends on complex semantics. If users 
are not allowed to make anonymous inputs and are able to correct any mistakes, 
then it is assumed that other users will be able to spot and inform the user, such 
that mistakes can be corrected. 
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4. Backtracking state changes

Description: Users participate in a state change that is later seen to be premature 
or erroneous and wish to undo the state change.

Discussion: In DPM, state changes go forward, but are not allowed to go 
backwards. The implicit assumption is that all inputs can only move an entity 
forwards. In order to generalize the act of making inputs to enable users to move 
an entity’s state backwards could be a useful feature for DPM. Other than the 
factor of possible complexity of implementing such a feature, the idea warrants 
future study. 

5. Creation of false information

Description: A user inputs information into the system that does not correspond to 
any real design activity.

Discussion: This can be discouraged if users are not able to add information to the 
system anonymously, and are thus subject to peer disapproval if poor quality 
information is entered under their name.

6. Duplication of existing information

Description: A user unnecessarily duplicates information that already exists on the 
system.

Discussion: This is valid concern, and similar to simple errors and requires that if 
errors are spotted, it is possible for users to correct them. 

7. Creation of contradictory, or deadlocking constraints

Description: A user constrains an entity in such a way that its state will never be 
able to advance.

Discussion: This is valid concern, and requires further work to create greater 
protection against this occurring.
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6 Constructing process models by linking 
entities

6.1 Introduction
One of DPM’s goals is to avoid excessive prescriptiveness in the manner in which 
the overall system operates, and in the types of semantic constructs that the support 
system provides the user. This avoidance of prescriptiveness is intended to make 
the system more flexible for a variety of users. Of course, avoidance of 
prescriptiveness has its dangers: if a system is truly non-prescriptive, then quite 
possibly it provides no guidance or support for its users.

In general there are two ways of supporting users in process support systems: 1. 
Build semantic constructs into the system, or 2. Enable users to build them, and 
then enable subsequent users to reuse them. The first approach could be called 
‘prescription by design’, while the other ‘prescription by user behavior.’ 

The latter approach requires that users can be encouraged or motivated to build 
structures that later users might find useful or interesting. This approach is found 
in many P2P systems which usually have implicit design goals to maximize the 
opportunities for users to build unanticipated, emergent structures as a result of 
their distributed activity. The current research has been inspired by the promise of 
this approach.

The main mechanism that DPM uses in order to have prescriptions by user 
behavior available, is to use the distributed memory of past user actions, that 
resides in the P2P system. This memory records what users have used the system 
for in the past. The emerging contents of this memory are beyond the control of 
the software developer.

This use of memory of past actions is often fundamental to how P2P systems 
work at all: they are dependent on users actually using them in the past to make 
them useful for new users. This creates one of the most admirable qualities of P2P 
systems: how their performance can improve as their user base increases. 

DPM uses prototypes based on either real entities or on aggregations of 
information from many entities. Prototypes serve as mechanisms to record 
organizational memory. A memory-based approach enables users to influence 
organization norms, and to affect how future users might use the software. 
Without using a system memory, every time a user builds new entities and 
structures, they start off at the beginning and are in effect ‘re-inventing the wheel.’ 

6.1.1 Information needs in Design

In the domain of design process management it is desirable to model the 
following:
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1. Representations of design projects, such that their participants can get the 
sense they are working on a common endeavor.

2. Places to store information related to design projects, including among other 
things, process representations that duplicate common task compositions, 
such as branch-in / branch-out constructs. 

As detailed later in this chapter, the above entities can be constructed using the 
three main building blocks in DPM: hierarchical peergroups, design entities, and 
constraint links. Peergroups serve as virtual containers for information.

6.2 Hierarchical peergroups

6.2.1 Design projects as information containers

Design projects usually represent a contractually-defined business relationship 
between various people, either for a specific period of time, or until their work 
together is completed. This relationship is a dynamic entity in which people and 
information flow in and out during its life span. Therefore, a ‘design project as 
flexible container’ metaphor seems appropriate. This container can contain the 
following types of information: 
• people participating in the design project,
• roles that people assume with their participation,
• design-related tasks these people are expected to perform, to fulfill their 

contractual obligations,
• representations of the products that result from the design process, and
• other types of miscellaneous information that might naturally accumulate during 

a project such as meeting minutes, agreements, reports, etc.

DPM addresses the first three of these. It is unclear in general whether single, 
integrated applications should handle all these, or whether a suite of applications 
is more appropriate.

Many-to-many mappings can exist between these information representations, 
and the design projects of which they might be a part. For instance, designers 
might work on more than one project at a time, similar tasks might be used on 
different projects, and report formats and agreements might be re-used between 
projects. In professional design environments, designers may work on many 
projects simultaneously. They must be able to manage their time such that multiple 
projects are well coordinated, and that diverse types of commitments from many 
sources are dealt with in a timely fashion. 

6.2.2 Uses for hierarchical peergroups

In DPM, there is no semantics attached to hierarchical peergroups other than the 
parent-child relation inherent in the hierarchical structure. This gives users the 
freedom to produce any kind of hierarchies they wish, since however users 
structure their peergroups, the DPM system is not affected. The behavior of links 
and entities does not depend on the particular peergroup in which they are situated. 
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6.3 Design entity management

6.3.1 User defined types

In DPM users are allowed to provide type descriptions of the design entities they 
construct. In DPM all such entities are instances of ‘DesignEntity.’ These are 
similar to object types. For example a user can define the following entities: 
Course1: [TOI_Course], or Task1: [DesignTask]. The string within the square 
brackets indicates the entity type in DPM. 

The major behavior of DesignEntities is to describe their current state. Since 
entities with different entity types don’t currently have differences in basic 
behavior, it makes no sense to implement them as different object types in Java.

What can distinguish a [TOI_Course] and a [DesignTask] is the state-transition 
loop, and the types of policy and link constraints that are connected to the 
DesignEntity. The full behavior of these user-named entities then becomes a 
combination of the process behaviors of DesignEntities, combined with the 
constraints that are attached to them. These policy and link constraints determine 
the dynamic behavior of design entities in DPM.

The use of prototypes in DPM, as explained below, enables what one user might 
design for one DesignEntity, to be reused when constructing another design entity 
of the same entity type. 

Another approach is to enable users to define prototypes explicitly, and specify 
the types of state-transition loops to be used, and the composition of constraint 
links that would connect a new instance of the prototype to other instances of other 
prototypes. In this way, users could create complex configurations of linked 
entities quickly, all based on approved process policies. 

However, it is not clear whether such an approach would be superior to the 
current approach based on dynamically generated prototypes. This issue requires 
future study and may be closely related to the nature of management policies of 
the enterprise in which DPM is used. In some enterprises process must be tightly 
controlled, while in others flexibility and ease of adaptation are more important. 

6.3.2 Deletion and abandonment of entities

In DPM users can either delete objects of a few selected types, or can abandon 
DesignEntities, if they are its author. The delete action makes the object 
effectively disappear, while the abandon action notifies that the entity is no longer 
to be used, but keeps it around as a reminder for users.

Currently actions that authors can perform on an existing entity are: they can use 
them as provided, they can delete them, or they can abandon them. Other than that 
there is no editing possible of entities beyond that available when a user first 
creates an entity.
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6.3.2.1 Deletion of entities

A normal use case for users of computer applications is to both create, and to delete 
information. If users are free to create a type of object, then the same users 
generally have the opportunity to delete it as well. However, with distributed 
applications the process of deletion is problematic. 

Distributed applications depend on the presence of distributed information for 
them to work. This entails information being communicated to, and saved by 
multiple peers. This redundancy of information gives distributed systems security 
and dependability. If one peer happens to be off-line one day, the information that 
resides on her computer is usually not inaccessible, since it may have been 
duplicated on other peers to which she is normally connected. With centralized 
server-based systems, if a server contains vital information, then operation of the 
system will depend on that server being available to all users at all times. 

Creation of redundant information, which is a basic approach to data used in 
distributed systems, creates a problem when it comes to deleting information. 
Deletion is then a more complex issue than simply going to the centralized data 
store in which the information is kept and deleting it at its source. 

6.3.2.2 Deletion approaches

One approach to deletion in distributed systems is to have an automated agent 
search for information to delete on all peers it discovers. This approach has the 
disadvantage of not working in peers that do not happen to be online while this 
agent does its work. It also means that peers must enable a destructive external 
agent to work with one’s own data store. 

The approach used in DPM is not to search for information to delete, but rather 
to advertise the fact that some user has decided to delete a particular piece of 
information. The act of deletion then involves creating a deletion type of 
advertisement in DPM: a DeleteAdvertisement. This advertisement is then 
communicated to all other peers using JXTA’s data propagation techniques. This 
delete advertisement then becomes like any other kind of information 
communicated between peers in DPM. There is no guarantee that any one peer will 
receive it, but if a peer does, it prevents the object of that information from being 
displayed, communicated to other peers, or stored on the peer’s computer.

In this way, information is not actually deleted, it just becomes invisible to users. 
Once information becomes invisible in JXTA, it then dies a ‘natural death’ due to 
the temporal-based garbage collection system built into JXTA. 

The current approach in DPM is to enable any users to delete a variety of object 
types including: Design Entities, Role Advertisements, Policy Advertisements, 
and PeerGroups. 

6.3.2.3 Deletion policies within Wikis

A similar situation to DPM’s, with respect to deletion, occurs in the world of 
‘wikis.’ A wiki is a collection of interlinked web pages, any of which can be visited 
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and edited by anyone at any time from any place. The wiki concept and software 
were invented by Ward Cunningham (Wikimedia.org, 2004). 

The Wikipedia is a collaborative project that has produced an extensive on-line 
wiki encyclopedia, in which any user—that is, anyone viewing its web pages—has 
edit and delete privileges. The Wikipedia has grown quickly, with fewer 
destructive deletions and editing than one might think. To manage this freedom 
requires various community-based control mechanisms that encourage thoughtful 
edits and non-anonymous deletions. Wikis are web-based and therefore depend on 
centralized web servers to operate. Wikipedia’s editors closely manage and review 
its content as it evolves. The basic wiki concept is therefore defined by its lack of 
security with respect to deletion and edits. Despite this user freedom, the world of 
wiki appears to be flourishing.

The one major constraint in DPM is that only the peer who originally authored 
information is able to delete it. Therefore there is less freedom to delete than found 
in any wiki. Alternatives to author-only deletion are conceivable, such as requiring 
that all those who have assumed roles must give their consensual agreement for an 
entity to be deleted. It is likely though that such policies would be impractical and 
overly bureaucratic in practice, and that the open policy of wikis might be most 
suitable in the long run.

6.3.2.4 Abandoning entities

To abandon means to signal to other users that an entity is no longer being used, 
yet the abandoned entity is still visible to users. Evidence of entities being 
abandoned is expected to be quite informative for historical purposes, as opposed 
to simply deleting entities and have them vanish instantly. As with deletions, the 
current rule is that only the author of an entity can abandon it. Once an entity is 
abandoned, its display icon changes and further state changes are prevented.

6.3.3 Iteration of entities

In DPM users are allowed to iterate entities. Once these entities reach the end of 
their ‘life cycle’ they can be reused. This involves making an entirely new entity 
using the previous one as a prototype. For example, if an entity is named courseA, 
after iteration it becomes courseA_2.

Therefore, iteration is the opposite of abandonment. The more iterations that an 
entity experiences, suggests greater success this entity has had in the real world. 
Abandonment implies that an entity has been found unsuited for continued 
survival.

6.3.4 Reuse of entities (using prototypes)

In DPM, when users create a new entity, they have available information that has 
built up from the use of the system—assuming the system has some user history. 
This information is based on design entity prototypes. These prototypes can either 
be natural prototypes based on real entities (usually the latest entity of that type 
created), or can be synthetic in that information is derived from attributes of many 
entities. 
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There are two types of information currently derived from prototypes: policy 
constraints that apply to each transition in the entity’s state-transition loop, and the 
linked entities that affect how an entity changes its state in relation to other entities. 
These linked entities can be based on either incoming or outgoing links.

Different methods for deriving prototypes are selectable by user when they 
create new entities. User can set two variables: 1. The entity population selector 
for specifying the population from which a prototype is derived, and 2. A 
prototype algorithm that specifies the specific method for retrieving an entity from 
a particular population of entities. Therefore, the number of prototype retrieval 
methods is the Cartesian product of population selectors X prototype algorithms. 

6.3.4.1 Current entity population selectors

1. ALL_PEERS (default): finds all entities authored by any user.
2. THIS_PEER_ONLY: only finds entities that have been authored by the user. 

