
Constructing Process Models from Distributed
Design Activity

Ph. D. Dissertation
Ph.D. Candidate: Michael Cumming
Faculty of Architecture, Delft University of Technology
Delft, The Netherlands
m.cumming@bk.tudelft.nl

Title of Ph.D. Proposal (April 14, 1999):
“Design Process Models for Architectural Practice.”

Committee Members
Professors Ömer Akin (chair), Steven Fenves, David Garlan
(Carnegie Mellon University), and
Associate Professor Rudi Stouffs (Delft University of Technology).

This copy printed: December 31, 2004

ii

iii.
List of Figures ... ix

Abstract ..1

Acknowledgments...3

Dissertation thesis ..5

Chapter 1 Research definition..7

1.1 Motivation ..7
1.1.1 Introduction ..7
1.1.2 Coordination of complex processes7
1.1.3 Provision of design support while avoiding

negative consequences ..8
1.1.4 Gathering of process histories8

1.2 Research problems..9
1.2.1 Building flexible and dynamic online teams..........9
1.2.2 Determining design entity states10
1.2.3 Separating state-defining mechanisms from

entity content ... 11
1.3 Research scope ...12

1.3.1 Concentration on entity state determination.........12
1.3.2 Avoidance of handling the semantics of

entity state..12
1.3.3 Avoidance of role semantics13

Chapter 2 Background ...15

2.1 Integrated design systems...15
2.1.1 IBDE...15
2.1.2 STEP and IFC’s..16
2.1.3 SEED project..16
2.1.4 The overall SEED approach.................................17
2.1.5 The SEED-Pro (SP) module.................................19
2.1.6 Technologies in SEED-Config.............................21
2.1.7 Process aspects of SEED......................................23

2.2 Process modeling in design ..26
2.2.1 Introduction to the concept of ‘process’...............26
2.2.2 Process representations ..27
2.2.3 Simple representations ...27
2.2.4 Network representations such as CPM.................28
2.2.5 IDEF methods ..30
2.2.6 Statecharts ..31
2.2.7 Petri nets...31
2.2.8 CPNs and hierarchical decomposition32

2.3 Collaborative design theory..33

iv
2.3.1 Introduction ..33
2.3.2 Design methodologies ..34
2.3.3 Cognitive models of design..................................36
2.3.4 Handbooks of professional practice37
2.3.5 Social processes in design38
2.3.6 Coordination theory..39
2.3.7 Design processes from a top-down perspective ...42
2.3.8 Design processes from a bottom-up perspective..43

2.4 Peer-to-peer software..45
2.4.1 Introduction ..45
2.4.2 What does P2P mean for computing?45
2.4.3 JXTA by Sun Microsystems46

2.5 Wisdom of crowds ..49
2.5.1 Relevance to collaborative design........................50

2.6 Centralized and distributed systems compared51
2.6.1 Factors that promote the centralized approach

to collaborative design ..51
2.6.2 Disadvantages of centralized systems53
2.6.3 Advantages of distributed systems.......................54
2.6.4 Disadvantages of distributed systems55
2.6.5 Conclusions regarding centralization and

decentralization ...56
2.7 Related work: design support and coordination systems....56

2.7.1 Adaptive workflow...56
2.7.2 Action workflow approach to process

coordination...57
2.7.3 Thesis by Tay-Sheng Jeng....................................59
2.7.4 Peer-to-peer projects in JXTA..............................59

Chapter 3 Application requirements ...63

3.1 Introduction ..63
3.1.1 Application content ..63
3.1.2 Application development method63

3.2 Creation of a social context ..64
3.2.1 Complex processes and distributed control..........64
3.2.2 Process management involves communication

of process content between involved parties........64
3.2.3 Collaborative design processes involve

‘stakeholders’ assuming roles...............................65
3.3 Structured representations in design...................................66

3.3.1 Product hierarchies...67
3.3.2 Process Hierarchies ..67
3.3.3 Organizational hierarchies....................................68

3.4 Changing state of design entities ..68
3.4.1 Design entities defined ...68
3.4.2 Entities must be able to change state....................69

v.
3.4.3 Explicit state change mechanisms for
design entities ..70

3.4.4 Role, input and policy attributes for
design entities ..70

3.4.5 Basing state changes on user input.......................71
3.4.6 Linking and ‘bundling’ of entities........................71
3.4.7 Socially mediated and automated state change72
3.4.8 Task dependencies..72
3.4.9 Variability of state-transition models...................72
3.4.10 State models as simple state-transition loops.......73

3.5 Structured representations of design entities73
3.5.1 Hierarchies of design representations73

3.6 Communication between users...74
3.6.1 Communication of large amounts of information 74
3.6.2 Asynchronous contributions.................................74
3.6.3 Decentralized configuration of software

and information ...74

Chapter 4 Actors, use cases, and required objects77

4.1 Introduction ..77
4.2 System actors..77

4.2.1 Peer...77
4.3 Use cases...78

4.3.1 Create design entity..78
4.3.2 Create a structured container for

process-related information79
4.3.3 Assume role in a design entity81
4.3.4 Make input for design entity state change............82
4.3.5 Link design entity to another design entity83
4.3.6 Create a state-transition model.............................84

4.4 Required objects as described in use cases.........................85
4.4.1 Domain objects...85
4.4.2 Interface Objects ..87
4.4.3 Control Objects ..87

Chapter 5 Application design and implementation89

5.1 What was implemented ..89
5.1.1 Role of JXTA ...89
5.1.2 Design Process Modeler (DPM) application........89
5.1.3 Peergroups..90
5.1.4 Peergroup hierarchies...91
5.1.5 State change mechanisms.....................................92
5.1.6 Process of defining input constraints94
5.1.7 Information links ..96
5.1.8 Managing data with ‘Content Storage’97

5.2 Implementation decisions and alternatives.........................97

vi
5.2.1 Peergroups..98
5.2.2 Stakeholder involvement: peers, roles,

and policies..98
5.2.3 State change..99
5.2.4 DPM’s single path approach100
5.2.5 Choice points..100
5.2.6 Security and privileges102

Chapter 6 Constructing process models by linking entities 105

6.1 Introduction ..105
6.1.1 Information needs in Design105

6.2 Hierarchical peergroups..106
6.2.1 Design projects as information containers106
6.2.2 Uses for hierarchical peergroups........................106

6.3 Design entity management ...107
6.3.1 User defined types..107
6.3.2 Deletion and abandonment of entities................107
6.3.3 Iteration of entities ...109
6.3.4 Reuse of entities (using prototypes)109

6.4 Entity state ..112
6.4.1 Determining state ...112
6.4.2 Link and input state changes112
6.4.3 Parallel vs. sequential processes in DPM...........113
6.4.4 Inputs seen as a type of voting system113

6.5 Constructing process models ..114
6.5.1 Prototypes and organizational memory:

policies and links... 114
6.5.2 Organizational memory vs. bootstrapping

from nothing .. 115
6.5.3 Building structures using constraint links115
6.5.4 Sub-entity / sequential links:

branch out/in structures....................................... 115
6.5.5 Planning vs. execution..117
6.5.6 Chat messages ..117
6.5.7 Convergence in groups.......................................118

Chapter 7 Application testing and validation 119

7.1 Introduction to testing...119
7.2 Introduction to TOI...119
7.3 TOI and student processes ..120

7.3.1 Overall nature of these processes120
7.3.2 Aspects modeled for TOI by DPM121
7.3.3 TOI state-transition loop models........................122

7.4 Test specifics...125
7.4.1 Pre-test tasks...125

vii.
7.4.2 Test 1: Basic functionality of DPM....................126
7.4.3 Test 2: Error production tasks130
7.4.4 Test 3: Integration test..131

7.5 Testing results ...135
7.5.1 Things that worked well during testing..............135
7.5.2 Things worked less well during testing..............135
7.5.3 Safety in testing vs. usability of

distributed systems ..137
7.5.4 Bootstrapping of peergroups137
7.5.5 Transmission of data between peers...................137
7.5.6 Peergroup size and information specificity........138
7.5.7 Revisions to software after testing139

Chapter 8 Conclusion ...143

8.1 Discussion of results ...143
8.1.1 Role of P2P...143
8.1.2 Aspects impaired by P2P....................................143
8.1.3 Aspects helped by a P2P implementation144
8.1.4 Solution to the reliability problem?....................144
8.1.5 Interactive nature of DPM’s process..................145
8.1.6 Leveraging external technologies.......................146

8.2 Contributions ..147
8.2.1 Implementation of a working prototype

for design coordination147
8.2.2 Provision of a process coordination framework.147
8.2.3 Interactive collaborative modeling tool..............147
8.2.4 Environment to represent and establish

organizational norms...147
8.2.5 Building of user-configured online teams..........147

8.3 Future research agenda ...148
8.3.1 Increase the reliability of information transfer...148
8.3.2 Build more sophisticated prototype

mechanisms ...148
8.3.3 Explore information persistence.........................148
8.3.4 Simplify the process of modeling

process loops ...148

Chapter 9 References ...149

Chapter 10 Appendices ..157

10.1 Appendix A: Instructions for installing
Design Process Modeler (DPM)..157
10.1.1 Introduction ..157
10.1.2 Obtaining the software157
10.1.3 Prerequisites for running the DPM application..157
10.1.4 Configuration of JXTA158

viii
10.1.5 Reconfiguration..161
10.2 Appendix B: Package and class descriptions163

10.2.1 dpm.container.tree..163
10.2.2 dpm.content ..163
10.2.3 dpm.content.advertisement.................................164
10.2.4 dpm.content.constraint165
10.2.5 dpm.content.state..166
10.2.6 dpm.dpmApp.desktop ..166
10.2.7 dpm.dpmApp.desktop.forms167
10.2.8 dpm.peer...168

10.3 Appendix C: User interface forms....................................170
10.3.1 New User Named Entity Form...........................170
10.3.2 New Peergroup Form ...171
10.3.3 New sub-entity relation Form.171
10.3.4 New sequential relation Form.172
10.3.5 New Constraint Link Form172
10.3.6 New Information Link Form..............................173
10.3.7 Show Links Form...173
10.3.8 History Viewer Form ...174
10.3.9 New Policy Form ...174
10.3.10 New Role Form ..175
10.3.11 New Input Form ...175

10.4 Appendix D: Information panels177
10.4.1 DPM Information Panel177
10.4.2 Petri net Loop Information Panel177

10.5 Appendix E: Non-TOI sample state-transition loops179
10.6 Appendix F: Sample advertisements180

10.6.1 Design entity advertisements180
10.6.2 Advertisements linked to particular

design entities ..181
10.6.3 Advertisements linking entities..........................185

ix.
List of Figures

Fig. 1 Top-down and bottom-up design team-forming
processes. ... 10

Fig. 2 Separation of state determination mechanisms
from content. .. 13

Fig. 3 In integrated generative systems, iterative processes
involving Specification, Generation, and Evaluation
phases are supported (Flemming et al., 2000, p.7). 17

Fig. 4 Overall SEED architecture
(Flemming et al., 2000, p.13). ... 19

Fig. 5 Architectural programming process as supported by
SEED-Pro (right), compared to a traditional process (left)
(Akin et al., 1995, p.154). ... 21

Fig. 6 Relationship between a building entity and associations
with nodes of a technology hierarchy. The technology tree
represents available construction technologies; building
entities are associated with appropriate ‘and’ or ‘or’ paths
through this technology tree. Similar to: (Fenves &
Rivard, 2004, Fig. 4, p.10). ... 22

Fig. 7 Simple node and arrow process diagram for a lump sum
architectural design contract (Canadian Architectural
Councils, 1995, vol.2, p.4). ... 28

Fig. 8 Activity-on-arrow process diagram. 29
Fig. 9 Activity-on-node process diagram. 29
Fig. 10 IDEF3 process representation (KBSI, 1998). 31
Fig. 11 Simple statechart. .. 31
Fig. 12 Simple place/transition Petri net before and after firing of

a transition, showing input and output places (Reisig,
1998, p.17). .. 32

Fig. 13 Hierarchical Petri net using transition substitution. 33
Fig. 14 Spiral model of design as applied to software development

(Boehm & Hansen, 2001, p.6). 35
Fig. 15 Action and reflection cycles in design (Smith, 2004). ... 35
Fig. 16 Components of a cognitive information processing system

(Akin, 1986, p.13). .. 37
Fig. 17 Process model based on a professional contractual

arrangement (Canadian Architectural Councils, 1995,
vol.2, p.7). .. 38

Fig. 18 Peergroups as logical partitions of the top-level ‘world’
peergroup. .. 47

x

Fig. 19 Commitment-based process loops found in ActionWorks
(Action Technologies, 1998). .. 58

Fig. 20 UML diagram of peers and their roles. 66
Fig. 21 A product hierarchy, under the relation ‘componentOf.’ 67
Fig. 22 A process hierarchy, under the relation ‘doBefore.’ 68
Fig. 23 An organizational hierarchy under the relation

‘reportsTo.’ .. 68
Fig. 24 Interdependency of tasks and products in

design descriptions. ... 69
Fig. 25 State change based on Petri net-based constraints in which

incoming arrows represent constraints. 70
Fig. 26 Interaction diagram: Create design entity. 78
Fig. 27 Interaction diagram: Create a structured container for

process-related information. ... 80
Fig. 28 Interaction diagram: Assume role in a design entity. 81
Fig. 29 Interaction diagram: Make input for design entity

state change. ... 82
Fig. 30 Interaction diagram: Link design entity to another

design entity. .. 83
Fig. 31 Interaction diagram: Create a state-transition model. 84
Fig. 32 Link constraints. .. 93
Fig. 33 Input constraints that specify which roles must

contribute to specific transitions of an entity’s state-
transition loop. ... 93

Fig. 34 Top-level state change method from DPM’s Java code. 94
Fig. 35 Link constraint. .. 96
Fig. 36 Choice point constructed using a mutual exclusion

structure. .. 101
Fig. 37 State determination method. ..112
Fig. 38 Policies and linked entities from a prototype used to

recreate new entity structures.114
Fig. 39 Complex constraint-linked entity network.115
Fig. 40 Sub-entity relation in DPM. The black dots signify the

current states of the entities. ...116
Fig. 41 Alternative diagram showing sub-entity relation.116
Fig. 42 Sequential relation between entities in DPM116
Fig. 43 Alternative diagram showing sequential relation.117
Fig. 44 Branch-out and Branch-in precedence structures based on

sequential relations. ..117
Fig. 45 TOI course process. ... 121
Fig. 46 Assignment process. .. 122
Fig. 47 Examination process. .. 122
Fig. 48 TOI_Course state-transition loop. 123
Fig. 49 TOI_Assignment state-transition loop. 123
Fig. 50 TOI_Examination state-transition loop. 124
Fig. 51 One possible peergroup organization for the

integration test. .. 132
Fig. 52 Revised peergroup node refresh code. 140

xi.
Fig. 53 Basic JXTA configuration panel. 158
Fig. 54 Advanced JXTA configuration panel. 159
Fig. 55 Rendezvous/relay JXTA configuration panel. 160
Fig. 56 Security JXTA configuration panel. 161
Fig. 57 Typical local user cache in JXTA. 162
Fig. 58 UML diagram of package: dpm.container.tree 163
Fig. 59 UML diagram of package: dpm.content 164
Fig. 60 UML diagram of package: dpm.content.advertisement 165
Fig. 61 UML diagram of package: dpm.content.constraint 166
Fig. 62 UML diagram of package: dpm.content.state 166
Fig. 63 UML diagram (abridged) of package:

dpm.dpmApp.desktop ... 167
Fig. 64 UML diagram of package:

dpm.dpmApp.desktop.forms ... 168
Fig. 65 UML diagram of package: dpm.peer 169
Fig. 66 Top Frame Form. ... 170
Fig. 67 New Design Entity Form. ... 171
Fig. 68 New Peergroup Form. ... 171
Fig. 69 New sub-entity relation form. 172
Fig. 70 New sequential relation Form. 172
Fig. 71 New Constraint Link Form. .. 173
Fig. 72 New Information Link Form. .. 173
Fig. 73 Show Links Form. ... 174
Fig. 74 History Viewer Form. .. 174
Fig. 75 New Policy Form. .. 175
Fig. 76 New Role Form. .. 175
Fig. 77 New Input Form. ... 176
Fig. 78 DPM Information Panel. ... 177
Fig. 79 Petri net Loop Information Panel. 178
Fig. 80 Design Task state-transition loop. 179
Fig. 81 Design Product state-transition loop. 179

xii

1.
Abstract

Collaborative design is a complex cognitive and social activity that requires
coordination of both processes and products between its participants. Information
required for this coordinative activity are descriptions of the various tasks and
products found within a design project, and of the current state of these entities.
State descriptions can arise from technical analysis, perhaps employing
automated, machine-based methods, or can arise from a social process of
consensual, collaborative assessment that results in design team members
applying informal linguistic descriptions to processes. In the event that no
automated process exists for state determination, then members of the design team
must work together and find a mutually agreeable assessment of state. With this
information designers are better able to determine the progress and status of a
design process, and to assess their roles and responsibilities within a design team.

This research describes the design and implementation of a design support tool
that enables distributed teams to collaboratively determine the state of design
entities, such as tasks and products. The tool is role-based, and enables users to
communicate simple looped state-transition models that they feel suitably describe
the possible states and transitions that a design entity could experience. These state
models can describe the degree of completion, degree of acceptance within a team,
or progress with respect to a series of milestones. By attaching entities to simple
state-transition loops, users make input based on simple questions about the state
of individual entities, rather than complex ones arising from the interaction of
entities. Complex branching process structures can be created by composing
entities. The tool automatically handles state assessment of complex, linked
compositions of entities, while users handle assessment of simple, non-linked
entities. It provides users with information regarding design state and structure,
and supports a form of bottom-up design coordination that requires no centralized
policies or inputs, prior to deployment.

2.

3.
Acknowledgments

This research would not have been completed without the loving support of my
wife Cornelia Peckart.

I thank my advisor, Professor Ömer Akin for working with me over many years,
and providing helpful and intelligent direction at every turn.

I also wish to thank the other members of my thesis committee: Professors
Steven Fenves, David Garlan, and Rudi Stouffs. The quality of their contributions
and influence cannot be overemphasized.

Special thanks to Professor Ulrich Flemming for providing leadership within the
intellectually formative SEED project, for defining the relationship between
architectural design and software engineering, and for exploration of the technical
issues and design strategies out of which complex software is born.

Also very important to my intellectual development were fellow student
members of the SEED team at Carnegie Mellon University. These friends include:
Rana Sen, Magd Donia, Ye Zhang, Halil Erhan, Jonah Tsai, Sheng-fen Chien,
James Snyder, Hoda Moustapha, Zeyno Aygen, Han Kiliççöte, Ipek Özkaya, and
Hugues Rivard. A more interesting or more intelligent group of graduate students
would be hard to find. They made the years spent in Pittsburgh golden ones that
allowed many doors to be opened and exciting concepts to be explored.

Special thanks to Robert Ries and Patty Murphy for opening up your homes and
hearts to our friends and family.

Thanks to Professor Sevil Sariyildiz, Chair of Technical Design and
Informatics, Faculty of Architecture at TU Delft for her support and
encouragement. Also to Bige Tunçer and Özer Ciftcioglu for many enlightening
discussions over the nature of information and design, and to Ernst Janssen
Groesbeek and Jan Poot for organizing test sessions within TOI, on short notice.

Thanks to Professors Ramesh Krishnamurti, Robert Woodbury, and Luis Rico-
Gutierrez for being sympathetic at crucial times, and to Darlene Covington-Davis,
Liz Fox, and Judy Kampert, of the School of Architecture for being supportive in
a particularly open and kind way.

Thanks to Eric Griffiths and Van Woods of USACERL for providing useful
input during the evolution of this research, and within the SEED-Pro project.

This research was sponsored in part by the US Army Corps of Engineers
Construction Engineering Research Laboratory (USACERL). The National
Science Foundation through the former Engineering Design Research Center
(EDRC), and the Institute for Complex Engineered Systems (ICES) at Carnegie
Mellon University provided additional funds.

4.
The Dutch Organization for Scientific Research (Nederlandse Organisatie voor
Wetenschappelijk Onderzoek: NWO) provided funding under the project
‘Dynamic Digital Design Representations’ coordinated by Rudi Stouffs.

The views and conclusions contained herein are those of the author and should
not be interpreted as representing official policies or endorsements, either
expressed or implied, of the funding agencies.

5.
Dissertation thesis

Collaborative design practice takes place within dynamic social and technical
environments, involving complex interactions between wide varieties of
interested parties. In order to manage collaborative design, and in order for
designers to work successfully within it, it is necessary to have information on the
content and structure of design entities such as tasks and products, as well as their
current state.

It is often difficult to determine this state, since most design entities do not have
self-describing states, have no automated means of determining their state, or may
have high degrees of ambiguity, even to well-informed design team participants.
Without automated means of determining entity state, design team members must
collaborate on deciding what the state should be. This should be role-based such
that a person’s input is based on a specific role that has been assumed within the
social context of the design team. This information is required for design
coordination, both from a top-down and bottom-up perspective. Supporting design
requires providing resources for coordinating design projects as a whole, as well
as coordinating individual relationships between members of a design team.

At the beginning of design projects it may not be clear what the content,
structure, or state of tasks and products should be. One aspect of collaborative
design processes is how design task and product information structures are
constructed incrementally, using the social and cognitive resources of the design
team.

Collaborative design processes have both static and dynamic aspects. Processes
can change substantially due to evolving design requirements, team participants,
and other contextual factors. Processes can also remain static and can become
design practice norms. In creative design practice it is often unclear whether to
employ proven processes from the past, or to explore new ways of doing things.

Processes such as those required to determine state and to assign roles are often
expensive, since they are generally not computer supported, and often depend on
face-to-face contact to arrive at common ground within the team. An important
aspect of face-to-face contact between design team members—despite possible
expense—is that team members are better able to construct common
understandings of design problems that can be essential in avoiding
misunderstandings and errors. Face-to-face contact between design team members
is important, or is unlikely to be replaced by peer-to-peer on-line interactions.
However, enabling designers to collaborate on determination of design entity state
in a geographically distributed, and asynchronous fashion, can provide useful
design support, whatever the geographical distribution of a design team.

6.

7.
1 Research definition

1.1 Motivation

1.1.1 Introduction

My motivation for this research comes primarily from my own experience of
architectural design practice in Canada, the UK and Germany. During this time
(1981-1994) it occurred to me that certain types of design support tools were not
available to architects. The problems which these imagined tools would address,
seemed to revolve around issues of design process:

1. How to represent design processes such that a designer could understand their
overall structure, could plan them adequately, could predict which resources
they would likely require, and could view how far along in a design process a
particular design had progressed.

2. How to enable the lessons learned from past design processes to inform cur-
rent design processes.

As I later learned, these are issues are of concern in many other domains, such
as computer-supported collaborative work, software engineering, and of business
management.

1.1.2 Coordination of complex processes

Complex design processes need to be coordinated. One of the motivations of this
research is to try to generalize collaborative approaches such that they can be used
to coordinate complex activity in a variety of domains.

Often design processes if viewed in isolation may not seem that complicated.
What can make them overwhelmingly complex are their linked dependencies to
other products and processes. One approach to design support and design
coordination is for software to deal with the semantic content of design processes,
and to try to steer them in preferred directions. Another approach is to coordinate
whatever processes designers might want to pursue, and attempt to support them
in ways not dependent on their meaning.

The first approach could be called a ‘semantic’ or ‘knowledge-based’ approach,
while the second could be called a ‘syntactic’ or ‘interaction-based’ approach. The
syntactic approach is based on the nature of collaborative mechanisms rather than
the meaning of that which is being coordinated. A syntactic approach to design
process coordination is explored in this research. This is also one the principal
motivations of the field called coordination science in which general patterns for
coordinating various types of work are explored.

8.
1.1.3 Provision of design support while avoiding negative consequences

To manage a process is to provide, however implicitly, a theory about what is
involved in design. There is not, however, wide consensus shared within academia
and practice, of a theory about what is involved in collaborative design. Such a
theory is still in development. Development of various types of design support
software is seen as an attempt for working towards such a theory and to arrive at a
profession-wide consensus, rather than a software implementation of established
theory.

Collaborative design is a difficult process to support, both because of its
complexity, but because many designers, who are the consumers of design
support, see their design processes as something not amenable to management or
outside support. Designers’ objections to design management also concern issues
of freedom, accountability, and effectiveness:
• whether management introduces prescriptions into a design process for which

designers have not consented,
• whether it reduces the flexibility of design approach and actually make design

teams less capable of handling complexity, and
• whether design management has a negative effect on design quality, or

encourages design processes to develop in less interesting ways.

These are legitimate concerns. However, collaborative design is a large industry
in all developed nations and has a significant role to play in productive economies.
Support must be forthcoming for these processes, because they are so
economically significant.

Collaborative design is not the only industry that has similar issues. It is not
difficult to come up with examples of industries, which like collaborative design,
seem to demand both high levels of creativity, combined with high degrees of
organization and control. Examples of such industries are computer software
development, media production, and product design. These industries demand
intelligent and creative responses to enormously difficult problems, while also
demanding that processes are organized in a such that their complexity does not
overwhelm those participating in these processes. Since the design and
construction industries are enormously important in most countries, managing
their processes in a way that doesn’t decrease the quality or agility of these process
is important. Computer-based tools and methods appear to be a promising way of
doing this.

1.1.4 Gathering of process histories

Designers in practice acquire experience while they practice design. Their
personal histories are important resources for them, as they maneuver through
their design careers. These histories are often not recorded in archival type
documents that future historians might be in a position to study.

Organizations find that their organizational histories are a valuable resource that
can help explain how processes and products evolved to their current
configuration, and how similar problems were addressed and solved in the past.

9.
Designers and the organizations that employ them, generally do not document
this experience in any kind of systematized, or computer-readable format.
Experience is recorded cognitively and conceptually in designers’ brains. This
knowledge can quickly vanish when the designer dies or stops practicing. One
advantage of process support tools is that they are in a position of gathering
coherent historical data in a machine-readable format. If such data is gathered, it
could become a useful resource for documenting and analyzing design practice,
and for informing the design of future design support tools.

1.2 Research problems

1.2.1 Building flexible and dynamic online teams

Design teams, either virtual or real, are seen as the most important context in
which collaborative design takes place. Without design teams, it is inconceivable
that collaborative design could take place. Therefore, support for designers is seen
as closely aligned with the issue of support for design teams.

To support design teams, it is necessary to be able to form teams in a flexible
manner, and to enable designers to join these teams easily. This need not be purely
a top-down process. It is possible that design teams can be built incrementally as
designers individually decide, and are allowed, to join them. All invitations to join
a design team—that might come from a client or the partner in a design firm—are
balanced by an acceptance or rejection of the invitation by the invited designer.
How design teams are formed tends to be a highly interactive process that requires
negotiation.

In addition to enable designers to construct teams, it is also necessary for team
members to be able to communicate information required within the domain of
design process coordination. This communication process should be an easy one,
that doesn’t place undue cognitive or social burdens on designers.

It makes sense to enable computer-supported teams to interact online, since the
Internet is the dominant communication medium of our age. The types of
information that can be gleaned from it, and the types of inter-personal interactions
it enables and encourages, grows almost daily.

10.
Figure 1 Top-down and bottom-up design team-forming processes.

1.2.1.1 Problems identified

1. How can designers construct design teams in a flexible manner, while still
supporting normal practices of team formation, membership, and organiza-
tion?

2. How can designers easily communicate information, useful for design process
coordination?

1.2.2 Determining design entity states

Design entity state—that is, the states of design tasks and products, can have both
machine mediated and socially mediated aspects. Sometimes it is most effective to
refer to a machine to see what the state of an entity is. If that operational approach
is not available, then it may become necessary to confer with one’s design
collaborators, to see what they think the state of a design entity is. Therefore, state
may be determined by automated machines with little human input, or may require
a process of social negotiation and construction to determine state.

For example, to determine whether one’s computer is in an acceptable state, all
one needs to do is to refer to management tools built into the operating system.
When something does go wrong, and the machine enters an abnormal state, the
machine tends to inform the user of this fact. The machine itself attempts to be self-

CAD manager

Chief Designer

Database manager

Chief detailer Plans manager

Services detailer Cladding detailer Plans assistant 1 Plans assistant 2

Database
programmer

Detailing Group

Plans Group

Database Group

11.
regulating. However, to determine the state of one’s family, it is usually necessary
to confer with the family members themselves. The family is a collective entity
like a design team, but it is not self-regulating in the same sense as a computer is.
Its ‘management’ requires active communication between its members.

As in many aspects of collaborative design, there are few tools to quantitatively
assess the ‘state’ of such socially interactive systems as families and design teams.
In such systems, the perceptions and interactive behaviors of individuals affect
how they work as social units capable of problem solving.

One way of automating collaborative design, or at least to encourage it to avoid
abnormal states, is to fully plan it in advance. In this way the plan becomes a kind
of deterministic machine that has explicit and well-defined representations of
states and state transitions. However, it is difficult to fully pre-plan a design
process, if the intention is to maintain it as a creative design process, and to enable
various collaborators to make meaningful, contextually appropriate input into it.

In the absence of quantifiable, or operational methods of assessing state, social
negotiation becomes necessary for deciding the state their projects are in. This
consensual social process is needed both for knowledge acquisition: ‘what is the
informed opinion’, as well as for risk management: ‘how can the risk of making
this decision be shared amongst other willing participants.’

1.2.2.1 Problems identified

1. How can design entities be arranged to have both machine-mediated and so-
cially mediated states?

2. How can designers work together to determine the state of design entities?
3. How can an application provide state changing mechanisms?

1.2.3 Separating state-defining mechanisms from entity content

This research aims to enable the coordination of a variety of process content. This
coordination process is based on the idea that designers need to know what the
state of design entities is, and that designers themselves play a role in determining
this state.

In order to offer some kind of open, generalizable process, designers should be
able to add their own design entities—ones appropriate for the design processes
they experience. The application must provide state-changing mechanisms that
can be applied to the variety of design content found in design practice. In this way
the state-changing mechanisms can be generalized, while designers are free to add
their own particular, context-dependent content.

There are three components to design entity content:

1. Names, and other attributes of the design entity.
2. The structured relationships to other design entities, such as hierarchical rela-

tion, and other types of links.

12.
3. The state/transition model: the possible states and transitions that the design
entity can enter into.

All of the above items should be modifiable by users of the application. The first
two items are dependent on user input. The third point is a bit more challenging,
and is less obvious how users might be able to contribute state/transition models.
It is also not clear how the application can define either machine-based or socially-
based state change mechanisms.

1.2.3.1 Problems identified

1. How do users add content to design entities? Of particular importance—how
can they specify the states and transitions that entities can enter into?

1.3 Research scope

1.3.1 Concentration on entity state determination

This research concentrates on user-provided descriptions of state-changeable
design entities, and the establishment of on-line communities that enable users to
manage these entities collaboratively. This is seen as an important, even essential
aspect of process management. However, there are other aspects of process
management which could have been addressed, but have not been, such as:

1. Facilities for making detailed plans, and providing an ability to ‘re-plan.’ One
problematic aspect of planning, is the cost of re-planning, which concerns the
question about what to do when circumstances—assumed in the plan—
change. Aspects of creative, dynamic design processes tend to make them less
amenable to detailed planning. However, it is possible that using similar types
of ideas in this dissertation, a plan-based approach could be completed.

2. Facilities for deriving plans from smaller process-related components.

1.3.2 Avoidance of handling the semantics of entity state

Users can add any kind of process content they want including state-transition
‘loops.’

One of the early criticisms of AI research software is the use of state descriptions
that imply that a knowledge-based application acquires an understanding of states,
based on the meaning of their state names. William Clancey describes this kind of
state labeling in the context of the influential medical diagnosis expert system
MYCIN. Clancey promotes the intellectual separation of what the application
might ‘know’, and the descriptive, if not rhetorical labels applied by intelligent
software designers (Clancey, 1997).

The application described in this research has been designed in this spirit. It
works the same regardless of the content of any available state-transition loops.
Since users can add any kind of loop, the application does not make any inferences
about this user-added process content.

13.
1.3.3 Avoidance of role semantics

In this research users base their input according to the roles they assume. It is the
responsibility of users to come with role descriptions, and to base their
involvement on the roles they have assumed. However, no attempt is made to
match roles with any kind of semantics that might have an effect of the type of
actions that a user could be capable of performing within the application. For
example, if a user were to add the role of ‘client’ the application does not assume
that this role description gives the user any privileges that might normally be
afforded to client in design practice, such as hiring or firing of employees or
dispersal of funds.

Therefore, there is only class of user—the peer—and this user has the
responsibility of defining her role, both in the types of interactions that she
becomes involved in within the application, and also in interactions outside of the
application.

Figure 2 Separation of state determination mechanisms from content.

State-changing
mechanism

Peergroup 1
Peergroup 1.1

Peergroup 1.1.1

Peergroup 1.1.2

Peergroup 1.1.3

Peergroup 1.1.3.1 Peergroup 1.1.3.1

Design entities as
members of
Peergroup sub-sets

Boundary between
entity structure and

state-changing
mechanism

All entities are
linked to the
state-changing
mechanism

14.

15.
2 Background

2.1 Integrated design systems
Integrated design system attempt to structure and coordinate complex design
projects and processes in a rational, well-ordered manner. There have been many
such systems within the domains of architecture and building-related structural
design. Stouffs and Krishnamurti (2001) point out that these often adopt an a-
priori approach in which systems attempt to establish an agreement on concepts
and their relationships, in order to offer a complete and uniform description of
project data. Integration efforts are often inspired by the promise of computer-
based systems for rationalizing design processes and organizing complex data.

2.1.1 IBDE

The IBDE project began in the late eighties at the Engineering Design Research
Center (EDRC) at Carnegie Mellon University (Fenves et al., 1994). IBDE was
not seen as a prototype for a commercial design system, but more as an
experimental test-bed for the exploration of issues such as integration and
communication between design agents. IBDE combines the work of various
computer-based design agents that mirrors the inter-disciplinary nature of building
design. These agents are divided into two classes: generators—those that
contribute towards developing and refining design descriptions, and critics—
agents that evaluate design descriptions as they emerge, and make redesign
recommendations. The generator support tasks such as development of building
design concepts (in the ARCHIPLAN module), to construction planning (in the
PLANEX module). Critics include ones for providing constructability and
structural evaluation.

IBDE research is critical of an approach to integrated design systems it calls
‘tool-centered.’ Tool-centered systems tightly couple available design tools and a
design environment meant to integrate these tools. This is seen as restricting the
evolution of tools, given that any tool is unlikely to fully address the range of
problems found in practice, nor be standardized throughout an industry. Instead, a
more flexible, more generalizable, and less prescriptive ‘problem-centered’
approach is taken in IBDE, in which tools can be integrated into a general
framework as new tools develop. A problem-centered approach requires that tool-
independent representations of information and process be developed.

IBDE concluded that tighter integration of design processes should not
necessarily result in more consolidated and integrated organizations addressing
design projects, but that there should be a common, formalized language
developed for use between design team participants. Such a language could be
used to standardize the communication of designer intent, of downstream
consequences of design decisions, and of descriptions of the multiple functions in
which design products usually participate (Fenves et al., 1994, p.227).

16.
2.1.2 STEP and IFC’s

STEP, the Standard for the Exchange of Product Model Data, is a comprehensive
ISO standard (ISO 10303) that describes how to represent and exchange digital
product information (Step Tools, 2004). STEP was conceived to reduce design and
manufacturing errors due to data incompatibility between the various agents
involved in product design. STEP presents a unifying effort started under the
International Standards Organization (ISO) to produce an international standard
for all aspects of technical product data. Nearly every major CAD/CAM system
now contains a module to read and write data defined by one of the STEP
Application Protocols (AP's).

The Industry Alliance for Interoperability (IAI) is a global, industry-based
consortium for the construction and building management industries and aims to
define object-oriented information models for data exchange. Its mission is to
enable interoperability among processes of different professional domains, and to
enable computer applications to share and exchange project information. The IAI's
goals are to define, publish and promote a specification—called the Industry
Foundation Classes (IFCs)—for sharing data throughout the project life cycle,
globally, across disciplines and technical applications. The IFCs are used to
assemble a project model in a neutral computer language that describes building
project objects and represents common information requirements (IAI, 2004).

As Stouffs and Krishnamurti (2001) assert, the STEP/IFC effort is a prime
example of a top-down, a-priori approach (2001, p.78). Such efforts depend on
diverse parties coming together and agreeing on the semantics of a wide variety of
product concepts and configurations. This consensus-based approach appears to
take much effort. Yet, it is debatable whether such semantic-based agreement will
be able to handle new product or computer technologies as they emerge, or
whether this standardization effort will ultimately result in greater industrial
productivity, quality, or agility.

2.1.3 SEED project
‘The software Environment to Support the Early Phases in Building De-
sign (SEED) aims at providing computational support for the early phas-
es of in building design in all aspects that can benefit from such support.
It especially intends to encourage an exploratory mode of design by mak-
ing it easy for designers to generate and evaluate alternative design con-
cepts and versions.’ (Flemming et al., 2000, p.1)

SEED is a computer-aided generative architectural design system, developed at
Carnegie Mellon University, and at other institutions (Flemming & Woodbury,
1995) (Snyder, 1998) (Fenves, Rivard, Gomez, & Chiou, 1995). It features an
open-ended modular architecture, where each module provides support for design
activities taking place in early design phases. Each module consists of five main
components: input, specification, generation, evaluation, and output. These are
supported by a database to store and retrieve information, as well as a user
interface to support the interaction with designers.

17.
Figure 3 In integrated generative systems, iterative processes involving Specification,
Generation, and Evaluation phases are supported (Flemming et al., 2000, p.7).

The SEED project is relevant in this context because of its prominence and
research achievement in studies of knowledge-based design support, its tangible
software products and usefulness as a model for software development of complex
design support systems, its coherent approach towards design process support in
several architecturally-related design domains, and its hybrid combination of
automated, machine-based processes, and interactions with designers and their
cognitive processes.

The SEED system has the following basic domain objects:

1. Design unit (DU): A DU is a spatial or physical part of a building with an
identifiable spatial boundary (e.g. a living room). A DU can contain other
DUs such as other rooms or furniture.

2. Functional unit (FU): A FU represents a combination of functions to be satis-
fied by a single DU and also serves as the repository of requirements to be sat-
isfied by that DU. These requirements often take the form of constraints re-
garding the shape, size, etc. of the DU. A FU can contain other FUs.

3. Specification unit (SU): An SU collects the design intentions and criteria to
be satisfied by one or more FUs. An SU can contain other SUs.

4. Technology: A technology is the final stage of design representation in
SEED-Config and represent how a design alternative can be constructed, us-
ing available building technologies, or form generation principles.

2.1.4 The overall SEED approach

The SEED project is well known within the design research community for several
innovative aspects:

SEED emphasizes the importance on the support of early phases of design. This
phase is seen as the one during which the conceptual development of a design is
most pronounced, and the one from which designers should derive the greatest
downstream benefits from a systematic computer-aided approach. SEED takes an
approach to design, based on constraint-based design grammars, and generative
design processes. SEED was designed with the goal of unifying collaborative
design processes using integrated, inter-operable tools, yet enabling various
modules, each informed by a slightly different domain, to be designed relatively
independently. This allowed SEED to develop in a modular fashion, and allowed
SEED module designers the freedom to address design support issues flexibly and
pragmatically; SEED modules share semantic constructs, enabling simplified data

Specification EvaluationGenerationInput Output

18.
exchange between modules. In order to arrive at this common logic, the overall
design process was divided into distinct tasks or phases. A common architecture
and interface was based on a uniform problem solving view (Flemming &
Woodbury, 1995). They also enable and encourage design exploration through
design alternative management, and design iteration. This iteration can occur both
within a module, and between modules. SEED modules also share an ability to
store and retrieve past solutions and problem sets, in the manner of case-based
reasoning systems.

The combination of the above factors meant that the SEED system benefited
from an interdisciplinary view of design, and from an interdisciplinary view of the
types of academic approaches that must be brought together to advance the state
of the art in CAD research.

2.1.4.1 Existing SEED modules

SEED is divided into domain-specific modules. Modules are expected to work
both as stand-alone applications and as components in the larger system. SEED
modules, once connected by a communication channel via a shared database,
could be used together within an integrated design support system.

SEED being a collaborative system, assumes that different modules address
different tasks. The expertise contained within SEED-Config (SC), SEED-Layout
(SL), and SEED-Pro (SP) is quite distinct and maps to different pre-computational
knowledge domains such as structural, construction, architectural, and
requirements design.

SEED-Pro (SP): Design requirements and user specification design. Supports a
task normally done by architectural designers, or by professional design
requirements programmers, who, within the construction industry produce a
document of design requirements called the ‘architectural program.’ This module
has been developed within the School of Architecture, at Carnegie Mellon
University (CMU) (Akin, Sen, Donia, & Zhang, 1995).

SEED-Layout (SL): Conceptual 2D or 2 1/2 D layout design. Supports a task
normally done by architectural designers. This module was developed within the
School of Architecture at CMU (Flemming & Chien, 1995).

SEED-Config (SC): Conceptual structural, and construction detailing design.
Supports a task normally done by structural engineers and architectural detailers.
This module is being developed within the Department of Civil and Environmental
Engineering at CMU, and at the University of Adelaide, in Australia (Fenves et al.,
1995).

19.
Figure 4 Overall SEED architecture (Flemming et al., 2000, p.13).

2.1.5 The SEED-Pro (SP) module

To support design generation, a well-defined set of explicit requirements is
needed. This is handled by the SP module (SP). It was designed with the intention
to support the modeling and generation of design requirements in a form usable by
other modules of SEED.

2.1.5.1 SP’s objectives

SP has the following objectives (Akin et al., 1995):
• Provide means of storing and handling all aspects of the requirements

specification information including site characteristics, codes, client
preferences, and different performance criteria and requirements.

• Enable the integration of building requirements specification and architectural
design as a seamless process.

• Achieve a flexible way of interaction that does not tie the user to a specific
requirements specification model.

• Enable the use of past architectural programs and requirements specifications in
future projects.

Through the sharing of domain object classes, SP aims to provide a seamless
interaction with all of the other modules of SEED and share data across these
modules. SP positions itself as a good candidate for maintaining a robust record of
design requirements, criteria, and constraints to be used persistently during design.

SP provides several core functionalities in order to support facility requirements
specifications. It shares data as well as methods of data manipulation with other
modules of SEED. By providing the outputs that the other SEED modules require

User interface User interface User interface

Ethernet

Designer

Database Standards Support
Environment Future services...

Common Services

SEED-Program SEED-ConfigSEED-Layout

20.
as input and through the shared domain object classes and libraries in SEED, SP
complements the basic steps of early design: architectural problem specification,
two dimensional design and three dimensional configuration design.

Sharing of domain object classes, which represent entities like Functional Unit
(FU), Design Unit (DU), and Specification Unit (SU) to enable SP to translate
between organizational, functional, and spatial concepts.

2.1.5.2 Description of the programming process in SP

The basic programming process supported by SP consists of the following steps
(Cumming, Akin, & Donia, 1998):

1. Define the building project.
2. Capture the requirements the planned building has to satisfy in terms of Speci-

fication Units. These specifications may or may not contain preconceived no-
tions about the spatial organization and form of the building.

3. Generate Functional units to be placed in the building, using different FU cat-
egories to express a desired spatial organization. One may experiment with
different organizations (for example a 2- vs. a 3-story scheme) in SP before
sending a program to SL. Conversely, one may leave all or some of the deci-
sions to the layout phase.

4. This general process can be adapted in a wide variety of ways and would ac-
commodate, in principle, iterations between SP and SL. For example, a user
may explore layout possibilities while programming and vice versa.

21.
Figure 5 Architectural programming process as supported by SEED-Pro (right),
compared to a traditional process (left) (Akin et al., 1995, p.154).

2.1.6 Technologies in SEED-Config

SEED-Config is the module within SEED that supports configuration design. The
term ‘configuration design’ refers to the design of a three-dimensional building
model in terms of spaces, subsystems, and actual physical components (Flemming
et al., 2000, p.47). The inputs to SEED-Config are the requirements,
specifications, and constraints for the overall structure stemming from the
architectural program, space layout, and the massing definition (Fenves & Rivard,
2004, p.7).

Designs in SEED-Config are represented according to a generic information
model called the Building Entity and Technology (BENT) model (Fenves &
Rivard, 2004, p.7). Technologies are the final stage of design representation in
SEED-Config and represent how a design alternative can be constructed, using
available building technologies or form generation principles.

Technology nodes advance the design of a building entity in two ways: either
by refinement, or by elaboration. Refinement branches represent ‘or’ relations in
AND/OR trees, while elaboration branches represent ‘and’ relations. Choosing an
‘or’ path represents making a choice amongst available alternatives, while an
‘and’ path describes design aspects to consider, given the current technology. A
technology tree can be viewed as a ‘universal’ collection of available mechanisms
for creating structural descriptions that fulfill functional requirements (Fenves, et
al., 1995) (Flemming et al., 2000, p.72).

Begin Architectural Program

Collect Relevant Data

Determine Behavioral Needs

Generate Functional
Requirements

Evalulate Requirements for
Conformance to Standards,

Budgets, etc.

State Design Problem

Start SEED-Pro

Enter Project Specifications

Save Program Version

Output Program to Data Base /
Case Base

Instantiate / Adapt Functional
Units

Evaluate
Build / Modify

Functional
Unit

Hierarchy

22.
Figure 6 Relationship between a building entity and associations with nodes of a
technology hierarchy. The technology tree represents available construction
technologies; building entities are associated with appropriate ‘and’ or ‘or’
paths through this technology tree. Similar to: (Fenves & Rivard, 2004, Fig. 4,
p.10).

Advantages of technology tree is that they provide an intuitive representation of
design knowledge, and are dynamically customizable such that existing
technology nodes can be changed within a process, and new ones introduced.
(Fenves & Rivard, 2004, p.11).

There are three nodes of user control in SEED-Config: manual, interactive, and
automatic. The technology tree plays a central role in all three modes. In the
manual mode, the user must click on successor nodes in the technology tree; in the
interactive mode, the designer gets a guided tour of the available technologies,
while in the automatic mode the user specifies the level for the system to go to in
the technology tree, and the system automatically populates the design space with
alternatives that satisfy the applicable constraints (Flemming et al., 2000, p.74).

Vertical
element

Structural
element

Horizontal
element

Concrete
horizontal

Timber
horizontal

Steel
horizontal

One-way

Two-way

Su
pp

or
te

d
on

 2
op

po
si

te
 s

id
es

Suppor ted o n 4 sides AN
D

L2- L1/L2 < 0.1

Decking

One-way
Deck-on-

joists
10

'-1
20

'
4'

-1
2.

5'

Pre-fab
Concrete

Steel
Decking

Decking

Joists

AND

4'
-1

2'
53

-3
50

 p
sf

4' -12.5'

20-400 psf

Col-
supported

Space Frame

Wall-
supported

Space Frame

30
'-8

0'

30'-130'

OR

OR

OR

OR

OR

Wide-flange
Shapes

Plate Girder

Open-web
Joists

Trusses

10
'-7

0'
25

'-8
0'

10'-120'30'-120'

OR

OR

Plain

Steel and
Concrete

4'
-1

1'
20

-2
00

 p
sf

4'-12.5'

20-400 psf

OR

23.
2.1.6.1 Discussion of the SEED-Config design process

SEED-Config processes are driven by technological norms. These norms are
expressed in SEED-Config’s technology trees. A technology tree may deal with
steel or concrete construction methods, and the knowledge contained within it is
likely has developed over many years. For most users such norms appear to be a
static body of knowledge, and for most purposes they can be considered as such.
However, technologies—even those applied to routine designs—do change over
time, sometimes substantially. In this case the technology trees will have to be
revised. In some cases it is conceivable that a technology tree might have to be
completely rearranged in order to handle a new technological or regulatory
environment. Therefore, it is not always clear that technology trees can be kept up
to date with incremental changes—such as adding new refinement or elaboration
nodes to existing trees. In some cases fundamental reorganization might be
required.

SEED-Config technologies are seen as available resources that can be used,
rather than something that has to be developed within a design process itself. For
many non-routine design projects, it may not be clear their designers know how to
solve problems with existing technologies. In that case, a new technology may
have to developed.

In SEED-Config functional and technological factors lead in the design process.
This, of course is quite typical in engineering design contexts. However, it is not
always the case in architectural design processes, in which formal and spatial ideas
are sometimes explored with less concern about the construction technologies that
might be required to instantiate these ideas.

SEED-Config emphasizes the engineering inputs and decision-making while
placing less emphasis on the interactions between others on the design team such
as architects. Ideally, architectural design processes seems to work best when there
are early interactions between those on the team whose input might affect the
design in fundamental ways. In the building and construction industry, structural
engineers and architects are the two most prominent examples of such
participants. Therefore, in principle design projects that require at least two
different disciplines at the earliest stages—say at minimum the structural engineer
and the architect. The manner in which these two parties interact needs to be a part
of the basic user process for a design support application. Developments of SEED-
Config in this direction are taking place in the work of Hugues Rivard (Fenves &
Rivard, 2004, p.14).

2.1.7 Process aspects of SEED

Design processes are not explicitly modeled in SEED modules. That is, they do
not present to their users models of actions that users are expected to perform, or
representations of what the application is performing. They do have available
paper-based reference and tutorial manuals describing how to use the applications
to perform design tasks (Cumming et al., 1998; Donia, Flemming, Akin, Sen, &
Cumming, 1998; Flemming, 1998; Flemming & Chien, 1998).

24.
SEED modules do not provide a deterministic process model for design, and do
provide a large degree of flexibility in how design problems can be solved, using
these tools. Despite this lack of determinism, all SEED modules though, share a
similar approach to the design process. This approach is based on one of the basic
ideas behind generative design: that one of the first tasks in design should be an
attempt to formally define design problem requirements. Once this is done, these
requirements provide input for automated or semi-automated generation of design
solutions, based on constraints found within the requirements.

Each SEED module contains a problem specification component that enables
designers to specify and modify dynamically the design problem to be solved. In
addition, all have generation and evaluation components (Flemming & Chien,
1995).

For many processes in which requirements can be defined unambiguously, and
generation algorithms are available, the generative approach is powerful and very
productive. This is especially true in constraint-based layout generation, in which
topological constraints between required spaces can be defined clearly, and
relatively easily.

2.1.7.1 Designer control of the design process

SEED modules were designed from the beginning to have a clear idea of aspects
of a design process that should be under the designer’s control and those that can
easily be automated without loss of design quality or intelligent control. In SEED,
human users provide intelligent control.

In generative systems, the basic idea is to automate some aspects of the design
process. Therefore, it should be clear which aspects are controlled algorithmically,
and which humans should control. In a SEED module the two aspects explicitly
controlled by designers are:

1. the definition of problems and requirements, and
2. selection of preferred generated alternatives, such that they can be further re-

fined and elaborated.

This in general seems to be a good approach: leverage the capabilities of human
designers using generative techniques, yet maintaining a clear position that the
human designers still need to be in control.

The generative approach tends to be highly interactive: if the results generated
are less than satisfactory (a common occurrence in generative design), then users
adjust input constraints to see how they might affect the generative process. One
of the interesting aspects of the behavior of generative systems is the aspect of
unpredictability in their results: surprises that result from slight tweaking of the
inputs, can be intellectually gratifyingly, and can help define the real meaning of
the input constraints.

Design processes in generative systems such as the SEED modules, are hybrid
manual/machine supported processes: they can move quickly, and iterate often

25.
between different modules, and within various process aspects within each
module.

2.1.7.2 Routine design and SEED

‘The SEED-Config project (Woodbury & Chang, 1995) clearly demon-
strated the promise of a generative design system for routine design
tasks, which present a good starting point for work in this direction not
only because they are conceptually and computationally manageable
with current technologies, but also because so much of the daily practice
of an architect is routine design’ (Flemming, 2004, p.10).

Design processes can be characterized by their level of innovation. The standard
classification scheme involves the categories creative, innovative, and routine. See
for instance (Dym & Levitt, 1991) and (Coyne, Rosenman, Radford, & Gero,
1987). These levels either can be decided at the outset, or can be an emergent
product of the design processes themselves. These categories are not fixed—there
exists a continuum between design processes that might change substantially from
design project to project, to those that are quite stable and exhibit little change.

Innovation and creativity imply unpredictably in a design process. The greater
the design team desires to pursue innovative design processes, the greater is the
uncertainty among the design participants about how a design project should
proceed, and how it might turn out.

Providing design process support in situations where the processes never change
is much easier than in situations where they do. SEED modules tend to emphasize
their utility within routine design projects. In routine design processes, the
participants may have long experience, and work within conceptual frameworks
that are unlikely to change dramatically. In routine design, the issue of design
freedom is not normally relevant. Preconceived goals in such design situations are
not really unwelcome constraints, but rather an essential feature of this type of
design.

Routine design tends to occur when designers handle recurring building types
(Flemming & Woodbury, 1995, p.147). These building types are common in the
building industry, since they reuse tested design processes, design team
configurations, materials, and assemblies. This reuse can save significant amounts
of money. Designers though, must be careful not to allow the attractions of routine
practice blind them to the improvements needed to maintain design
competitiveness. As Klein points out, a reliance on routine design is certainly
economically useful—especially in the short term—but can lead to antipathy
towards innovation and the search for, perhaps subtle, improvements in product
and process (Klein, Sayama, Faratin, & Bar-Yam, 2001).

An open question in design support systems is whether a design process support
that is useful in routine situations can also be applied to more creative or
intentionally innovative types of design processes.

26.
2.1.7.3 SEED’s changes to a traditional design process

The SEED generative design support tools encourage the early documentation of
spatial data and assembling it into computer readable form. This data covers the
names, areas, number, and spatial constraints for all the spaces to be included in
the building. This data is usually available at an early design stage from a
building’s design program—if one exists. In normal design practice it is the
client’s responsibility to either provide this building program for the architect, at
the start of her design process, or to contract this task to the architect or some other
consultant.

In SL, once spaces are documented, they then can be laid out graphically
according to their spatial constraints. This layout process in SL can be fully
automated. This is in contrast to current design practice when using either manual
or CAD tools, there is generally no automation in the layout of spaces: all required
areas must be placed manually into a drawing.

This layout automation in SL enables the creation of alternative layouts very
quickly, all satisfying given spatial constraints. SEED encourages the modeling of
various alternative organizational and spatial structures, using the spaces which
are to be included in the building. This automation of the layout process in SL is a
fundamental change in how design is performed using SL. More empirical study
is needed to come a deeper understanding of its advantages and disadvantages.

The SEED system is a multi-disciplinary system. It assumes a highly iterative
process in which partially completed design entities can be communicated to other
SEED modules, and to external tools and process. Therefore, it doesn’t assume a
strict sequential process. However, it does assume that large amounts of
information are gathered at the start, and constraints are constructed according to
this information. Therefore, it is an information-led process: the greater the
quantity and the quality of the information at the beginning, the greater the quality
of the generation that takes place downstream.

2.2 Process modeling in design

2.2.1 Introduction to the concept of ‘process’

Notions of ‘process’, and ‘design process’ can be broad and wide-ranging. These
notions do not necessarily converge into a concept that is compact and
illuminating for current research purposes.

One definition of process: Etymology: Middle English ‘process’ from Middle
French, from Latin ‘processus’, f, from ‘procedere.’ Date: 14th century. 1.
Something going on. 2.A natural phenomenon marked by gradual changes that
lead toward a particular result. 3.Aseries of actions or operations conducing to an
end... (Merriam-Webster Inc., 1999).

Some definitions stress the operational or action-related aspect of design, such
as Herbert Simon’s definition of a designer as “Everyone...who devises courses of
action aimed at changing existing situations into preferred ones” (Simon, 1984).

27.
While others emphasize the cognitive activity required for designing that requires
mental representations, search processes and strategies, to find solutions to design
problems. Akin writes that a design process “connotes a comprehensive concept:
the totality of the cognitive activities that occur during design” (Akin, 1991). Or
“a reflective conversation with the situation” (Schön, 1983).

Design processes are usually seen as activities that are created and are
developed in a social context, where social behaviors such as conflict, conflict
resolution and consensus, are important factors in determining the nature of the
design product produced. Lu and Jin write that engineering design and practice
“consists of collaborative negotiation” (1998). While Lu writes that collaborative
design is “...a socio-technical co-constructive process” (Lu, Udwadia, Burkett,
Cai, & Jin, 1998).

“The activity of design (as in a design process) is commonly thought to
be what the designer does, alone, at the drawing board... imagine instead
that every individual with a voice in the design process is a kind of de-
signer—the client, the engineer, the contractor, the inhabitants, the col-
lege president, the fund-raiser and so on. The architect-designer, among
other individuals, has the added responsibilities of coordinating all con-
tributions and giving them some spatial expression. Design, then, is tak-
ing place whenever any of these actors makes plans about the future en-
vironment” (Cuff, 1991).

Processes also have a distinct meaning in computer science referring to an entity
created during execution of a computer application: Hoare writes that a process is
“The behavior pattern of an object insofar as it can be described in terms of the
limited set of events selected by its alphabet... The actual occurrence of each event
in the life of an object should be regarded as an instantaneous or an atomic action
without duration” (1985). While Silberschatz and Peterson state: “a process is a
program in execution... a program is a passive entity, while a process is an active
entity. The execution of a process must progress in a sequential fashion” (1988).

2.2.2 Process representations

There are many different representations for processes. This is because the
concept of process is a very broad one, which almost all domains address in some
way. This is because most knowledge domains deal with events or activities that
occur over time. This survey has a bias towards process representations with
graphic representations, rather than more data structure oriented representations
such as object oriented, e.g. (Gorti, Gupta, Kim, Sriram, & Wong, 1998), or
knowledge-based ones, e.g. (Genesereth & Fikes, 1992). This bias is due to the
position that architects, being often visually oriented, would probably prefer to
manipulate processes graphically within an application, in the manner of modern
GUI interfaces rather than as lower level data structures.

2.2.3 Simple representations

Architects in education and practice usually produce simple diagrams, which
include boxes and arrows. These can be found in all professional practice
handbooks e.g. (Canadian Architectural Councils, 1995), (American Institute of

28.
Architects, 1994), (SAA, 1984), (McGinty, 1979), and in most prescriptive
theories of design, e.g. (Lawson, 1990), (Jones, 1984, 1992).

The problem with such representations is that they have no formal basis. Beyond
providing a general idea of the nature of the process, there are no standardized
meanings given to the boxes, or to the arrows connecting them. For instance, the
boxes can mean various things: as discrete activities, as projects states, as mental
states etc. They may be drawn as rectangular boxes, rounded boxes, circles, simple
lists, etc. The arrows have a similar variability. They may be indicators of
sequences of activities, or they may be transitions of some sort, from one state to
another. The exact conditions which might enable a process, a project, or a
designer—that entity which occupies a box—to move along the arrow from one
box to another, usually is not specified.

Figure 7 Simple node and arrow process diagram for a lump sum architectural design
contract (Canadian Architectural Councils, 1995, vol.2, p.4).

2.2.4 Network representations such as CPM

A more formal representation compared to simple prescriptive models is a network
representation (Carmichael, 1989), (Hendrickson & Au, 1989), (Blazewicz, Ecker,
Pesch, Schmidt, & Weglarz, 1996). These are used extensively in construction
project management. With these types of representations, the syntax and semantics
is usually clear enabling the design of sophisticated applications that depend on
them. In them there are two types of components: nodes, and links between nodes.
When drawn together they form a type of directed graph, typically without cycles.
These representations work on the idea that dependencies link events. That is, for
an event to occur, all it predecessor events must have first occurred.

There two fundamental types of these networks (Carmichael, 1989):

1. Activity on arrow: Where the events are the links, and the dependencies be-
tween the events are the nodes.

2. Activity on node: Where the events are the nodes, and the dependencies are
the links.

Budget
approval

Architect
appointed

Briefing &
design stages

Contract
documents

Tendering/
contract award Construction

29.
Figure 8 Activity-on-arrow process diagram.

Figure 9 Activity-on-node process diagram.

In theory, both of these types of representations have advantages and
disadvantages, so it is up the particular application that determines which type
should be used.

The use, and standardization, of these network techniques, which were initially
developed in the late 1950s, has had a dramatic effect on the ability of the
construction industry to manage large complex projects. The goals of using tools
based on these process representations, such as Critical Path Method (CPM) was
in addition to modeling the required activities for a construction process, was to
determine how long a project is likely to take, and also to identify critical activities
that are especially important to manage closely.

The CPM methods do this by running shortest path algorithms on the network
to see those activities, which if delayed, should be expected to delay the entire
project. Such activities are said to ‘lie on the critical path.’

Although these are sophisticated methods, there appears to be one aspect that
would make them unsuitable candidates for the desired application of design
process modeling. Network models typically disallow cyclical dependencies. The
usual assumption in construction projects is that the project network describes
activities that are done one and only once. If activities are to be done multiple
times they appear in the network as separate activities. This means that modeling

Choose
architect

Approve
budget

Complete
preliminary
arch. design

Choose
structural
engineer

Complete
preliminary
struc. design

A. B.

C.

D.

E.

F.

G.

States:

A. Start
B. Budget approved
C. Architect chosen
D. Engineer chosen
E. Architectural design started
F. Structural design started
G. Preliminary design started

A. B.

C.

D.

E.

F.

G.

Activities:

A. Start project
B. Approve budget
C. Choose architect
D. Choose structural engineer
E. Complete preliminary architectural design
F. Complete preliminary structural design
G. Start detailed design

30.
of iteration, which is seen as a major feature of design activity, cannot be done
transparently.

2.2.5 IDEF methods

IDEF (Integrated Definition Methods) were originally developed in the 1970s and
comprise a whole suite of methodologies and representations. Originally
developed under contract for the US Air Force, they are now being developed by
the company Knowledge-Based Systems Inc. (KBSI, 1998).

The IDEF system models the following aspects of organizations and enterprises
(KBSI, 1998): IDEF (Integrated Computer-Aided Manufacturing (ICAM)
DEFinition) is a group of methods used to perform modeling in support of
enterprise integration. It was originally developed by the US Air Force Program
for Integrated Computer Aided Manufacturing (ICAM).

There are actually 16 IDEF methods, running from IDEF0 through IDEF14 (and
including IDEF1 and 1x). In practice, three IDEF methods form the core of IDEF
use in the field. They are IDEF0: Systems from a functional and organizational
perspective, IDEF1x: Design of data models and conceptual schema, and IDEF3:
Process flows and object states and captures all temporal information, including
precedence and causality relationships associated with enterprise processes.