6.3.4.2 Current prototype algorithms

1. LATEST (default): finds the most recent entity of a specific entity type, e.g. 
[DesignTask].

2. MOST_ACTIVE: finds the entity that has had the greatest number of state 
changes during its history. 

3. SUM_OF_EXISTING: makes a logical sum of all information found for an 
entity of a particular entity type, from which the user can pick and choose. 
This type of prototypes is called ‘synthetic’ in that it is not based on any one 
entity, but on aggregated information from many entities. The usefulness of 
such an algorithm is dependent on the number of entities contained within the 
system.

6.3.4.3 Adding new prototypes

To add new prototype algorithms or population selectors is not a difficult task. 
Currently, only developers, not users, can perform these functions. Conceivable 
enhancements to this list could be population selectors, which consider only 
entities authored by members of specific peergroups, or by peers who have 
accumulated specific experience, or reputations within the system. In the 
meantime it is expected that using the defaults of ALL_PEERS combined with 
LATEST will be useful for most users. 

6.3.4.4 Current limitation of prototypes

Prototypes are used to replicate only the links and linked entities that are directly 
linked to a prototype. Therefore, an entire chain of links is not recursively 
traversed and cloned.

Prototypes are based on entity type. For example, if a user is creating a new 
DesignTask, then only other DesignTasks are used to inform the prototype. In 
DPM there is no notion of emergent types—that is, types defined by the type of 
links or policies an entity has acquired. 
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6.3.4.5 Bootstrapping needed at beginning

Prototypes only work if the system has a history of entities within it. At beginning 
of using the system, this is not the case. This ‘pre-historical’ stage of system use 
tends to be brief and be used for testing purposes.

When single users are using the system, as was the case during system 
development and testing, then the only existing cache of DPM data was on one 
computer that was not shared with other DPM peers. A tester in order to test the 
system in a ‘bootstrap’ situation, and to remove obsolete information can remove 
DPM’s JXTA cache manually.

DPM is a specialized type of JXTA application. Therefore, most of the 
information it shares with DPM peers is of a type that non-DPM peers will not be 
able to understand, despite working according to the JXTA P2P protocol. This 
means JXTA peers can make use of some of DPM’s information such as Peer and 
PeerGroup advertisements, but not with DPM advertisements such as 
DesignEntity advertisements, which are sub-classes of the JXTA class 
‘Advertisement.’ 

Currently, DPM suggests standard state-transition loops and standard policies 
for each transition of an entity’s loop. This information is dependent on the type 
of loop selected by the user. When no prototypes can be found, simple policies for 
each transition of the entity are created. Links between entities will not be found 
in the system, since there are no existing entities to be found. Once entities exist 
in a user's local cache, then the following prototype-based objects are created:

1. Policies for each transition,
2. Incoming and outgoing constraint links, and 
3. Linked entities that are connected by these links.

6.3.4.6 Summary of prototype process

Whenever users are creating new entities, the entire history of the use of DPM is 
readily available—assuming the parts making up this history are available locally. 
This leverages its capabilities considerably and appears to make it more practical 
as a collaborative tool, since it records the history of past collaborations.

In the normal non-bootstrap condition, prototypes inform entity creation, since 
prototypes policies and linked entities are automatically included in the 
NewDesignEntity form. Users then just need to select those prototype-derived 
suggestions that they feel are appropriate. When designers are first modeling 
complex linked entities, it may require a lengthy modeling process at the 
beginning. Once that work is done however, it can be reused by anyone else. 

Any information that a prototype does suggest can later be deleted. Therefore, 
entity creation in DPM is a risk-free process, which doesn’t lock the user into 
using any information that may later turn out not to be suitable for the entity.
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6.4 Entity state

6.4.1 Determining state

State determination in DPM is unambiguous and deterministic. The actual 
algorithm used is not trivial and went through several revisions before it got to its 
current state. Special care must be taken to assure that different user’s ideas about 
an entity’s state is synchronized, otherwise strange errors might arise in DPM’s 
operation.

In DPM, the documents that determine the current state of an entity are called 
History Advertisements. These are created and communicated whenever an entity 
changes its state. These advertisements document when the state change occurred, 
which entity it concerns, and which peers had a role in its change.

For each entity, each user may have an assortment of history advertisements. 
These must be ordered by state name such that obsolete or irrelevant 
advertisements are not considered—that is, ones concerned with states prior to its 
current state. There are two dimensions: what the latest state is, and what is the 
most recent History Advertisement that documents this state change. Every time 
an entity is tested in DPM for its current state—which occurs every time an entity’s 
display is refreshed in a tree—the one-dimensional cache of History 
Advertisements that is referenced to each entity’s ID, is converted into a two-
dimensional table. This table is implemented as a ContentStorage object in which 
the state strings serve as the keys, and the HistoryAdvertisements pertaining to 
each of these states are deposited. The current state is then the most recent 
advertisement that has been received of the latest state possible, given the entities 
possible states. This is shown in Figure 26.

Figure 37  State determination method.

6.4.2 Link and input state changes

Entities can change state once the constraints are satisfied in either inputs or 
constraints links. Input state changes depend on an adequate number of role-
players assuming roles and giving timely input, in order to satisfy policy 
constraints for each transitions in an entity’s state-transition loop. Constraint links 
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depend on linked-in entities achieving a particular specified state, specified in the 
constraint link.

It is conceivable that an entity will lack both these types of constraints for a 
particular transition. Users can cause this simply by deleting all policy or link 
constraints from a transition. In order to prevent an entity changing state in a 
runaway fashion, DPM is currently configured to prevent such unconstrained state 
change.

6.4.3 Parallel vs. sequential processes in DPM

Parallel processes are ones that can work independently, while sequential 
processes depend on completion of one to enable progress of another. In DPM, 
parallel processes are ones that are not linked together by constraints links. This 
means they place no constraints on each other and lead independent lives.

A sequential process can be modeled using constraint links to constrain two 
entities together. This means that the preceding entity must reach its final state, 
before the subsequent entity’s first transition is enabled. Therefore, a preceding 
entity must be completed before the second entity can continue past its initial state. 
This is shown in Figure 42 below.

Users can also add constraints that do not require that the first entity reaches its 
final state but can reach any other state leading to the final state. Therefore, users 
can model sequences in which the preceding entity need not finish completely 
before the start of the subsequent entity.

6.4.4 Inputs seen as a type of voting system

DPM has a type of voting system in which assuming a role in an entity, registers 
the peer for little asynchronous ‘elections’ held at each transition. These elections 
depend on all registered voters actually voting, with the election choice being: can 
this entity advance its state? If ‘yes’, add an input, if ‘no’ do nothing.

Voters can provide their vote at any time, or can choose not to vote at all even 
after registering. These elections require 100% voter participation, and a 
unanimous ‘yes’ vote from all registered voters. 

If a person assumes a role (registers to vote) and then doesn’t vote, this 
effectively deadlocks an entity’s state-change process. Therefore, once peers 
assume a role, there may be some peer pressure put on eligible voters to cast their 
votes in a timely fashion. Clearly this is an aspect of DPM that needs future work. 
Currently the only mechanism for exerting ‘peer pressure’ on users of DPM to 
provide timely input into entities is the text listing of inputs requiring user input, 
shown in the entity’s mouse-over label popup. A more pro-active mechanism 
would be helpful in DPM.

6.4.4.1 Conceivable voting enhancements

This unanimous consensus-based voting policy is rather strict and unforgiving, 
and may create deadlock, as peers assumes roles, but then forget to vote. 
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Alternatives to this unanimous, input means ‘yes’; inaction means ‘no’ might 
include:

1. Majority of voters: if a majority of voters votes ‘yes’, then the entity can 
change state.

2. Non-equal vote values: where some votes are more valued than others—pos-
sibly dependent on the nature or number of roles assumed.

It is difficult though to imagine how these types of voting change could be 
implemented in DPM since it lacks understanding of the semantics of roles and 
what they should entail.

6.5 Constructing process models

6.5.1 Prototypes and organizational memory: policies and links

In DPM design entity creation is informed by prototypes. These prototypes are 
based on either real entities, or a collection of attributes from an aggregation of 
entities. Prototypes are not available at the start of the system’s life since there are 
no entities in history on which to base them.

When creating a new entity, users can view the policies and entities linked into 
the prototype. These policies and linked entities can be selected, and are then 
automatically recreated by the New Design Entity Form.

Figure 38  Policies and linked entities from a prototype used to recreate new entity 
structures.
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6.5.2 Organizational memory vs. bootstrapping from nothing

Organizational memory depends on entities being in storage. When no entities are 
in storage, then the user needs to model entities manually. The main things that 
users need to model are:

1. Content of the process loop used. An appropriate loop may or may not be 
available. Sufficient tools in DPM enable new loops to be created.

2. Policy advertisements into each transitions of the entity’s loop. These de-
scribe which inputs from which role-players are needed.

3. Constraint links that describe entities structures. 

6.5.3 Building structures using constraint links

State-changing structures involving multiple entities depend on graphs built using 
constraint links. All constraint links involve a source entity, source state, target 
entity, and a target transition, as shown in Figure 39 below. These structures can 
be used to build indefinitely complex graphs by adding additional components to 
them.

Figure 39  Complex constraint-linked entity network.

6.5.4 Sub-entity / sequential links: branch out/in structures

6.5.4.1 Sub-entities

A sub-entity relation involves two entities, one of which must be completed before 
the other can continue. Sub-entities can be created easily in DPM using the sub-
entity form. To use this form, users first select an entity to serve as a parent entity, 
then issue the command: File > New Sub Entity. This relation therefore defines a 
nested structure, in which the sub-entity nests within the parent entity.

design entity state loops
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Figure 40  Sub-entity relation in DPM. The black dots signify the current states of the 
entities.

Figure 41  Alternative diagram showing sub-entity relation.

6.5.4.2 Sequential links

Sub-entities relations are defined as having two entities, one that must finish, 
before the other can start. Therefore, the preceding entity must be in its final state 
in order for the subsequent entity to make it past its initial state.

Figure 42  Sequential relation between entities in DPM
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Figure 43  Alternative diagram showing sequential relation.

6.5.4.3 Branch-in and out

Using sequential relations multiple times enables users to model branch-in and 
branch-out structures:

Figure 44  Branch-out and Branch-in precedence structures based on sequential relations.

6.5.5 Planning vs. execution

Often in process planning systems, there are separate planning areas, and 
execution areas. In the planning area planners design process models, while in the 
execution areas these process models are ‘switched on’ in their intended 
environment with inputs from the actors using the system.

In DPM there is no separate areas to perform these two functions. They are 
simply done in the same area. If mistakes are found in the model then incorrect 
entities and links are simply deleted. If a model needs to remain static until a 
particular time, then the modeler could assume a role and wait until a particular 
time to make input for that constraint. Currently there is no provision in DPM to 
encourage scheduled interactions—such as occurs in scheduled design meetings 
in normal design practice—although clearly this would enhance the system.

6.5.6 Chat messages

In order to coordinate their behavior and to communicate explanatory messages 
about what a process model might mean, then additional information other than 
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entity structures are needed. Text messages are useful for coordinating group 
activity, and for adding information that may be difficult from possibly complex 
linked entity structures.

To add additional information, chat messages enable user to post messages to 
any peergroup. These can be open messages that appear for any user who displays 
the contents of the peergroups, or they can be private messages that only appear to 
particular users. Therefore, private messages are simply invisible to users other 
than the intended recipient. 

6.5.7 Convergence in groups

Successful use of system like DPM depends not only on people building useful 
entity and peergroup structures, but also on the group coming to some consensus 
about how to approach design problems, and how to structure their processes. 

The use of prototypes is the greatest factor in this respect, Using prototypes to 
aid in new entity construction, enables lessons learned from anyone using the 
system to influence how users create entities.

The second technique is to use text chat messages that are identified by their 
author and date to inform users of the system. Both prototypes and messages have 
been found to be necessary to make DPM useful in a distributed social context.
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7 Application testing and validation

7.1 Introduction to testing
Software testing is the process of executing software and comparing the observed 
behavior to the desired behavior. This can be done both in the context of users of 
the software, and before the software gets into users’ hands. ‘Beta testing is 
typically conducted by end users of a software product who are not paid a salary 
for their efforts.” (Rivest, 2004)

It is impossible to develop software of any complexity without testing it during 
development. Every time a developer attempts to compile code, it involves 
performing a basic type of software test.

Ulrich Flemming writes, “...in the context of a Ph.D. thesis, time and financial 
constraints often limit the participants needed for tests to fellow students, a group 
that is often self-selected and not representative of the envisaged end-users. It is 
better to do this than forego testing altogether, but carefully designed experiments 
with end-users remain the gold standard for validation.” (Flemming, 2004). 

A promising and sophisticated approach to software development is the ‘test 
first, implement later’ approach found in extreme programming (Extreme 
Programming Organization, 2004). The unit testing framework ‘JUnit’ enables 
developers to write unit tests, then enables developers to test code until it passes 
pre-written tests (JUnit Organization, 2004). The programming effort represented 
in this research unfortunately was not completed using JUnit. However, the author 
believes that automated unit testing is essential in taming the complexity of 
software development. The complexity of such development can grow quickly and 
go beyond that which is manually controllable, and manageable. Tools like JUnit 
are especially useful when requirements change at a late stage in software 
development—as they often do. 

The goal of testing is not to confirm the obvious, but to learn from ‘interesting 
failures’ (Stellingwerff, 2004). Therefore, failure in a test is not an undesirable 
result. Failures can provide more useful information than can a successful test. 
Given the nature of the software, and the ill-defined nature of the domain to which 
it is applied, various types of failure are much more likely than success. 

7.2 Introduction to TOI
TOI (Technisch Ontwerp & Informatica) is the institutional environment in which 
DPM was tested. It is the department that provides most of the computer-support 
related education for students and faculty within the Faculty of Architecture at TU 
Delft.

The chair of Technical Design and Informatics (TOI) develops comput-
er-supported techniques and methods for design and construction in ar-
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chitectural design. The chair provides education at the bachelor and mas-
ters levels in construction technology, architecture, and urban design, us-
ing ICKT (Information, Communication and Knowledge Technology) as 
a tool, medium, and partner, for integration, cooperation, and communi-
cation of design processes (TOI, 2004).

7.3 TOI and student processes
The beginning classes of the architectural program (BSc1 and BSc2) have well-
defined milestones that students are expected to fulfill over time. The order and 
structure of these milestones is fixed, however, students have considerable 
freedom in deciding when they complete each milestone. Therefore, a student’s 
process is based on her individual progress, rather than on a pre-set course 
schedule navigated by groups of students within a class block. Due to the 
educational course structure of the faculty, students are at various stages within 
these processes. 

It is difficult both for students and administration staff to know if a student has 
finished all courses, submitted all assignments, or is in the process of re-sitting 
examinations. Keeping track of such information in TOI is difficult, and consumes 
considerable managerial and computational resources.

Therefore, BSc1 and BSc2 are like state machines, in which, if students progress 
past well-defined milestones, they can continue on with their studies. It is often 
difficult to manage students’ progress through this process, since each student may 
be at a slightly different stage within it. The testing within TOI involves keeping 
track of a student’s ‘state’ within TOI processes. 

TOI has evolving, difficult-to-manage processes. These processes involve from 
the student perspective of taking courses, handing in assignments, and writing and 
passing examinations. These processes involve many actors, such as students, TOI 
support staff, professors, teachers, graders, etc. They also involve turn-taking 
interactions between actors. For example, when a student submits assignment, 
then TOI staff must grade the assignment submitted. 

7.3.1 Overall nature of these processes

TOI processes can be quite complex in practice, due to several factors:
• The unlimited time period students have to fulfill some requirements.
• The dynamic nature of the course offerings by TOI. These involve many 

different types of courses, taught by a large number of teachers at various times.
• The large numbers of students who are required to take the courses offered by 

TOI.
• The transient population of student employees of TOI, who do much of the work 

in providing backup to TOI’s courses, and in coordinating with students 
regarding their current state and remaining course requirements. 

These factors make course processes difficult to manage within TOI. They also 
provide motivation to explore alternatives to current management systems. For 
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these reasons, TOI has been keen to see whether DPM could be useful as a 
distributed management tool, in order to relieve some of the burden that TOI 
currently faces. At the time of writing there has been a total of five hours of testing 
on TOI-related processes. 

7.3.2 Aspects modeled for TOI by DPM

7.3.2.1 Courses

TOI conducts a large number of courses. These courses often involve teaching 
how to use software applications for design, such as Maya, and ProEngineer. 
There are also courses in programming, rapid prototyping, and in other design-
related computational topics. To pass a typical TOI course, students must:

1. Complete 1st half assignments. 
2. Complete 2nd half assignments.
3. Pass examination (with re-sits).

Figure 45  TOI course process.

7.3.2.2 Assignments within courses

All courses involve regular submissions to TOI for review and grading purposes. 
Management of these assignments is often difficult for TOI due to the large size 
of the digital files submitted.
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Figure 46  Assignment process.

7.3.2.3 Examinations during, and at end of courses

Examinations occur in the middle and at the end of courses. In the Dutch system, 
students have the opportunity to re-sit examinations (in Dutch: herkansing), an 
indefinite number of times. This, for some students, can delay their successful 
completion of a course considerably. This increases the complexity of managing 
examinations within TOI, since student histories can stretch on for a long time.

Figure 47  Examination process.
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Figure 48  TOI_Course state-transition loop.

Figure 49  TOI_Assignment state-transition loop.

0.finishedFirstHalfAssignments=all first half assignments have been completed

3.finalExamPassed=final exam has been passed
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Figure 50  TOI_Examination state-transition loop.

0.examWritten=examination has been written

1.examGraded=examination has been graded

2.Exam_graded

2.examPassed=examination has been passed

3.gradeCommunicated=passing grade has been communicated to student

4.Exam_grade_communicated_to_student

3.Exam_passed

1.Exam_written

0.Ready_to_write_examination
4.reuseExistingExamination=do this examination again
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7.4 Test specifics
Tests of DPM should answer the following basic questions:

1. Does the application work as advertised?
2. Does the performance of the application degrade excessively when confront-

ed with large amounts, and possibly contradictory data, from multiple users?
3. What insights does the application suggest for the planning and management 

of collaborative design processes?
4. What does testing suggest as being the most promising or appropriate direc-

tion for future work?

The goal, as with all testing, is to maximize the chance that anomalies are 
discovered during the testing period, such that they can be eliminated before the 
application is put into wider circulation. Therefore, successful tests are considered 
ones in which anomalies are found. As with any testing, finding no errors does not 
necessarily mean that the software is error-free.

7.4.1 Pre-test tasks

Some preparation and setup work is required before tests can be conducted:

1. Briefing the TOI department about the general research concepts that have in-
formed the design and implementation of DPM, and how DPM could be suit-
able as a tool to manage processes within TOI, as well as form a topic for fur-
ther research.

2. Assembling a pool of testers interested in learning about DPM, and distribut-
ed P2P applications in general. Training this pool about how DPM operates 
such that they have sufficient knowledge about how DPM operates to perform 
the tests.

3. Installing DPM on several testers’ machines. Some testers had single instanc-
es of DPM, while others had multiple instances. Multiple instances involved 
having a tester assuming multiple peer names, and that separate instances of 
DPM ran from separate directories on the tester’s computer. The software in-
stallation process involved giving testers a single executable called: 
‘dpm.exe’ If Java is properly installed on the machine, double-clicking on this 
executable will start DPM. For new users this opens the JXTA configuration 
tool. For return users, a user-defined password is required to gain access to 
DPM.
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7.4.2 Test 1: Basic functionality of DPM

7.4.2.1 Description

Tests whether DPM functions properly at its basic level. 

7.4.2.2 Participants

Four student assistants from the TOI department, Faculty of Architecture, TU 
Delft.

7.4.2.3 Venue

TOI computer lab, 6th floor, Architecture Building at TU Delft.

7.4.2.4 Duration

Over two days in November 2004. Total test time: 2 hours.

7.4.2.5 Tasks to be performed by each tester

1. Join the DPM network and establish a peer identity that is visible to other us-
ers of DPM. How this is done is covered in the Appendix: Instructions for in-
stalling Design Process Modeler (DPM).

2. Create several sample hierarchical peergroups. To create a new peergroup:
2.1 Select a peergroup node to serve as the parent.
2.2 Issue the menu command: File > New Peergroup.
2.3 Enter a new peergroup’s name in the form that opens.
2.4 Repeat this multiple times to create a peergroup hierarchy, with at least 

three branches, and at least three levels deep.
2.5 Once such a peergroup hierarchy is created, exit DPM and see if it still 

exists when DPM is opened again.

3. See if peergroups created are visible to other peers:
3.1 This requires that testers work in pairs, or in groups, and manually ob-

serve whether peergroups are communicated successfully between peers.

4. Join and leave peergroups:
4.1 Select a peergroup node and issue the command: Peergroup > Join Peer-

group.
4.2 See if the peer is added to the peergroup. Also, see if this membership is 

communicated to other peers. 
4.3 Repeat this process by leaving by issuing the command: Peergroup > 

Leave Peergroup.

5. Create design entities of various entity types and communicate these entities 
to other DPM peers.
5.1 Select a peergroup node to serve as the parent peergroup.
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5.2 Issue the menu command: File > New User Named Entity.
5.3 Create several sample TOI_Courses, TOI_Assignments, and 

TOI_Examinations. 

6. Set up policy constraints for design entities: (Note: policy constraints are 
specifications regarding which roles are needed for a design entity to advance 
its state).
6.1 Select a design entity.
6.2 Issue the menu command: File > New Policy.
6.3 Add test roles to each transition: e.g. TOI_Grader. If such a role is not 

present in the list, then manually enter this role name. 
6.4 See if these policy constraints have been added: select the entity they 

were added to, then issue the menu command: 
Entities > Show Input Policy (All Transitions). The newly added policies 
should be visible.

7. Add link constraints between design entities:
7.1 Select a design entity, e.g. a TOI_Course, to serve as a parent in a sub-

entity relation.
7.2 Issue the menu command: File > New SubEntity Link.
7.3 In the form that opens, select an entity to serve as a child, e.g. 

TOI_Assignment. This child entity then must be completed before its 
parent can be completed. 

7.4 Select the target transition of the sub-entity link. In the SubEntity form, 
this is shown as: ‘Completion of Child required to enable this transition 
of <parent name>.’ For TOI_Courses, an appropriate transition to select 
is: ‘0.finishedFirstHalfAssignments.’ The intended meaning of this sub-
entity relation is that a number of TOI_Assignments must be completed 
for a student to complete the first half assignments of a TOI_Course. 

7.5 Do this multiple times for each required TOI_Assignment.

8. Assume roles in entities:
8.1 Roles in design entities means that the peer can effect state changes. If a 

role assumed matches a policy constraint, then this peer can block an en-
tity from changing state until that user makes an input into that entity. A 
user assumes a role by doing the following:

8.2 Select a design entity.
8.3 Issue the menu command: File > New Role.
8.4 In the form that opens, enter the name of the new role by selecting an item 

from the list in the form, or adding a new term.
8.5 Check to see if the role has been added, by putting the mouse over an en-

tity and viewing the popup label that displays: ‘Your roles....’

9. Observe state changes of these entities, constrained by both their policy and 
link constraints.
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9.1 State changes in design entities are enabled by either: 1. Adding inputs to 
satisfy policy constraints, or 2. Having incoming link constraints satisfied 
by having the incoming linked entity attain the state that is specified in 
the constraint link. For example, for sub-entity or sequential relations, ei-
ther the sub-entity or the preceding entity must be at their final states, 
which is the last state found in their loop model—that is, the state with 
the largest number prefix.

9.2 The loop that an entity uses is listed in the entity’s popup label. If the user 
opens the ‘loopNets’ peergroup folder, all the states and transitions for 
each loop can be seen in each loop’s popup label (made visible by placing 
the mouse pointer over the loop).

9.3 If an entity has no constraints, then DPM is currently configured not to 
allow state changes. In detailed process models, design entities can have 
a complex mix of both link and policy constraints. 

9.4 Add inputs to satisfy policy constraints to assure that incoming entities 
are in an appropriate state to enable link constraints. View whether DPM 
changes the entity’s state automatically and whether these state changes 
are communicated to other peers. 

10. Deletion and abandonment of entities.
10.1In DPM, users can create, delete, and abandon entities. Users can also de-

lete a number of other objects that are shown in the ‘Edit’ menu. These 
include: loop nets, links, messages, peergroups, and policy constraints. 

10.2Testers should attempt to create each of these delete-able objects, and 
then delete them. This is done by selecting each item, then issuing the 
menu command: File > Delete <x>.

10.3Design entities can also be abandoned. This means they are still visible, 
but state changes are no longer possible. Abandoned entities have a cross 
icon that distinguishes them from normal entities.