For the purpose of process modeling, the IDEF3 method is the most suitable and
is intended to capture the behavioral aspects of systems. It comprises two types of
models: 1. a process flow description, and 2. an object state transition description.
Process flow descriptions are composed of two elements: nodes and links. The
nodes, represented as boxes, are termed ‘Units of Behavior’ (UOBs). These can be
hierarchically composed of other UOBs. As well they can be ‘elaborated’ such that
the participating objects and their relations are shown. Circles represent object
states, and lines connecting circles are the state transition links (KBSI, 1998).

The IDEF methods are static modeling environments and construction of
executable process models is not possible. According to the documentation for a
colored Petri net (CPN) modeling application (Meta Software Corp., 1993),
IDEF0 methods are similar to those of Petri nets, except that IDEF is a static
modeling method and is unable to represent system behavior over time.

It is apparently common for CPNs and IDEF0 models to be used together to do
systems modeling. The parts of a system design which can be understood statically
are modeled using IDEF0, while the parts which require a dynamic execution, can
be modeled using CPNs. The use of IDEF0 for the purpose of modeling sequences
of activities is not recommended according to KBSI, Inc. (1998), although this
usage is possible using the representation.

31.
Figure 10 IDEF3 process representation (KBSI, 1998).

2.2.6 Statecharts

David Harel invented statecharts for the purpose of modeling of software systems
(Harel, 1988). In this representation a graph called a ‘higraph’ is proposed which
is like a state diagram but also has some of the topological qualities of a Venn
diagram. Venn diagrams are often used to represent sets of elements, together with
some structured relationship between them—for instance, how two sets partition
a larger set.

Statecharts are higraph-based versions of finite-state machines and their
transition diagrams. With this representation, states can be partitioned into
overlapping or subsumed states, and also arcs, which represent transitions, can be
drawn between any of these states—at any level of the state hierarchy.

Higraph and statecharts have been given formal definitions by Harel. They are
intended to be static modeling methods, and do not enable the view of the change
of state of a system over time, as do Petri nets.

Figure 11 Simple statechart.

2.2.7 Petri nets

A Petri net is a graphical language first developed by Carl Petri, in Germany, in
the1960s (Petri, 1962). This technology has developed widely, particular as a

3

Finalize Funding

1

Choose Site

Project
started

Pre-design
completed

2

Complete
Architectural

Program

Choose material

Choose texture

Choose color

Set budget

Calculate
quantities

Set material cost
budget allowance

cost

32.
means to model and simulate a wide variety of discrete systems—especially ones
that display degrees of parallelism.

Petri nets come in various types and build upon their most generic form called
Place/Transition (P/T) nets. For a good description of how the P/T nets were
extended to form the basis for more sophisticated types of Petri nets see Reisig
(1998).

Petri nets are now available in a wide variety of types including: colored
(Jensen, 1997), timed (Meta Software Corp., 1993), object (Lakos, 1994),
hierarchical (Biberstein & Buchs, 1998), and stochastic (Kusumoto et al., 1997).

They have been used to model processes in a wide variety of domains including:
computer operating systems and algorithms (Reisig, 1998), telecommunications
systems (Jensen, 1997), collaborative design (Ferber, 1999), software design
(Maia, Haeusler, & Lucena, 1996), manufacturing process planning (Kiritsis,
Xirouchakis, & Gunther, 1998) (Silva & Valette, 1989), collaborative workflow
(Ferraro & Rogers, 1997), office communication systems (Cindio, Michelis, &
Simone, 1992), construction industry processes (Li, 1998), and pilot behavior
(Ruckdeschel & Onken, 1994). Petri nets form so-called bipartite directed graphs
composed of two types of nodes: places and transitions. Between these two types
of nodes are arcs, which connect the nodes. The rules of construction of these nets
are that places can only be directly connected to transitions, and vice versa.
Graphically, places are normally drawn as circles, while transitions are drawn as
boxes or bars.

Colored Petri nets (CPNs) have the added feature of handling tokens of various
types (or colors). The use of colors in CPNs is totally analogous to the use of types
in programming languages (Jensen, 1996, p.9).

Figure 12 Simple place/transition Petri net before and after firing of a transition, showing
input and output places (Reisig, 1998, p.17).

2.2.8 CPNs and hierarchical decomposition

Petri nets, when they have more than a few nodes, become difficult to understand,
especially for people not skilled in reading them. Similar to the design of object-
oriented programs, CPN developers prefer to work in small, semantically clear sub
units, which can be easily composed together to form complex systems. For this
reason techniques that enable hierarchical composition were added to the CPN
model.

33.
With CPNs there are two common techniques (Jensen, 1996) (Meta Software
Corp., 1993):

1. Transition substitutions: Here a transition in a CPN can be substituted for an
entire sub-CPN. In this way CPNs of arbitrary depth can be constructed (Fig-
ure 13).

2. Fusion places: Here a set of places in a CPN are grouped together, such that
are seen by the CP net to be multiple instances of the same place type (Meta
Software Corp., 1993).

It is proposed that in addition to these two CPN-specific hierarchical
mechanisms, there is also the possibility that a specialization hierarchy of
processes may also be required. In this way process models can inherit
characteristics of parent classes. This mixing of CPNs with object-oriented
techniques such as inheritance, is a common approach taken within the CPN
community.

Figure 13 Hierarchical Petri net using transition substitution.

2.3 Collaborative design theory

2.3.1 Introduction

Collaborative design is a common way of designing. It is also a very complex
social and technical activity. Collaborative design depends on the successful
interaction of many different parties. The nature and outcome of these interactions
can be quite ad hoc, and specific in nature, and therefore difficult to predict, or
generalize.

Design problems are also becoming more complex, with increasing integration
demanded between diverse, and possibly novel functional requirements.

Increased complexity in design has both social and technical aspects. Not only
are the technical problems becoming more difficult, such as learning to work with
new materials, or learning to cope with changing regulatory environments, but the

34.
social demands that they bring is also changing. People from different cultures,
who may have never worked together before, are brought together and expected to
quickly bridge their cultural differences and become productive with one another
(Cross & Cross, 1996).

The concept of the ‘stakeholder’ is becoming more prominent in collaborative
design. In the domain of software engineering they can be defined as: “individuals
or organizations who stand to gain or lose from the success or failure of a system”
(Nuseibeh & Easterbrook, 2000). Stakeholders are people involved in design
processes who previously may have had little input into a design process.
Increasingly, they demand that their concerns and opinions be heard, and that these
concerns are somehow incorporated into design products (Evan, 1993). With
design processes where the input of stakeholders is taken seriously, the situation
can arise in which any stakeholder within a design process could conceivably
affect that process. Therefore, in order to manage design processes well, such that
all those affected by them are included, design processes should include all parties
who are stakeholders within them.

Stakeholders come to design processes with various levels of design experience
and expertise, and can have profoundly diverse conceptual perspectives on the
design process and product. This variation is not only a function of their roles
within the design process, their professional and educational experience, but is
also a function of their own personal histories. Since these influences vary so
much, and can come in many unforeseen dimensions, the only way of
understanding the motivations of stakeholders, and the effect they might have on
a design process, is to communicate directly with them.

2.3.2 Design methodologies

There have been many models of the design process that have arisen from design
domains such as engineering, architecture, and industrial design. According to
Roozenburg and Cross, in engineering design, these models have converged on
what they call a ‘consensus’ model (Roozenburg & Cross, 1991, p.217), based on
German engineering theory such as that by Pahl and Beitz (Pahl, Beitz, Wallace,
Blessing, & Frank, 1996). Such a consensus model involves a rational, linear,
progressive series of tasks in which activities are grouped into four phases:

1. clarification of the task,
2. conceptual design,
3. embodiment design, and
4. detail design.

In architectural design circles, overly prescriptive linear process structures were
replaced by spiral models, in which designers could revisit tasks and iterate
processes (Cross, 1993).

35.
Figure 14 Spiral model of design as applied to software development (Boehm & Hansen,
2001, p.6).

Models by Darke (1984) questioned the idea that exhaustive problem analysis and
specification is always a necessary precursor to design synthesis. Here,
unpredictable ideas and biases that individuals might bring to a design process
were seen to play an important role.

Greater flexibility in the order of design activities was promoted by Guidon
(1990). He suggested that so-called opportunistic behaviors, in which design
activities were interleaved in complex behavioral and cognitive structures, are
common in design. These were seen not as corruptions of a rational process, but
rather as appropriate designer responses to the ill-defined nature of design, in the
context of limited cognitive resources.

The work of Donald Schön criticized the notion that design is a process that is
ruled by explicit and rational problem solving knowledge, and argues that
designers know more than they can say (Schön, 1983). Schön calls this a kind of
‘knowing-in-practice’, which is a form of tacit knowledge. Instead of a
deterministic process driven by technical requirements, he views design more as
iterative ‘meaning-forming’ one. In such a model of design, designers alternate
between action, and reflecting on that action, in order to construct for themselves,
meaningful representations of design problems and solutions.

Figure 15 Action and reflection cycles in design (Smith, 2004).

Governing variable Action strategy Consequences

Single-loop reflection

Double-loop learning

36.
The work of Louis Bucciarelli also deviates substantially from standard
accounts of collaborative design (Bucciarelli, 1994, 2003). He argues that iterated
social processes, such as narrative construction, are seen in collaborative design
situations. In constructing stories, design teams attempt to make sense of their
design problems, and to imagine plausible solutions. He also argues against
viewing the structure of objects, such as those of the artifacts that are being
designed, as appropriate for structuring a collaborative design process. Instead, he
focuses on the social processes themselves, as being the most relevant factor in
determining how design processes actually turn out.

2.3.3 Cognitive models of design
Cognition: thinking skills that include perception, memory, awareness,
reasoning, judgment, intellect, and imagination (NIDCD, 2004).

The academic domain that studies cognition is called cognitive science, however,
due to the general nature of cognition and its relation to high-level mental activity
of any kind, most other academic domains have things to say about cognition. One
of the agendas of cognitive science is to create psychologically plausible
computational representations of human cognitive processes. In the design domain
such research informs the design of design support systems that engage and
possibly augment the cognitive capacities of designers.

Cognitive models of design tend to emphasize the internal cognitive
mechanisms of individual designers, and sees design processes as intellectual
challenges that designers tend to pursue in private. Design studies related to
cognition tend to take a descriptive, rather than a prescriptive view.

One of the most useful ways that research has been conducted in cognitive
studies of design has been through the techniques of the design protocols analyses.
These observe designers in controlled environments, and gather data by having
designers talk-aloud and inform the researcher about which directions and moves
the designer chooses to make (Cross, Christiaans, & Dorst, 1996; Ennis &
Gyeszly, 1991). Such studies have been useful in determining how designers
decompose design problems, identify types of design problems expected to require
higher cognitive loads than others, and identify useful design heuristics employed
by designers at various levels of professional competence.

Cognitive studies of design have traditionally been closely aligned with
information processing theories of cognition. This theory definitively stated by
Newell and Simon (Newell & Simon, 1972), proposes that humans operate as
information process systems. The information processed is encoded as symbols
that represent both internal states and objects of the external world.

...the hypothesis is that a physical symbol system... has the necessary and
sufficient means for general intelligent action... such data imply that all
known intelligent systems (brains and computers) are symbol systems.
(Simon, 1981, p.28).

37.
Figure 16 Components of a cognitive information processing system (Akin, 1986, p.13).

Information processing theories of cognition often put great importance on the
cognitive loads of design processes. This is based on the idea that certain types of
mental operations can be expected to require more attention and resources from
the subject, much in the same way that a complex algorithm in a computer
program might take longer and use greater amounts of memory and processing
resources than others.

Cognitive study of designers, and the states that they enter into is useful for the
design of computer-based systems, because such states can be mapped to the states
of computer applications. The information processing of cognition is useful in this
regard because there is such a close parallel between cognitive structures and
structures of computer architecture and applications.

2.3.4 Handbooks of professional practice

Professional bodies that regulate the architectural profession, such as the
American Institute of Architects (AIA) (American Institute of Architects, 1994),
The Royal Institute of British Architects (RIBA), and the Royal Architectural
Institute of Canada (RAIC) (Canadian Architectural Councils, 1995), produce
standards of practice for their members. These documents inform their members
what the standards of conduct are expected within the profession, and educate
novice architects in preparation for their licensing examinations. These standards
often include a number of prescriptive design theories.

These handbooks show the design process as a neat linear sequence that is
divided into clearly defined phases. This type of organization is sometimes called
a ‘staged process model.’ These design process models often map into the design
payment schedules for architects, as stipulated by standard client-architect
employment contracts.

In these contracts design is split into several phases, such as Schematic Design,
Design Development, and Construction Documents. These phases estimate how
much of the total job the architect is deemed to have completed at each phase, and
inform the involved parties how much the architect should be paid at that point.
Between each of these major design phases, is an important client review and
approval meeting in which the client reviews the completed work, agrees to pay
the architect the amount specified in the contract, and enables the architect to
proceed to the next phase.

Receptors

Processor

Effectors

MemoryEnvironment

38.
Figure 17 Process model based on a professional contractual arrangement (Canadian
Architectural Councils, 1995, vol.2, p.7).

These phases are shown as linear, sequential affairs. Once, for instance, the
Schematic Design phase has been competed, it is assumed that iteration back into
a previous phase will neither be necessary nor professionally prudent.

The genesis of such professional design practice models is related to the notion
of design as a professional activity, and as a contractual obligation. The goal is to
organize design activity such that architectural firms can expect predictable
remuneration as a result of this activity. For this reason such models tend to hide
the complex iteration and the chaotic nature common in even well managed design
practice.

2.3.5 Social processes in design

Usually design process models assume that design is a rational, problem solving
process, in which the cognitive abilities of individual designers are paramount in
coming to appropriate solutions. Less attention is paid to the complexities of
collaborative design, in which a large number of people, with possibly divergent
conceptual outlooks on the process and product, must learn to interact
productively. According to Whitney, it is possible to view design process in two,
quite different ways. One, as a technical process to be accomplished, and two, as
an organizational process to be managed. The first tends to focus on the individual
whereas the second focuses on the group (Whitney, 1990).

In collaborative design, both these aspects are important, and are worthy of
support. It is perhaps in the complex interactions between the technical, and the
social or organizational aspects of a design process that presents the biggest
challenges to a fully integrated design methodology.

Collaborative design involves many parties acting out a variety of roles. These
roles may be formally assigned, and with clear-cut responsibilities and processes,
or they may be informally adopted by the participants themselves as the process
proceeds. Such informal role-adoption was noted by Cross and Cross in group
design protocols (Cross & Cross, 1996).

It can also be seen in social groups in general, that dominant and submissive
social roles such as leadership positions may not be a simple matter who gets
assigned to do what. It often involves an emergent social process of competitive
role-adoption. How such role emergence works is a process involving necessity
(what roles ought to be filled), opportunity (what roles are open to be filled), and
competition (who appears to be the best candidate to fill a role).

Architect
appointed

Budget
approval

Briefing &
design stages

Contract
documents

Select
General
Contractor

Construction

39.
2.3.6 Coordination theory

Coordination science is a new discipline that has been developed to help explain
and manage complex collaborative situations that tend to overwhelm existing
process management theory and technique. Whitfield, Coates, Duffy, and Hills
(2000), Klein (1998), and Malone and Crowston (1992) provide excellent
overviews. Coordination of action is required, according to Klein (1998), when
distributed activities, such as those found in collaborative design, are
interdependent.

Malone and Crowston provide a good, concise definition of coordination: “the
act of working together harmoniously” (1992). Malone and Crowston also provide
a list of technical definitions others have proposed for the term. A useful
discussion is provided by Jennings (1996) regarding the three main reasons why
the actions of multiple agents need to be coordinated. 1. because there are
dependencies between agents' actions, 2. because there is a need to meet global
constraints, and 3. because no one individual has sufficient competence, resources,
or information to solve the entire problem.

According to Klein (1998), the most fundamental aspect of support for
coordination comes through communication. That is, it is inconceivable that in
whatever design coordination regime, whether software-based or otherwise, that
agents will be able to coordinate their work without actually communicating with
one another. In hierarchical control situations, this communication may be
indirect, through, for example, an agent's manager or controller, while in
distributed cases it occurs directly between agents.

Jennings proposes that coordination is built upon four main structures:
commitments, conventions, social conventions, and local reasoning capabilities. If
an agent commits to performing a particular action, then, if circumstances do not
change, it will endeavor to honor that pledge (Jennings, 1996). Non-performance
of a commitment, made in a social setting, can entail social costs, which people
sometimes go to extraordinary lengths to avoid. However, commitments are not
irrevocable, since the circumstances that inspired them in the first often change.
The longer the time between making a commitment, and the time that action is
required, increases the likelihood that the commitment may need revision. From a
distributed systems perspective, commitment by agents to a course of action adds
a degree of certainty to future events. This is an important consideration in such
systems, since due to their distributed nature they experience a great deal of
uncertainty.

40.
2.3.6.1 Centrality of commitments and conventions hypothesis

Jennings offers a hypothesis that has the potential of providing structure and order
within the domain of collaborative design. Jennings proposes the following
(1996):

1. all coordination mechanisms can ultimately be reduced to commitments and
their associated (social) conventions,

2. commitments are viewed as pledges to undertake a specified course of action,
and

3. conventions provide a means of monitoring commitments in changing cir-
cumstances.

The work of Terry Winograd incorporates well-known criticisms of the
rationalist approach to design, cognition, and intelligence (Winograd & Flores,
1987). He emphasizes, like Schön (Schön, 1983) and Bucciarelli (Bucciarelli,
1994), the social processes required for groups to come to some common
understanding. He sees the interactive nature of language use, such as described in
speech act theory (Searle, 1991), to be a primary factor in such social processes.

2.3.6.2 'Plans-as-programs' vs. ‘plans-as-communications’

Agre and Chapman in their influential report “What are plans for?” distinguish
between two uses for symbolic plans: one as ‘plans-as-programs’, and ‘plans-as-
communications’ (Agre & Chapman, 1989).

Plans-as-programs are intended as algorithmic accounts of the steps to be
followed in order to fulfill certain goals. This approach is consistent with the
theories of an influential faction in cognitive science, which posits that following
symbolic plans is necessary to enable rational, goal-directed activity. Plans-as-
communication are seen as much more informal, linguistically based accounts of
what should be done. They suggest that complex activity depends both on
symbolic descriptive models, as well as real-time, situated improvisation. For the
symbolic-modeling side of this vigorously debated issue see Vera and Simon
(1993) while for the opposing, situated view see Clancey (1993).

According to Agre and Chapman, the plans-as-program approach suffers from
the following problems: 1. it poses computationally intractable problems, 2. it is
inadequate for a world characterized by unpredictable events such as the actions
of other agents, 3. it requires that plans be too detailed, and 4. it fails to address the
problem of relating the plan text to the concrete situation (Agre & Chapman,
1989).

Plans-as-programs are seen as being insufficiently flexible, in that appropriate
real world activity depends on real-time adaptive responses to uncertainties. These
uncertainties are difficult or impossible to predict in advance. How to deal with
uncertainties and contingencies is especially important in the field of robotics. A
central problem within robotics is how to design robots capable of negotiating
real-world environments. One approach to this problem is the work of Brooks, in
which non-deliberative, reactive interactions between robots and the

41.
environmental stimuli they might encounter is favored, instead of plan
construction and plan following (Brooks, 1991).

In agreement with the position of Brooks, Agre and Chapman view the problem
with the plan-as-program view is that it understands activity as a matter of problem
solving and control, rather than one that involves fashioning real-time adaptive
responses to constantly changing situations. Similar issues are relevant in the
domain of design process support, in which adaptive, 'opportunistic' responses to
complex, dynamic situations are also important. Yet, Agre and Chapman do not
see plans-as-programs as necessarily ineffectual: in situations that have relatively
static, well-defined semantics, and low levels of uncertainty, they can be very
useful.

In contrast, the plan-as-communication approach sees plans as resources,
among many other resources, which agents may choose to use or not to use, in the
context of complex activities. Additional resources could be many things such as
the opinions of others, clues from the environment, the contents of other plans, etc.

Here, the contents of a plan are not directly connected to a cognitive, perceptual,
and motor system that depends on access to detailed plans in order to function at
all—which is the case with plan-directed robots. Therefore, items in a plan have a
much less central role to play than in the plans-as-program view, where plan
contents are used not only to inform, but also to structure and to effect activity. The
plans-as-communications approach assumes the existence of a general cognitive
ability beyond that of plan construction and execution, and depends on an agent
understanding the meaning of an item on a plan.

Plans-as-programs are useful in agents that inhabit simple, static environments
in which the execution of relatively static symbolic plans is suitable. This assumes
that there exists some agent who is capable of creating the plan in the first place,
and that once created, the plan will not have to be re-planned at every step of its
execution, due to unforeseen contingencies.

These criticisms are relevant to collaborative design where there is usually no
one party that is capable of devising a plan that will enable all the activities of a
design team to be structured. In addition, even if a plan did exist it is unclear how
closely a design team would want or be capable of following it. Finally, due to the
unpredictable nature of collaborative design, it is clear that any plan will have to
be under constant revision, in order to cope with the changing circumstances, re-
interpretations of requirements, and design opportunism common within design
teams. Therefore, the plans-as-communications approach appears to be a more
realistic model of how plans are actually used in collaborative design.

2.3.6.3 Recurrent social processes

Collaborative design involves both the search for solutions to artistic and technical
problems, and also the specification and coordination of the recurrent social
interactions encountered during a collaborative design process. These interactions
involve many activities: the assembly of the collaborative team, the generation and
communication of relevant ideas to other team members, the resolution of design
conflicts—which seem to inevitably arise from most collaborative activity—and

42.
the negotiation required to assess whether a design proposal is an appropriate
solution given a perceived set of design requirements. Within collaborative design
all of these processes are seen as socially mediated ones, depending crucially on
interpretation, negotiation, and the construction of meaning in a social context.

Collaborative design process should not be seen as a problem that can be viewed
objectively, or one that exists independently, of the people who are asked to solve
it. Rather, both architectural problems and design processes require interpretation.
This interpretation must be communicated to others in the team, and various
consensuses must be arrived at within the team for the design problem to be solved
adequately, and to everyone’s satisfaction.

This socially mediated and constructed process however, is seen to be one that
is greatly constrained by the patterns of social and technical interactions that
design team participants bring to the table. The sources of such patterns of
behavior are thought to be their previous experiences working in design teams, and
by their experiences working in collaborative social situations in general. Since
designers usually have similar experiences of doing design, this is expected to
converge into recurrent social patterns of interaction.

This approach—that social behaviors such as collaborative design are both
socially constructed by their participants while they occur, as well as constrained
by the participants experiences performing related activities in the past—can be
found in many domains, for instance, cognitive science (Varela, Thompson, &
Rosch, 1991), theory of the collaborative use of language (Clark, 1996), and
accounts of engineering design processes (Bucciarelli, 1994).

2.3.7 Design processes from a top-down perspective

Collaborative design has important top-down aspects that can structure both
product and process. Top-down, or centralized process control can be derived from
many factors, including:
• Social and cultural factors: a strong personality or common culture that drives

teams to perform design in a certain way.
• Technical factors: a focused expertise that has a strong effect on the design

direction.
• Organizational factors: when the hierarchy of organizations is reflected in the

structure of a design product or process.
• Financial factors: when the money flows from centrally controlled sources.
• Contractual factors: when parties agree in a legally binding manner to submit to

some central authority.
• Consensual factors: make parties commit themselves to an agreed course of

action.

From a product perspective, certain global aspects of a design product are
normally required to facilitate management of collaborative design, such as the
total cost, or the quantities of materials used in a proposed product model.

However, centralized process control and product representation do have their
limitations. As Klein notes (1998), centralized control requires that a single person

43.
or software system have some deep understanding of the entire design. As noted
above, this is not so difficult for small projects, but becomes impractical for large
ones, with large dependency networks.

It is especially difficult for projects that require inputs from multi-disciplinary
teams who often speak different ‘languages.’ In order to understand and
participate in the coordination of various contributions, a central controlling party
therefore must be ‘multi-lingual.’ This is a tall order if the composition of a design
team includes a wide variety of experts, each speaking very specialized languages.
Here, a practical expectation is that outsiders will only be able to understand a
small subset of what is what is important within such domains of expertise. It
might be feasible to standardize languages such that everyone speaks the same
one, but this, as Stouffs and Krishnamurti (2001) note, is likely to be at the expense
of expressiveness and flexibility.

In theory then, centralized control may become impractical once design projects
attain a certain size and complexity. If centralized control is impractical in certain
situations, which may not be that uncommon, then forms of distributed, localized
control may become necessary.

2.3.8 Design processes from a bottom-up perspective

From a bottom-up perspective, collaborative design can be modeled as a complex
system. Complex systems research addresses at a fundamental level, the behaviors
of interdependent entities (Klein et al., 2001). Complex systems typically have no
central controller, and the global behaviors they exhibit, emerge because of local
concurrent actions. Biological systems, such as ecosystems and organisms, are
perhaps the most commonly presented examples of complex systems (Resnick,
1994). Concepts from complex system theory can also be applied to social
systems, in which individuals forming social groups are seen as interdependent
entities (Axelrod, 1997). Complex systems can be inorganic, or non-biological, as
well.

According to Klein (2001), designers, as well as design issues, can be modeled
as 'nodes' in dependency networks. In such a view, completing a collaborative
design process, involves designers attempting to maximize the value of a
(hypothetical) global utility function. This usually takes place in the context of
extremely large design spaces. One difficulty in collaborative design is knowing
what the global utility of a proposed design might be, prior to actually building a
completed artifact. Even with a completed artifact, interpretations regarding the
global utility of a design can vary.

Klein notes that the problem with collaborative design in general, is that the
networks that most realistically model how collaborative design is done in
practice, and ought to be done in practice, are also the ones that display the most
complicated behaviors.

Dependency networks can have a variety of dynamics including non-linear,
asymmetric, and non-convergent ones. Linear networks are those with single
attractors. This situation is helpful in a collaborative design process, since it
means, despite complex interdependencies and interactions between nodes, design

44.
solutions converge to a single point. This point corresponds to a global optimum.
Klein notes that only routine design processes have been successfully modeled as
linear networks.

Networks that exhibit non-linear network dynamics complicate the situation
considerably, in that their utility function can have many peaks instead of single
ones. These peaks represent local optima. Since local optima are often surrounded
by valleys, search for global optima is made much more difficult. This applies to
both software-supported design processes, as well as manual ones.

In collaborative design, this situation means that incremental improvements to
a given design configuration, such as product models as they currently appear,
may improve the designs, but will not necessarily lead to global optima. To
discover global optima, design teams may need to consider radically different
configurations of design components. This is often an expensive and risky
proposition. The history of product development often shows such dramatic re-
configurations, in addition to incremental improvement of existing configurations
(Bijker, 1995).

Hogg notes the prevalence of non-linear interactions in distributed systems
(1998). He states that such systems can display a wide range of behaviors
including stable equilibria, continual oscillations, and chaos. Chaos is considered
a destructive aspect of distributed systems in that it introduces global
unpredictability into the system. Hogg proposes that simple reward mechanisms,
based on the assessed performance of software-based agents, can help eliminate
such chaos.

Within the Distributed Artificial Intelligence (DAI) community, the strategy of
distributing control, data, as well as knowledge sources, is now widely supported
(Whitfield et al., 2000). Such an approach has been shown to have several
advantages, including the reduction of performance bottlenecks, the increase in
reliability, and the soft, rather than steep or complete degradation of performance
when systems are under stress.

Distributing control and data can also have disadvantages according to Jennings
(Jennings, 1996), in that 1. each agent only has a partial and imprecise perspective,
2. there is increased uncertainty about each agent's actions, 3. it is more difficult
to attain global behavior, and 4. the dynamics of such systems become extremely
complex.

However, distributed control when placed in a design context is a concept that
may not have much appeal to designers. Designers are usually trained to view their
primary job description as ‘controllers of design processes.’ The traditional
expectation is that in order for a designed product to have some kind of aesthetic
or functional coherence and integrity, a single cognitive entity such as a designer,
must conceive and coordinate the design in its entirety. For smaller design
problems, this is quite possible. For more complex problems, or for those that take
place over an extended period, it becomes more difficult. For example, the centers
of old European cities, or vernacular settlements such as Italian hill towns, may
take several hundred years to be designed. Their design processes involve the
accumulation of contributions from many designers. Despite the distributed nature

45.
of their conception and construction, such designed products are considered by
many to be the height of western architectural achievement. The reason that they
are seen to exude such charm seems related to how each local contribution is
coordinated with that of its neighbors, such that the whole exhibits an ‘organic’
quality. Such adaptable and locally coordinated design processes are quite difficult
to emulate using centrally controlled processes.

Complex collaborative design processes can indeed be centrally controlled.
However, once design projects get to a certain degree of complexity, central
control introduces limitations into the collaborative process. This is especially true
if this complexity is combined with designers' attempts to be innovative and
creative, such that new global design optima might be discovered.

A similar argument could be made for the desirability of market-based rather
than centrally planned economies. Once the number of economic transactions
reaches a certain level, the ability of any central authority to allocate resources
effectively, becomes compromised. Thereafter, more distributed, emergent,
‘invisible hand’ approaches become necessary.

2.4 Peer-to-peer software

2.4.1 Introduction

Peer-to-peer (P2P) involves having computers on a network—peers—acting as
both suppliers, as well as consumers of information. P2P does not constitute a new
idea—it has been around as long as computing itself.

The idea behind P2P technology is to enable the sharing of information between
distributed peers, without the necessity of first setting up a centralized system to
do this. One promising approach to the P2P is the JXTA initiative by Sun
Microsystems (Sun Microsystems, 2002). This standardized, open-source
initiative provides a protocol, with language bindings for several languages that
enables for the easy design and implementation of secure P2P applications.

2.4.2 What does P2P mean for computing?

The supporters of P2P list its many apparent advantages (Oaks, Traversat, &
Gong, 2002) (Peer-to-Peer Working Group, 2002):
• Scalability: the ability of P2P applications to increase their performance as more

users are added, rather than to decrease it.
• Robustness and fault tolerance: the ability of P2P to degrade gracefully when

network connections, or computing resources in general become unavailable or
corrupted.

• Dynamic behavior: the ability to handle and dynamically adjust to the presence
or absence of specific computer resources.

• Spontaneity: the ability of applications to respond to changes brought to
computer systems by inputs from new peers and new computing resources,

46.
without having to preconceive these changes or to do special work to handle
them when they do occur.

• Self-organization: the ability of people working on a P2P network to organize
into specific peer groups of their own design, without the requirement of any
centralized interventions.

2.4.3 JXTA by Sun Microsystems

JXTA (a term meaning ‘juxtapose’) is a standardized, open-source initiative that
provides a protocol, with language bindings for several languages, that enables the
design and implementation of secure P2P applications. JXTA is based on open-
source, standards-based protocol specification, and can be implemented in Java or
any other languages (Oaks et al., 2002). JXTA also provides a generic
infrastructure to deploy P2P services and applications (Gong, 2001). JXTA is built
out of five key abstractions: uniform peer ID addressing, peergroups,
advertisements, resolvers, and pipes (Oaks et al., 2002).

2.4.3.1 Peers

Peers are the basic unit of JXTA. Peers can be both the consumers as well as
producers of services found on a JXTA network. As defined in the JXTA
specification, a peer is a device that implements one or more of the JXTA
protocols. From the user’s point of view, a peer is the user of a P2P application.
One of the basic ideas of P2P is to reduce the barriers to communication by
flattening communication hierarchies and making everyone a potential 'peer'.