10.4Select a design entity, then issue the menu command: Edit > Abandon En-
tity. See if entities are also abandoned on others peers’ systems (this may 
require a refresh of the tree in which they are displayed. Double-clicking 
on the peergroup node does this.

7.4.2.6 Criteria for above tests

1. Effort of setting up peer accounts.
1.1 Is the setup procedure easy for users of DPM?
1.2 Can installation and setup of DPM be more automated, and thus avoid 

novice users having to make decisions to get rendezvous and relay peers?

2. Reliability and synchronization of information communicated between peers, 
including entity attributes, and entity states.
2.1 If a peer creates an object in DPM, do other peers receive it?
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2.2 Can the latency period between creating information and its propagation 
to other peers create corrupted information in DPM?

3. User comprehension of domain concepts such as: entities, entity types, and 
roles, and constraints.
3.1 Are the basic domain concepts of DPM difficult for users to understand?

4. Reachability of peers behind possible firewalls, using JXTA relays or proxies.
4.1 Do some peers have more difficulty than others in receiving DPM infor-

mation?

5. Ability to create peergroups hierarchies containing various types of informa-
tion.
5.1 Are current peergroup tree mechanisms easy to use?

6. Performance of DPM in common tasks.
6.1 Is DPM responsive enough for common user actions?

7. Ability of users to return to DPM and find information in predictable loca-
tions.
7.1 Should peergroup trees appear the same way each time a user opens them 

up, down to their lowest leaves?
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7.4.3 Test 2: Error production tasks

One way to see if software works is to attempt to produce errors. Testers should 
purposely attempt to create the following error situations:

1. Register as a peer in DPM, then not have your peer identity visible to other 
peers. 
• Note: this should not be possible in JXTA (unless no other DPM peers are 

on-line), even if the peer is behind a firewall. Being behind a firewall re-
quires special configuration of JXTA by specifying a proxy server. 

2. Create hierarchical peergroups that are not navigable for other peers.
• Note: very deep peergroup trees can possibly create non-navigable peer-

groups. Deep tree hierarchies also assumed that each chain in the tree struc-
ture is communicated to all peers. Deep hierarchies must be opened one tree 
level at a time in DPM.

3. Create design entities that are not visible to other peers.
• Note: This should not be possible other than the short latency period re-

quired to propagate information between peers in JXTA. This latency may 
be several minutes, depending on peer location and network configuration, 
and is similar to the time that email messages take to travel to their recipi-
ents.

4. Have an entity attain a state that is not the same as the same entity’s state as 
shown on another computer. 
• Note: Correct synchronization of entity states between peers, is a funda-

mentally important aspect of DPM.

5. Add policy, and link constraints that are not communicated to others.
• Note: this should not be possible in JXTA, unless no other DPM peers are 

on-line.

6. Omit all constraints from an entity and see if its state changes (it shouldn’t). 

7. Omit all policy constraints from an entity, and but include several link con-
straints, and attempt to create state changes by making the incoming entities 
attain the state specified in the link constraint. See if this produces errors.

8. Omit all links constraints from an entity, and but include several policy con-
straints, and attempt to create state changes by adding inputs to an entity. See 
if this produces errors.

9. Attempt to create deadlocked constraints that are impossible for peers to re-
move—that is, ones that forever prevent a design entity from advancing its 
state.
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7.4.4 Test 3: Integration test

7.4.4.1 Description

Tests whether DPM can be used as a process support tool for use in TOI course-
related processes. These processes deal with a student’s state of progress within 
the BSc-level courses that TOI offers. DPM is intended to be a tool that could be 
useful both for TOI’s as well as each student’s informational needs. Currently such 
information is managed manually, using student lists and spreadsheets. The 
principal objects used within these processes are: TOI_Courses, 
TOI_Assignments, and TOI_Examinations. State-transition loop models 
customized for these TOI processes are available in the current version of DPM.

7.4.4.2 Participants

Six student assistants from the TOI department, Faculty of Architecture, TU Delft.

7.4.4.3 Venue

TOI computer lab, 6th floor, Architecture Building at TU Delft.

7.4.4.4 Duration

Over three days in November 2004. Total test time: 2 hours.

7.4.4.5 Tasks to be performed by each tester

1. Peergroup structure to be completed by testers altogether:
1.1 Space for 30 students taking 3 TOI courses each.
1.2 Each course (per student) would have: 1 TOI_Course entity, 5 

TOI_Assignment entities, and 1 TOI_Examination entity (which can be 
repeated an indefinite number of times).

2. Each tester will assume the role of several students, in order to test a reason-
able number of participants. The goal is to create 30 test student accounts in 
total. With six testers, this involves each tester assuming five different student 
roles. When configuring DPM to run several instances on the same computer, 
if this is necessary, care must be taken to specify correctly, and remember, 
passwords, user names, and port numbers. One method of doing this that has 
proved workable is:
2.1 Copy the DPM executable to five separate directories on your computer.
2.2 Have one term that identifies: the tester, and the peer number, and the 

password. For example, if ‘michaelC’ is to test five different peers by in-
stalling DPM five times on the same computer, then one approach is to 
set:
• Peer Names as: michaelC01, michaelC02, michaelC03, etc.
• Secure User Names as: michaelC01, michaelC02, michaelC03, etc.
• Passwords as: michaelC01, michaelC02, michaelC03, etc.



132.
• TCP port num: 9710 / HTTP port num: 9711for peer michaelC01;
TCP port num: 9720 / HTTP port num: 9721for peer michaelC02;
TCP port num: 9730 / HTTP port num: 9731for peer michaelC03, etc.

• This approach reduces the chance of failing to set the port number 
properly, and failing to remember user names, passwords, or in which 
directory the application is running.

3. Create peergroup called ‘Course tests’ that will contain the data created dur-
ing the test. 

4. Within this peergroup create peergroups for several courses, e.g. 
‘TOI_course1’, TOI_course2’, and ‘TOI_course3.’ Within each of these peer-
groups, will be DPM design entities such as TOI_Courses, TOI_Assignments, 
and TOI_Examinations. Note that in DPM, each of these objects is most ap-
propriately thought of as a relationship between the instructors of a TOI cours-
es and an individual student (although other types of semantics are possible, 
such as a relationship between ALL students in a course, and its TOI instruc-
tors). The current content of these TOI-related state-transition loops does 
seem to favor the individual student approach. If all students create 
TOI_Course objects in the same peergroup, then there is little to identify them 
as concerning a particular user (unless one puts the mouse pointer over a de-
sign entity and then reads the entity’s author from the popup label). This sug-
gests that the best way to keep students’ information separate is to make peer-
groups for each student in the class. Note that DPM does not get confused 
whatever the location of its entities, but clear peergroup organization is ex-
pected to help user comprehension.

Figure 51  One possible peergroup organization for the integration test.

5. Each test student, or TOI staff, would make a peergroup within each course’s 
peergroup, for each student. Each student peergroup should have a descriptive 
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6. Each student who takes this course would join the peergroup, using the menu 
command: Entities > Join Peergroup. Note that the join action must be done 
by each peer himself or herself. In DPM currently, it is not possible for a user 
to join a peergroup on someone else’s behalf.

7. Simulate a course scenario with the following overall process:
7.1 A student joins an existing course, or a member of the TOI staff, sets up 

the course structure for the student.
7.2 All ‘stakeholders’ in each student’s progress—normally the student her-

self, and several members of TOI (say, instructor, and grader) will join 
each student’s peergroup for each course. It is not clear that this is the 
best way to approach such a problem. To DPM, it matters little how de-
sign entities are arranged, or in which peergroups they are situated. But 
for users, as explained above, it can make a large difference. 

7.3 Create multiple assignments for each course, with variable constraints on 
completion. See when particular assignments are most suitable due with-
in the course structure, such as within the first half of the course, or sec-
ond half, etc. How the course is structured overall is reflected in the con-
tent of the state-transition loop model. For example, if courses have a first 
half and a second half, then this organizational fact can be embedded into 
the loop model. This suggests that customized loop models will evolve to 
reflect different course structures.

7.4 Work through state changes for each entity for each student, such that 
each student attains a final state such as:
• 1. Student successfully completes the course. 
• 2. Student completes the course work but must repeat the final exami-

nations several times.
• 3. Student withdraws from the course without completing it.
• 4. Student fails the course and must withdraw from it.

7.5 View the history of course changes. This is viewed by selecting a design 
entity, then using the menu command: Entities > Show Entity History. 
This panel shows the complete state change history of the entity. 
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7.4.4.6 Criteria

1. Suitability for TOI’s processes.
1.1 Are there any advantages in using DPM over current TOI information 

systems?
1.2 Does DPM provide a new type of information, or does it duplicate infor-

mation that is already available within TOI?
1.3 Can TOI users create suitable places to put information using DPM?
1.4 Do different users put information in similar places?
1.5 Is the granularity of information suitable for what students and TOI need 

to manage their processes?
1.6 Is DPM able to adapt to changing processes within TOI?

2. Entities in DPM.
2.1 Is the concept of ‘User Named Entity’ clear to users?
2.2 Is the process of attaching loop state models clear to users?
2.3 Is having an entity in a particular state significant to users?
2.4 Do users add inputs when it is suitable for them to do so?

3. Roles in DPM.
3.1 Do users comprehend roles and their meanings?
3.2 Do users continue to create new roles—that may duplicate the meaning 

of previously used ones?
3.3 Do roles acquire generally accepted meanings that are clear to users?

4. Quality of information provided
4.1 Is information provided by DPM reliable and accurate—that is, do users 

trust the information that DPM provides?
4.2 Is information provided by DPM secure? 
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7.5 Testing results

7.5.1 Things that worked well during testing

7.5.1.1 State change mechanisms

State change mechanisms work as intended. This is one of the fundamental aspects 
of the DPM system. This applies to both input-based, and to link-based state 
change mechanisms.

7.5.1.2 Synchronization of information

Either information was not available at all, or it tended to be correct. There was no 
evidence of obvious discrepancies of entity state. 

7.5.1.3 Prototype system

The prototype system creates new entities based on the history of ones created in 
the system. The current dynamic approach appears to be suitable for the task. 
There was little discussion of the prototype system, since it did not figure 
prominently in the tests. There was no demand for other types of prototype 
systems, such as explicit modeling of prototypes and storing these as models in the 
system. 

7.5.2 Things worked less well during testing

7.5.2.1 Performance

Performance when used in a group setting was at first poor. Each DPM instance 
consumes an increasing amount of memory, suggesting a memory leak. The 
leading theory to explain this is that as users search for content within peergroups, 
new threads are created in DPM, which appear to multiply and consume increasing 
resources. The effect of this poor performance is that simple actions take too long, 
or fail to happen at all within a reasonable period. The solution to this major 
problem was to:
• examine the code to see where memory leaks might occur, 
• profile the application using Java profiling tools, to see if certain components 

use excessive resources, and 
• create more coherent thread policies, such that resource-hungry threads are 

turned off when not needed. 
These things were all done and performance of DPM has improved substantially. 
See the section below: ‘Revisions to software after testing.’

7.5.2.2 Reliability of communication of basic information

For the first round of testing, information was not reliably transmitted between 
users, such that users received information created by fellow testers. After revision 
of the software reliability was improved. However, some sources of reliability 
problems are not simple implementation errors in the software that can be easily 
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improved, but are related to the basic nature of P2P software. These are discussed 
below.

7.5.2.3 Complexity of whole concept

As mentioned above, the basic concept of DPM is complex and difficult for testers 
to comprehend at first. It is unclear during testing whether this can be solved by 
either educating the tester more thoroughly, or whether the fault lies with the basic 
approach taken by the application. It is also unclear whether the basic terminology 
used by DPM: roles, policies, inputs, peergroups trees, are as simple and 
straightforward as they could be.

7.5.2.4 Poor visibility of process structures

Users of DPM can create complex linked entity structures. To view these 
structures, users must leave the main DPM window, which shows the contents of 
various peergroups organized into tree nodes, and open another window in which 
links (both constraint and information) are shown as trees. In future versions of 
DPM, a more integrated approach, in which this information is shown in the main 
window, or perhaps one that is less tree-based, and more graph-based, might be 
appropriate. 

7.5.2.5 Difficulty in configuration

JXTA Configuration requires manually setting port numbers, and specifying other 
options that are not necessarily relevant or interesting to users—especially testers. 
This occurs when users first become peers on a JXTA network, and uses a tool 
within JXTA called the Configurator. If testers need to configure multiple 
instances of DPM on their machine, as occurred during testing, different port 
numbers for each DPM instance must be set. This is annoying and is error-prone 
since it is easy to forget to do this task. If not done then DPM does not 
communicate information between peers correctly. 