2.4.3.2 Peergroups

Peergroups in P2P systems act as virtual social spaces in which peers can interact
and exchange information. In the JXTA protocol, the technical definition of a
peergroup is a collection of peers that have agreed upon a common set of services
(Sun Microsystems, 2002). It is up to cooperating peers to define groups, join
groups, and leave groups (Oaks et al., 2002, p.16).

The purpose of peergroups is to:

1. Define a set of services and resources

For instance, the ‘dpmNet’ peergroup created by the application in this thesis has
specialized services that enable peers to vote on the state of design entities. Other
peergroups could have other services, such as access to secure information
sources, or ways to interact with their fellow peers.

2. Provide a secure region

Peers must be members of the same peergroup in order to share information.
Peergroups can be designed with strict membership requirements. Therefore,
peergroups can be designed such that they are suitable to share sensitive
information if they are configured to enable only qualified peers to join the
peergroup. By default, all peers become members of a ‘world’ peergroup when

47.
they first join the P2P network. This top-level peergroup is open to anyone.

3. Create a scoping environment

One of the primary purposes of peergroups is to partition the set of possible users
into definable groups that provide a limiting scope for search and discovery of
resources. Messages within a peergroup are propagated only to peers that are
members of the peergroup (Oaks et al., 2002, p.16). This increases the efficiency
of the distributed interactions considerably. Peers thereafter can either join
existing peergroups, or can create new ones. Any peer can set up any peergroup
she wishes, and any peer can be a member of multiple peergroups. Membership in
one peergroup, gives a peer no rights, privileges, or access to other peergroups.

Figure 18 Peergroups as logical partitions of the top-level ‘world’ peergroup.

2.4.3.3 Information exchange between peers

In JXTA, all messages are encoded as hierarchical XML messages, in which text
or binary data can be embedded. This embedded data is called ‘payload data.’ The
JXTA protocols themselves are specified as a set of XML messages exchanged
between peers. An advantage of XML encoding is that XML messages enable the
addition of a large variety of metadata, such as credentials, certificates, and public
keys (Oaks et al., 2002). Therefore the type, size and hierarchical organization of
the content that gets communicated between peers is completely up to the peers,
and is not prescribed by the protocol.

2.4.3.4 Issues of hierarchy in P2P systems

P2P computer systems are useful in creating dynamic on-line social environments
that do not necessarily have any ‘center of control’, or in-built social hierarchies.
This is not to say that such centers of control or social hierarchies do not form
within P2P communities, only that these hierarchies are more likely to be aspects

Peergroup 1
Peergroup 1.1

Peergroup 1.1.1

Peergroup 1.1.2

Peergroup 1.1.3

Peergroup 1.1.3.1 Peergroup 1.1.3.1

Peers as members of
peergroup sub-sets

Top-level 'world'
Peergroup

48.
of the social interactions themselves, rather than a reflection of the design of
software systems that support these interactions. This lack of inherent hierarchy is
clearly a useful feature for domains that depend on the easy transfer of information
between ordinary users, and on the flexible and dynamic construction of social
groups online.

P2P systems appear to have promise within collaborative design support, since
collaborative design requires the dynamic construction and re-construction of
various social environments and groups, such as design teams and sub-groups
within design teams. The concept of peergroup enables such social construction to
take place in an on-line, geographically distributed fashion.

49.
2.5 Wisdom of crowds
In his book The Wisdom of Crowds: Why the Many are Smarter than the Few,
James Surowiecki (2004) explores the decision-making capability of
decentralized, distributed groups of people. He writes “under the right
circumstances, groups are remarkably intelligent, and are often smarter than the
smartest people in them. Groups do not need to be dominated by exceptionally
intelligent people in order to be smart.” (p.xiii)

Surowiecki focuses on three types of problems:

1. Cognition problems: problems involving conceptualization of appropriate
problems and solutions alternatives. According to Surowiecki, these are prob-
lems that have or will have definitive solutions.

2. Coordination problems: problems involving adapting their behaviors to the
behaviors of others, so that people can work productively together.

3. Cooperation problems: these involve getting people to work together on com-
mon projects that involve the self-interest of multiple parties.

It is clear that collaborative design also involves these three types of problems:
designers must solve problems involving the conceptualization of alternatives to
complex problems, they must adapt their behavior to the behaviors of others such
that some kind of collaborative order is created, and they must cooperate with their
peers, such that self-interested parties manage to work together.

His argument is mainly supported from finding from psychological research and
the world of business and finance, and he sees his basic message as somewhat
counter-intuitive. He does emphasize that groups are not always smarter, just that
in some specific circumstances, they can become smarter. The conditions that
must be present for ‘wise crowds’ to result, are the following:

1. Diversity of opinion: what people know and believe, or the conceptual and
cognitive perspective they have on events of common interest, is different to
that of others.

2. Independence: people are in a position to think about events in a way not un-
duly influenced by the opinions of others.

3. Decentralization: people have access to local or specialized knowledge.
4. Aggregation: A mechanism exists to covert distributed private judgments into

a collective decision—which may not correspond to the opinion of any one
contributor to the decision (Surowiecki, 2004, p.10).

As a mathematical explanation of how this mechanism works:
At heart, the answer rests on a mathematical truism, If you ask a large
enough group of diverse, independent people to make a prediction or es-
timate a probability, and then average those estimates, the errors each of
them makes in coming up with an answer will cancel themselves out.
Each person’s guess, you might say, has two components: information
and error. Subtract the error, and you’re left with the information (p.10).

50.
The first three conditions are quite similar and distinguish groups of people in
which members are in a position to think for themselves and whose opinions are
valued. Such is the case with the normal collaborative design team, members of a
design team are chosen normally for their diversity of opinion, and their
specialized knowledge. Structural engineers are seen as valuable and necessary
colleagues for architects precisely because engineers’ professional training and
experiences enable them to propose structural solutions and solve problems that
architects are not specialized to perform.

Being on a team, however may work against this independence of thought. To
become part of a team implies that a certain degree of individual autonomy is lost
in order to conform to the social norms that the team creates. Working together
with people, as a design team implies must occur, by definition reduces the
independence of each individual member.

The fourth condition, however, is quite different than the first three in that it
involves a technical mechanism rather than a social structure. The first three
conditions are commonly found when people are in a position to view distributed
events, or acquire specialized knowledge, and therefore perspectives. As
Surowiecki points out, teams often get the first three points right, but not the final
one. Teams often allow intelligent people to come with sufficient resources to
make ‘wise’ collective decisions, but do not provide a mechanism for translating
this diversity into specific decisions that takes into account everyone’s
contribution.

The three most common aggregation mechanisms are:

1. Voting, or rating systems: found in democratic elections, the page-ranking al-
gorithm of Google, or self-organizing web sites in which highly-rated content
can ‘bubble to the top’ (Hafner, 2001).

2. Markets, in which buyers and sellers coordinate their behavior. This is found
in financial markets of all kinds including stock and commodity markets, and
also in decision markets such as the Iowa Electronic Markets (Iowa Electronic
Markets, 2004).

3. Imitation and influence systems: in which people base their behavior by imi-
tating what others do. This can be found in fads, stylistic movements, trends,
fashions, and riots. Such behaviors can often turn out badly since each mem-
ber loses independence of decision-making, and may do things that if they
were independently considered, the member would not have done.

2.5.1 Relevance to collaborative design

Collaborative design exhibits all three types of problems identified above:
cognitive, coordination, and cooperation. Design teams come in various sizes and
often only have a small pool of ‘voters.’ The smaller is the pool from which
information can come, the less is the effect of the ‘wisdom on the crowd.’
Collective wisdom appears to depend on a large sample size. There is also tension
between independence and conformity: In collaborative design teams, members
are both expected to work independently and provide ideas and information

51.
informed by specialized knowledge. In contrast, designers are also expected to
conform to the design team’s objectives and behaviors, and learn to get along with
others on the team. This tension between wanting to be independent of the group,
as well as cognizant and respectful of the team’s emerging social norms, appears
to be an essential aspect of collaborative design. It reflects the fact that designers
must in the end produce a conceptually, unified artifact informed by the
aggregated contributions of agents with varying degrees of conceptual and social
independence.

In design teams, the lack of technical aggregation mechanisms is not necessarily
a problem. In normal practice, design teams do not have access to technical
intervention of aggregating mechanisms such as elections, rating systems, or
markets. Decisions are made based on available alternatives and on the intellectual
resources of the team. This means that it is conceivable for good decisions to be
made, despite the lack of technical aggregation systems, if contributions provided
by individuals are taken into account when making final decisions.

In summary, Surowiecki writes:
Decentralization’s great strength is that it encourages independence and
specialization on the one hand while still allowing people to coordinate
their activities and solve difficult problems on the other. Decentraliza-
tion’s great weakness is that there’s no guarantee that valuable informa-
tion, which is uncovered in one part of the system, will find its way
through the rest of the system (2004, p.71).

2.6 Centralized and distributed systems compared
Information systems that support collaborative design, can be designed either as
centralized or decentralized systems. Up to now the tendency has been to build
centralized systems, such as those that employ client-server architectures.

P2P are seen as one end of a spectrum of available network topologies, in which
completely centralized systems are at the other end. Here, the author attempts to
analyze the implications of the two ends of the spectrum, rather than spend time
discussing the myriad shades of grey in between. It seems likely that the most
profitable approach in design systems will be to make hybrid systems that take
advantage of the inherent advantages of both the distributed and centralized
approaches.

2.6.1 Factors that promote the centralized approach to collaborative design

2.6.1.1 The suitability of centralized architectures in development of
centralized, integrated product models

As it is usually a single unified artifact that is the intended result of a collaborative
design process, it seems to make sense to attempt to make unified design
representations from the beginning stages of design. Since the goal is to produce
a single unified model, it makes sense to keep this model in one, centralized
location. Integrated product models have the potential advantage of having a high
level of internal consistency and rationality in their design. Models in which all

52.
design description information resides in one location, can be, for instance, very
convenient when checking for completeness and consistency of design product
models (Flemming & Woodbury, 1995).

2.6.1.2 An approach towards collaborative design that favors rationally
planned processes

The dominant design paradigm within the computer-aided design community has
been one inspired by the promise of rational and scientific reasoning and planning
in solving complex problems. One goal of technical reasoning is to provide a
supportable rationale for design decisions, such that the overt subjectivity and
biases of individuals are avoided. When design problems are seen primarily as
ones that can be solved by application of technical or scientific reason, then it
becomes important that the actors involved in a design process have technical or
scientific reasoning, and problem solving skills. A rational, defensible design path
then should be clear to most of the participants engaged in the design process,
provided they are competent thinkers and professionals. Therefore, with a rational
approach, specific actors, and their attendant biases, are seen as less important, and
it becomes more acceptable that a reasoning engine that orders a complex design
process, be located in a single, centralized location.

2.6.1.3 The lack of credible alternatives to centralized systems, such as P2P

Popularity of P2P depends on both a conceptual shift, such that they can be seen
to useful in theory, as well as a technological shift, such that P2P computer systems
become practical to develop. P2P in its modern embodiment is a relatively new
idea that has failed to achieve a ‘critical mass’ of popularity among users,
researchers and developers—except in domains such as on-line file sharing or
instant messaging (IM). Until recently, there has been a lack of reliable P2P
technology and of suitable P2P application development frameworks. These
frameworks enable a standards-based, non-proprietary approach for P2P
application development, which is seen as an important factor in popularizing P2P
theory and applications. It is the author’s opinion that the appearance of JXTA by
Sun has changed this situation, and that there are now few technical impediments
to discourage the growth of P2P. However, there appears to some legal ones,
which could impede development of P2P systems, especially in the short term.

2.6.1.4 Accessibility of unified design representations

Having a centralized representation means that this representation is available
without any additional effort on the part of the administrators of this data.
Therefore, the documentation process does not require the burden of a process of
assembly of documents, from their variety of authors, such as from the various
consultants involved in a collaborative design process. Such an assembly process
can sometimes be prohibitively expensive. This means, for instance, that historical
records of building projects can be maintained much more easily when there are
integrated and centralized design representations.

53.
2.6.1.5 Rational design of information infrastructures

Despite the fact that various design agents may have different conceptualizations
of design data and of the design process, there remains the fact that information
infrastructure design, such as database design, can be helped enormously when
people skilled in this domain design it. Distributed logic may enable design
participants in theory to express anything they wish to express. However, this kind
of freedom may not be necessary in many cases. Simple logical structures may
satisfy most, if not all of the design participants.

2.6.1.6 Usefulness in routine design processes

In the context of design systems, the intended degree of innovation in the design
process is an important factor. In routine design processes—ones in which the
participants may have long experience, working within conceptual frameworks
that are unlikely to change dramatically—centralized systems can obviously
provide useful support for designers. In routine design, the issue of design freedom
is not normally relevant. Preconceived goals in such design situations are not
really unwelcome constraints, but rather an essential feature of this type of design.

2.6.2 Disadvantages of centralized systems

2.6.2.1 Covert conceptual prescriptions

The process of conceptual design usually involves coming to a consensus with
your design collaborators as to what an appropriate conceptual organization for the
project should be. In centralized design systems, this type of consensual pre-
design work is often contained implicitly within the design of the computer system
itself. In some cases this pre-definition of the semantics of design objects of
interest, could conceivably have an unwelcome and constraining effect on the
types of solutions that could result from the use of such a system. The same could
be true of P2P systems, although it is expected that the type of covert prescriptions
might be of a different type.

2.6.2.2 Location of proprietary data

Centralized systems usually assume that participating designers in the
collaborative design process are willing, or able, to submit their design
contributions to a party, or a computer-based system, that maintains a central data
store or representation. In order to conform to a central representation, data
translation and formatting work may be involved on the part of individual
contributors. Some designers and consultants may have a proprietary interest in
not allowing their specialized design representations to reside in any location other
than their own private and secure databases. They may only share a subset of their
data such that design collaboration is possible, without offering the full richness
of the data, they may use internally within their own organizations (Snyder, 1998).

2.6.2.3 Necessity of 'up-front' work

Centralized architectures tend to depend on substantial quantities of 'up-front'
work to build suitable information infrastructures. Centralized systems, by

54.
definition, require the people they might affect—their 'stake-holders'—get
together and work out what would be an appropriate, supportive system. Such
consensus-building work takes much effort, and ideas what constitutes an
appropriate system may vary widely, even among skilled professionals acting in
good faith. Work on computer-based information infrastructure is usually work of
a technical nature that designers in many domains may be unqualified to perform,
without support from specialized information professionals. Such work, especially
with centralized systems, tends to require making prescriptive and predictive
assumptions about the nature of the information to be exchanged, as well as the
composition and organizational hierarchy of the design team. Such aspects of
collaborative practice may become clear to the design team only once a design
process is well established.

This is commonly recognized problem with design, especially in early design
support systems: how to support a design process without unduly shaping it to
conform to a computer system designer’s preconceptions. In order for a computer
system to be useful in supporting design, the system must exist. The same is true
for both centralized or distributed systems. What is important is the effort required
to get useful systems working, and whether these systems support or unduly shape
the nature of a design process. It appears that centralized systems tend to be weak
in both these respects. However, with the absence of complex P2P design systems
to compare them to, it is difficult to determine at this time whether P2P systems
would be any better.

2.6.3 Advantages of distributed systems

2.6.3.1 A better model of data sharing?

In collaborative design, similar to what happens in P2P systems, individual agents
often assume the roles of information providers as well as information consumers.
The fact that P2P systems enable this process to occur transparently is seen as a
major advantage of this technology.

2.6.3.2 Distributed control

Decentralized systems do not require that one party assumes a position of control
over the work of others. This may or may not be the organizational approach that
is appropriate for a specific design project. However, recent managerial trends that
emphasize the advantages of flatter, leaner management hierarchies in developing
more agile and productive organizations, suggest it is a trend growing in
popularity.

In complex, collaborative design projects, where the input of specialized design
experts may be crucial to finding acceptable solutions, hierarchical control of such
experts may not be, for instance, politically appropriate. Instead, complex systems
rely on independent or autonomous agents interacting with each other in plausible
ways, generally without access to global knowledge. Some would argue that this
approach better simulates the behavior of real designers as they perform their
jobs—especially in complex, non-routine design situations.

55.
2.6.3.3 Chance of creative emergence

Decentralized systems work by enabling independent agents to interact in a
manner that does not rely on pre-articulated or pre-conceived goals. In complex
systems research, of which design of decentralized systems is a part, mechanisms
of self-organization have been used to explain behaviors and constructions that
appear to have resulted from hierarchically controlled, top-down processes, but in
fact were not. In nature, ant colonies are prime examples of such a ‘design without
designers’ phenomenon (Gordon, 1999).

2.6.3.4 No requirement for 'global' knowledge

Decentralized systems do not require a top-level party who is responsible for
acquiring and maintaining 'global knowledge' within the context of what may be a
dynamic, distributed, and highly interactive process. In the complex systems
literature, the idea of global knowledge is questioned on practical as well as on
theoretical grounds. In practice, it is often difficult for any one party to actually
have sufficient insight, and objectivity to acquire such knowledge. What
individual design agents 'know' tends to be influenced by their specific educational
and professional backgrounds. Usually this diversity of conceptual outlooks is
considered a positive feature of multi-disciplinary design teams. In theory, the
basic idea that there exists global knowledge that is qualitatively more reliable or
objective than the subjective knowledge that any single agent might acquire is also
questioned.

2.6.3.5 Multiple knowledge sources rather than singular ones

Designers of P2P applications tend to view on-line resources as something that
increase in quality with the increased diversity of these resources. For instance, if
a user is on the hunt for specific music files by a particular artist, it is probably
preferable to him if there are a variety of these types of files available for him to
download. In this situation, a little bit of data redundancy is also not a bad thing.
With diversity of data resources, of course there is the possibility that the quality
of some of these resources may be inadequate.

2.6.4 Disadvantages of distributed systems

2.6.4.1 Lack of a central representation

The most salient feature of distributed systems is that their control and data are
distributed. To maintain data integrity and consistency in distributed environments
is usually much more difficult, than in centralized situations (Ferber, 1999). Since
construction of centralized data models is often seen to be an important aspect of
collaborative design practice, it appears that P2P is best suited for tasks other than
the development of consistent and logical product representations.

2.6.4.2 Lack of central control

As described above, distributed systems suffer from the locality and limited
visibility of each agent’s perspective.

56.
2.6.4.3 Possibility of behavioral chaos

Distributed systems since they lack central control, often exhibit non-linear
interactions, as noted by Hogg (1998). Obviously, in collaborative design, the goal
is usually to avoid such chaos.

2.6.5 Conclusions regarding centralization and decentralization

Situations that appear to favor the centralized approach to design are ones where
one party assumes a central, authoritative role. This, of course, happens frequently
in collaborative design. When design processes and the conceptual organization of
product models are well understood, and are unlikely to evolve significantly, this
suggests that local knowledge will be of less importance to a design process. When
design collaborators understand appropriate roles they should assume, rather than
having these roles defined dynamically within a design process, and when there is
a requirement for complete data reliability and coherence, this tends to favor
centralized design process approaches, in which designers usually have access to
standardized and centralized data models.

Situations that favor the decentralized approach are ones in which the intention
of the design team is to design in a highly innovative fashion, or when the design
problem presents great conceptual or technical challenges. In such cases suitable,
time-tested design approaches may not be available and team members may have
little conclusive knowledge about their current design problem, and may lack
experience working together as a design team.

2.7 Related work: design support and coordination systems

2.7.1 Adaptive workflow

Adaptive workflow involves a similar approach to that presented in this thesis.
Workflow applications are a popular type of software for which there are many
vendors, developers, and academic researchers (Workflow Management
Coalition, 2004). The importance of workflow lies in its centrality to many
business processes: how to inform people about what to do while they perform
their job, in a context-sensitive manner.

In the 1990s workflow was often used as part of a business process
reengineering exercise to automate ‘reengineered’ business processes.
The emphasis was on technology, i.e. applications and systems, with less
thought towards human interaction within the process and, as a result,
workflow developed a poor reputation. However, with the ability for
business processes to be modeled and monitored in real time, and for
those processes to be more easily changed in response to volatile market
trends and technology, interest is again growing in business process man-
agement (Prior, 2004, p.17).

Workflow management of processes requires a process definition tool, a
process execution engine, user and application interfaces to access and
action work requests, monitoring and management tools, and reporting

57.
capabilities... Process modeling tools allow business users to coordinate
business activities, people and applications, and to model routing of work
requests within a process and across processes (Prior, 2004, p.20-21).

The term Workflow Management actually refers to the logistics of busi-
ness processes. Workflow management does not focus on what informa-
tion is being passed in a business process, but more on the control of the
activity chain that is necessary to execute the business process (Aalst et
al., 1999, p.37).

Like coordination of work of any type workflow has top-down and bottom-up
control aspects. Some types of enterprise are inherently top-down oriented, while
others are more bottom-up. Most, such as collaborative design, have a
combination of the two.

In business, as in design, changes to processes are common and workflow
management systems must be able to adapt to these changes, in an intelligence
way. Adaptive workflow aims at providing process support like normal workflow
systems do, but in such a way that the system is able to deal with certain types of
changes (Aalst et al., 1999, p.36).

Change is seen an inevitable result of technological advances, changes in
business environments, new laws governing business, new market requirements,
or simply, unanticipated situations that require ad-hoc responses. These types of
ad-hoc changes are referred to in the workflow literature as ‘exceptions.’

Business processes such as those addressed in workflow modeling, usually have
a top-down emphasis. In business especially, employees expect to be told what to
do in many situations. In management, the job of a manager is to manage. This job
often entails definition of effective work processes that can benefit both the
enterprise’s customers as well its employees. This inherent top-down nature of
business management greatly affects the design of workflow systems meant for
this domain.

2.7.2 Action workflow approach to process coordination

The design of the groupware application the ‘Coordinator’ is based on a theory of
‘language as social action’ (Flores, Graves, Hartfield, & Winograd, 1992; Medina-
Mora, Winograd, Flores, & Flores, 1992). In its current commercial version, it
comprises a suite of workflow tools called ActionWorks:

After years of studying human interaction, Action Technologies, Inc.'s
founders, Terry Winograd, Ph.D. (Stanford) and Fernando Flores, Ph.D.
(UC Berkeley), mapped every state and act in which people can work to-
gether. Based on exhaustive research, they developed the closed-loop
Business Interaction Model (set forth in their 1983 book, Understanding
Computers and Cognition) (Winograd & Flores, 1987) that is at the heart
of ActionWorks Business Process Management software...The solution
coordinates interactions between an individual or group making a request
(the Customer) and the individual or group who is the recipient of that
request (the Performer) in four phases:

58.
1. Preparation: The Customer plans work to be completed by the Per-
former and issues a request. 2. Negotiation: The Customer and Performer
negotiate until they reach an agreement (commitment) about the work to
be fulfilled. 3. Performance: The Performer fulfils the agreement and re-
ports completion. 4. Acceptance: The Customer evaluates the work and
either declares satisfaction or points out what remains to be done to fulfill
the agreement (Action Technologies, 1998).

Figure 19 Commitment-based process loops found in ActionWorks (Action
Technologies, 1998).

This application is based on the idea that in organizations, processes between
people are often motivated by the commitments that have been made to perform
these actions. These commitments are the ‘glue’ that hold the social process
together. The processes’ life cycle ends when commitments are seen to be
satisfied, by the involved parties.

The work of Winograd in particular is based on a critique of approaches towards
technology and information systems. He proposes that management of
organizations does not depend on management of information, but on management
of interpersonal interactions (Winograd & Flores, 1987). This idea has foundations
in speech act theory (Bach, 1995; Searle, 1969), and studies of the pragmatics of
language use. In the ‘action approach’ to language (Clark, 1996) the interactive
processes that occur between users of language are studied. This is contrasted with
to the more traditional ‘product approach’ found in the work of Chomsky
(Chomsky, 1969). The product approach tends to study language use with respect
to the structure of grammatical utterances, in a way that sometimes abstracts them
from their situational meaning.

The Coordinator is therefore similar to the DPM application described later,
except for the following differences: 1. The Coordinator has a fixed protocol of
interaction—comprising the four states detailed above. 2. Users are not able to add
their own ‘loops’ to this protocol, and 3. The coordinator is not a distributed
system, but one based on client-server technology.

59.
2.7.3 Thesis by Tay-Sheng Jeng

Tay-Sheng Jeng’s Ph.D. thesis: ‘Design Coordination Modeling: A Distributed
Computer Environment for Managing Design Activities’ (Jeng, 1998) has similar
goals to this thesis. His goal is “to develop an effective multi-user computer
environment that supports design collaboration.”

He does this through proposing new representations for design process capable
of reasoning about design process, managing dependencies between activities, and
supporting dynamic coordination protocols for interaction. His emphasis is on
management of remote collaboration, and distributed coordination, under a
knowledge-based approach. The software developed is implemented using a
three-tier approach with application interface, model server, and server database
components.

The research sees visibility of coordination logic to be an important goal. A
design coordination model (DCM) that takes a rules-based approach that attempts
to ‘capture all meaningful process semantics used by designers to effectively
realize work.’ (p.2)

The thesis focuses on the coordination level of design-related processes. He
states that an important aspect of coordination is to bridge the gap between high-
level project scheduling, and actual design operations (p.5). The process of design
is seen as an activity in which tasks are articulated, and these tasks are composed
or decomposed into task hierarchies. Therefore, he sees design management as
fundamentally a top-down process in which a central authority assigns tasks for
others, rather than a self-organizing activity between peers. His software prototype
is called Design Back Office, which is described as a “distributed and persistent
object system focusing in the design of computer environments supporting,
managing, and controlling activities.” (p.70)

This work emphasizes coordination of design activities in a general way. How
it differs from this thesis is its assumption that a top-down process should always
be present to define and articulate design processes, rather than enabling bottom-
up processes to also perform these functions.

2.7.4 Peer-to-peer projects in JXTA
JXTA technology is a set of open protocols that allow any connected de-
vice on the network ranging from cell phones and wireless PDAs to PCs
and servers to communicate and collaborate in a P2P manner. JXTA
peers create a virtual network where any peer can interact with other
peers and resources directly even when some of the peers and resources
are behind firewalls and NATs, or are on different network transports
(JXTA, 2004).

There are many developments and research projects, in various stages of
completion, under the JXTA umbrella. At the moment there appear to be no
JXTA-based P2P applications under development that specifically address the
design domain, nor ones that attempt to create structured role-based interactions,
as described in this thesis. The examples below though give one a flavor of

60.
applications that the JXTA community are working on, and which do have some
relevance to the current research.

2.7.4.1 Jxcube: Jxta eXtreme Cube - Fully Distributed Collaboration
Platform

JXCube is a fully distributed collaborative application that enables users
to collaborate, using various functions such as chat, messenger, file shar-
ing or schedule management. It adopts a group-based communication
style. Once a user joins in the group, the group space will be given. Each
collaborative function added into JXCube is deployed to that group
space. Features: 1. No explicit servers are needed. 2. collaborative func-
tions can be added in plug-in form. 3. users can use same id on different
machines (clone peer). 4. user can check other user's presence in real
time. 5. support for auto configuration. 6. provide for the mediation ser-
vice that mediate synchronization, consistency, sequencing, delay differ-
ences (Jxcube, 2004).

2.7.4.2 P2pconference: A tool to conduct remote, text-based conferences

P2PConference is a tool developed using the Java binding of the JXTA
P2P platform. It is based on an existing project, eWorkshop, from Ce-
BASE. While it uses a web-based, chat application, eWorkshop is struc-
tured to accommodate the needs of a workshop without becoming an un-
constrained, on-line chat discussion. Goal: The original project's main
idea is to develop a simple, web-based, collaboration tool to organize and
conduct remote, text-based workshops, in order to synthesize knowledge
from a group of invited experts. Assuming that direct, face-to-face dis-
cussion cannot be totally avoided or replaced by the remote, text-based
one, eWorkshop proved it can be effectively used to reduce the number
of real meetings (and the economic costs they imply) by running several
eWorkshops and, eventually, one or more unavoidable, real workshops
(P2pconference, 2004).

2.7.4.3 AngeloPeerRendezvous: p2p-based software for intra-enterprise
communication

A complete p2p based software for intra-enterprise communication. The
motivation for doing this project is that companies disallow/discourage
the use of instant messengers like MSN and Yahoo and though there exist
custom made software for intra enterprise communication, they are ex-
tremely expensive. So we have developed Peer Rendezvous, which is
open-source software built on the JXTA platform for intra-enterprise
communication purposes. Currently, Peer Rendezvous supports the fol-
lowing features: 1. Instant Messaging with Buddy List capability. 2. Off-
line Messaging. 3. Event Notification. 4. Bulletin Board. 5. Discussion
Board. Peer Rendezvous was undertaken as a part of the Distributed Sys-
tems (DS) course at Carnegie Mellon University (CMU) this spring (An-
geloPeerRendezvous, 2004).

2.7.4.4 Coalesce: A seedbed for growing ideas

The goal of this group is to track down, assemble and use the best avail-
able tools to catalyze creative thinking in virtual communities... Our oth-

61.
er strong interest is in A.I., which we see as having an important role to
play in aggregating and coalescing ideas, and providing relevant content
links via trainable search agents. We are looking to synergise with other
project developers with hopeful advantage to all involved projects, ac-
cording to the principle of social synergy (Coalesce, 2004).

62.

63.
3 Application requirements

3.1 Introduction
Prior to this chapter relevant background research has been presented. However,
there is yet no definition of application requirements, use cases, or required
objects. By the end of this chapter conceptual requirements for the application are
defined. Use cases and objects used for implementation are defined in Chapter 4.

3.1.1 Application content

This research concerns itself with design process support: how to support
designers as they go about their jobs as designers. Emphasis is on the interactive,
interpersonal aspects of collaborative design, and the need to coordinate the action
that takes place between people working together on a design team. Several inter-
related ideas have been presented that need to be translated into software
requirements:

1. The idea that design coordination requires communication between design
team members. This communication helps to create a social context that pro-
vides useful information.

2. The need to provide designers, on a real-time basis, representations of the
tasks they need to perform.

3. The need to represent the state of tasks, and to inform the user at all times what
action is required, dependent on this state.

4. The usefulness of structured representations of tasks, to help organize the de-
sign process.

As requirements are discussed, they are enumerated in summaries. Once the
overall conceptual approach to the domain is discussed, required actors and use
cases will be described in the next chapter.

3.1.2 Application development method

Software development method used is based on a ‘use-case driven’ approach in
which the needs of a software application’s users are taken to be of paramount
importance to software design (Jacobson, Christerson, Jonsson, & Overgaard,
1992). The primary description of users’ needs using this method is the ‘Use Case’
(Jacobson, 1995). This software development method is sometimes referred to as
‘OOSE’—an acronym for Object Oriented Software Engineering—the title of
Jacobson’s book (1992). OOSE is based-on a late-commitment strategy, such that
requirements are well defined and well understood before specific software
implementations are considered and decided upon. This means that requirements
analyses can become useful analytical tools, even if these requirements are not
subsequently translated into software applications.

64.
OOSE ideas have largely been incorporated and standardized in UML, which is
now the industry standard as a general purpose software design methodology
(Oestereich, 1999). The following chapters document an abbreviated version of
the OOSE process with the most salient decisions and aspects presented:

Chapter 3: Description of requirements in a general and abstract way, that
avoids dealing with particular software, or software implementation issues.

Chapter 4: Description of how a potential user will interact with the proposed
system: This describes actors and use cases—how users interact with the proposed
system, as described in OOSE. This forms a shortened version of the
‘requirements model’ found in OOSE.