JXTA Configuration can be automated, and set programmatically in the latest 
version of JXTA. This means specification of ports, relays, rendezvous addresses, 
etc. can be done without involving the users. The next version of DPM will 
incorporate this feature.

7.5.2.6 Steep learning curve of basic concepts

DPM combines concepts from both P2P computing as well as Petri net 
technologies. In order to do a thorough job, in which users are not confused by how 
DPM works, then they should have some foundation in both these subjects. This 
is difficult to do in a test situation, in which there is seldom time enough to do this 
well. 

With Petri nets, a little demonstration can go a long way in giving people an 
intuitive understanding in how states and transitions interact to form state 
machines. A live graphical demonstration of a simple loop Petri net showing a 
model of how DPM design entities will work as distributed process models is 
necessary in future to give users and testers a sufficient understanding of Petri net 



137.
concepts to be able to use the application quickly. Perhaps such a visual 
demonstration could be built into the application itself.

7.5.3 Safety in testing vs. usability of distributed systems

During testing, there tends to be few users, since having many testers (say dozens 
or more) is harder to manage, and is less safe. During testing, large errors could be 
discovered in the software, DPM could begin to consume excessive network 
bandwidth (as did Napster), or it could be seen as a malicious virus (Fortunately, 
none of these things have yet occurred.) Such things could conceivably harm the 
computer network of the Architecture Faculty, and make popularization of DPM 
problematic. Therefore, it is preferable to limit possible damage during testing 
(before wide-scale roll-out of DPM) by limiting the number of testers. 

One important aspect of P2P computing is with more users performance of the 
system usually increases. With few users, overall performance of the system 
remains low. Therefore, safety in testing, and creating a workable distributed 
information system, work at cross-purposes. For safety, limiting initial testers is 
desirable, but for creating workable P2P systems, increasing the number of testers 
is desirable. 

7.5.4 Bootstrapping of peergroups

When a peergroup is first created, the user who creates it is the only peer who is 
aware of its existence, and knows about possible resources the peergroup might 
contain. For other users to acquire this information, they must first discover the 
peergroup, and then make another discovery request for the contents of the 
peergroup. If the original author of the peergroup does not happen to be online 
when the second discovery request is made, then it is likely that the request will 
not be answered, and the peergroup’s contents will be invisible to other users.

One work-around for this problem is synchronize the usage of DPM by peers 
who are working together. They could do this by agreeing to have DPM on at the 
same time, such that information about peergroups of common interest is 
exchanged reliably between the cooperating peers. This however, is quite limiting. 
Ideally, users of DPM should not have to synchronize their work patterns in any 
way with other peers—even those with whom they are working together on a 
common design entity. P2P should lend support for asynchronous work, such that 
peers can make contributions whenever they want. 

7.5.5 Transmission of data between peers

In JXTA, information is communicated within peergroups. When there are many 
users in these peergroups, communication of information within them tends to be 
more successful. With many users, information is duplicated in users’ local caches 
and tends to be reliably available to other users. If all users are on-line all of the 
time, then they will tend to get all the information that is to be had within the 
peergroups they have open. However, this is not usually the case. Users often open 
DPM for a short time and then close it. This limits the number of local user caches 
that information can dwell in and live to be communicated to other users. 



138.
Information is published (or broadcast) in DPM when information is first 
created. It is then published locally and remotely by DPM—using the JXTA 
methods publish()and remotePublish()respectively. If peers are open at 
the time, then they receive this information. However, if peergroup trees have too 
few members, then it is probable that this new information is communicated only 
into the local cache of the information’s author. 

The best-case scenario for reliable communication in DPM is when: 1. users 
always have DPM open and online, 2. peergroups have more than one or two 
members, 3. There are direct connections, with few network hops between users. 
In such a case, communication of information between users of DPM happens 
within seconds. This is the case in a normal test situation. The responsiveness of 
the system may not be as immediate as a client-server system, but seems adequate.

The least reliable scenario is when: 1. use of DPM by its users is sporadic, 2. 
peergroup have solitary members, and 3. users are separated from one another by 
many network hops. In this scenario information may simple never arrive to its 
intended or potential audience. This seems to more approximate the real-world 
usage of DPM before it is widely distributed and used. 

Information can also be re-broadcast in DPM either manually or automatically. 
Re-broadcasting involves taking all the information found locally by a user in a 
particular peergroup, and re-publishing it within the scope of the peergroup. Tests 
demonstrated that re-broadcasting of information, takes many seconds and appears 
to consume excessive bandwidth. It does communicate information reliably 
between users when one user can view some information and another user cannot.

However, it is not the case that by assuming the performance penalty of re-
broadcasting really solves the reliability problem. Re-broadcasting suffers from 
the same basic problem as does the original publishing process: there is no 
guarantee that there will be an audience for the re-broadcasted information, if too 
few peers are in a position to receive this information. 

Re-broadcasting is now viewed as a work-around for actions that should be done 
automatically and transparently in JXTA and DPM. The preferred approach is for 
information to be published only when it is first created in DPM. It is not clear 
whether re-broadcasting is necessary in cases where peergroup member 
populations are small, or whether other mechanisms in JXTA, which may not be 
known to the author, can be used to achieve the same effect. 

7.5.6 Peergroup size and information specificity

Increasing the number of peers with an interest in a peergroup tends to make it 
more reliable. However, this tends to make the peergroup less specific to particular 
student’s needs. For example, it is beneficial to make peergroups that concern 
single students, since in this way students can have all the information that 
concerns them in one spot. However, this means that only the student, some 
worker in TOI and perhaps a few others will ever have any interest in instantiating 
this peergroup, and discovering what it might contain. 
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Therefore, a compromise might have to be made: make peergroups large enough 
so they involve a lot of people, but don’t make them so large that the information 
they contain covers too many subject matters. Like the option of synchronization 
work patterns in DPM, this requirement is limiting. Ideally users should not have 
consider what the optimal membership size of peergroups should be, since this is 
hard to predict, depends of factors outside of the user’s control such as network 
topologies, and therefore places an unwelcome burden of users. 

The main factor related to optimal peergroup size is the usage patterns of DPM 
users: whether they use DPM all the time, or whether they only use it sporadically. 
With sporadic use, optimal peergroup size would be much larger than with 
constant use. Additional real-world testing would be required to gain more idea of 
what an optimal peergroup size would be, if such a thing exists. Ideally, of course, 
any peergroup size should function as well as any other. 

7.5.7 Revisions to software after testing

The two main aspects that proved problematic during testing were: 1. excessive 
and increasing consumption of computing resources by DPM, and 2. the reliability 
of communication of essential information between users, such as new entities and 
entities states.

7.5.7.1 Reduction of resource consumption

After preliminary testing, DPM was profiled using the NetBeans Profiler 
(NetBeans, 2004). This tool can analyze resource consumption of various parts of 
a Java application. The main consumer of resources, in a part of DPM that was 
easily reconfigurable, was the method by which remote peergroup searching 
threads were created. By minor changes to this code, the resource consumption 
problems in DPM were alleviated. 

Before testing, when users created a new peergroup node, they would instantiate 
a peergroup advertisement, then create a thread which sent out a remote discovery 
requests every thirty seconds to all peers who are members of the peergroup. 
Remote peers could then respond to these requests and send back newly 
discovered peergroup resources to be included in a peergroup’s display. These 
threads would continue running until the user switched them off. As users created 
more peergroup nodes these threads would multiply and consume increasing 
resources. Quickly, this process made DPM unusable.

The revised approach is now not to create new threads that search for remote 
resources, but simply to create a single discovery request for remote resources, 
after refresh of the node, which reflects the latest content of the local JXTA cache. 
This solved the DPM performance problem. The revised node refresh code is 
shown below:
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public void addChildren(PGTreeNode node) {
if(node!=null) {

clearChildren(node);
ContentSearcherTree searcher = node.getTreeSearcher();
/**First, populate content storage. This takes little time */
searcher.localCache_To_csAdvAllTypes();            
/**Add content to tree */           
addAllContentInCSToTree(node);
/**Expand the tree to show new addition */
expandOneNode(node);

            
/**Now get the remote advs for next time (this takes time) */
searcher.getRemoteAdvsAllTypes();

}
}

Figure 52  Revised peergroup node refresh code.

Such a performance tuning process for DPM could be continued and additional 
incremental performance improvements could probably be gained, without great 
effort or major redesign of DPM. 

7.5.7.2 Push vs. pull peergroup resource discovery

DPM currently utilizes a ‘pull’ type of process to acquire resources. Users send out 
discovery requests for peergroup nodes. Responses to these requests are 
asynchronously received by DPM and put into the local JXTA cache. Whenever 
peergroup nodes are refreshed, which occurs when users actively double-click on 
a node, all the resources from the local cache are added to the node’s display.

Therefore, in DPM there was no mechanism to actively listen for new additions 
to the peergroup and to revise the display if the new incoming information 
warranted it. This could be called a ‘push’ mechanism—where important types of 
information would push their way into a node’s display without active user 
intervention. 

In DPM, it is unpredictable as to when new information will arrive into the local 
cache. The number of incoming advertisements can be quite high, and newly 
discovered advertisements are not necessarily more recent than previously 
received information. Therefore, refresh on discovery on receipt of just any 
information is impractical, since this could involve excessive resources just to 
keep all nodes showing the latest information received. 

Instead, DPM should watch out for important types of information that should 
warrant node refresh: 1. receipt of new design entities, and 2. receipt of new 
history advertisements that determine entities’ states. If a user is actively informed 
of receipt of these types of information, then users’ display will always show all 
the latest entities that a peer has discovered, as well the most recent states these 
entities have attained.

A ‘push’ mechanism was added to DPM after testing. The practical result of this 
addition is that when two DPM users are sitting next to one another and one creates 
new entity in a peergroup, or someone adds input to change entity state, then the 
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other user’s peergroup display is automatically updated to reflect this newly 
created information. 
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8 Conclusion

8.1 Discussion of results

8.1.1 Role of P2P

One of the most interesting points of discussion were the questions during the TOI 
testing of DPM was ‘why use P2P’? This concerned the general suitability of P2P 
systems for information systems. In the domain used for testing—student 
processes within the TOI, there was little compelling advantage for using such a 
system since, from a user/tester’s perspective:

1. information may not as reliably transmitted between users as would a client-
server system, and 

2. trustworthiness and freshness of some data can be low when there is low peer-
group membership.

Such problems can be avoided by adopting a client-server architecture, but then 
new problems are introduced, such as the effort and cost required to design and 
maintain client-server systems, and the concentration of processing loads and 
security issues inherent to centralized systems.

P2P is both an implementation technology, as well as an approach to self-
organizing social and technical processes. This research co-mingles both of these 
aspects. In some domains, if P2P is seen purely as an implementation technology, 
there may be insufficient reasons to adopt it. It is unclear whether P2P has actually 
reduced the number of lines of code for this research, since the client-server 
alternative was not implemented (the author feels it probably has). However, if the 
goal is also to explore whether distributed process-support applications can be 
designed that structure processes in a formalized manner, then the P2P aspect of 
the research goes beyond being merely an implementation decision. It has been 
shown that a distributed implementation for design process coordination is 
workable—though not problem-free. 

8.1.2 Aspects impaired by P2P

Access to all information at all times: communication of information in P2P is 
dependent on number of users in general, and on the membership of peergroups. 
Low user numbers lead to low performance in P2P systems. This results in lower 
reliability of information, and doubts in users whether the information that some 
peers can access is all the information that exists. 

It is not clear that P2P implementations are well suited for supporting small 
groups of people who may not want to share information with larger populations 
of users. Unfortunately, small design teams—the most common kind—can usually 
be described as small groups of people who do not want to share information 
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(often secret and proprietary) with just anyone. However, it is not clear that this 
constitutes a fatal flaw in the technology with respect to collaborative design 
applications. 

8.1.3 Aspects helped by a P2P implementation

1. Avoidance of ‘global’ information: in a client-server system it is easy to store 
information that applies to all other users. In a P2P implementation such in-
formation can be stored within the application itself—for instance the inclu-
sion of a number of basic state-transition loops for use by TOI testers. If the 
goal is to enable peers to self-organize, then there is much less opportunity in 
P2P implementations to ‘cheat’ and introduce behind-the-scenes prescrip-
tions. Yet, it is also clear that the boundary between what prescriptions devel-
opers add to P2P applications, and what users self-organize on their own, is 
still quite ambiguous. 