Chapter 5: A design and implementation model that describes specific design
decisions and implementation-specific issues. This is similar to the ‘design and
implementation model’ found in OOSE.

3.2 Creation of a social context

3.2.1 Complex processes and distributed control

Design teams are subject to a variety of control mechanisms, which stem from
various contractual, legal, and professional commitments. Sometimes, clients in a
design process are dominant, and may steer the design process according to their
own specific goals. As clients and their representatives generally pay the bills in
collaborative design, such a situation is not uncommon.

Often, though in collaborative design a dominant party has neither the desire nor
the ability to control a design process completely, and design team members must
work together to come to some mutual understanding of what goals are appropriate
in their current design context. This process of cooperation involves
communication between actors. If successful, leads to a perception within the
group of the growth of mutually-held common understandings, or ‘common
ground’ (Clark, 1996, p.12).

Req’t 1 Enable design team members to interact in a flexible and agile way,
without assuming, a-priori, that certain role-players necessarily have
the means or desire to control the process. However, do not assume
collaborative design ought to necessarily be a ‘democracy.’

3.2.2 Process management involves communication of process content
between involved parties

In design teams, especially ones with decentralized configurations, it is important
that designers are able to communicate with each other easily such that their
common design work is well coordinated. The current system focuses on
representation of design processes. Therefore, the process content it communicates
between these parties is computable representations of processes.

65.
When communicating design information between designers, it is important to
select its recipients carefully, in order to avoid inundating people with possibly
irrelevant design information. There are two ways of approaching the issue of who
to send information to in a design team: 1. Communicate directly to those who you
know have an interest in these processes, or 2. Communicate to an open forum in
which these processes are discussed. The first approach maximizes security of
information and only sends it to particular parties, while the second tends to create
a more open ‘peer-reviewed’ social context that can be helpful in coordinating
work (Cumming, 2003).

Req’t 2 Enable users to communicate information relevant to design processes.
Req’t 3 Maximize the chance of creating ‘common ground’ by having people

communicate in a public or semi-public forum, rather than privately
between individuals.

3.2.3 Collaborative design processes involve ‘stakeholders’ assuming roles

Design processes exist in social environments, and may involve many parties
playing the roles of:

Client
Someone who want tasks to be performed by others, for the client’s benefit.

Performer
Someone wanting to perform tasks for others, and to benefit in some manner for
successful performance.

Observer
Someone involved in a task, but not directly as a client or performer.

Author
A person who originally writes or articulates the content of process
representations.

The above list is not exhaustive of course. Design projects often have particular
technical and administrative requirements that can multiply the number of
stakeholders, and therefore the number of required roles considerably. These actor
categories are similar to those found in the interactive groupware tool described
in: (Medina-Mora et al., 1992).

In routine collaborative design processes, role such as architect, client, structural
engineering consultant, mechanical engineering consultant, and statutory official,
etc. are commonly found. In non-routine design work, a certain role may not be
anticipated, but suddenly emerge as a result of a design decision, or because of the
discovery of a technical problem. For example, if a design team decides that a
cable-supported roof is the most appropriate way to cover a sports arena, then the
role of ‘cable-supported roof consultant’ may suddenly arise.

Some authority can either assign roles, or the role-players themselves can
assume them. With a distributed approach in which no higher authority is
necessarily assumed, users should be in the position to judge for themselves
whether they should be involved in a process or not. As in most professional and

66.
business relationships, involvement in a design team on the part of the various
parties is voluntary. Presumably they interact on the basis of their own perceived
self-interest. Therefore, assumption of a role should be the responsibility of the
user.

Users express their involvement in a task by assuming roles in it. Therefore,
knowing which roles have been assumed by which actors, is an important piece of
information needed for users, to help coordinate the work they do together.

In many design projects, especially ones with a non-routine nature, or with
complex or emergent technical requirements, there may be a complex mapping of
roles to various actors, that may change during a design process: 1. People may
play more than one role, at the same time, or during different phases of a design
process, 2. Certain roles may be assumed by more than one actor, 3. The roles to
be filled in a design process may not be clear from the outset of a process, but may
emerge only once the process is underway, 4. Conventional role names, if they
exist, may not necessarily be suitable descriptions of the actions a particular actor
may perform.

Figure 20 UML diagram of peers and their roles.

Req’t 4 Enable users to express their involvement in a task by assuming roles
in it.

Req’t 5 Inform users of the roles they have assumed for each task.
Req’t 6 Users should be able to add any roles that describe their involvement.

The application should suggest conventional roles, but also handle non
pre-conceived roles supplied by users.

Req’t 7 Enable actors to assume one, or multiple roles for a particular task.
Req’t 8 Allow roles to be assumed by multiple actors.
Req’t 9 Enable actors to change the roles they assume during a design process.
Req’t 10 Roles that people assume should be public knowledge to all users of the

system.
Req’t 11 Users should only be able to assume roles for themselves, but not for

others.

3.3 Structured representations in design
Deep hierarchies of products, processes, and people can represent collaborative
design. The trees, or networks that these descriptions form, can be ordered by
various relations such as: ‘a child of’, ‘contained by’, ‘a component part of’, ‘an
interacting component to’, ‘an employee of’, ‘reports to’, ‘is paid by’, ‘a proper
subset of’, etc.

Peer Role

may assume 0..*

is assumed by 0..*

67.
3.3.1 Product hierarchies

Product hierarchies are useful in describing the conceptual organization of design
artifacts. Such descriptions are useful for design, for reorganization of concepts
and configuration, and for understanding the quantities of materials in designed
artifacts.

Figure 21 A product hierarchy, under the relation ‘componentOf.’

3.3.2 Process Hierarchies

Process hierarchies are useful in representing a conceptual organization of
processes. Often these are containment hierarchies in which top-level categories
represent wrappers for lower level task leaves.

Process hierarchies are informative as they can provide clear categorization of
process stages. However, process hierarchies can represent a burden, and a barrier
to opportunistic behaviors, if the cost of reorganizing them to deal with unforeseen
contingencies is too high. Therefore, unless the cost of re-planning such process
hierarchies is quite low, they tend to be best suited to processes that are well
understood, and are unlikely to change substantially.

Automobile (root)

Chassis

Power system

Body

Infill panels

Frame

Stress-bearing
panels

Windows

Body panels

Doors

Fuel system

Engine

Engine controls

68.
Figure 22 A process hierarchy, under the relation ‘doBefore.’

3.3.3 Organizational hierarchies

Organizational hierarchies show various types of relations between members of an
organization, such as: ‘employedBy’, ‘reportsTo’, or ‘isSupervisedBy.’

Figure 23 An organizational hierarchy under the relation ‘reportsTo.’

3.4 Changing state of design entities

3.4.1 Design entities defined

Two salient process-related concepts found in collaborative design are:

Tasks: descriptions of activities to be performed to complete a design project.

Products: descriptions of the physical configurations of designed objects.
Traditionally, one of the primary tasks of designers is to produce design product
descriptions.

Tasks and products are intertwined in design: if a designer completes a design
task, a design product may reflect this work, and vice versa. Views of tasks and
products are not sufficient on their own to fully describe what goes in a design
process. For instance, descriptions of the state changes of a product may omit what
occurred to motivate of these changes, while task state descriptions may be

Build formwork

Construct
foundation base

Pour foundations
(root)

Clear area of
debris

Remove all
unused formwork

Dig hole to
required depth

Reinforce
formwork

VP Sales Sales manager

President (root) VP Production Production
manager

VP Quality control

Head product
Testing

Test manager

69.
insufficient to give an idea of what the design, that is a product description of the
design, looks like at each stage.

To capture the richness of a collaborative design process or to record what was
done and why it was done, both tasks and products must be managed. Tasks and
products are seen as two mutually dependent entities naturally created within a
collaborative design process. Design entities are entities that have explicit states,
determined on a real-time basis.

Req’t 12 Track both products and tasks, considered as state-changeable design
entities. Both are needed to represent and manage collaborative design
processes.

Figure 24 Interdependency of tasks and products in design descriptions.

3.4.2 Entities must be able to change state

Process support should not only include the exchange of process representations,
but should also include some indication what state these representations are at any
given time. It is important for all those with an interest in this process, to be
informed, for instance, whether a task was begun and completed on time, and
whether it was performed in a manner that might satisfy all its ‘stakeholders.’ In a
distributed, collaborative environment, the people who must ultimately decide
such state-related issues are the stakeholders themselves.

Collaborative design is normally a phased activity, in which tasks and products,
if they progress, go past milestones that are either conventional to standard design
contracts, or are some kind of custom state configuration devised by the design
team. For example, once a design team has agreed on a basic design approach for
a project, they may agree that the project move from the ‘preliminary design’ to
the ‘detailed design’ phase. This transition may be marked with presentations to
the client, and with agreements between client and architect that the transition is
justified.

Changes in the state of design entities demonstrate that a collaborative design
process of which they are a part is moving forward. Therefore, the collaborative
design process can be said to be the process of encouraging design-related state-
changeable entities (tasks and products), to change their state.

Req’t 13 Design entities must be able to change their state in order to capture the
dynamism of collaborative design.

Tasks Products

dependent on

dependent on

70.
3.4.3 Explicit state change mechanisms for design entities

In order to determine the state of design entities, explicit state change mechanisms
must be in place. All design entities should have explicit states that can be
dynamically determined. In this application these mechanisms are based on a Petri
net representational approach in which both states and state transitions are
explicitly represented. With a Petri net approach, an entity’s state is governed by
whether specific named transitions within a state model are enabled.

Req’t 14 Provide explicit state change mechanisms based on Petri net
formalisms.

Figure 25 State change based on Petri net-based constraints in which incoming arrows
represent constraints.

3.4.4 Role, input and policy attributes for design entities

In order to enable a Petri net-based state mechanism to function, the following
attributes are required, which inform the nature of design entities.

Role
A term that describes a particular perspective that a user assumes when helping to
manage a design entity.

Input
Notification from a user, who has assumed a particular role in a design entity that
the current transition for a design entity should be enabled, in the opinion of the
user.

Policy
A constraint specification stating that a transition of a design entity must have
input from a specific role in order for the transition to be enabled.

This division is based on the following ideas:

1. The main task for users when managing a design entity is for them to give
their opinion whether the design entity is in the position to change its state.

2. Roles that users play should be separated from the users themselves. This en-
ables users to assume multiple roles when managing a design entity.

3. Input provided by users is balanced by the constraint Policies that may exist
for each state transition of a design entity. Policies represent what inputs are

Incoming constraint links

Design entity state-transition loop

Transition to be enabled

71.
required for a single state transition, while Inputs represent inputs that users
are willing to provide.

All of the above should be implemented in a voluntary, non-prescriptive
fashion.

3.4.5 Basing state changes on user input

The most salient input that a design collaborator can make is to agree that a design
entity can change its state, and to communicate this agreement to others on the
design team. In normal design practice, making an input to a task may involve such
behaviors as attending meetings, completing design drawings, offering opinions,
approving design approaches, etc. State change may require much background
work, in addition to the social tasks of attending meetings and making agreements.

Req’t 15 Enable users to provide input based on whether design entities can
change their state, and to communicate this input to others on a design
team.

3.4.6 Linking and ‘bundling’ of entities

Having stakeholders make inputs to advance state can place a large burden on
users. If all design entities require input from many users, this may demand more
user input than some users may be willing to provide. Normally in design practice,
an entire project goes through a state change, for instance from preliminary, to
detailed design. What is often important for designers is some indication that the
project is progressing (and that the client is willing to continue employing the
design team). This progress is indicated by state changes to the whole project.
Therefore, there must be some way to ‘bundle’, or link design entities together
such that if one entity manages to get sufficient user input to change its state, then
dependent entities can also change their state as well.

For instance if a project changes into ‘detailed design’ this might imply that the
designers have considered, in a preliminary way, such things as site and building
planning, structural systems, overall style, and appropriate materials. Therefore, it
should be possible with a single coordinated input from users, for many entities to
change their state as a result of one entity changing its state. In this way the input
of users can be leveraged or multiplied by linking their action automatically to
other actions.

Note that when we talk of a project here, it concerns two concepts: one of linking
design entities and their state-change behaviors, and another of organizing design
entities into structured entities, such that users can view them in a conceptually
ordered way. Both of these requirements can be implemented separately, since
conceptually they are separate issues.

Req’t 16 Enable the state change of design entities to be linked with the state
change of other design entities.

72.
3.4.7 Socially mediated and automated state change

The enabling of transitions of design entities can be done in two ways: one is based
on the inputs of stakeholders who elect to participate in these design entities, while
another is based on the state of other design entities to which these transitions are
linked.

3.4.7.1 Socially mediated state change

A socially mediated mechanism based on the inputs of participating peers, requires
that users participate with the system, and with each other, for design entities to
change their state. If there is no user participation, then there is no state change.
This appears suitable for design process coordination, since in many design
situations there may be no automated means of determining a design entity’s state,
without conferring with the stakeholders involved in the design entity.

3.4.7.2 Automated state change

The second is a mechanism in which the state change of one entity can be designed
to trigger state changes in other linked entities. Using this mechanism semi-
automated processes can be designed, which though ultimately based on user
inputs, could have complex, cascading effects on other design entities. Users can
choose to use the social-input features of the application, the semi-automated
features, or could use some mix of the two.

3.4.8 Task dependencies

In project management, tasks are structured in relation to other tasks. For example,
in a construction project, before pouring concrete it might be necessary to have the
concrete framework ready, and the electrical conduits in place.

These form the normal branch-out, branch-in dependencies found in project
management: Once one task is finished, others can proceed; or once many tasks
are finished, one specific task can proceed (Hendrickson & Au, 1990).

Req’t 17 Enable the representation of ‘branch-in’, and ‘branch-out’ tasks.

3.4.9 Variability of state-transition models

An important aspect to the design of an entity is the content of the state-transition
model to which the entity is linked. Often entities have conventional state models,
such as those specified by building design contracts that usually specify well-
defined state models, and include states such as ‘Requirements Gathering’,
‘Construction Review’, etc. These state models are common in design
management, and are promoted and standardized by national architectural
associations.

However, such models have the following qualities: First, they are not
universally applicable. They may be appropriate in a particular country, or region,
but none can be said to apply everywhere, as a matter of rational principle. Second,
there is no indication that some model—for instance the one promoted by the

73.
American Institute of Architects—is becoming a standard for all design practice,
in places outside the US. The cultural, business, and technical differences between
different places seem to discourage such standardization. Third, such models tend
to be specific to particular industries. The states that an architectural design project
might enter into may be quite distinct to those that a product design project might
enter into. Given the differences that might occur between local contexts and
situations, users should be in the position to set state-transition models themselves,
in order to specify the intended behavior of any design entity.

Req’t 18 State change models should depend on the entity, and users should be
able to specify different state-transition models for each design entity.

3.4.10 State models as simple state-transition loops

Simple loops are seen as the simplest state-transition model. In that: 1. Design
entity can only be in one state at a time, 2. States and transitions are connected by
single incoming and outgoing arcs, thus eliminating indeterminism or complexity
in transitions, and 3. Final states (e.g. ‘Retired’) connect with initial states (e.g.
‘New’). Looped state configurations encourage the idea that design entities are
intended to be reused, and that design processes are often recurrent ones.

Req’t 19 To reduce complexity and indeterminism in entity state changes,
represent state-transition models as simple state-transition loops.

3.5 Structured representations of design entities

3.5.1 Hierarchies of design representations

Deep, information-rich hierarchies can be very informative because they describe
concepts and configurations of arbitrary depth, and can have arbitrary degrees of
detail and refinement. Such descriptions can be essential in acquiring a conceptual
overview with respect to an entire artifact, organization, or process. For example,
contractors who construct buildings usually require an accurate picture of all the
parts in a building, and what their aggregate costs will be. Individual parts of
design configurations must be represented one way or another, when building
complex artifacts in a modern industrial society. In computational design,
information hierarchies are a standard way of doing this.

Req’t 20 Enable design entities to be arranged in information hierarchies, and
enable these hierarchies to be rearranged to reflect changing
circumstances.

74.
3.6 Communication between users

3.6.1 Communication of large amounts of information

Design coordination, both in general and with respect to the above requirements,
means that designers when working together on a design team communicate large
amounts of information. This information concerns both design entities such as
tasks and products, but also the interaction that characterize how the team works
together. This information concerns both individual designers communicating
between themselves in a point-to-point fashion, but is also needed for the team as
a whole to come to some common view of the design project’s progress.

It is assumed that this communication should be computer-mediated, and that it
uses the Internet as its transport network.

Req’t 21 Provide a communication network that connects users together, and
enables them to view the work of their design colleagues.

When people do work together over a computer network they need to have their
identities known to each other, and that there be some assurance that users are who
they say they are. This involves creation of online identities, in which there are
some security provisions such that users’ identities cannot be easily borrowed or
stolen.

Req’t 22 Enable users to create secure online identities.

3.6.2 Asynchronous contributions

Design teams, especially those working on complex, multi-disciplinary projects,
often have members from more than one country. This means that design teams
may be geographically distributed, and may work at different times during the day,
due to time-zone variations. Designers therefore, may not be in the position to
work synchronously on items of common interest with fellow members of their
design teams.

Req’t 23 Enable users to make asynchronous contributions to all domain
objects.

3.6.3 Decentralized configuration of software and information

With the geographical distribution of design team members, and with the
possibility of non-hierarchical nature of design team configurations, it may not be
clear where software components should be situated or where generated data
should be stored.

This tendency towards decentralization is given more power with a non-
prescriptive approach to design process management in which no party—with the
possible exception of the software developers themselves—are in a position of
power or authority with respect to other users.

75.
From the technical point of view however, the required functionality could be
completed in either a centralized or decentralized software implementation. From
a user’s point of view, such implementation details may not make any difference
to their experience, even those with concerns about social hierarchies and how
they are manifested in software.

From a developer’s point of view, however, in the current domain decentralized
software has some compelling advantages:

1. Ease of communication system development: P2P frameworks provide com-
munication facilities that link users, and enable them to build social forums
(i.e. peergroups) for their interactions.

2. Modularization of communication components: using P2P all of the commu-
nication requirements are implemented in the P2P component, and are sepa-
rated from other domain components such as those concerned with roles and
inputs from users.

3. Reduction of the number of software components: using P2P technologies,
only one software package has to deployed or maintained—the client por-
tion—rather than two or more.

76.

77.
4 Actors, use cases, and required objects

4.1 Introduction
This chapter describes the design of the application, in terms of software
development constructs such as actors and use cases, without specifying particular
software implementations or technologies.

4.2 System actors
The actor construct describes roles that a user can play when using the application.
Therefore, individual users could play various actor roles while using the
application. Actors represent the outside world when it interacts with the software.
As Jacobsen points out, unlike other objects in the application, an actor’s actions
are non-deterministic (Jacobson et al., 1992, p.127).

4.2.1 Peer
• Someone who uses the software in the context of a collaborative distributed

design team.
• A Peer models design entities, assumes roles in them, and provides inputs. This

user action enables them to change their state.
• Peers connect to other Peers, using this system and an Internet connection.

4.2.1.1 Discussion

How to define actor in a system is an important decision because choice of actors
indicates how processes are structured outside of the relatively abstract and ideal
world of the software system itself.

Currently there is only one class of user, or actor—that of the ‘Peer.’

A peer, which comes from the domain of P2P software, reflects the basic
approach found in P2P computing, which tends to collapse multiple user
categories into single ones. This approach is a result of the basic technology of P2P
computing, but also reflects non-technical concerns common in the P2P
community, such as reduction of the social stratification of users, encouragement
of open processes, and provision of resources to enable distributed phenomena to
self-organize. In general, technical systems of this sort, especially ones that deal
with distributed social processes, cannot be designed without consideration of
these types of non-technical issues.

However, the intention in this chapter is to describe a system design without
assuming that a particular implementation is required. Therefore, despite being
named ‘peer’ which suggests that P2P implementations should be used, it should
still be possible to implement the described system and its functionality using a
non-P2P implementation.

78.
What though, are the technical implications of making only class of user, for
collaborative design management? The technical implication is:

1. All functionalities are open to all peers, and that all peers have the same level
of privilege to access resources.

2. Peers provide all information that the system might acquire over time. There-
fore, there are no specialized ‘information providers’ with the specialized role
of providing usable and sanctioned information—information deemed to be
of adequate quality—for the system.

3. The peers do all maintenance of the system.

4.3 Use cases
These use cases are intended to give a high level overview of the system’s
functionality. They are intended to be implementation independent. Those below
are the most salient use cases—ones that give suggestions how to implement these
user action requirements.

4.3.1 Create design entity

A new design entity (for instance, a design task or product) is created by a Peer and
is communicated to other Peers.

Figure 26 Interaction diagram: Create design entity.

79.
4.3.1.1 Flow of Events

1. User highlights an existing EntityContainer in the ContainerTreeWindow, to
be used as the new entity’s container (a container can be implemented as a
node in a tree display).

2. User selects ‘New Entity’ from the application’s main menu.
3. A NewEntityForm opens. In this form:
4. The Peer specifies for the new design entity:

• Simple string attributes: name and description
• Date attributes, if appropriate: start date, finish date.
• StateTransitionModel the entity uses for its state changes.
• Policies: which roles must make input to each transition in the entity’s state-

transition model.
5. The Peer clicks ‘OK’ on the form once all its attributes are set.
6. The form closes, and the newly created DesignEntity is stored locally, and

communicated to other Peers indicating its current (i.e. initial) state.

4.3.1.2 Participating Objects

Peer, MainApp, DesignEntity, EntityContainer, NewEntityForm,
ContainerTreeWindow, DesignEntityTree, StateTransitionModel,
ContentStorage, Communicator

4.3.1.3 Pre-conditions

User has selected an existing EntityContainer in which to place the new design
entity.

4.3.1.4 Post-conditions

The design entity is stored locally and communicated remotely to other peers.

4.3.2 Create a structured container for process-related information

Create a general purpose EntityContainer that holds process-related information,
using a structured (recursive) representation, such as a tree display.

80.
Figure 27 Interaction diagram: Create a structured container for process-related
information.

4.3.2.1 Flow of Events

1. A Peer selects an existing EntityContainer in the ContainerTreeWindow. This
container acts as the parent node for the new container.

2. User selects ‘New Container’ from the Main App’s main menu.
3. The NewContainerForm opens.
4. User specifies a name and description for the EntityContainer.
5. User clicks ‘OK’ in the NewContainerForm.
6. This new EntityContainer is stored locally in ContentStorage, and communi-

cated to other Peers.
7. The ContainerTreeWindow is updated to show the newly created EntityCon-

tainer.

4.3.2.2 Participating Objects

Peer, Main App, EntityContainer, NewContainerForm, ContainerTreeWindow,
ContentStorage, Communicator.

4.3.2.3 Pre-conditions

An existing EntityContainer has been selected in the ContainerTreeWindow, to act
as the parent of the new EntityContainer.

4.3.2.4 Post-conditions

All connected Peers, including the author, are informed that a new EntityContainer
has been created by seeing it displayed in their ContainerTreeWindow.

81.
4.3.3 Assume role in a design entity

A Peer signs up for a role in an existing design entity. This role applies to all
transitions of this design entity.

Figure 28 Interaction diagram: Assume role in a design entity.

4.3.3.1 Flow of Events

1. User highlights an existing DesignEntity in the ContainerTreeWindow (a De-
signEntity can be implemented as a leaf node in a tree display).

2. User selects ‘New Role’ from the Main App’s main menu.
3. A NewRoleForm opens.
4. The user either selects an existing Role, or adds a new Role term.
5. The user clicks ‘OK’ and the NewRoleForm closes.
6. The new Role that links the DesignEntity to the role and its author is commu-

nicated to other Peers.
7. The DesignEntity’s display in the ContainerTreeWindow is updated to reflect

the new role addition.

4.3.3.2 Participating Objects

Peer, MainApp, DesignEntity, NewRoleForm, Role, RoleName,
DesignEntityTree, ContainerTreeWindow, Communicator.

4.3.3.3 Pre-conditions

The ContainerTreeWindow is open, and a DesignEntity is selected within it.

4.3.3.4 Post-conditions

Peers are informed that the Peer, who authored the new Role, has assumed a Role
in the entity.

82.
4.3.4 Make input for design entity state change

A Peer makes a (potentially state-changing) input for an existing design entity.
This input only applies to the current transition of the entity. The current transition
is that which is directly after its current state. This means that timing is an issue for
a Peer when making inputs.

Figure 29 Interaction diagram: Make input for design entity state change.

4.3.4.1 Flow of Events

1. User highlights an existing DesignEntity in the ContainerTreeWindow (a De-
signEntity can be implemented as a leaf node in a tree display).

2. User selects ‘New Input’ from the Main App’s main menu.
3. If the Peer has assumed roles in the entity, a NewInputForm opens; else a mes-

sage opens, which states that the user has not yet assumed a role in the entity,
and therefore is not qualified to make an input.

4. In the NewInputForm the roles that the user has assumed are shown.
5. The user selected each role he wishes to make an input for. Inputs are created

for each role selected.
6. These new Inputs are stored locally in ContentStorage, and are communicated

to other Peers.
7. These new inputs could possible change the entity’s state. If so, the entity’s

state display is updated in the ContainerTreeWindow.

4.3.4.2 Participating Objects

Peer, MainApp, DesignEntity, NewInputForm, Input, Policy,
DesignEntityTree, ContainerTreeWindow, ContentStorage, Communicator.

4.3.4.3 Pre-conditions

The ContainerTreeWindow is open, and a DesignEntity is selected within it.

83.
4.3.4.4 Post-conditions

Peers are informed that the Peer has made an input, and if this new input satisfies
remaining state-change constraints, the DesignEntity’s state is changed.

4.3.5 Link design entity to another design entity

Create a link that connects two design entities together. These links can either be
simple ‘information links’ in which the link attributes are simple strings, or
‘constraint links’ which link together specific state and transitions of
DesignEntities.

Figure 30 Interaction diagram: Link design entity to another design entity.

4.3.5.1 Flow of Events

1. A Peer selects an existing EntityContainer in the ContainerTreeWindow.
2. User selects ‘New Information Link’, or ‘New Constraint Link’ from the

Main App’s main menu.
3. The NewLinkForm opens.
4. User selects a ‘source’ DesignEntity, and a ‘target’ DesignEntity from two

separate ContainerTreeWindows displayed in the NewLinkForm.
5. If an information link, the user selects an existing link name, or creates a new

one; if a constraint link, then the use specifies the source state of the source
DesignEntity, and the target transition of the target DesignEntity needed to
define the ConstraintLink.

6. User clicks ‘OK’ in the NewLinkForm.

84.
7. This new Link is stored locally in ContentStorage, and communicated to other
Peers.

8. The ContainerTreeWindow is updated to show the newly created Link.

4.3.5.2 Participating Objects

Peer, MainApp, DesignEntity, EntityContainer, NewLinkForm, InformationLink,
ConstraintLink, DesignEntityTree, ContainerTreeWindow, ContentStorage,
Communicator.

4.3.5.3 Pre-conditions

An existing EntityContainer has been selected in the ContainerTreeWindow.

4.3.5.4 Post-conditions

All connected Peers, including the author, are informed that a new Link has been
created by seeing it displayed in their ContainerTreeWindow.

4.3.6 Create a state-transition model

Create a StateTransitionModel that specifies, the names and configuration of all
states and transitions that an entity can enter into. These models apply to the whole
of a design entity. Once a StateTransitionModel is linked to a DesignEntity, this
link cannot be modified.

Figure 31 Interaction diagram: Create a state-transition model.

85.
4.3.6.1 Flow of Events

1. User selects ‘New State Transition Model’ from the Main App’s main menu.
2. A PetriNetModelingApplication opens that enables the user to model using

places and transition—the basic objects found in Petri nets. The user is not
free to design any net he wishes—it must be in the form of a simple loop, and
may have other minor restrictions. An easy way to make a new
StateTransitionModel would be to modify an existing one, and then use ‘Save
As’ within the PetriNetModelingApplication.

3. Once the model is complete, the user saves it as a normal file on his computer.
4. He then selects ‘Convert State Transition Model into an Advertisement’, from

the Main App’s main menu.
5. The user specifies the file location of the newly created model, and it is con-

verted into a StateTransitionModelAdvertisment.
6. This new StateTransitionModelAdvertisment is stored locally, and communi-

cate to other Peers.
7. The ContainerTreeWindow is updated to show the newly created StateTran-

sitionModelAdvertisment.

4.3.6.2 Participating Objects

Peer, MainApp, StateTransitionModel, DesignEntity, NewInputForm,
DesignEntityTree, ContainerTreeWindow, FileChooserForm. PetriNetFile,
PetriNetAdvertisement, ContentStorage, Communicator.

4.3.6.3 Pre-conditions

None.

4.3.6.4 Post-conditions

All connected Peers, including the author, have access to an
StateTransitionModelAdvertisment that contains the same content as the Petri net
model itself. They can link this advertisement to new DesignEntities.

4.4 Required objects as described in use cases

4.4.1 Domain objects

4.4.1.1 ContentStorage

A data structure that provides local storage for process-related information. This
information is either created by a Peer, or is discovered online, such as Design
Entities, Roles, Inputs, and Links.

4.4.1.2 DesignEntity

A representation of a design task or a product that always has an explicit state. This
state is determined by the behavior of Peers who can assume roles in the entity,

86.
and make state-changing inputs to them. A DesignEntity’s state changes are
modeled by a state-transition model that is specified at its construction.

4.4.1.3 EntityContainer (Peergroup)

A data container that holds various types of process-related information.
EntityContainer can be implemented as a folder in a hierarchical tree display.

4.4.1.4 Input

Notification from a user, who has assumed a particular role in a design entity that
the current transition for a design entity should be enabled, in the opinion of the
user.

4.4.1.5 Link

A directed edge that links two design entities together. Links have a named value.
Links are of two types: information links, and constraint links. Information links
connect whole entities together, while constraint links connect the state of a source
entity to the transition of the target entity.

4.4.1.6 Peer

The user of the application. Peers are responsible for providing information for the
application, and for providing appropriate inputs, which allow DesignEntities to
change their state. Peers exchange process-related information between
themselves.

4.4.1.7 PetriNetAdvertisement

A text-based document exchanged between Peers that represents the content of a
state-transition model.

4.4.1.8 PetriNetFile

The binary file that represents a state-transition model for use by a Petri net
application. A PetriNetFile is used to create a PetriNetAdvertisement, which can
be shared between Peers.

4.4.1.9 Policy

A constraint specification stating that a transition of a design entity must have
input from a specific role, in order for the transition to be enabled.

4.4.1.10 Role

A name that describes a particular perspective that a user assumes when helping to
manage a design entity.

4.4.1.11 StateTransitionModel

A model that explicitly represents the states and transition that a DesignEntity can
enter into, throughout its life span. These models form simple closed state-

87.
transition loops. State-transition models can be modeled using Petri nets, which
explicitly model both states and transitions.

4.4.2 Interface Objects

4.4.2.1 ContainerTreeWindow

A window that displays a hierarchical representation of EntityContainers, and
shows the process-related information that EntityContainers can contain.

4.4.2.2 DesignEntityTree

The hierarchical tree representation that has EntityContainers as its nodes, and
various types of process-related information as its leaves.

4.4.2.3 FileChooserForm

A form that enables users to choose a binary file from a file directory.

4.4.2.4 NewContainerForm

A form that enables users to specify a name and description of a new
EntityContainer.

4.4.2.5 NewEntityForm

A form that enables a Peer to specify all needed attributes for a new DesignEntity.
The most important of these are its name, and the state-transition model that
governs its state changes.

4.4.2.6 NewInputForm

A form that enables a Peer to make a potentially state-changing input for a
DesignEntity, from the perspective of a Role that the Peer has previously assumed.

4.4.2.7 NewRoleForm

A form that enables a Peer to assume a Role in a DesignEntity. Peers can choose
existing role names, or they can create new ones.

4.4.2.8 Petri net Modeling Application

An application that enables a Peer to model and view state-transition loops.

4.4.3 Control Objects

4.4.3.1 Communicator

The object that enables process-related information to be communicated with
other Peers over the Internet.

88.
4.4.3.2 Main App

The application that provides users with access to needed forms to create all
required domain objects, and enables Peers to communicate with each other.

89.
5 Application design and implementation

5.1 What was implemented
The software implementation side of this research developed with the idea that
P2P software, and distributed processes in general, can be used and extended, to
serve the domain of design process management. Some ideas in the research could
be implemented using a variety of technologies, while others are dependent on the
P2P approach to make them viable.

5.1.1 Role of JXTA

The application is based on the open-source JXTA point-to-point (P2P) protocol-
based framework. It would be possible to build a traditional non-decentralized
client/server application using the same use cases of this dissertation. However,
JXTA and how it operates, is more in line with the basic intent of the dissertation,
which favors non-prescriptive and decentralized design communication and
coordination.

JXTA is an open-source development project of Sun Microsystems Inc. that
provides all the necessary infrastructure to build secure P2P applications in Java
and in other languages. The objectives of JXTA are:
• Interoperability: to enable different peer-to-peer systems and communities to

interact.
• Platform independence: to enable P2P communication between multiple/

diverse languages, systems, and networks.
• Ubiquity: to handle interactive communication between a wide range of digital

devices (Sun Microsystems, 2002).

The JXTA framework appears well designed and comprehensive from a
software engineering perspective. JXTA is also an active area of research and
development, with many active projects concerning various aspects of distributed
computing. Its open source nature enables easy customization and reuse of its
code. The current application leverages and expands the functionality of JXTA to
suit the domain of design process coordination.

5.1.2 Design Process Modeler (DPM) application

The DPM application is conceived as an application that enables users to model
and coordinate their design processes. This enables users to define collaboratively
the state of so-called design entities, such as Design Tasks and Products.

Users of the DPM application can customize the use of the application to suit
their particular design processes. One of the most important ways that users can
customize the application is the ability of users to define their own state-transition
models (‘loops’) for each design entity they define.

90.
5.1.3 Peergroups

In JXTA, peers can self-organize into groups called peergroups. Peergroups are
used as venues of interaction for groups of stakeholders interested in various
aspects of a design project. Within the bounds of peergroups, all communication
and data exchange takes place. Using peergroups, member peers are able to easily
share specialized information. To do this peers must become members of the
peergroup.

Peergroups enable the creation of a well-defined scoping, security, and
monitoring environment (Oaks et al., 2002). Without the construct of a peergroup,
sharing information within a distributed community is much less efficient, since
then all information would have to be shared with all known peers, rather than a
smaller subset of these peers.

5.1.3.1 Peergroups as data containers and online social venues

Peergroups enable the integration of both design data, and people who have some
kind of interest or stake in these design data. Types of entities that can be published
and displayed in peergroups include:
• member peers of the peergroup,
• sub-peergroups of the peergroup,
• advertisements that represent design entities,
• links that define both so-called information and constraint links between design

entities in the peergroup, and
• Petri net models that represent state-transition loops.

In this application, hierarchical peergroups are used as containers for design
data. The hierarchies described by peergroups do not have any formal semantics
associated with them, beyond that which the users choose to apply to them.

5.1.3.2 Peergroups as forum for advertisements

In JXTA, documents called ‘advertisements’ are used to represent persistent and
semi-persistent design data. Advertisements are the principal data communicated
between peers. In JXTA, advertisements are implemented as text-based XML-
encoded documents. An important core of the functionality of JXTA is the
conversion of these XML documents from a simple text-based form, which is
stored and communicated between peers to a Java (or other language) object
representation that is used internally within JXTA-based applications.

The data foundation of this application is various advertisement representations.
These are sub-classes of the advertisement classes found in JXTA. All entities that
form the contents of peergroups have advertisements associated with them. For
example, Peers are represented by PeerAdvertisements, DesignEntities by
DesignEntityAdvertisements, and Links by LinkAdvertisements. These
advertisements are communicated in a P2P manner between peers.

There are two basic ways of sending information in a P2P system: peers can
send messages to other peers directly, or peers can publish advertisements within
peergroups, where other peers who might frequent these peergroups can view

91.
them. In the message-passing approach, users communicate with individuals,
while with the peergroup and advertisement approach users communicate with
self-organizing social forums, represented by the peergroup. The DPM application
uses the peergroup and advertisement approach.

5.1.3.3 DPM peergroups are distinguished

DPM instantiates a peergroup called ‘dpmNet’ when it opens. All DPM users join
the same DPM peergroup (rather than a peergroup with simply the same name).
To do this DPM must have access to a persistent, that is text-based record of the
peergroup ID for this DPM peergroup, in order to re-create it each time a user
opens the DPM application. In JXTA various entities are distinguished by unique
IDs, rather than by their names.

5.1.4 Peergroup hierarchies

DPM enables users to build peergroup hierarchies and thereby define areas of
interest in a structured, organized way. Users describe these areas of interest by the
names they give to peergroups, and sub-peergroups. Hierarchically structured
peergroups combine the conceptual modeling capability of hierarchies—which
form a core of computational support for design, with the ability for people to self-
organize these peergroups into any configuration they wish.

Peergroups can form hierarchical structures of arbitrary depth. They can provide
a social environment in which to share a wide variety of information. They can
thus serve as a metaphorical ‘place’ in which various types of information can be
shared between self-selected parties.

The application does not however prescribe a tree-structuring relation that
would lend formal meanings to peergroup hierarchies. This is up to users to do
themselves. The application does not infer any semantics from the peergroup a
design entity is located. Therefore, hierarchies created by users are descriptive,
informal ones, rather than ones with formal properties, such as inheritance. This
informality causes no confusion within JXTA itself, since it identifies each
peergroup as a unique entity through reference to its unique ID.

This informal approach gives users the freedom to label peergroups any way
they wish, and also enables them to experiment with various hierarchical
structures. On the negative side, it enables users to create hierarchies that may be
arranged in a disorderly, or conceptually confusing manner. As the information
sciences clearly show, formation of conceptually clear information categorization
schemes is surprisingly difficult—even for professionals—and requires iterated
processes of negotiation between interested parties before they are properly
designed (Bowker & Star, 1999).

5.1.4.1 Hierarchical aspects of peergroups found in JXTA

Hierarchical aspects of a DPM peergroup take their basic hierarchical nature from
JXTA. In JXTA, all peergroups are created based on a parent peergroup. DPM
uses this fact to create and re-create hierarchical peergroups. Therefore, peergroup
hierarchies are built into JXTA’s implementation, although JXTA applications

92.
generally do not yet make use of this feature. In order to create any peergroup in
JXTA you must first have an existing peergroup to act as its parent. A method of
the parent peergroup called newGroup() is used. For example:

PeerGroup newChildPeerGroup =
parentPG.newGroup(childPgAdv);

Here, a new peergroup called ‘newChildPeerGroup’ is created using a
peergroup advertisement called ‘childPgAdv.’

A peergroup advertisement describes a peer group, and references additional
information required for instantiating it. The PeerGroup method newGroup
performs the task of instantiating a PeerGroup given its advertisement. Peergroups
are formed as a collection of peers that have agreed upon a common set of services.
Each peer group is assigned a unique peer group ID and a peer group
advertisement. The peer group advertisement contains a ModuleSpecID, which
refers to a module specification for this peer group (Sun Microsystems, 2002).

Once a new child peergroup is created, it can be published both locally and
remotely. This involves a peergroup advertisement being created by JXTA and
communicating it to other peers.

5.1.5 State change mechanisms

5.1.5.1 Two separate state constraint mechanisms

Design entities change state according to two separate constraint mechanisms. If
both of these mechanisms provide no constraint, then the entity is allowed to
change state to its ‘next state.’ This next state is determined by the content of a
state-transition loop that is linked to the entity by its author at the time of its
construction.

The first mechanism involves so-called Input Constraints, while the second
involves Link Constraints. Input constraints are ones that require peer input to an
entity, while link constraints are constraints imposed by the state of other design
entities.

Links constraints specify that a linked object (the source of the link) must attain
a certain state before a specific transition of an entity (the target of the link) can be
enabled. For example, a peer could specify that a task must be ‘retired’ (fully
completed) before another task’s transition ‘agree to perform’ can be enabled.
Link constraints do not need user input except when they are first defined, and as
implemented enable a fine degree of constraint specification. This enables a
greater level of control then simply stating a task must be ‘done’ before another
can be started.

93.
Figure 32 Link constraints.

Input constraints, on the other hand, require user monitoring and input to work.
They are similar to idealized design meetings, in which various peers who have
assumed roles, provide input whether an entity can change its state. Such inputs
may be based on considered opinion and technical analysis, or based on less
rational grounds such as peer pressure from other design team members. This
aspect is seen as a useful capability in architectural design, where there is often no
automated or machine-assisted way of determining the state of design entities,
without the input of the entity’s stakeholders.

Figure 33 Input constraints that specify which roles must contribute to specific transitions
of an entity’s state-transition loop.

Each time a design entity is displayed on the screen, typically as a leaf item in a
tree display, DPM checks whether the entity’s state can change. If it can, then a
so-called HistoryAdvertisement is created which documents the change of state
and the peers who played a role in this state change. This advertisement is then
published both locally (into the peer’s local cache) and remotely (communicated
and propagated to all peers that the peer knows about). The user is able to gain

Incoming linked entities

Outgoing linked
entity

Design entity

roleA
roleC

roleC
roleA
roleB
roleC

roleA

roleA
roleX
roleY

roleA
roleB
roleC

94.
immediate feedback to his input, whether his input has effected a state change for
a design entity.

/**Considers whether state can change from both a local
perspective (entity's inputs and roles), and links from other
design entities */

 public boolean stateCanChange() {
 return

stateCanChangeLinks()
 &&

stateCanChangeInputs();
}

Figure 34 Top-level state change method from DPM’s Java code.

5.1.5.2 Input constraints

Input constraints involve the constructs of Roles, Policies, and Inputs. These
concepts are implemented as PolicyAdvertisements, RoleAdvertisements, and
InputAdvertisements respectively.

Roles
Roles are the description of parts (roles) that a peer can play in a design entity, such
as ‘performer’ and ‘client.’ Roles can be applied to any type of design entity. User
can create any role name they require and these roles apply to the whole entity, not
to specific transition or states within it. The user is informed of all roles he plays
in each design entity. The application has no notion of the semantics of these roles
beyond their representation as simple strings.

Policies
Policies are defined as the Roles that must provide input before a particular design
entity transition can be enabled. As currently implemented in DPM, anyone
assuming a relevant role can satisfy a policy, rather than requiring every user who
has assumed the role to make input. Policies are under full user control. User can
specify them at entity creation, or add to them later. However, if a Policy is added
to an entity’s transition that has already been enabled, they will have no
constraining effect.

Inputs
Inputs are notification from a specific peer who has assumed a particular role in a
design entity, that in the peer’s opinion, the entity can change state. A peer can
only make inputs for design entities for which he has already assumed a role. An
input for which a peer is qualified to make, due to the role he has previously
assumed, is known internally in the application’s code as a ‘valid input.’

5.1.6 Process of defining input constraints

Assuming that a design entity exists which is of interest to a peer, the typical input
procedure for the user comprises:

95.
1. A peer assumes a role in the entity (otherwise the peer is unable to make an
Input). The peer can assume one role or multiple roles for an entity.

2. The peer attempts to make an input to the design entity. The Policy Input
Form determines whether the peer is qualified to make an Input and to which
transition an Input is required. The application is configured to allow Inputs
only for the next transition the entity is waiting to be enabled. This is always
the next transition after the entity’s current state. Recall that with Petri nets
transitions are always connected to states (places), and vice versa.

3. If the peer has assumed multiple roles, he can make inputs for all of the roles
at the same time, or one at a time. The normal process is for separate peers to
assume various roles and for them to make separate inputs asynchronously
from distributed locations.

4. The peer clicks on the roles that he wishes to provide an input and closes the
Input form.

5. The application redraws the tree in which the entity is displayed for the user.
It determines, whenever trees are displayed, whether sufficient inputs are
present to allow the entity to advance its state. Therefore the user receives im-
mediate feedback from his input action.

5.1.6.1 Link constraints

Links provide a constraint similar to policy constraints. They inform the
application whether a particular transition in a particular design entity can be
enabled. To define a link constraint, users must define two things:

Source state
The state a particular design entity (called the source entity) must attain for the
constraint to be satisfied.

Target transition
The transition of a particular design entity (called the target entity) for the
constraint to be relevant. As with Policy constraints, link constraints do not
become relevant until the target entity attains the state situated just prior the
transition named in the constraint. Before the target entity’s transition is the one
waiting to be enabled, then the link constraint provides no restriction.

Once that transition is the ‘next transition’, then the application determines
whether the source entity is at or before the source state named in the constraint.
If it is not, then the entity is prevented from changing state.

96.
Figure 35 Link constraint.

5.1.6.2 Process of defining link constraints

The typical link constraint procedure for the user comprises:

1. Select a node in a tree display that represents a Peergroup.
2. The Link form opens which shows two panels: the left hand to show the

Source entity, while the right one will describe the Target entity. Both show
tree structures that can be browsed to the entities to serve as sources and tar-
gets.

3. The source state, and the target transitions are chosen from drop-down lists.
The content of these lists is updated to show the states and transitions that are
a part of these entities. Each entity carries its own state-transition loop. There-
fore, the drop-down lists are updated to reflect the loops of the selected source
and target entities.

4. The user after having chosen the four variables: source entity, source state,
target entity, and target transition, clicks on a button and the link constraint is
created as a LinkAdvertisement. This advertisement is published both locally
and remotely.

5.1.7 Information links

The application provides two types of links: constraint links and information links.
Constraint links, as described above, and information links that link two entities
by a simple link term. Constraint links have a linking term is known internally to
the application as a ‘doBefore.’ This is similar to process plans which prescribe
some tasks should be ‘done before’ other ones.

Information links link two design entities, but do not constrain their state
change. They represent simple relations between two entities.

Information links can be used for a variety of purposes. For example, users could
build parent-child hierarchies between tasks, by creating information links
between parents and children (using ‘childOf’ as a link term), or build whole-part
hierarchies that links wholes with their parts (using ‘partOf’ as a link term). Such
hierarchies could be quite informative for users, however, as with hierarchical
peergroups, no semantics are currently inferred from such links.

Source entity Target entity

Source state

Target transition

Link

97.
Information links are represented with three parts:

1. A source entity
2. A link string that defines the link. For example: ‘related to’, ‘composed of’,

‘part of’, ‘depends on’, etc.
3. A target entity

Users are free to add any kind of link string they wish. Therefore information
links define labelled edges between design entities, in which the entities are nodes
in a graph.

Information links have the advantage of linking two entities that may be situated
in distant peergroups, and connecting them in an easily accessible manner. This
can provide useful information for process coordination and planning.

5.1.8 Managing data with ‘Content Storage’

With this application there is need for management of the large amount of data—
XML-encoded advertisements—communicated between peers. This is
accomplished in the application using a custom data structure called Content
Storage. Content Storage is not a part of JXTA but was designed and implemented
by the author using the data structure resources of the Java language.

The Content Storage object is a composition of a HashMap, in which object
values are accessed using string keys, and a sorted TreeSet—that is a set (meaning
repeats are not allowed), which is sorted according to various types of
comparators. Comparators are objects in Java that define how to sort various types
of user-defined objects so they can be placed in a linear order (java.sun.com,
2004). This combination of a sorted set with a mapped access enables
advertisements to be ordered according to which peergroup they are a member,
and which design entities they concern.

Whenever advertisements are communicated in the application, they not only
make it to the local JXTA cache, but they are also placed in the user’s various
Content Storage instances. This speeds access to relevant data, that design entities
need to determine their current state in real-time. Maintaining sorted and easily
accessible ContentStorages has proven to be useful for taming the complexity of
managing advertisements—which are the core of the data representation used in
the application.

5.2 Implementation decisions and alternatives
The current application is the result of many design decision made at various
points during its design and implementation. These major decisions are
documented below due to reasons that: 1. they may be difficult for researchers to
infer the content of these decisions from either the application, or its code, and 2.
they could lead to other kinds of applications, and suggest future research agendas,
by taking different branches in this decision tree.

98.
5.2.1 Peergroups

5.2.1.1 Have one type of peergroup, then filter the display

Peergroups are used as general purpose containers for all various types of
information found in the application, such as Peers, DesignEntities, Links etc. An
alternative approach would be to specialize the peergroup class so that different
types would hold one type of information. For instance, one type of peergroup
could hold only Peers, another only Design Entities, etc. Instead of having
different types of peergroups holding only one type of thing, the approach taken
was to enable the user to filter the display such that the user can choose which
types of information are shown, for instance only Peers, etc.

5.2.1.2 Model design projects as peergroups

Both peergroups and design projects are seen simply as flexible containers for a
wide variety of design-related information. One type of peergroup could be
distinguished as a ‘design project’ type peergroup. This was not done, however,
since currently there are no behavioral differences identified between the concepts
of ‘peergroup’ and that of ‘design project.’ With no behavioral differences, there
is no compelling reason to distinguish them. This situation could change if one
wanted to add some differences. This could then be implemented by sub-classing
the PeerGroup class in JXTA. Therefore, users need to know that as far as the
author is concerned, if one wants to model a design project, then using a peergroup
is currently the most appropriate approach.

5.2.2 Stakeholder involvement: peers, roles, and policies

5.2.2.1 Apply roles to whole design entity rather than specific transitions
within it

In the current application, roles apply to the whole of a design entity, including all
of its state transitions. A more detailed degree of constraint specification could be
achieved if peers could assume roles for single transitions, rather than for whole
entities. It could be argued that with some design processes, people do assume
multiple roles depending on the state transition. It does however place a higher
burden on users to specify what these roles are for each transition. In the interest
of reducing user burdens, roles were limited to the whole entity. It would not entail
much change to the code however to make them specific to single transitions.

5.2.2.2 Enable users to add roles and policies after an entity’s creation

In DPM, roles describe a relationship between a peer and design entity, while
policies are in effect simple attributes of a design entity. With roles in DPM, it is
normal practice that one peer constructs a design entity, while a possibly different
peer later decides to participate in this design entity, by signing up for a role in it.
Therefore, the act of constructing a design entity is separate from the act of signing
up for a role in it, and can be performed at different times.

Policies, however, all could conceivably be done at the time of construction of
the design entity. However, this would mean that the peer who constructs a design

99.
entity be in the position to know what appropriate policies should be, at the time
of construction. It is difficult to decide at an entity’s creation what its policies
should be, for the entire life of that entity. It is quite conceivable that changing
circumstances, or evolving design team perspectives, may encourage adding
policies after the fact. Requirements that emerge without being anticipated are
quite common in design practice.

5.2.2.3 Suggest policies for each entity transition, rather than prescribe
them

Design entities can be assigned any state-transition loop. Therefore, policy
prescriptions that rely on the content of these loops are not possible, since users
have the freedom to assign any state-transition loop they wish, for any design
entity. All DPM can do, is to make policy suggestions, which users are free to
adapt to their own situation and purpose.

5.2.3 State change

5.2.3.1 Separate the content of state-transition loops from state change
mechanisms

With the application, the content of a state-transition loop and the mechanisms
used to change state are separate. This enables users to substitute their own loops
for the ones provided, without affecting the functioning of DPM’s state change
mechanism.

5.2.3.2 Enable each design entity to have different state-transition loops, if
desired

Each design entity has its own state-transition loop. This is a consequence of
separating the content of state change from its mechanism. It is a topic for future
research whether this approach provides users with excessive freedom or not.

An alternative approach would be to enable users to add various types of design
entities, which they could name, each with their own particular state-transition
loop, which users could not alter.

5.2.3.3 Enable users to design and specify their own state-transition loops

Giving users the freedom to specify different state-transition loops for design
entities requires that they also have the ability to design their own loops, within
DPM. Users can do this using the Petri net application Renew, which is built into
DPM (Renew, 2004).

5.2.3.4 Use internal Java code, instead of Petri nets, to change state

Currently, all state change is done using internal Java code, to which ordinary
users have no access. Algorithmically, a Petri net model that performs the same
state-constraining function could replace this code. By using Petri net model-
based state changes, users could conceivably have a graphical overview of the
state change process, and could design their own state change mechanisms.

100.
Actually, this Petri net-based approach was partially implemented. However,
this approach was not pursued due to concerns about performance—it was
unwieldy to open a Petri net each time one wanted to check if a DesignEntity could
change its state. This checking for state changes occurs extremely frequently in
DPM: every time a peergroup’s content is re-displayed. It was decided that users
would prefer adequate performance, and real-time assessment of state, rather than
visible representations of state-change mechanisms.

5.2.4 DPM’s single path approach

In DPM entities can only be at a single state within the loop process model
attached to the entity. This approach assumes that this single model has some
relevance to users. This could be called the ‘single path’ approach. The advantage
of this approach is that it is relatively straightforward to assess what state the entity
is in, despite the complexity of recording inputs from distributed peers.

5.2.4.1 Alternatives to the single path approach

An alternative approach would be to enable users to assign multiple models to a
single entity. Thus each entity could be in several well-defined states at a time.
However, this would increase the burden of the user to assume roles and make
input into several loops referenced to the same entity. It is unclear whether this
increase in complexity would provide comparable rewards for the user.

In DPM instead of many states for a single entity, the approach is to have many
entities with single states. If these multiple entities are to interact in process flows,
then they must be linked together using constraint links. An example of this is the
technique for modeling choice points in DPM.

5.2.5 Choice points

In process management systems entities often have choice points. Choice points
define what happens when a process model reaches a specific juncture. With
choice points entities can switch between various paths, depending on input either
from users, or from some control test.

Choice points are used to create a multiple-exclusion scope for a set of process
paths. Creating a choice point set of options means that selecting one option turns
off all other options in the set. This is similar to radio buttons in user interfaces,
where selecting one radio button disables all other buttons in the selection set.

DPM currently does not have an automated choice point feature—although it is
conceivable that this could be useful in future versions of the software. It is unclear
whether choice points are needed, and whether existing techniques in DPM don’t
provide adequate choice point functionality.

5.2.5.1 Choices that users of DPM can make

In the absence of automated choice points, users of DPM can still make the
following choices:

101.
1. Whether to participate in a particular entity by assuming a role or roles in it.
2. Whether to make input into a particular transition to enable a state change.
3. Whether to abandon or delete entities which she has authored, once they are

seen as unnecessary.

In DPM failure to do any of the above does not necessarily have any negative
consequences.

5.2.5.2 Choice points using available DPM features

A choice point in DPM involves making input with a chosen entity, and disabling
the possibility for making inputs into other entities that are part of an exclusion set.
One way that this can be implemented using DPM is to automatically abandon a
set of entities once a certain transition in a single entity is enabled. Such automatic
abandonment is a type of action that is not present in DPM. Users can manually
disable entities by abandoning them, deleting them, or failing to make inputs into
them. If users wish to model the choice point behavior such that this same effect
is assured by how entities and links are constructed, users can do the following:

1. Created multiple entities in DPM, and having as many entities as conceivable
output paths from an intended choice.

2. Add Choice Point entities. These entities have state-transition loops with two
states: choiceMade, and choiceNotMade. Their initial state is choiceNot-
Made.

3. In order to enable one entity, its linked Choice Point entity must be made in
its favor. This prevents the other entities from changing state due to the con-
straining cross-links shown below.

Figure 36 Choice point constructed using a mutual exclusion structure.

Creation of such links and entities could be automated, but it unclear what the
nature of this choice should be given the current structure of DPM.

In conclusion therefore, it remains unclear whether having automated choice
features is a needed feature, or whether current manual choice techniques are
sufficient.

ChoiceNotYetMade

ChoiceMade

makeChoice

Transition Option Set

102.
5.2.6 Security and privileges

5.2.6.1 Enable any user to contribute peergroups, roles, policies or inputs

Currently the application has no security in place other than the log-on procedure
in JXTA that gives users secure users names and passwords, and enables them to
access the JXTA system. This is basic level security and it applies to all JXTA-
based applications.

Users of DPM also have the capability of creating peergroups and design
entities, and adding roles, policies and inputs to these design entities. Additional
security procedures could conceivably be put in place to handle all these types of
user actions, to assure for instance that only qualified peers can make certain inputs
and create certain types of objects.

What prevents chaos in the use of DPM is that normal social constraints can
provide a degree of security. Peers when they make contributions, publish
contributions in a semi-public forum. In design processes, reputations are
important assets that designers usually work to protect. This is seen as a powerful
constraining force, with the condition that the identity of those who provide inputs
to the system are known to other users, at all times.

5.2.6.2 Possible security problems

1. Lack of authority or competence

Description: A user creates entities, signs up for roles, or defines policies for
which they are unqualified to provide.

Discussion: Further work would be required to provide a system in which users
could gain qualifications from some authority. In a distributed system it is not clear
how to do this, or whether it is a desirable feature.

2. Masking of identity

Description: Someone uses the application pretending to be someone else.

Discussion: It is assumed that the basic security of JXTA, which requires login by
all users, is sufficient to prevent this at a basic level.

3. Error in input

Description: User simply makes mistakes in the information they enter into the
system.

Discussion: This is possible in all information systems in which input is not tested
as it is entered. This is difficult since the information added in DPM is difficult to
test for correctness, since its correctness depends on complex semantics. If users
are not allowed to make anonymous inputs and are able to correct any mistakes,
then it is assumed that other users will be able to spot and inform the user, such
that mistakes can be corrected.

103.
4. Backtracking state changes

Description: Users participate in a state change that is later seen to be premature
or erroneous and wish to undo the state change.

Discussion: In DPM, state changes go forward, but are not allowed to go
backwards. The implicit assumption is that all inputs can only move an entity
forwards. In order to generalize the act of making inputs to enable users to move
an entity’s state backwards could be a useful feature for DPM. Other than the
factor of possible complexity of implementing such a feature, the idea warrants
future study.

5. Creation of false information

Description: A user inputs information into the system that does not correspond to
any real design activity.

Discussion: This can be discouraged if users are not able to add information to the
system anonymously, and are thus subject to peer disapproval if poor quality
information is entered under their name.

6. Duplication of existing information

Description: A user unnecessarily duplicates information that already exists on the
system.

Discussion: This is valid concern, and similar to simple errors and requires that if
errors are spotted, it is possible for users to correct them.

7. Creation of contradictory, or deadlocking constraints

Description: A user constrains an entity in such a way that its state will never be
able to advance.

Discussion: This is valid concern, and requires further work to create greater
protection against this occurring.

104.

105.
6 Constructing process models by linking
entities

6.1 Introduction
One of DPM’s goals is to avoid excessive prescriptiveness in the manner in which
the overall system operates, and in the types of semantic constructs that the support
system provides the user. This avoidance of prescriptiveness is intended to make
the system more flexible for a variety of users. Of course, avoidance of
prescriptiveness has its dangers: if a system is truly non-prescriptive, then quite
possibly it provides no guidance or support for its users.

In general there are two ways of supporting users in process support systems: 1.
Build semantic constructs into the system, or 2. Enable users to build them, and
then enable subsequent users to reuse them. The first approach could be called
‘prescription by design’, while the other ‘prescription by user behavior.’

The latter approach requires that users can be encouraged or motivated to build
structures that later users might find useful or interesting. This approach is found
in many P2P systems which usually have implicit design goals to maximize the
opportunities for users to build unanticipated, emergent structures as a result of
their distributed activity. The current research has been inspired by the promise of
this approach.

The main mechanism that DPM uses in order to have prescriptions by user
behavior available, is to use the distributed memory of past user actions, that
resides in the P2P system. This memory records what users have used the system
for in the past. The emerging contents of this memory are beyond the control of
the software developer.

This use of memory of past actions is often fundamental to how P2P systems
work at all: they are dependent on users actually using them in the past to make
them useful for new users. This creates one of the most admirable qualities of P2P
systems: how their performance can improve as their user base increases.

DPM uses prototypes based on either real entities or on aggregations of
information from many entities. Prototypes serve as mechanisms to record
organizational memory. A memory-based approach enables users to influence
organization norms, and to affect how future users might use the software.
Without using a system memory, every time a user builds new entities and
structures, they start off at the beginning and are in effect ‘re-inventing the wheel.’

6.1.1 Information needs in Design

In the domain of design process management it is desirable to model the
following:

106.
1. Representations of design projects, such that their participants can get the
sense they are working on a common endeavor.

2. Places to store information related to design projects, including among other
things, process representations that duplicate common task compositions,
such as branch-in / branch-out constructs.

As detailed later in this chapter, the above entities can be constructed using the
three main building blocks in DPM: hierarchical peergroups, design entities, and
constraint links. Peergroups serve as virtual containers for information.

6.2 Hierarchical peergroups

6.2.1 Design projects as information containers

Design projects usually represent a contractually-defined business relationship
between various people, either for a specific period of time, or until their work
together is completed. This relationship is a dynamic entity in which people and
information flow in and out during its life span. Therefore, a ‘design project as
flexible container’ metaphor seems appropriate. This container can contain the
following types of information:
• people participating in the design project,
• roles that people assume with their participation,
• design-related tasks these people are expected to perform, to fulfill their

contractual obligations,
• representations of the products that result from the design process, and
• other types of miscellaneous information that might naturally accumulate during

a project such as meeting minutes, agreements, reports, etc.

DPM addresses the first three of these. It is unclear in general whether single,
integrated applications should handle all these, or whether a suite of applications
is more appropriate.

Many-to-many mappings can exist between these information representations,
and the design projects of which they might be a part. For instance, designers
might work on more than one project at a time, similar tasks might be used on
different projects, and report formats and agreements might be re-used between
projects. In professional design environments, designers may work on many
projects simultaneously. They must be able to manage their time such that multiple
projects are well coordinated, and that diverse types of commitments from many
sources are dealt with in a timely fashion.

6.2.2 Uses for hierarchical peergroups

In DPM, there is no semantics attached to hierarchical peergroups other than the
parent-child relation inherent in the hierarchical structure. This gives users the
freedom to produce any kind of hierarchies they wish, since however users
structure their peergroups, the DPM system is not affected. The behavior of links
and entities does not depend on the particular peergroup in which they are situated.

107.
6.3 Design entity management

6.3.1 User defined types

In DPM users are allowed to provide type descriptions of the design entities they
construct. In DPM all such entities are instances of ‘DesignEntity.’ These are
similar to object types. For example a user can define the following entities:
Course1: [TOI_Course], or Task1: [DesignTask]. The string within the square
brackets indicates the entity type in DPM.

The major behavior of DesignEntities is to describe their current state. Since
entities with different entity types don’t currently have differences in basic
behavior, it makes no sense to implement them as different object types in Java.

What can distinguish a [TOI_Course] and a [DesignTask] is the state-transition
loop, and the types of policy and link constraints that are connected to the
DesignEntity. The full behavior of these user-named entities then becomes a
combination of the process behaviors of DesignEntities, combined with the
constraints that are attached to them. These policy and link constraints determine
the dynamic behavior of design entities in DPM.

The use of prototypes in DPM, as explained below, enables what one user might
design for one DesignEntity, to be reused when constructing another design entity
of the same entity type.