2. Probability of scalable performance: in the event that DPM is used by large 
numbers of users, then its performance should improve as information is dis-
tributed and duplicated between peers.

3. Distribution and installation of the software is easy: all that is required of po-
tential users or testers is to download the DPM software, have Java installed 
on the computer (which is usually the case), and double-click on an execut-
able.

4. Maintenance and security safe-guarding of a server is not required. 
5. All development can happen locally on a single machine without having to 

gain access to a server. The development process then is centered on use of 
Java and of JXTA code. This proved straightforward to manage.

8.1.4 Solution to the reliability problem?

Testing of DPM shows that a degree of user synchronization of DPM is currently 
necessary. This is to avoid the problem of having information communicated 
within the scope of peergroups, without having sufficient members within these 
peergroups to store and transmit this information to other peers. What then are the 
possible solutions to this problem?

1. Have all peers store all information regarding all peergroups on their comput-
ers. Comment: this works against the spirit of P2P computing and imposes 
centralized loads on every peer. P2P systems are built to distribute loads, 
which is why in JXTA information is shared within the limited scope of peer-
groups. 

2. Have all users do all their work in limited numbers of peergroups. Comment: 
If all users did all their work in one peergroup then the reliability problem 
would be solved. This would also tend to centralize loads onto each user. It 
also would prevent users from structuring information into smaller catego-
ries—which currently in DPM is achieved through construction of peergroup 
hierarchies.
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3. Separation of information hierarchies from peergroup hierarchies. Comment: 
this appears promising and may be worthy of further study, however, peer-
groups seem to be the natural approach in P2P of creating specialized places 
to put information.

4. Transfer information directly between peers rather than within peergroups. 
Comment: this also appears to be a promising direction. in JXTA, peers can 
create virtual pipe connections between individual peers such that informa-
tion can be directly transferred along the pipe. This requires that both peers be 
online at the time. It is not clear whether this solve the problem of when two 
peers, who are directly interacting, are not online at the same time.

5. Have users synchronize their work patterns. Comment: This synchronization 
might involve only having DPM on when other users are likely to use it. This 
constraint is similar to client-server systems where in order to have reliable 
service for clients, the server is assumed to be always on and available to cli-
ents. Having to synchronize usage adds an unwelcome and limiting constraint 
but may be necessary in cases when small number of users are working to-
gether on shared information that will, at the best of times, interest only small 
numbers of people. 

6. How so many users that information is duplicated and shared widely. Com-
ment: this is the normal approach in P2P computing and assumes that reliabil-
ity comes through increased numbers of users. For many domains, such as 
music sharing or distributed file systems, this approach has proven effective. 
It is unclear whether collaborative design processes will necessarily have suf-
ficient user populations to make this approach always reliable.

8.1.5 Interactive nature of DPM’s process

DPM is an interactive system. It requires participation from many people for it to 
work as intended. For this participation to occur, the tool must provide useful 
information for all parties. In DPM’s case, in the context of the TOI department at 
TU Delft, this means it must satisfy information needs both of TOI as well as its 
students.

Therefore, in DPM’s case this means that the process of determining a student’s 
state within the educational process of TOI, is not solely up to TOI, but also up the 
students as well. Both the student and TOI personnel function as ‘peers.’ This is 
quite different in basic approach to current information systems at TOI. Since all 
role-players in DPM are not defined in any way that distinguishes them according 
to their role in the administration of TU Delft, this tends to blur the roles and rank 
of those who use DPM. It may not be clear to users if a role-player has a role of 
authority in the institution, or not. This is not necessarily always a good thing. In 
this way DPM tends not to be seen as a tool that has been imposed by the 
administration onto students. Rather it is a collaborative tool that requires 
cooperation and mutual participation. 



146.
8.1.6 Leveraging external technologies

8.1.6.1 The technology of Petri nets

DPM depends on the technology of Petri nets. As it turned out, this process of 
modeling loops in Petri net form appears to be a process best left to the author. It 
appears that such modeling is beyond the interests and capabilities of the ordinary 
user. The concept of how a Petri net model is constructed and operates is not 
completely self-evident. Talk of states and transitions is technical and can be 
confusing for some. The fluent use of DPM depends on a greater understanding of 
how Petri nets work than expected. 

8.1.6.2 Leverage of JXTA

Development of DPM involved leveraging basic JXTA capabilities within a 
custom domain. This approach relies on JXTA working as advertised. DPM 
therefore is dependent on future versions of JXTA for it to evolve and grow. This 
appears not to be a problem, since the developer community using JXTA is strong 
and is growing.

8.1.6.3 Role of the Java language

Java has been a significant and relatively recent development in computing 
technology, is now largely taken for granted. Java’s basic approach, and the ease 
of use of using an integrated development environment (or IDE—specifically 
NetBeans 3.6) made this research relatively easy to implement. 

Standardization towards UML graphical representation of project structures (as 
used in the TogetherSoft IDEs) is seen as a further improvement towards 
implementation ease and power, using the Java language.
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8.2 Contributions

8.2.1 Implementation of a working prototype for design coordination

This research involved design and implementation of a working software 
prototype. This prototype demonstrated that a distributed P2P approach to the 
description and coordination of collaborative design processes is workable. The 
implementation phase of the research was extremely useful for attaining sufficient 
knowledge of P2P technologies to make a balanced assessment of the technology, 
as well as providing countless opportunities to investigate various approaches to 
collaborative processes and social interactions.

8.2.2 Provision of a process coordination framework

DPM enables users to participate in a structured coordination process that involves 
roles, and collaborative specification of entity state. DPM also enables users to 
communicate task, task dependency, and actor dependencies for tasks, in a low-
cost, non-prescriptive manner. This enables distributed designers to coordinate 
their work on a real-time basis. 

8.2.3 Interactive collaborative modeling tool

DPM enables distributed users to model not only design entities and their contents, 
but also to build hierarchies of peergroups. These peergroups enables users to 
browse collaboratively defined information structures, to see who else has joined 
these groups, and to see what kind of information exists within them. This 
information includes both design entities of various kinds as well as simple chat 
messages that users can post to hierarchical peergroups in a ‘blog’ fashion. Online 
collaboration can take place by simply exchanging information in simple message 
form, as opposed to the more complicated process of becoming involved in design 
entities and assuming roles in them.

8.2.4 Environment to represent and establish organizational norms

In DPM organizational norms are defined by the content of process loop models, 
as well as the type of constraints and linked entities that are created. Using the 
prototype feature that in DPM is built into the process of creating new entities, 
enables users to learn quickly about how others are using the system and to adjust 
their behavior correspondingly. 

DPM depend on group of people creating histories of working together and to 
see histories of collaborations between various peers assuming a variety of roles. 
This process of producing a visible common, collaborative history is of great 
importance in structuring collaborative work.

8.2.5 Building of user-configured online teams

Enables users to build online teams and other types of communities quickly, using 
minimal software. This is a result of DPM leveraging the capabilities of JXTA—
a sophisticated open-source P2P framework. 
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8.3 Future research agenda

8.3.1 Increase the reliability of information transfer

As detailed above there are ways of possibly improving the reliability of 
information transfer, without corrupting the basic P2P approach and its benefits. 
This process could involve investigating whether peers could hold information 
about peergroups they may not have a direct involvement in, but have an interest 
in storing for other peers, without going so far as having all peers hold information 
about every peergroup found in the whole system. Use of pipe connections that 
would directly connect peers should also be investigated.

8.3.2 Build more sophisticated prototype mechanisms

The manner in which prototypes are found or created in DPM is in fact 
fundamental to its operation, although the testing process barely touched on this 
aspect. It is the mechanism in which group activity is encouraged to converge 
towards user-defined organizational norms. Greater study is required to see how 
this process works exactly and whether more sophisticated prototype algorithms 
could enhance it.

8.3.3 Explore information persistence

DPM up to now has had little study in how the life spans (or ‘time to live’) of 
design entities created in DPM should be manipulated to best effect. Distributed 
systems depend on distributed objects created within them having limited life 
spans. If objects do not have limited life spans, then the distributed system is soon 
choked with obsolete information. 

It is expected that some information should never become obsolete and should 
endure in process histories for a long time. It is also expected that users should not 
be able to set life spans manually, since they lack sufficient knowledge of the 
issues involved to do it well. The consequence of doing it badly is that the 
distributed system could soon become unusable.

It is unclear what the criteria for setting life spans should be. Presumably, this 
life span setting process should be an emergent process that depends on how users 
make use of existing information. It should also be a process that is transparent to 
the user. 

8.3.4 Simplify the process of modeling process loops

Currently, modeling using Petri net models is cumbersome for users. It is unclear 
how to make this process easier. It appears that most users simply lack a 
background in process representation techniques, and therefore must be exposed 
to this technology and its concepts quickly when exposed to DPM for the first 
time. The basic Petri net-based technology of the DPM approach has been of 
fundamental importance in providing distributed process models that peers can 
create, modify and run. Therefore, the basic technical foundation of DPM will 
remain Petri net-based. 
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10 Appendices

10.1 Appendix A: Instructions for installing Design Process 
Modeler (DPM)
Michael Cumming
m.cumming@bk.tudelft.nl
Last revision: 30 November 2004

10.1.1 Introduction

DPM is a design process coordination tool, which enables users to:
• Communicate information to other users in a peer-to-peer (P2P) fashion, using 

the JXTA P2P framework (see: www.jxta.org).
• Build collaborative description hierarchies of design entities.
• Assume roles, and collaboratively specify the state of these entities.
• Assign various state/transition models for each entity.
• Link design entities to other entities to form process models.

10.1.2 Obtaining the software

There are two ways of obtaining the software: 

1. Download it from the author’s web site
• Download link: 

www.bk.tudelft.nl/users/cumming/internet/dpm.zip
• Download by entering this URL in your browser. File download should 

start automatically. Please contact Michael Cumming if it doesn’t (m.cum-
ming@bk.tudelft.nl).

• Save the zip file in an empty folder anywhere on your computer.
• Extract the zip file into the same folder.
• Run the application by double-clicking on dpm.0.75.exe

2. Get it on CD:
• Save the zip file in an empty folder on your computer.
• Extract the zip file into the same folder.
• Run the application by double-clicking on dpm.0.75.exe

10.1.3 Prerequisites for running the DPM application

1. Your computer is connected to the Internet. This application requires an open 
Internet connection.

1. Java 1.4, or later, is installed on your system. Download Java at: http://ja-
va.sun.com/j2se/1.4.2/download.html. The java version installed on your 
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computer can be determined by typing the command ‘java -version’ in a Com-
mand Prompt window (in Windows).

10.1.4 Configuration of JXTA

The first thing that should run is the JXTA configuration window. It should open 
automatically. This configuration tool is built into JXTA.

The JXTA Configurator has four tabs: Basic, Advanced, Rendezvous/Relays, 
Security. For each tab of the JXTA Configurator:

1. Basic 
• Enter your peer name (e.g. ‘MC’). This is the name that you will be known 

by on-line.
• Don’t check “Use a proxy server” unless you're behind a firewall.

Figure 53  Basic JXTA configuration panel.
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2. Advanced

In both TCP and HTTP Settings, check:
• ‘Enable Outgoing Connections’
• ‘Enable Incoming Connections’

Figure 54  Advanced JXTA configuration panel.

NOTE: if running multiple instances of JXTA run on the same computer (for 
example, while testing) it is important that each instance of DPM has different 
ports specified. 

In the example above, TCP connections use the 9701 port, while Http 
connections use the 9700 port. If more than one instance is configured, and if these 
port numbers have been already used, simply change these numbers to different 
ones (for example: 9711 for TCP, and 9710 for Http). 

If instances of DPM run on different computers, then their port numbers need 
not be changed from the default values. Manually changing port numbers is only 
required when running multiple instances of DPM on the same computer.
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3. Rendezvous/Relays
• Click the button “Download relay and rendezvous lists”
• Click the button “Load”
• Wait until addresses load
• Click the button “Dismiss”
• Check the following check boxes:

• Act as a Rendezvous
• Act as a Jxta Proxy
• Act as a Relay
• Use a Relay

Figure 55  Rendezvous/relay JXTA configuration panel.
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4. Security
• Enter Secure Username (e.g. mikefromDelft)
• Enter Password (Needs a minimum of 8 characters. Remember it for later 

access).

Figure 56  Security JXTA configuration panel.