Another approach is to enable users to define prototypes explicitly, and specify
the types of state-transition loops to be used, and the composition of constraint
links that would connect a new instance of the prototype to other instances of other
prototypes. In this way, users could create complex configurations of linked
entities quickly, all based on approved process policies.

However, it is not clear whether such an approach would be superior to the
current approach based on dynamically generated prototypes. This issue requires
future study and may be closely related to the nature of management policies of
the enterprise in which DPM is used. In some enterprises process must be tightly
controlled, while in others flexibility and ease of adaptation are more important.

6.3.2 Deletion and abandonment of entities

In DPM users can either delete objects of a few selected types, or can abandon
DesignEntities, if they are its author. The delete action makes the object
effectively disappear, while the abandon action notifies that the entity is no longer
to be used, but keeps it around as a reminder for users.

Currently actions that authors can perform on an existing entity are: they can use
them as provided, they can delete them, or they can abandon them. Other than that
there is no editing possible of entities beyond that available when a user first
creates an entity.

108.
6.3.2.1 Deletion of entities

A normal use case for users of computer applications is to both create, and to delete
information. If users are free to create a type of object, then the same users
generally have the opportunity to delete it as well. However, with distributed
applications the process of deletion is problematic.

Distributed applications depend on the presence of distributed information for
them to work. This entails information being communicated to, and saved by
multiple peers. This redundancy of information gives distributed systems security
and dependability. If one peer happens to be off-line one day, the information that
resides on her computer is usually not inaccessible, since it may have been
duplicated on other peers to which she is normally connected. With centralized
server-based systems, if a server contains vital information, then operation of the
system will depend on that server being available to all users at all times.

Creation of redundant information, which is a basic approach to data used in
distributed systems, creates a problem when it comes to deleting information.
Deletion is then a more complex issue than simply going to the centralized data
store in which the information is kept and deleting it at its source.

6.3.2.2 Deletion approaches

One approach to deletion in distributed systems is to have an automated agent
search for information to delete on all peers it discovers. This approach has the
disadvantage of not working in peers that do not happen to be online while this
agent does its work. It also means that peers must enable a destructive external
agent to work with one’s own data store.

The approach used in DPM is not to search for information to delete, but rather
to advertise the fact that some user has decided to delete a particular piece of
information. The act of deletion then involves creating a deletion type of
advertisement in DPM: a DeleteAdvertisement. This advertisement is then
communicated to all other peers using JXTA’s data propagation techniques. This
delete advertisement then becomes like any other kind of information
communicated between peers in DPM. There is no guarantee that any one peer will
receive it, but if a peer does, it prevents the object of that information from being
displayed, communicated to other peers, or stored on the peer’s computer.

In this way, information is not actually deleted, it just becomes invisible to users.
Once information becomes invisible in JXTA, it then dies a ‘natural death’ due to
the temporal-based garbage collection system built into JXTA.

The current approach in DPM is to enable any users to delete a variety of object
types including: Design Entities, Role Advertisements, Policy Advertisements,
and PeerGroups.

6.3.2.3 Deletion policies within Wikis

A similar situation to DPM’s, with respect to deletion, occurs in the world of
‘wikis.’ A wiki is a collection of interlinked web pages, any of which can be visited

109.
and edited by anyone at any time from any place. The wiki concept and software
were invented by Ward Cunningham (Wikimedia.org, 2004).

The Wikipedia is a collaborative project that has produced an extensive on-line
wiki encyclopedia, in which any user—that is, anyone viewing its web pages—has
edit and delete privileges. The Wikipedia has grown quickly, with fewer
destructive deletions and editing than one might think. To manage this freedom
requires various community-based control mechanisms that encourage thoughtful
edits and non-anonymous deletions. Wikis are web-based and therefore depend on
centralized web servers to operate. Wikipedia’s editors closely manage and review
its content as it evolves. The basic wiki concept is therefore defined by its lack of
security with respect to deletion and edits. Despite this user freedom, the world of
wiki appears to be flourishing.

The one major constraint in DPM is that only the peer who originally authored
information is able to delete it. Therefore there is less freedom to delete than found
in any wiki. Alternatives to author-only deletion are conceivable, such as requiring
that all those who have assumed roles must give their consensual agreement for an
entity to be deleted. It is likely though that such policies would be impractical and
overly bureaucratic in practice, and that the open policy of wikis might be most
suitable in the long run.

6.3.2.4 Abandoning entities

To abandon means to signal to other users that an entity is no longer being used,
yet the abandoned entity is still visible to users. Evidence of entities being
abandoned is expected to be quite informative for historical purposes, as opposed
to simply deleting entities and have them vanish instantly. As with deletions, the
current rule is that only the author of an entity can abandon it. Once an entity is
abandoned, its display icon changes and further state changes are prevented.

6.3.3 Iteration of entities

In DPM users are allowed to iterate entities. Once these entities reach the end of
their ‘life cycle’ they can be reused. This involves making an entirely new entity
using the previous one as a prototype. For example, if an entity is named courseA,
after iteration it becomes courseA_2.

Therefore, iteration is the opposite of abandonment. The more iterations that an
entity experiences, suggests greater success this entity has had in the real world.
Abandonment implies that an entity has been found unsuited for continued
survival.

6.3.4 Reuse of entities (using prototypes)

In DPM, when users create a new entity, they have available information that has
built up from the use of the system—assuming the system has some user history.
This information is based on design entity prototypes. These prototypes can either
be natural prototypes based on real entities (usually the latest entity of that type
created), or can be synthetic in that information is derived from attributes of many
entities.

110.
There are two types of information currently derived from prototypes: policy
constraints that apply to each transition in the entity’s state-transition loop, and the
linked entities that affect how an entity changes its state in relation to other entities.
These linked entities can be based on either incoming or outgoing links.

Different methods for deriving prototypes are selectable by user when they
create new entities. User can set two variables: 1. The entity population selector
for specifying the population from which a prototype is derived, and 2. A
prototype algorithm that specifies the specific method for retrieving an entity from
a particular population of entities. Therefore, the number of prototype retrieval
methods is the Cartesian product of population selectors X prototype algorithms.

6.3.4.1 Current entity population selectors

1. ALL_PEERS (default): finds all entities authored by any user.
2. THIS_PEER_ONLY: only finds entities that have been authored by the user.

6.3.4.2 Current prototype algorithms

1. LATEST (default): finds the most recent entity of a specific entity type, e.g.
[DesignTask].

2. MOST_ACTIVE: finds the entity that has had the greatest number of state
changes during its history.

3. SUM_OF_EXISTING: makes a logical sum of all information found for an
entity of a particular entity type, from which the user can pick and choose.
This type of prototypes is called ‘synthetic’ in that it is not based on any one
entity, but on aggregated information from many entities. The usefulness of
such an algorithm is dependent on the number of entities contained within the
system.

6.3.4.3 Adding new prototypes

To add new prototype algorithms or population selectors is not a difficult task.
Currently, only developers, not users, can perform these functions. Conceivable
enhancements to this list could be population selectors, which consider only
entities authored by members of specific peergroups, or by peers who have
accumulated specific experience, or reputations within the system. In the
meantime it is expected that using the defaults of ALL_PEERS combined with
LATEST will be useful for most users.

6.3.4.4 Current limitation of prototypes

Prototypes are used to replicate only the links and linked entities that are directly
linked to a prototype. Therefore, an entire chain of links is not recursively
traversed and cloned.

Prototypes are based on entity type. For example, if a user is creating a new
DesignTask, then only other DesignTasks are used to inform the prototype. In
DPM there is no notion of emergent types—that is, types defined by the type of
links or policies an entity has acquired.

111.
6.3.4.5 Bootstrapping needed at beginning

Prototypes only work if the system has a history of entities within it. At beginning
of using the system, this is not the case. This ‘pre-historical’ stage of system use
tends to be brief and be used for testing purposes.

When single users are using the system, as was the case during system
development and testing, then the only existing cache of DPM data was on one
computer that was not shared with other DPM peers. A tester in order to test the
system in a ‘bootstrap’ situation, and to remove obsolete information can remove
DPM’s JXTA cache manually.

DPM is a specialized type of JXTA application. Therefore, most of the
information it shares with DPM peers is of a type that non-DPM peers will not be
able to understand, despite working according to the JXTA P2P protocol. This
means JXTA peers can make use of some of DPM’s information such as Peer and
PeerGroup advertisements, but not with DPM advertisements such as
DesignEntity advertisements, which are sub-classes of the JXTA class
‘Advertisement.’

Currently, DPM suggests standard state-transition loops and standard policies
for each transition of an entity’s loop. This information is dependent on the type
of loop selected by the user. When no prototypes can be found, simple policies for
each transition of the entity are created. Links between entities will not be found
in the system, since there are no existing entities to be found. Once entities exist
in a user's local cache, then the following prototype-based objects are created:

1. Policies for each transition,
2. Incoming and outgoing constraint links, and
3. Linked entities that are connected by these links.

6.3.4.6 Summary of prototype process

Whenever users are creating new entities, the entire history of the use of DPM is
readily available—assuming the parts making up this history are available locally.
This leverages its capabilities considerably and appears to make it more practical
as a collaborative tool, since it records the history of past collaborations.

In the normal non-bootstrap condition, prototypes inform entity creation, since
prototypes policies and linked entities are automatically included in the
NewDesignEntity form. Users then just need to select those prototype-derived
suggestions that they feel are appropriate. When designers are first modeling
complex linked entities, it may require a lengthy modeling process at the
beginning. Once that work is done however, it can be reused by anyone else.

Any information that a prototype does suggest can later be deleted. Therefore,
entity creation in DPM is a risk-free process, which doesn’t lock the user into
using any information that may later turn out not to be suitable for the entity.

112.
6.4 Entity state

6.4.1 Determining state

State determination in DPM is unambiguous and deterministic. The actual
algorithm used is not trivial and went through several revisions before it got to its
current state. Special care must be taken to assure that different user’s ideas about
an entity’s state is synchronized, otherwise strange errors might arise in DPM’s
operation.

In DPM, the documents that determine the current state of an entity are called
History Advertisements. These are created and communicated whenever an entity
changes its state. These advertisements document when the state change occurred,
which entity it concerns, and which peers had a role in its change.

For each entity, each user may have an assortment of history advertisements.
These must be ordered by state name such that obsolete or irrelevant
advertisements are not considered—that is, ones concerned with states prior to its
current state. There are two dimensions: what the latest state is, and what is the
most recent History Advertisement that documents this state change. Every time
an entity is tested in DPM for its current state—which occurs every time an entity’s
display is refreshed in a tree—the one-dimensional cache of History
Advertisements that is referenced to each entity’s ID, is converted into a two-
dimensional table. This table is implemented as a ContentStorage object in which
the state strings serve as the keys, and the HistoryAdvertisements pertaining to
each of these states are deposited. The current state is then the most recent
advertisement that has been received of the latest state possible, given the entities
possible states. This is shown in Figure 26.

Figure 37 State determination method.

6.4.2 Link and input state changes

Entities can change state once the constraints are satisfied in either inputs or
constraints links. Input state changes depend on an adequate number of role-
players assuming roles and giving timely input, in order to satisfy policy
constraints for each transitions in an entity’s state-transition loop. Constraint links

Latest state

EntityID

0.State
1.State
2.State
3.State
4.State

History Advertisements discovered for one entity; ordered by Creation Date

Current entity state = Latest state X Most recent History Advertisement

Most recent

113.
depend on linked-in entities achieving a particular specified state, specified in the
constraint link.

It is conceivable that an entity will lack both these types of constraints for a
particular transition. Users can cause this simply by deleting all policy or link
constraints from a transition. In order to prevent an entity changing state in a
runaway fashion, DPM is currently configured to prevent such unconstrained state
change.

6.4.3 Parallel vs. sequential processes in DPM

Parallel processes are ones that can work independently, while sequential
processes depend on completion of one to enable progress of another. In DPM,
parallel processes are ones that are not linked together by constraints links. This
means they place no constraints on each other and lead independent lives.

A sequential process can be modeled using constraint links to constrain two
entities together. This means that the preceding entity must reach its final state,
before the subsequent entity’s first transition is enabled. Therefore, a preceding
entity must be completed before the second entity can continue past its initial state.
This is shown in Figure 42 below.

Users can also add constraints that do not require that the first entity reaches its
final state but can reach any other state leading to the final state. Therefore, users
can model sequences in which the preceding entity need not finish completely
before the start of the subsequent entity.

6.4.4 Inputs seen as a type of voting system

DPM has a type of voting system in which assuming a role in an entity, registers
the peer for little asynchronous ‘elections’ held at each transition. These elections
depend on all registered voters actually voting, with the election choice being: can
this entity advance its state? If ‘yes’, add an input, if ‘no’ do nothing.

Voters can provide their vote at any time, or can choose not to vote at all even
after registering. These elections require 100% voter participation, and a
unanimous ‘yes’ vote from all registered voters.

If a person assumes a role (registers to vote) and then doesn’t vote, this
effectively deadlocks an entity’s state-change process. Therefore, once peers
assume a role, there may be some peer pressure put on eligible voters to cast their
votes in a timely fashion. Clearly this is an aspect of DPM that needs future work.
Currently the only mechanism for exerting ‘peer pressure’ on users of DPM to
provide timely input into entities is the text listing of inputs requiring user input,
shown in the entity’s mouse-over label popup. A more pro-active mechanism
would be helpful in DPM.

6.4.4.1 Conceivable voting enhancements

This unanimous consensus-based voting policy is rather strict and unforgiving,
and may create deadlock, as peers assumes roles, but then forget to vote.

114.
Alternatives to this unanimous, input means ‘yes’; inaction means ‘no’ might
include:

1. Majority of voters: if a majority of voters votes ‘yes’, then the entity can
change state.

2. Non-equal vote values: where some votes are more valued than others—pos-
sibly dependent on the nature or number of roles assumed.

It is difficult though to imagine how these types of voting change could be
implemented in DPM since it lacks understanding of the semantics of roles and
what they should entail.

6.5 Constructing process models

6.5.1 Prototypes and organizational memory: policies and links

In DPM design entity creation is informed by prototypes. These prototypes are
based on either real entities, or a collection of attributes from an aggregation of
entities. Prototypes are not available at the start of the system’s life since there are
no entities in history on which to base them.

When creating a new entity, users can view the policies and entities linked into
the prototype. These policies and linked entities can be selected, and are then
automatically recreated by the New Design Entity Form.

Figure 38 Policies and linked entities from a prototype used to recreate new entity
structures.

Design entity serving as
prototype

Incoming linked entities
roleA
roleB
roleC

Outgoing linked
entity

Policies for each transition:

New entity

roleA
roleB
roleC

115.
6.5.2 Organizational memory vs. bootstrapping from nothing

Organizational memory depends on entities being in storage. When no entities are
in storage, then the user needs to model entities manually. The main things that
users need to model are:

1. Content of the process loop used. An appropriate loop may or may not be
available. Sufficient tools in DPM enable new loops to be created.

2. Policy advertisements into each transitions of the entity’s loop. These de-
scribe which inputs from which role-players are needed.

3. Constraint links that describe entities structures.

6.5.3 Building structures using constraint links

State-changing structures involving multiple entities depend on graphs built using
constraint links. All constraint links involve a source entity, source state, target
entity, and a target transition, as shown in Figure 39 below. These structures can
be used to build indefinitely complex graphs by adding additional components to
them.

Figure 39 Complex constraint-linked entity network.

6.5.4 Sub-entity / sequential links: branch out/in structures

6.5.4.1 Sub-entities

A sub-entity relation involves two entities, one of which must be completed before
the other can continue. Sub-entities can be created easily in DPM using the sub-
entity form. To use this form, users first select an entity to serve as a parent entity,
then issue the command: File > New Sub Entity. This relation therefore defines a
nested structure, in which the sub-entity nests within the parent entity.

design entity state loops

constraint links

116.
Figure 40 Sub-entity relation in DPM. The black dots signify the current states of the
entities.

Figure 41 Alternative diagram showing sub-entity relation.

6.5.4.2 Sequential links

Sub-entities relations are defined as having two entities, one that must finish,
before the other can start. Therefore, the preceding entity must be in its final state
in order for the subsequent entity to make it past its initial state.

Figure 42 Sequential relation between entities in DPM

Parent entity Sub-entity

Initial state of
sub-entity

outgoing Link

Final state of
sub-entity

 return Link

Initial state of sub-entity

Final state of sub-entity

Parent entity

Sub-entity

Preceding entity Subsequent entity

Initial state of
subsequent entity

outgoing Link

Final state of
preceding entity

117.
Figure 43 Alternative diagram showing sequential relation.

6.5.4.3 Branch-in and out

Using sequential relations multiple times enables users to model branch-in and
branch-out structures:

Figure 44 Branch-out and Branch-in precedence structures based on sequential relations.

6.5.5 Planning vs. execution

Often in process planning systems, there are separate planning areas, and
execution areas. In the planning area planners design process models, while in the
execution areas these process models are ‘switched on’ in their intended
environment with inputs from the actors using the system.

In DPM there is no separate areas to perform these two functions. They are
simply done in the same area. If mistakes are found in the model then incorrect
entities and links are simply deleted. If a model needs to remain static until a
particular time, then the modeler could assume a role and wait until a particular
time to make input for that constraint. Currently there is no provision in DPM to
encourage scheduled interactions—such as occurs in scheduled design meetings
in normal design practice—although clearly this would enhance the system.

6.5.6 Chat messages

In order to coordinate their behavior and to communicate explanatory messages
about what a process model might mean, then additional information other than

Preceding entity

Subsequent entity

Initial state of subsequent entity

Final state of preceding entity

preceding design entity

sequential relations

Branch-out

subsequent design entities

Branch-in

118.
entity structures are needed. Text messages are useful for coordinating group
activity, and for adding information that may be difficult from possibly complex
linked entity structures.

To add additional information, chat messages enable user to post messages to
any peergroup. These can be open messages that appear for any user who displays
the contents of the peergroups, or they can be private messages that only appear to
particular users. Therefore, private messages are simply invisible to users other
than the intended recipient.

6.5.7 Convergence in groups

Successful use of system like DPM depends not only on people building useful
entity and peergroup structures, but also on the group coming to some consensus
about how to approach design problems, and how to structure their processes.

The use of prototypes is the greatest factor in this respect, Using prototypes to
aid in new entity construction, enables lessons learned from anyone using the
system to influence how users create entities.

The second technique is to use text chat messages that are identified by their
author and date to inform users of the system. Both prototypes and messages have
been found to be necessary to make DPM useful in a distributed social context.

119.
7 Application testing and validation

7.1 Introduction to testing
Software testing is the process of executing software and comparing the observed
behavior to the desired behavior. This can be done both in the context of users of
the software, and before the software gets into users’ hands. ‘Beta testing is
typically conducted by end users of a software product who are not paid a salary
for their efforts.” (Rivest, 2004)

It is impossible to develop software of any complexity without testing it during
development. Every time a developer attempts to compile code, it involves
performing a basic type of software test.

Ulrich Flemming writes, “...in the context of a Ph.D. thesis, time and financial
constraints often limit the participants needed for tests to fellow students, a group
that is often self-selected and not representative of the envisaged end-users. It is
better to do this than forego testing altogether, but carefully designed experiments
with end-users remain the gold standard for validation.” (Flemming, 2004).

A promising and sophisticated approach to software development is the ‘test
first, implement later’ approach found in extreme programming (Extreme
Programming Organization, 2004). The unit testing framework ‘JUnit’ enables
developers to write unit tests, then enables developers to test code until it passes
pre-written tests (JUnit Organization, 2004). The programming effort represented
in this research unfortunately was not completed using JUnit. However, the author
believes that automated unit testing is essential in taming the complexity of
software development. The complexity of such development can grow quickly and
go beyond that which is manually controllable, and manageable. Tools like JUnit
are especially useful when requirements change at a late stage in software
development—as they often do.

The goal of testing is not to confirm the obvious, but to learn from ‘interesting
failures’ (Stellingwerff, 2004). Therefore, failure in a test is not an undesirable
result. Failures can provide more useful information than can a successful test.
Given the nature of the software, and the ill-defined nature of the domain to which
it is applied, various types of failure are much more likely than success.

7.2 Introduction to TOI
TOI (Technisch Ontwerp & Informatica) is the institutional environment in which
DPM was tested. It is the department that provides most of the computer-support
related education for students and faculty within the Faculty of Architecture at TU
Delft.

The chair of Technical Design and Informatics (TOI) develops comput-
er-supported techniques and methods for design and construction in ar-

120.
chitectural design. The chair provides education at the bachelor and mas-
ters levels in construction technology, architecture, and urban design, us-
ing ICKT (Information, Communication and Knowledge Technology) as
a tool, medium, and partner, for integration, cooperation, and communi-
cation of design processes (TOI, 2004).

7.3 TOI and student processes
The beginning classes of the architectural program (BSc1 and BSc2) have well-
defined milestones that students are expected to fulfill over time. The order and
structure of these milestones is fixed, however, students have considerable
freedom in deciding when they complete each milestone. Therefore, a student’s
process is based on her individual progress, rather than on a pre-set course
schedule navigated by groups of students within a class block. Due to the
educational course structure of the faculty, students are at various stages within
these processes.

It is difficult both for students and administration staff to know if a student has
finished all courses, submitted all assignments, or is in the process of re-sitting
examinations. Keeping track of such information in TOI is difficult, and consumes
considerable managerial and computational resources.

Therefore, BSc1 and BSc2 are like state machines, in which, if students progress
past well-defined milestones, they can continue on with their studies. It is often
difficult to manage students’ progress through this process, since each student may
be at a slightly different stage within it. The testing within TOI involves keeping
track of a student’s ‘state’ within TOI processes.

TOI has evolving, difficult-to-manage processes. These processes involve from
the student perspective of taking courses, handing in assignments, and writing and
passing examinations. These processes involve many actors, such as students, TOI
support staff, professors, teachers, graders, etc. They also involve turn-taking
interactions between actors. For example, when a student submits assignment,
then TOI staff must grade the assignment submitted.

7.3.1 Overall nature of these processes

TOI processes can be quite complex in practice, due to several factors:
• The unlimited time period students have to fulfill some requirements.
• The dynamic nature of the course offerings by TOI. These involve many

different types of courses, taught by a large number of teachers at various times.
• The large numbers of students who are required to take the courses offered by

TOI.
• The transient population of student employees of TOI, who do much of the work

in providing backup to TOI’s courses, and in coordinating with students
regarding their current state and remaining course requirements.

These factors make course processes difficult to manage within TOI. They also
provide motivation to explore alternatives to current management systems. For

121.
these reasons, TOI has been keen to see whether DPM could be useful as a
distributed management tool, in order to relieve some of the burden that TOI
currently faces. At the time of writing there has been a total of five hours of testing
on TOI-related processes.

7.3.2 Aspects modeled for TOI by DPM

7.3.2.1 Courses

TOI conducts a large number of courses. These courses often involve teaching
how to use software applications for design, such as Maya, and ProEngineer.
There are also courses in programming, rapid prototyping, and in other design-
related computational topics. To pass a typical TOI course, students must:

1. Complete 1st half assignments.
2. Complete 2nd half assignments.
3. Pass examination (with re-sits).

Figure 45 TOI course process.

7.3.2.2 Assignments within courses

All courses involve regular submissions to TOI for review and grading purposes.
Management of these assignments is often difficult for TOI due to the large size
of the digital files submitted.

In 1st half assignments

Assignments completed

In 2nd half assignments

Y

All completed?

Assignments completed

Y

All completed?

In final examination

Y

Passed?

Course completed

Next
course

Assignment loop x ‘n’

Assignment loop x ‘n’

Exam loop x ‘n’

In 1st half assignments

Assignments completed

In 2nd half assignments

Y

All completed?

YY

All completed?

Assignments completed

Y

All completed?

YY

All completed?

In final examination

Y

Passed?

YY

Passed?

Course completed

Next
course

Assignment loop x ‘n’

Assignment loop x ‘n’

Exam loop x ‘n’

122.
Figure 46 Assignment process.

7.3.2.3 Examinations during, and at end of courses

Examinations occur in the middle and at the end of courses. In the Dutch system,
students have the opportunity to re-sit examinations (in Dutch: herkansing), an
indefinite number of times. This, for some students, can delay their successful
completion of a course considerably. This increases the complexity of managing
examinations within TOI, since student histories can stretch on for a long time.

Figure 47 Examination process.

7.3.3 TOI state-transition loop models

The following loops incorporate the structure of these processes.

Assignment given

Student submits

TOI reviews submission Repair needed?

Ready to grade

Graded

N

Y

Re-submit

Next
assignment

Assignment given

Student submits

TOI reviews submission Repair needed?

Ready to grade

Graded

N

Y

Re-submit

Next
assignment

Ready to write exam

Exam written

Exam graded Exam passed?

Exam passed Y

N

Re-sit exam
Ready to write exam

Exam written

Exam graded Exam passed?

Exam passed Y

N

Re-sit exam

123.
Figure 48 TOI_Course state-transition loop.

Figure 49 TOI_Assignment state-transition loop.

0.finishedFirstHalfAssignments=all first half assignments have been completed

3.finalExamPassed=final exam has been passed

4.Ready_to_grade_course

4.finalGradeGiven=final course grade has been calculated

5.gradeCommunicated=grade has been communicated to student

6.reuseExistingCourse=do this course again

2.finishedSecondHalfAssignments=all second half assignments have been completed

2.In_second_half_assignments

1.firstHalfGraded=first half of course has been graded

3.In_final_exam

5.Course_graded

6.Grade_communicated_to_student

0.In_first_half_assignments

1.Ready_to_grade_first_half

5.reuseExistingAssignment=do this assignment again
0.studentSubmits=student has submitted something

1.Student_has_submitted

1.submissionHasBeen Viewed=TOI has viewed submission

2.Submission_viewed_by_TOI

2.noRepairNeeded=submission is ready to grade

3.Submission_ready_to_grade

3.submissionGraded=submission has been graded

4.Submission_graded

4.gradeCommunicated=grade has been communicated to student

5.Grade_communicated_to_student

0.Assignment_given_to_student

124.
Figure 50 TOI_Examination state-transition loop.

0.examWritten=examination has been written

1.examGraded=examination has been graded

2.Exam_graded

2.examPassed=examination has been passed

3.gradeCommunicated=passing grade has been communicated to student

4.Exam_grade_communicated_to_student

3.Exam_passed

1.Exam_written

0.Ready_to_write_examination
4.reuseExistingExamination=do this examination again

125.
7.4 Test specifics
Tests of DPM should answer the following basic questions:

1. Does the application work as advertised?
2. Does the performance of the application degrade excessively when confront-

ed with large amounts, and possibly contradictory data, from multiple users?
3. What insights does the application suggest for the planning and management

of collaborative design processes?
4. What does testing suggest as being the most promising or appropriate direc-

tion for future work?

The goal, as with all testing, is to maximize the chance that anomalies are
discovered during the testing period, such that they can be eliminated before the
application is put into wider circulation. Therefore, successful tests are considered
ones in which anomalies are found. As with any testing, finding no errors does not
necessarily mean that the software is error-free.

7.4.1 Pre-test tasks

Some preparation and setup work is required before tests can be conducted:

1. Briefing the TOI department about the general research concepts that have in-
formed the design and implementation of DPM, and how DPM could be suit-
able as a tool to manage processes within TOI, as well as form a topic for fur-
ther research.

2. Assembling a pool of testers interested in learning about DPM, and distribut-
ed P2P applications in general. Training this pool about how DPM operates
such that they have sufficient knowledge about how DPM operates to perform
the tests.

3. Installing DPM on several testers’ machines. Some testers had single instanc-
es of DPM, while others had multiple instances. Multiple instances involved
having a tester assuming multiple peer names, and that separate instances of
DPM ran from separate directories on the tester’s computer. The software in-
stallation process involved giving testers a single executable called:
‘dpm.exe’ If Java is properly installed on the machine, double-clicking on this
executable will start DPM. For new users this opens the JXTA configuration
tool. For return users, a user-defined password is required to gain access to
DPM.

126.
7.4.2 Test 1: Basic functionality of DPM

7.4.2.1 Description

Tests whether DPM functions properly at its basic level.

7.4.2.2 Participants

Four student assistants from the TOI department, Faculty of Architecture, TU
Delft.

7.4.2.3 Venue

TOI computer lab, 6th floor, Architecture Building at TU Delft.

7.4.2.4 Duration

Over two days in November 2004. Total test time: 2 hours.

7.4.2.5 Tasks to be performed by each tester

1. Join the DPM network and establish a peer identity that is visible to other us-
ers of DPM. How this is done is covered in the Appendix: Instructions for in-
stalling Design Process Modeler (DPM).

2. Create several sample hierarchical peergroups. To create a new peergroup:
2.1 Select a peergroup node to serve as the parent.
2.2 Issue the menu command: File > New Peergroup.
2.3 Enter a new peergroup’s name in the form that opens.
2.4 Repeat this multiple times to create a peergroup hierarchy, with at least

three branches, and at least three levels deep.
2.5 Once such a peergroup hierarchy is created, exit DPM and see if it still

exists when DPM is opened again.

3. See if peergroups created are visible to other peers:
3.1 This requires that testers work in pairs, or in groups, and manually ob-

serve whether peergroups are communicated successfully between peers.

4. Join and leave peergroups:
4.1 Select a peergroup node and issue the command: Peergroup > Join Peer-

group.
4.2 See if the peer is added to the peergroup. Also, see if this membership is

communicated to other peers.
4.3 Repeat this process by leaving by issuing the command: Peergroup >

Leave Peergroup.

5. Create design entities of various entity types and communicate these entities
to other DPM peers.
5.1 Select a peergroup node to serve as the parent peergroup.

127.
5.2 Issue the menu command: File > New User Named Entity.
5.3 Create several sample TOI_Courses, TOI_Assignments, and

TOI_Examinations.

6. Set up policy constraints for design entities: (Note: policy constraints are
specifications regarding which roles are needed for a design entity to advance
its state).
6.1 Select a design entity.
6.2 Issue the menu command: File > New Policy.
6.3 Add test roles to each transition: e.g. TOI_Grader. If such a role is not

present in the list, then manually enter this role name.
6.4 See if these policy constraints have been added: select the entity they

were added to, then issue the menu command:
Entities > Show Input Policy (All Transitions). The newly added policies
should be visible.

7. Add link constraints between design entities:
7.1 Select a design entity, e.g. a TOI_Course, to serve as a parent in a sub-

entity relation.
7.2 Issue the menu command: File > New SubEntity Link.
7.3 In the form that opens, select an entity to serve as a child, e.g.

TOI_Assignment. This child entity then must be completed before its
parent can be completed.

7.4 Select the target transition of the sub-entity link. In the SubEntity form,
this is shown as: ‘Completion of Child required to enable this transition
of <parent name>.’ For TOI_Courses, an appropriate transition to select
is: ‘0.finishedFirstHalfAssignments.’ The intended meaning of this sub-
entity relation is that a number of TOI_Assignments must be completed
for a student to complete the first half assignments of a TOI_Course.

7.5 Do this multiple times for each required TOI_Assignment.

8. Assume roles in entities:
8.1 Roles in design entities means that the peer can effect state changes. If a

role assumed matches a policy constraint, then this peer can block an en-
tity from changing state until that user makes an input into that entity. A
user assumes a role by doing the following:

8.2 Select a design entity.
8.3 Issue the menu command: File > New Role.
8.4 In the form that opens, enter the name of the new role by selecting an item

from the list in the form, or adding a new term.
8.5 Check to see if the role has been added, by putting the mouse over an en-

tity and viewing the popup label that displays: ‘Your roles....’