Once the configuration is completed the application should open. DPM then 
begins and looks for peers and peergroups on-line. It may take a few minutes for 
it to find any. Once it finds them it saves them in a semi-persistent cache. 

10.1.5 Reconfiguration

When JXTA starts, it creates a directory called ‘.jxta’ into the same folder where 
the application was downloaded. In this directory, there are two sub-directories: 
‘cm’ and ‘pse.’ ‘cm’ holds information that is exchanged between peers, while 
‘pse’ holds a peer’s password and user name. 

If the user wants to delete the peer specific details such as peer name and 
password, then one can simply delete the ‘pse’ directory. The JXTA Configurator 
will then run the next time that DPM is run. This does not affect the data stored in 
the local ‘cm’ cache.
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Deletion of the ‘cm’ directory, removes all the cached information that has been 
discovered by the peer. The next time that DPM is run, this cache will be recreated 
automatically by JXTA. 

If a user closes DPM and opens it later, DPM doesn't have to look for the same 
things again—it remembers what it has discovered before by storing discovered 
information in its ‘cm’ cache.

Figure 57  Typical local user cache in JXTA.

uuid-3FD35406FFC44A81A406B8C1C7C79E1302

.jxta

cm

pse

jxta-NetGroup

PlatformConfig

jxta.properties

jxta-NetGroup
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10.2 Appendix B: Package and class descriptions
A list of the most important packages, organized alphabetically by Java package 
name. Abstract classes have italicized names in upper case. Concrete classes have 
non-italicized names in upper case. Java packages have names in lower-case.

10.2.1 dpm.container.tree

Classes that implement leaves and nodes for two types of tree displays: one for 
displaying peergroup trees, and another for displaying trees of links between 
design entities. The trees themselves are implemented as sub-classes of Java 
JTrees. 

Figure 58  UML diagram of package: dpm.container.tree

10.2.2 dpm.content

This package contains the abstract class DesignEntity in which UserNamedEntity 
is the only concrete sub-class. Also contains the class ContentStorage, which 
organizes all data that the application receives from other peers and which the user 
creates while using the application. EntityRelatedContentStorage organizes 
information that is bound to a particular design entity. In this class, all policies, 
roles, inputs, histories, incoming and outgoing links are stored. Note that the two 
types of content storage are not persistent, and must be re-populated when starting 
the application, using information that JXTA stores persistently (with a ‘time-to-
live’ attribute) in a user’s local cache. 
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Figure 59  UML diagram of package: dpm.content

10.2.3 dpm.content.advertisement

Advertisements in JXTA are XML-encoded messages communicated between 
Peers. All content in the DPM application is implemented as sub-classes of 
JXTA’s Advertisement class. The AdvUtilities class contains methods for 
creating, communicating, and storing locally, all content. 

In distributed systems, deletion of content is a non-trivial issue: it is easy to 
delete local content, however to delete it on remote Peers’ computers over which 
any one user has no control, is problematic. A type of advertisement called a 
DeleteAdvertisement addresses this problem. One is created when a user deletes 
content in the application. This is then communicated to remote Peers. Currently, 
in order for a user to delete content, she must be the original author of that content. 



165.
It is unclear at this stage whether this approach is adequate to avoid problems of 
deletion synchronization—that is, avoiding situations where users work on 
obsolete content that has been previously deleted by other users.

Figure 60  UML diagram of package: dpm.content.advertisement

10.2.4 dpm.content.constraint

This package implements the two types of state-change constraining classes in 
DPM: Links and Policies. Links are constraints between two existing entities, 
while Policies are constraints specific to a single transition in a design entity. The 
DeleteChecker class checks to see if advertisements handled by the application 
have been deleted by users. If deleted, then the application does not handle them 
further. Deletion of an entity is therefore considered a type of constraint placed on 
that entity.
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Figure 61  UML diagram of package: dpm.content.constraint

10.2.5 dpm.content.state

This package contains utility classes for state-change mechanisms. The 
LoopNetReader takes a Petri net representation of a state-transition loop, and 
makes an XML-encoded advertisement based on the information contained in the 
net. 

Figure 62  UML diagram of package: dpm.content.state

10.2.6 dpm.dpmApp.desktop

This package contains the DpmAppTopFrame class that has the top-level user 
interface components, as well as the application’s ‘main()’ method. All static 
variables in the application’s code is centrally located in the DpmTerms class. 
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Figure 63  UML diagram (abridged) of package: 
dpm.dpmApp.desktop

10.2.7 dpm.dpmApp.desktop.forms

Contains all the user interface forms other than the top-level ‘topFrame.’ All are 
sub-classes of the Java Swing interface classes: JFrame or JPanel. 
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Figure 64  UML diagram of package: 
dpm.dpmApp.desktop.forms

10.2.8 dpm.peer

A concrete class that organizes content relevant to a Peer, and all the information 
the application discovers while online. The concept of ‘Peer’ exists in JXTA, but 
not the implementation. 
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In order to distinguish various distributed Peers over the Internet, each is 
assigned a unique PeerID in JXTA. In P2P applications, Peers exchange 
information by passing messages to other Peers. In order to do so, they need to be 
members of the same Peergroup. Each Peer is a discrete entity that is not a part of 
any other Peer. If Peers need to be grouped together, they join Peergroups. Peers 
can be located anywhere, so long as they are connected to other Peers via the 
Internet.

Each Peer must have a single computer it calls ‘home.’ This home is defined as 
a unique (IPaddress x Port) combination: (e.g. 130.161.162.233 x 9701). Most 
computers have a large number of available ports—usually a large proportion of 
the maximum possible number of 64 k (under Windows). This number is assumed 
to be adequate for the purposes required here. Therefore, each computer in theory 
able to house an arbitrary number of Peers. However, most users will only need to 
use one Peer per computer. Each Peer (sub-class Person) can assume multiple 
roles.

Figure 65  UML diagram of package: dpm.peer
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10.3 Appendix C: User interface forms
Top Frame Form (main user interface window)

The main user interface window for users. Contains a tree-display window for 
peergroups and their contents, and below that, a message area. All user commands 
are accessed by menus found at the top of the form.

Figure 66  Top Frame Form.

10.3.1 New User Named Entity Form

Enables users to construct a new User Named Entity (a concrete sub-class of 
DesignEntity). For a new User Named Entity a user specifies the state-transition 
loop to be assigned to it, and policy constraints for each of its transitions. 
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Figure 67  New Design Entity Form.

10.3.2 New Peergroup Form

Enables users to create a sub-peergroup using an existing one as its parent. In 
JXTA, sub-peergroups define logical partitions of their parents. User must first 
select an existing peergroup, to serve as the parent for the new peergroup. In 
JXTA, the top-level peergroup is called the ‘World’ peergroup.

Figure 68  New Peergroup Form.

10.3.3 New sub-entity relation Form.

Enables users to specify a sub-entity relation between two existing design entities. 
User first selects an entity to serve as the Parent Entity.
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Figure 69  New sub-entity relation form.

10.3.4 New sequential relation Form.

Enables users to specify a sequential relation between two existing design entities. 
User first selects a design entity to serve as the Preceding Entity.

Figure 70  New sequential relation Form.

10.3.5 New Constraint Link Form

Enables users to add Constraint Links between any two existing design entities. 
Constraint links are constraints that link a transition of one entity to a state of 
another. Available transitions and states depend on the state-transition loop 
assigned to a design entity at its construction. 
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Figure 71  New Constraint Link Form.

10.3.6 New Information Link Form

Similar to the Constraint Link Form above, however an Information Link simply 
joins two entities, rather than connects their states and transitions. User can use 
existing link names (e.g. ‘doBefore, ‘componentOf’), or can add new ones. 

Figure 72  New Information Link Form.

10.3.7 Show Links Form

Show users all links both leading into and out from any design entity. Shown in a 
tree representation, with a design entity at the root. Users can dynamically choose 
new roots, and can specify the direction—whether to show incoming or outgoing 
links—and the name of the link. Constraint links have the static link name of 
‘doBefore.’ Children are added to the link tree at each level, when users manually 
double-click on a parent node. In this way trees are navigated step-by step, and link 
cycles are shown to users as repetitions of parent child relations. 
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Figure 73  Show Links Form.

10.3.8 History Viewer Form

Enables users to view a chronologically ordered list of all state changes that have 
occurred to a design entity throughout its lifetime.

Figure 74  History Viewer Form.

10.3.9 New Policy Form

Enables users to add a policy constraint to specific transitions of a particular design 
entity. Users can add one or more role-name policies to each transition.
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Figure 75  New Policy Form.

10.3.10 New Role Form

Enables users to assume a role for a specific design entity. Users have the option 
of using an existing role name, or adding new role names. 

Figure 76  New Role Form.

10.3.11 New Input Form

Enables users to add an input to a design entity. This means that the user, playing 
a specific role, considers that the design entity is in a position to change its state. 
User must assume a role in an entity (e.g. ‘performer’, ‘author’), before they can 
make an input based on that role. The form automatically adds check boxes for 
appropriate roles. The form also gives information about the current and next state 
of the entity.
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Figure 77  New Input Form.



177.
10.4 Appendix D: Information panels

10.4.1 DPM Information Panel

Provides general information and sources of included code for the Design Process 
Modeler (DPM). 

Figure 78  DPM Information Panel.

10.4.2 Petri net Loop Information Panel

Provides instructions to users in how to construct their own Petri net state-
transition loops, used in the state change mechanism for design entities.
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Figure 79  Petri net Loop Information Panel.
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10.5 Appendix E: Non-TOI sample state-transition loops

Figure 80  Design Task state-transition loop.

Figure 81  Design Product state-transition loop.

0.In_pre_negotiation

1.In_performance

2.In_post_negotiation

3.Retired

0.agreeToPerform=this task should be done

1.performanceCompleted=this task has been completed

2.agreeToRetire=this task has been completed to your satisfaction

3.reuseExistingEntity=use this task again

0.In_pre_design_phase

1.In_schematic_design_phase

2.In_design_development_phase

3.In_construction_documents_phase

4.In_post_design_phase

5.Retired

0.requirementsGathered=design requirements have been gathered

1.agreeToDesignInDetail=this product should be developed in detail

2.designDevelopmentCompleted=this product should have construction documents prepared

3.documentsCompleted=this product's construction documents have been completed

4.postDesignComplete=the design contract has been fulf illed

5.reuseExistingEntity=use this task or product again
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10.6 Appendix F: Sample advertisements
All advertisements in JXTA are text-based, XML-encoded documents. Important 
methods in this application are ones that parse these documents and turn them into 
Java objects, and in the opposite direction, take Java objects and make XML 
documents from them. It is not difficult for developers to add additional attributes 
to any of these advertisements, and to implement new advertisement sub-classes.

All advertisement in JXTA have unique IDs. These IDs are represented in the 
current implementation by the XML attributes ‘DesignEntityID’ or ‘AdvID.’ All 
IDs are generated by JXTA’s IDFactory class, and are guaranteed to be unique. 
Having unique IDs for its distributed objects, is an essential feature that enables 
JXTA to function as a distributed system.

Advertisements in this application document who authored them, and when they 
were created.

10.6.1 Design entity advertisements

Design entity advertisements describe entities and their descriptions, authors, date 
of creation, etc.

‘NetName’ is the name of the state-transition loop used by the entity. Users are 
free to use different loops to the defaults provided by the application.

‘Iteration’ represents the number of times the entity has iterated its state-
transition loop. 

‘BaseName’ refers to the name provided by their author at their first 
construction. This provides the base that is appended with the iteration number 
when entities are recycled. For example, if a task is called ‘T1’, then the name that 
is suggested for its second iteration is ‘T1_2.’ Users are free to call the iterated 
entity any name they wish, however.
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10.6.1.1 User Named Entity Advertisement

<!DOCTYPE jxta:UserNamedEntityAdv>
<jxta:UserNamedEntityAdv xmlns:jxta=”http://jxta.org”>

<DesignEntityID>
urn:jxta:uuid-

F1076F5D195D45F8910FA2279BCD6BBC9C1624A4C92046EA97458A3B8198ABE501
</DesignEntityID>
<Name>

Concrete slab_2
</Name>
<BaseName>

Concrete slab
</BaseName>
<Description>

Description of the product
</Description>
<Iteration>

2
</Iteration>
<DateCreated>

Apr 14, 2004 2:23:46 PM
</DateCreated>
<AuthorID>

urn:jxta:uuid-
59616261646162614A78746150325033D5D101E6DBB74F909F32ADE2E257D7E403

</AuthorID>
<AuthorName>

MC
</AuthorName>
<NetName>

DesignContractLoop
</NetName>
<DateDue>

Apr 14, 2004 12:00:00 AM
</DateDue>

</jxta:UserNamedEntityAdv>

10.6.2 Advertisements linked to particular design entities

‘TargetName’ refers to the design entity for which this is a policy.

10.6.2.1 Policy Advertisement

A policy advertisement applies to only one transition of one design entity. It 
specifies which role names are needed to make input, to allow state change. It can 
specify one, or multiple roles names, as constraints.
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<!DOCTYPE jxta:PolicyAdv>
<jxta:PolicyAdv xmlns:jxta=”http://jxta.org”>

<AdvID>
urn:jxta:uuid-

F1076F5D195D45F8910FA2279BCD6BBCFF78E653ED9C4092ACF08CAB83FB55C701
</AdvID>
<TargetTransition>

5.reuseExistingEntity
</TargetTransition>
<TargetID>

urn:jxta:uuid-
F1076F5D195D45F8910FA2279BCD6BBC9C1624A4C92046EA97458A3B8198ABE501

</TargetID>
<TargetName>

P2_2
</TargetName>
<TargetType>

DesignProduct
</TargetType>
<DateCreated>

Apr 14, 2004 2:23:46 PM
</DateCreated>
<AuthorID>

urn:jxta:uuid-
59616261646162614A78746150325033D5D101E6DBB74F909F32ADE2E257D7E403

</AuthorID>
<AuthorName>

MC
</AuthorName>
<Roles>

<RoleName>
entity recycler

</RoleName>
</Roles>

</jxta:PolicyAdv>

10.6.2.2 Role Advertisement

Role advertisements represent roles (represented as a simple string) that a single 
peer assumes for a single design entity. Role apply to all transitions of the entity. 
The ‘RoleName’ attribute is the one that defines the role.
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<!DOCTYPE jxta:RoleAdv>
<jxta:RoleAdv xmlns:jxta=”http://jxta.org”>

<AdvID>
urn:jxta:uuid-

F1076F5D195D45F8910FA2279BCD6BBC17C099B95A1A4106AD5BB41759B2C36A01
</AdvID>
<DesignEntityID>

urn:jxta:uuid-
F1076F5D195D45F8910FA2279BCD6BBC9C1624A4C92046EA97458A3B8198ABE501

</DesignEntityID>
<Name>

P2_2
</Name>
<AuthorID>

urn:jxta:uuid-
59616261646162614A78746150325033D5D101E6DBB74F909F32ADE2E257D7E403

</AuthorID>
<AuthorName>

MC
</AuthorName>
<DateCreated>

Apr 14, 2004 2:23:46 PM
</DateCreated>
<RoleName>

author
</RoleName>

</jxta:RoleAdv>

10.6.2.3 Input Advertisement

An input advertisement represents the role name or names that must provide input 
for a single named transition to be enabled, for a single design entity.
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<!DOCTYPE jxta:InputAdv>
<jxta:InputAdv xmlns:jxta=”http://jxta.org”>

<AdvID>
urn:jxta:uuid-

F1076F5D195D45F8910FA2279BCD6BBCB9FFFD62325646EE9307AC464675561C01
</AdvID>
<DesignEntityID>

urn:jxta:uuid-
F1076F5D195D45F8910FA2279BCD6BBCDE0350AE538F46BD99D4928113F5D98F01

</DesignEntityID>
<Name>

P2
</Name>
<AuthorID>

urn:jxta:uuid-
59616261646162614A78746150325033D5D101E6DBB74F909F32ADE2E257D7E403

</AuthorID>
<AuthorName>

MC
</AuthorName>
<DateCreated>

Apr 14, 2004 12:44:11 PM
</DateCreated>
<TransitionName>

0.requirementsGathered
</TransitionName>
<RoleName>

performer
</RoleName>

</jxta:InputAdv>

10.6.2.4 History Advertisement

History advertisements document each state change for a single design entity. 
They also document which peers, filling which roles, contributed to this state 
change. History advertisements are shown in the ‘History Viewer’ part of the 
application, where they are ordered by their ‘DateCreated’ attribute.
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<!DOCTYPE jxta:HistoryAdv>
<jxta:HistoryAdv xmlns:jxta=”http://jxta.org”>

<AdvID>
urn:jxta:uuid-

F1076F5D195D45F8910FA2279BCD6BBC63C2075E0D2C4366866DACE60DD2FFC001
</AdvID>
<DesignEntityID>

urn:jxta:uuid-
F1076F5D195D45F8910FA2279BCD6BBCDE0350AE538F46BD99D4928113F5D98F01

</DesignEntityID>
<Name>

P2
</Name>
<DesignEntityType>
</DesignEntityType>
<AuthorID>

urn:jxta:uuid-
59616261646162614A78746150325033D5D101E6DBB74F909F32ADE2E257D7E403

</AuthorID>
<AuthorName>

MC
</AuthorName>
<DateCreated>

Apr 14, 2004 2:22:58 PM
</DateCreated>
<TransName>

2.designDevelopmentCompleted
</TransName>
<State>

3.In_construction_documents_phase
</State>

<Roles>
<Role>

<RoleName>
performer

</RoleName>
<Peers>

<PeerName>
MC

</PeerName>
</Peers>

</Role>
<Role>

<RoleName>
client

</RoleName>
<Peers>

<PeerName>
MC

</PeerName>
</Peers>

</Role>
</Roles>

</jxta:HistoryAdv>

10.6.3 Advertisements linking entities
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Link advertisements are of two types: those that provide constraint for state 
changes (Constraint Links), and those that are merely informative (Information 
Links).

The state of the source entity, and the target transition must be specified for 
constraint links. For information links, such information is not required or 
relevant.

Constraint link advertisements currently have the static ‘ConstraintName’ of 
‘doBefore.’ For information links, any ‘ConstraintName’ value is acceptable.
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10.6.3.1 Constraint link advertisement

<!DOCTYPE jxta:LinkAdv>
<jxta:LinkAdv xmlns:jxta=”http://jxta.org”>

<AdvID>
urn:jxta:uuid-

F1076F5D195D45F8910FA2279BCD6BBCE0868CC32E5E497B987BAA37583D46D301
</AdvID>
<ConstraintName>

doBefore
</ConstraintName>
<SourceState>

0.In_pre_negotiation
</SourceState>
<TargetTransition>

0.requirementsGathered
</TargetTransition>
<SourceID>

urn:jxta:uuid-
F1076F5D195D45F8910FA2279BCD6BBC4899961F18514A12836AA3535D892F8301

</SourceID>
<SourceName>

T1
</SourceName>
<SourceType>

DesignTask
</SourceType>
<TargetID>

urn:jxta:uuid-
3FD35406FFC44A81A406B8C1C7C79E13532964A896684079912F95A38876B84A01

</TargetID>
<TargetName>

P1
</TargetName>
<TargetType>

DesignProduct
</TargetType>
<DateCreated>

Apr 14, 2004 12:21:01 PM
</DateCreated>
<AuthorID>

urn:jxta:uuid-
59616261646162614A78746150325033D5D101E6DBB74F909F32ADE2E257D7E403

</AuthorID>
<AuthorName>

MC
</AuthorName>

</jxta:LinkAdv>

10.6.3.2 Information link advertisement

<!DOCTYPE jxta:LinkAdv>
<jxta:LinkAdv xmlns:jxta=”http://jxta.org”>

<AdvID>
urn:jxta:uuid-

F1076F5D195D45F8910FA2279BCD6BBCE7E47AD0358840F9B23C810A781454A001
</AdvID>
<ConstraintName>



188.
friendOf
</ConstraintName>
<SourceState>

not relevant
</SourceState>
<TargetTransition>

not relevant
</TargetTransition>
<SourceID>

urn:jxta:uuid-
F1076F5D195D45F8910FA2279BCD6BBC4899961F18514A12836AA3535D892F8301

</SourceID>
<SourceName>

T1
</SourceName>
<SourceType>

DesignTask
</SourceType>
<TargetID>

urn:jxta:uuid-
3FD35406FFC44A81A406B8C1C7C79E13532964A896684079912F95A38876B84A01

</TargetID>
<TargetName>

P1
</TargetName>
<TargetType>

DesignProduct
</TargetType>
<DateCreated>

Apr 14, 2004 12:11:59 PM
</DateCreated>
<AuthorID>

urn:jxta:uuid-
59616261646162614A78746150325033D5D101E6DBB74F909F32ADE2E257D7E403

</AuthorID>
<AuthorName>

MC
</AuthorName>

</jxta:LinkAdv>
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	<DesignEntityID>
	urn:jxta:uuid- F1076F5D195D45F8910FA2279BCD6BBC9C1624A4C92046EA97458A3B8198ABE501
	</DesignEntityID>
	<Name>
	Concrete slab_2
	</Name>
	<BaseName>
	Concrete slab
	</BaseName>
	<Description>
	Description of the product
	</Description>
	<Iteration>
	2
	</Iteration>
	<DateCreated>
	Apr 14, 2004 2:23:46 PM
	</DateCreated>
	<AuthorID>
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	</AuthorID>
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	</AdvID>
	<TargetTransition>
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	</TargetTransition>
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	</AdvID>
	<DesignEntityID>
	urn:jxta:uuid- F1076F5D195D45F8910FA2279BCD6BBC9C1624A4C92046EA97458A3B8198ABE501
	</DesignEntityID>
	<Name>
	P2_2
	</Name>
	<AuthorID>
	urn:jxta:uuid- 59616261646162614A78746150325033D5D101E6DBB74F909F32ADE2E257D7E403
	</AuthorID>
	<AuthorName>
	MC
	</AuthorName>
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	</AdvID>
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	urn:jxta:uuid- F1076F5D195D45F8910FA2279BCD6BBCDE0350AE538F46BD99D4928113F5D98F01
	</DesignEntityID>
	<Name>
	P2
	</Name>
	<DesignEntityType>
	</DesignEntityType>
	<AuthorID>
	urn:jxta:uuid- 59616261646162614A78746150325033D5D101E6DBB74F909F32ADE2E257D7E403
	</AuthorID>
	<AuthorName>
	MC
	</AuthorName>
	<DateCreated>
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	</DateCreated>
	<TransName>
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	</TransName>
	<State>
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	</State>
	<Roles>
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	</AdvID>
	<ConstraintName>
	doBefore
	</ConstraintName>
	<SourceState>
	0.In_pre_negotiation
	</SourceState>
	<TargetTransition>
	0.requirementsGathered
	</TargetTransition>
	<SourceID>
	urn:jxta:uuid- F1076F5D195D45F8910FA2279BCD6BBC4899961F18514A12836AA3535D892F8301
	</SourceID>
	<SourceName>
	T1
	</SourceName>
	<SourceType>
	Design Task
	</SourceType>
	<TargetID>
	urn:jxta:uuid- 3FD35406FFC44A81A406B8C1C7C79E13532964A896684079912F95A38876B84A01
	</TargetID>
	<TargetName>
	P1
	</TargetName>
	<TargetType>
	DesignProduct
	</TargetType>
	<DateCreated>
	Apr 14, 2004 12:21:01 PM
	</DateCreated>
	<AuthorID>
	urn:jxta:uuid- 59616261646162614A78746150325033D5D101E6DBB74F909F32ADE2E257D7E403
	</AuthorID>
	<AuthorName>
	MC
	</AuthorName>
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	<!DOCTYPE jxta:LinkAdv>
	<jxta:LinkAdv xmlns:jxta=”http://jxta.org”>
	<AdvID>
	urn:jxta:uuid- F1076F5D195D45F8910FA2279BCD6BBCE7E47AD0358840F9B23C810A781454A001
	</AdvID>
	<ConstraintName>
	friendOf
	</ConstraintName>
	<SourceState>
	not relevant
	</SourceState>
	<TargetTransition>
	not relevant
	</TargetTransition>
	<SourceID>
	urn:jxta:uuid- F1076F5D195D45F8910FA2279BCD6BBC4899961F18514A12836AA3535D892F8301
	</SourceID>
	<SourceName>
	T1
	</SourceName>
	<SourceType>
	Design Task
	</SourceType>
	<TargetID>
	urn:jxta:uuid- 3FD35406FFC44A81A406B8C1C7C79E13532964A896684079912F95A38876B84A01
	</TargetID>
	<TargetName>
	P1
	</TargetName>
	<TargetType>
	DesignProduct
	</TargetType>
	<DateCreated>
	Apr 14, 2004 12:11:59 PM
	</DateCreated>
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	</AuthorID>
	<AuthorName>
	MC
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