9. Observe state changes of these entities, constrained by both their policy and
link constraints.

128.
9.1 State changes in design entities are enabled by either: 1. Adding inputs to
satisfy policy constraints, or 2. Having incoming link constraints satisfied
by having the incoming linked entity attain the state that is specified in
the constraint link. For example, for sub-entity or sequential relations, ei-
ther the sub-entity or the preceding entity must be at their final states,
which is the last state found in their loop model—that is, the state with
the largest number prefix.

9.2 The loop that an entity uses is listed in the entity’s popup label. If the user
opens the ‘loopNets’ peergroup folder, all the states and transitions for
each loop can be seen in each loop’s popup label (made visible by placing
the mouse pointer over the loop).

9.3 If an entity has no constraints, then DPM is currently configured not to
allow state changes. In detailed process models, design entities can have
a complex mix of both link and policy constraints.

9.4 Add inputs to satisfy policy constraints to assure that incoming entities
are in an appropriate state to enable link constraints. View whether DPM
changes the entity’s state automatically and whether these state changes
are communicated to other peers.

10. Deletion and abandonment of entities.
10.1In DPM, users can create, delete, and abandon entities. Users can also de-

lete a number of other objects that are shown in the ‘Edit’ menu. These
include: loop nets, links, messages, peergroups, and policy constraints.

10.2Testers should attempt to create each of these delete-able objects, and
then delete them. This is done by selecting each item, then issuing the
menu command: File > Delete <x>.

10.3Design entities can also be abandoned. This means they are still visible,
but state changes are no longer possible. Abandoned entities have a cross
icon that distinguishes them from normal entities.

10.4Select a design entity, then issue the menu command: Edit > Abandon En-
tity. See if entities are also abandoned on others peers’ systems (this may
require a refresh of the tree in which they are displayed. Double-clicking
on the peergroup node does this.

7.4.2.6 Criteria for above tests

1. Effort of setting up peer accounts.
1.1 Is the setup procedure easy for users of DPM?
1.2 Can installation and setup of DPM be more automated, and thus avoid

novice users having to make decisions to get rendezvous and relay peers?

2. Reliability and synchronization of information communicated between peers,
including entity attributes, and entity states.
2.1 If a peer creates an object in DPM, do other peers receive it?

129.
2.2 Can the latency period between creating information and its propagation
to other peers create corrupted information in DPM?

3. User comprehension of domain concepts such as: entities, entity types, and
roles, and constraints.
3.1 Are the basic domain concepts of DPM difficult for users to understand?

4. Reachability of peers behind possible firewalls, using JXTA relays or proxies.
4.1 Do some peers have more difficulty than others in receiving DPM infor-

mation?

5. Ability to create peergroups hierarchies containing various types of informa-
tion.
5.1 Are current peergroup tree mechanisms easy to use?

6. Performance of DPM in common tasks.
6.1 Is DPM responsive enough for common user actions?

7. Ability of users to return to DPM and find information in predictable loca-
tions.
7.1 Should peergroup trees appear the same way each time a user opens them

up, down to their lowest leaves?

130.
7.4.3 Test 2: Error production tasks

One way to see if software works is to attempt to produce errors. Testers should
purposely attempt to create the following error situations:

1. Register as a peer in DPM, then not have your peer identity visible to other
peers.
• Note: this should not be possible in JXTA (unless no other DPM peers are

on-line), even if the peer is behind a firewall. Being behind a firewall re-
quires special configuration of JXTA by specifying a proxy server.

2. Create hierarchical peergroups that are not navigable for other peers.
• Note: very deep peergroup trees can possibly create non-navigable peer-

groups. Deep tree hierarchies also assumed that each chain in the tree struc-
ture is communicated to all peers. Deep hierarchies must be opened one tree
level at a time in DPM.

3. Create design entities that are not visible to other peers.
• Note: This should not be possible other than the short latency period re-

quired to propagate information between peers in JXTA. This latency may
be several minutes, depending on peer location and network configuration,
and is similar to the time that email messages take to travel to their recipi-
ents.

4. Have an entity attain a state that is not the same as the same entity’s state as
shown on another computer.
• Note: Correct synchronization of entity states between peers, is a funda-

mentally important aspect of DPM.

5. Add policy, and link constraints that are not communicated to others.
• Note: this should not be possible in JXTA, unless no other DPM peers are

on-line.

6. Omit all constraints from an entity and see if its state changes (it shouldn’t).

7. Omit all policy constraints from an entity, and but include several link con-
straints, and attempt to create state changes by making the incoming entities
attain the state specified in the link constraint. See if this produces errors.

8. Omit all links constraints from an entity, and but include several policy con-
straints, and attempt to create state changes by adding inputs to an entity. See
if this produces errors.

9. Attempt to create deadlocked constraints that are impossible for peers to re-
move—that is, ones that forever prevent a design entity from advancing its
state.

131.
7.4.4 Test 3: Integration test

7.4.4.1 Description

Tests whether DPM can be used as a process support tool for use in TOI course-
related processes. These processes deal with a student’s state of progress within
the BSc-level courses that TOI offers. DPM is intended to be a tool that could be
useful both for TOI’s as well as each student’s informational needs. Currently such
information is managed manually, using student lists and spreadsheets. The
principal objects used within these processes are: TOI_Courses,
TOI_Assignments, and TOI_Examinations. State-transition loop models
customized for these TOI processes are available in the current version of DPM.

7.4.4.2 Participants

Six student assistants from the TOI department, Faculty of Architecture, TU Delft.

7.4.4.3 Venue

TOI computer lab, 6th floor, Architecture Building at TU Delft.

7.4.4.4 Duration

Over three days in November 2004. Total test time: 2 hours.

7.4.4.5 Tasks to be performed by each tester

1. Peergroup structure to be completed by testers altogether:
1.1 Space for 30 students taking 3 TOI courses each.
1.2 Each course (per student) would have: 1 TOI_Course entity, 5

TOI_Assignment entities, and 1 TOI_Examination entity (which can be
repeated an indefinite number of times).

2. Each tester will assume the role of several students, in order to test a reason-
able number of participants. The goal is to create 30 test student accounts in
total. With six testers, this involves each tester assuming five different student
roles. When configuring DPM to run several instances on the same computer,
if this is necessary, care must be taken to specify correctly, and remember,
passwords, user names, and port numbers. One method of doing this that has
proved workable is:
2.1 Copy the DPM executable to five separate directories on your computer.
2.2 Have one term that identifies: the tester, and the peer number, and the

password. For example, if ‘michaelC’ is to test five different peers by in-
stalling DPM five times on the same computer, then one approach is to
set:
• Peer Names as: michaelC01, michaelC02, michaelC03, etc.
• Secure User Names as: michaelC01, michaelC02, michaelC03, etc.
• Passwords as: michaelC01, michaelC02, michaelC03, etc.

132.
• TCP port num: 9710 / HTTP port num: 9711for peer michaelC01;
TCP port num: 9720 / HTTP port num: 9721for peer michaelC02;
TCP port num: 9730 / HTTP port num: 9731for peer michaelC03, etc.

• This approach reduces the chance of failing to set the port number
properly, and failing to remember user names, passwords, or in which
directory the application is running.

3. Create peergroup called ‘Course tests’ that will contain the data created dur-
ing the test.

4. Within this peergroup create peergroups for several courses, e.g.
‘TOI_course1’, TOI_course2’, and ‘TOI_course3.’ Within each of these peer-
groups, will be DPM design entities such as TOI_Courses, TOI_Assignments,
and TOI_Examinations. Note that in DPM, each of these objects is most ap-
propriately thought of as a relationship between the instructors of a TOI cours-
es and an individual student (although other types of semantics are possible,
such as a relationship between ALL students in a course, and its TOI instruc-
tors). The current content of these TOI-related state-transition loops does
seem to favor the individual student approach. If all students create
TOI_Course objects in the same peergroup, then there is little to identify them
as concerning a particular user (unless one puts the mouse pointer over a de-
sign entity and then reads the entity’s author from the popup label). This sug-
gests that the best way to keep students’ information separate is to make peer-
groups for each student in the class. Note that DPM does not get confused
whatever the location of its entities, but clear peergroup organization is ex-
pected to help user comprehension.

Figure 51 One possible peergroup organization for the integration test.

5. Each test student, or TOI staff, would make a peergroup within each course’s
peergroup, for each student. Each student peergroup should have a descriptive
name, and description. Peergroup names and descriptions can be seen with
mouse-over label pop-ups.

Course tests

Course A

Course D

Course B

Course C

Student A

Student B

Entities pertaining to
each student

133.
6. Each student who takes this course would join the peergroup, using the menu
command: Entities > Join Peergroup. Note that the join action must be done
by each peer himself or herself. In DPM currently, it is not possible for a user
to join a peergroup on someone else’s behalf.

7. Simulate a course scenario with the following overall process:
7.1 A student joins an existing course, or a member of the TOI staff, sets up

the course structure for the student.
7.2 All ‘stakeholders’ in each student’s progress—normally the student her-

self, and several members of TOI (say, instructor, and grader) will join
each student’s peergroup for each course. It is not clear that this is the
best way to approach such a problem. To DPM, it matters little how de-
sign entities are arranged, or in which peergroups they are situated. But
for users, as explained above, it can make a large difference.

7.3 Create multiple assignments for each course, with variable constraints on
completion. See when particular assignments are most suitable due with-
in the course structure, such as within the first half of the course, or sec-
ond half, etc. How the course is structured overall is reflected in the con-
tent of the state-transition loop model. For example, if courses have a first
half and a second half, then this organizational fact can be embedded into
the loop model. This suggests that customized loop models will evolve to
reflect different course structures.

7.4 Work through state changes for each entity for each student, such that
each student attains a final state such as:
• 1. Student successfully completes the course.
• 2. Student completes the course work but must repeat the final exami-

nations several times.
• 3. Student withdraws from the course without completing it.
• 4. Student fails the course and must withdraw from it.

7.5 View the history of course changes. This is viewed by selecting a design
entity, then using the menu command: Entities > Show Entity History.
This panel shows the complete state change history of the entity.

134.
7.4.4.6 Criteria

1. Suitability for TOI’s processes.
1.1 Are there any advantages in using DPM over current TOI information

systems?
1.2 Does DPM provide a new type of information, or does it duplicate infor-

mation that is already available within TOI?
1.3 Can TOI users create suitable places to put information using DPM?
1.4 Do different users put information in similar places?
1.5 Is the granularity of information suitable for what students and TOI need

to manage their processes?
1.6 Is DPM able to adapt to changing processes within TOI?

2. Entities in DPM.
2.1 Is the concept of ‘User Named Entity’ clear to users?
2.2 Is the process of attaching loop state models clear to users?
2.3 Is having an entity in a particular state significant to users?
2.4 Do users add inputs when it is suitable for them to do so?

3. Roles in DPM.
3.1 Do users comprehend roles and their meanings?
3.2 Do users continue to create new roles—that may duplicate the meaning

of previously used ones?
3.3 Do roles acquire generally accepted meanings that are clear to users?

4. Quality of information provided
4.1 Is information provided by DPM reliable and accurate—that is, do users

trust the information that DPM provides?
4.2 Is information provided by DPM secure?

135.
7.5 Testing results

7.5.1 Things that worked well during testing

7.5.1.1 State change mechanisms

State change mechanisms work as intended. This is one of the fundamental aspects
of the DPM system. This applies to both input-based, and to link-based state
change mechanisms.

7.5.1.2 Synchronization of information

Either information was not available at all, or it tended to be correct. There was no
evidence of obvious discrepancies of entity state.

7.5.1.3 Prototype system

The prototype system creates new entities based on the history of ones created in
the system. The current dynamic approach appears to be suitable for the task.
There was little discussion of the prototype system, since it did not figure
prominently in the tests. There was no demand for other types of prototype
systems, such as explicit modeling of prototypes and storing these as models in the
system.

7.5.2 Things worked less well during testing

7.5.2.1 Performance

Performance when used in a group setting was at first poor. Each DPM instance
consumes an increasing amount of memory, suggesting a memory leak. The
leading theory to explain this is that as users search for content within peergroups,
new threads are created in DPM, which appear to multiply and consume increasing
resources. The effect of this poor performance is that simple actions take too long,
or fail to happen at all within a reasonable period. The solution to this major
problem was to:
• examine the code to see where memory leaks might occur,
• profile the application using Java profiling tools, to see if certain components

use excessive resources, and
• create more coherent thread policies, such that resource-hungry threads are

turned off when not needed.
These things were all done and performance of DPM has improved substantially.
See the section below: ‘Revisions to software after testing.’

7.5.2.2 Reliability of communication of basic information

For the first round of testing, information was not reliably transmitted between
users, such that users received information created by fellow testers. After revision
of the software reliability was improved. However, some sources of reliability
problems are not simple implementation errors in the software that can be easily

136.
improved, but are related to the basic nature of P2P software. These are discussed
below.

7.5.2.3 Complexity of whole concept

As mentioned above, the basic concept of DPM is complex and difficult for testers
to comprehend at first. It is unclear during testing whether this can be solved by
either educating the tester more thoroughly, or whether the fault lies with the basic
approach taken by the application. It is also unclear whether the basic terminology
used by DPM: roles, policies, inputs, peergroups trees, are as simple and
straightforward as they could be.

7.5.2.4 Poor visibility of process structures

Users of DPM can create complex linked entity structures. To view these
structures, users must leave the main DPM window, which shows the contents of
various peergroups organized into tree nodes, and open another window in which
links (both constraint and information) are shown as trees. In future versions of
DPM, a more integrated approach, in which this information is shown in the main
window, or perhaps one that is less tree-based, and more graph-based, might be
appropriate.

7.5.2.5 Difficulty in configuration

JXTA Configuration requires manually setting port numbers, and specifying other
options that are not necessarily relevant or interesting to users—especially testers.
This occurs when users first become peers on a JXTA network, and uses a tool
within JXTA called the Configurator. If testers need to configure multiple
instances of DPM on their machine, as occurred during testing, different port
numbers for each DPM instance must be set. This is annoying and is error-prone
since it is easy to forget to do this task. If not done then DPM does not
communicate information between peers correctly.

JXTA Configuration can be automated, and set programmatically in the latest
version of JXTA. This means specification of ports, relays, rendezvous addresses,
etc. can be done without involving the users. The next version of DPM will
incorporate this feature.

7.5.2.6 Steep learning curve of basic concepts

DPM combines concepts from both P2P computing as well as Petri net
technologies. In order to do a thorough job, in which users are not confused by how
DPM works, then they should have some foundation in both these subjects. This
is difficult to do in a test situation, in which there is seldom time enough to do this
well.

With Petri nets, a little demonstration can go a long way in giving people an
intuitive understanding in how states and transitions interact to form state
machines. A live graphical demonstration of a simple loop Petri net showing a
model of how DPM design entities will work as distributed process models is
necessary in future to give users and testers a sufficient understanding of Petri net

137.
concepts to be able to use the application quickly. Perhaps such a visual
demonstration could be built into the application itself.

7.5.3 Safety in testing vs. usability of distributed systems

During testing, there tends to be few users, since having many testers (say dozens
or more) is harder to manage, and is less safe. During testing, large errors could be
discovered in the software, DPM could begin to consume excessive network
bandwidth (as did Napster), or it could be seen as a malicious virus (Fortunately,
none of these things have yet occurred.) Such things could conceivably harm the
computer network of the Architecture Faculty, and make popularization of DPM
problematic. Therefore, it is preferable to limit possible damage during testing
(before wide-scale roll-out of DPM) by limiting the number of testers.

One important aspect of P2P computing is with more users performance of the
system usually increases. With few users, overall performance of the system
remains low. Therefore, safety in testing, and creating a workable distributed
information system, work at cross-purposes. For safety, limiting initial testers is
desirable, but for creating workable P2P systems, increasing the number of testers
is desirable.

7.5.4 Bootstrapping of peergroups

When a peergroup is first created, the user who creates it is the only peer who is
aware of its existence, and knows about possible resources the peergroup might
contain. For other users to acquire this information, they must first discover the
peergroup, and then make another discovery request for the contents of the
peergroup. If the original author of the peergroup does not happen to be online
when the second discovery request is made, then it is likely that the request will
not be answered, and the peergroup’s contents will be invisible to other users.

One work-around for this problem is synchronize the usage of DPM by peers
who are working together. They could do this by agreeing to have DPM on at the
same time, such that information about peergroups of common interest is
exchanged reliably between the cooperating peers. This however, is quite limiting.
Ideally, users of DPM should not have to synchronize their work patterns in any
way with other peers—even those with whom they are working together on a
common design entity. P2P should lend support for asynchronous work, such that
peers can make contributions whenever they want.

7.5.5 Transmission of data between peers

In JXTA, information is communicated within peergroups. When there are many
users in these peergroups, communication of information within them tends to be
more successful. With many users, information is duplicated in users’ local caches
and tends to be reliably available to other users. If all users are on-line all of the
time, then they will tend to get all the information that is to be had within the
peergroups they have open. However, this is not usually the case. Users often open
DPM for a short time and then close it. This limits the number of local user caches
that information can dwell in and live to be communicated to other users.

138.
Information is published (or broadcast) in DPM when information is first
created. It is then published locally and remotely by DPM—using the JXTA
methods publish()and remotePublish()respectively. If peers are open at
the time, then they receive this information. However, if peergroup trees have too
few members, then it is probable that this new information is communicated only
into the local cache of the information’s author.

The best-case scenario for reliable communication in DPM is when: 1. users
always have DPM open and online, 2. peergroups have more than one or two
members, 3. There are direct connections, with few network hops between users.
In such a case, communication of information between users of DPM happens
within seconds. This is the case in a normal test situation. The responsiveness of
the system may not be as immediate as a client-server system, but seems adequate.

The least reliable scenario is when: 1. use of DPM by its users is sporadic, 2.
peergroup have solitary members, and 3. users are separated from one another by
many network hops. In this scenario information may simple never arrive to its
intended or potential audience. This seems to more approximate the real-world
usage of DPM before it is widely distributed and used.

Information can also be re-broadcast in DPM either manually or automatically.
Re-broadcasting involves taking all the information found locally by a user in a
particular peergroup, and re-publishing it within the scope of the peergroup. Tests
demonstrated that re-broadcasting of information, takes many seconds and appears
to consume excessive bandwidth. It does communicate information reliably
between users when one user can view some information and another user cannot.

However, it is not the case that by assuming the performance penalty of re-
broadcasting really solves the reliability problem. Re-broadcasting suffers from
the same basic problem as does the original publishing process: there is no
guarantee that there will be an audience for the re-broadcasted information, if too
few peers are in a position to receive this information.

Re-broadcasting is now viewed as a work-around for actions that should be done
automatically and transparently in JXTA and DPM. The preferred approach is for
information to be published only when it is first created in DPM. It is not clear
whether re-broadcasting is necessary in cases where peergroup member
populations are small, or whether other mechanisms in JXTA, which may not be
known to the author, can be used to achieve the same effect.

7.5.6 Peergroup size and information specificity

Increasing the number of peers with an interest in a peergroup tends to make it
more reliable. However, this tends to make the peergroup less specific to particular
student’s needs. For example, it is beneficial to make peergroups that concern
single students, since in this way students can have all the information that
concerns them in one spot. However, this means that only the student, some
worker in TOI and perhaps a few others will ever have any interest in instantiating
this peergroup, and discovering what it might contain.

139.
Therefore, a compromise might have to be made: make peergroups large enough
so they involve a lot of people, but don’t make them so large that the information
they contain covers too many subject matters. Like the option of synchronization
work patterns in DPM, this requirement is limiting. Ideally users should not have
consider what the optimal membership size of peergroups should be, since this is
hard to predict, depends of factors outside of the user’s control such as network
topologies, and therefore places an unwelcome burden of users.

The main factor related to optimal peergroup size is the usage patterns of DPM
users: whether they use DPM all the time, or whether they only use it sporadically.
With sporadic use, optimal peergroup size would be much larger than with
constant use. Additional real-world testing would be required to gain more idea of
what an optimal peergroup size would be, if such a thing exists. Ideally, of course,
any peergroup size should function as well as any other.

7.5.7 Revisions to software after testing

The two main aspects that proved problematic during testing were: 1. excessive
and increasing consumption of computing resources by DPM, and 2. the reliability
of communication of essential information between users, such as new entities and
entities states.

7.5.7.1 Reduction of resource consumption

After preliminary testing, DPM was profiled using the NetBeans Profiler
(NetBeans, 2004). This tool can analyze resource consumption of various parts of
a Java application. The main consumer of resources, in a part of DPM that was
easily reconfigurable, was the method by which remote peergroup searching
threads were created. By minor changes to this code, the resource consumption
problems in DPM were alleviated.

Before testing, when users created a new peergroup node, they would instantiate
a peergroup advertisement, then create a thread which sent out a remote discovery
requests every thirty seconds to all peers who are members of the peergroup.
Remote peers could then respond to these requests and send back newly
discovered peergroup resources to be included in a peergroup’s display. These
threads would continue running until the user switched them off. As users created
more peergroup nodes these threads would multiply and consume increasing
resources. Quickly, this process made DPM unusable.

The revised approach is now not to create new threads that search for remote
resources, but simply to create a single discovery request for remote resources,
after refresh of the node, which reflects the latest content of the local JXTA cache.
This solved the DPM performance problem. The revised node refresh code is
shown below:

140.
public void addChildren(PGTreeNode node) {
if(node!=null) {

clearChildren(node);
ContentSearcherTree searcher = node.getTreeSearcher();
/**First, populate content storage. This takes little time */
searcher.localCache_To_csAdvAllTypes();
/**Add content to tree */
addAllContentInCSToTree(node);
/**Expand the tree to show new addition */
expandOneNode(node);

/**Now get the remote advs for next time (this takes time) */
searcher.getRemoteAdvsAllTypes();

}
}

Figure 52 Revised peergroup node refresh code.

Such a performance tuning process for DPM could be continued and additional
incremental performance improvements could probably be gained, without great
effort or major redesign of DPM.

7.5.7.2 Push vs. pull peergroup resource discovery

DPM currently utilizes a ‘pull’ type of process to acquire resources. Users send out
discovery requests for peergroup nodes. Responses to these requests are
asynchronously received by DPM and put into the local JXTA cache. Whenever
peergroup nodes are refreshed, which occurs when users actively double-click on
a node, all the resources from the local cache are added to the node’s display.

Therefore, in DPM there was no mechanism to actively listen for new additions
to the peergroup and to revise the display if the new incoming information
warranted it. This could be called a ‘push’ mechanism—where important types of
information would push their way into a node’s display without active user
intervention.

In DPM, it is unpredictable as to when new information will arrive into the local
cache. The number of incoming advertisements can be quite high, and newly
discovered advertisements are not necessarily more recent than previously
received information. Therefore, refresh on discovery on receipt of just any
information is impractical, since this could involve excessive resources just to
keep all nodes showing the latest information received.

Instead, DPM should watch out for important types of information that should
warrant node refresh: 1. receipt of new design entities, and 2. receipt of new
history advertisements that determine entities’ states. If a user is actively informed
of receipt of these types of information, then users’ display will always show all
the latest entities that a peer has discovered, as well the most recent states these
entities have attained.

A ‘push’ mechanism was added to DPM after testing. The practical result of this
addition is that when two DPM users are sitting next to one another and one creates
new entity in a peergroup, or someone adds input to change entity state, then the

141.
other user’s peergroup display is automatically updated to reflect this newly
created information.

142.

143.
8 Conclusion

8.1 Discussion of results

8.1.1 Role of P2P

One of the most interesting points of discussion were the questions during the TOI
testing of DPM was ‘why use P2P’? This concerned the general suitability of P2P
systems for information systems. In the domain used for testing—student
processes within the TOI, there was little compelling advantage for using such a
system since, from a user/tester’s perspective:

1. information may not as reliably transmitted between users as would a client-
server system, and

2. trustworthiness and freshness of some data can be low when there is low peer-
group membership.

Such problems can be avoided by adopting a client-server architecture, but then
new problems are introduced, such as the effort and cost required to design and
maintain client-server systems, and the concentration of processing loads and
security issues inherent to centralized systems.

P2P is both an implementation technology, as well as an approach to self-
organizing social and technical processes. This research co-mingles both of these
aspects. In some domains, if P2P is seen purely as an implementation technology,
there may be insufficient reasons to adopt it. It is unclear whether P2P has actually
reduced the number of lines of code for this research, since the client-server
alternative was not implemented (the author feels it probably has). However, if the
goal is also to explore whether distributed process-support applications can be
designed that structure processes in a formalized manner, then the P2P aspect of
the research goes beyond being merely an implementation decision. It has been
shown that a distributed implementation for design process coordination is
workable—though not problem-free.

8.1.2 Aspects impaired by P2P

Access to all information at all times: communication of information in P2P is
dependent on number of users in general, and on the membership of peergroups.
Low user numbers lead to low performance in P2P systems. This results in lower
reliability of information, and doubts in users whether the information that some
peers can access is all the information that exists.

It is not clear that P2P implementations are well suited for supporting small
groups of people who may not want to share information with larger populations
of users. Unfortunately, small design teams—the most common kind—can usually
be described as small groups of people who do not want to share information

144.
(often secret and proprietary) with just anyone. However, it is not clear that this
constitutes a fatal flaw in the technology with respect to collaborative design
applications.

8.1.3 Aspects helped by a P2P implementation

1. Avoidance of ‘global’ information: in a client-server system it is easy to store
information that applies to all other users. In a P2P implementation such in-
formation can be stored within the application itself—for instance the inclu-
sion of a number of basic state-transition loops for use by TOI testers. If the
goal is to enable peers to self-organize, then there is much less opportunity in
P2P implementations to ‘cheat’ and introduce behind-the-scenes prescrip-
tions. Yet, it is also clear that the boundary between what prescriptions devel-
opers add to P2P applications, and what users self-organize on their own, is
still quite ambiguous.

2. Probability of scalable performance: in the event that DPM is used by large
numbers of users, then its performance should improve as information is dis-
tributed and duplicated between peers.

3. Distribution and installation of the software is easy: all that is required of po-
tential users or testers is to download the DPM software, have Java installed
on the computer (which is usually the case), and double-click on an execut-
able.

4. Maintenance and security safe-guarding of a server is not required.
5. All development can happen locally on a single machine without having to

gain access to a server. The development process then is centered on use of
Java and of JXTA code. This proved straightforward to manage.

8.1.4 Solution to the reliability problem?

Testing of DPM shows that a degree of user synchronization of DPM is currently
necessary. This is to avoid the problem of having information communicated
within the scope of peergroups, without having sufficient members within these
peergroups to store and transmit this information to other peers. What then are the
possible solutions to this problem?

1. Have all peers store all information regarding all peergroups on their comput-
ers. Comment: this works against the spirit of P2P computing and imposes
centralized loads on every peer. P2P systems are built to distribute loads,
which is why in JXTA information is shared within the limited scope of peer-
groups.

2. Have all users do all their work in limited numbers of peergroups. Comment:
If all users did all their work in one peergroup then the reliability problem
would be solved. This would also tend to centralize loads onto each user. It
also would prevent users from structuring information into smaller catego-
ries—which currently in DPM is achieved through construction of peergroup
hierarchies.

145.
3. Separation of information hierarchies from peergroup hierarchies. Comment:
this appears promising and may be worthy of further study, however, peer-
groups seem to be the natural approach in P2P of creating specialized places
to put information.

4. Transfer information directly between peers rather than within peergroups.
Comment: this also appears to be a promising direction. in JXTA, peers can
create virtual pipe connections between individual peers such that informa-
tion can be directly transferred along the pipe. This requires that both peers be
online at the time. It is not clear whether this solve the problem of when two
peers, who are directly interacting, are not online at the same time.

5. Have users synchronize their work patterns. Comment: This synchronization
might involve only having DPM on when other users are likely to use it. This
constraint is similar to client-server systems where in order to have reliable
service for clients, the server is assumed to be always on and available to cli-
ents. Having to synchronize usage adds an unwelcome and limiting constraint
but may be necessary in cases when small number of users are working to-
gether on shared information that will, at the best of times, interest only small
numbers of people.

6. How so many users that information is duplicated and shared widely. Com-
ment: this is the normal approach in P2P computing and assumes that reliabil-
ity comes through increased numbers of users. For many domains, such as
music sharing or distributed file systems, this approach has proven effective.
It is unclear whether collaborative design processes will necessarily have suf-
ficient user populations to make this approach always reliable.

8.1.5 Interactive nature of DPM’s process

DPM is an interactive system. It requires participation from many people for it to
work as intended. For this participation to occur, the tool must provide useful
information for all parties. In DPM’s case, in the context of the TOI department at
TU Delft, this means it must satisfy information needs both of TOI as well as its
students.

Therefore, in DPM’s case this means that the process of determining a student’s
state within the educational process of TOI, is not solely up to TOI, but also up the
students as well. Both the student and TOI personnel function as ‘peers.’ This is
quite different in basic approach to current information systems at TOI. Since all
role-players in DPM are not defined in any way that distinguishes them according
to their role in the administration of TU Delft, this tends to blur the roles and rank
of those who use DPM. It may not be clear to users if a role-player has a role of
authority in the institution, or not. This is not necessarily always a good thing. In
this way DPM tends not to be seen as a tool that has been imposed by the
administration onto students. Rather it is a collaborative tool that requires
cooperation and mutual participation.

146.
8.1.6 Leveraging external technologies

8.1.6.1 The technology of Petri nets

DPM depends on the technology of Petri nets. As it turned out, this process of
modeling loops in Petri net form appears to be a process best left to the author. It
appears that such modeling is beyond the interests and capabilities of the ordinary
user. The concept of how a Petri net model is constructed and operates is not
completely self-evident. Talk of states and transitions is technical and can be
confusing for some. The fluent use of DPM depends on a greater understanding of
how Petri nets work than expected.

8.1.6.2 Leverage of JXTA

Development of DPM involved leveraging basic JXTA capabilities within a
custom domain. This approach relies on JXTA working as advertised. DPM
therefore is dependent on future versions of JXTA for it to evolve and grow. This
appears not to be a problem, since the developer community using JXTA is strong
and is growing.

8.1.6.3 Role of the Java language

Java has been a significant and relatively recent development in computing
technology, is now largely taken for granted. Java’s basic approach, and the ease
of use of using an integrated development environment (or IDE—specifically
NetBeans 3.6) made this research relatively easy to implement.

Standardization towards UML graphical representation of project structures (as
used in the TogetherSoft IDEs) is seen as a further improvement towards
implementation ease and power, using the Java language.

147.
8.2 Contributions

8.2.1 Implementation of a working prototype for design coordination

This research involved design and implementation of a working software
prototype. This prototype demonstrated that a distributed P2P approach to the
description and coordination of collaborative design processes is workable. The
implementation phase of the research was extremely useful for attaining sufficient
knowledge of P2P technologies to make a balanced assessment of the technology,
as well as providing countless opportunities to investigate various approaches to
collaborative processes and social interactions.

8.2.2 Provision of a process coordination framework

DPM enables users to participate in a structured coordination process that involves
roles, and collaborative specification of entity state. DPM also enables users to
communicate task, task dependency, and actor dependencies for tasks, in a low-
cost, non-prescriptive manner. This enables distributed designers to coordinate
their work on a real-time basis.

8.2.3 Interactive collaborative modeling tool

DPM enables distributed users to model not only design entities and their contents,
but also to build hierarchies of peergroups. These peergroups enables users to
browse collaboratively defined information structures, to see who else has joined
these groups, and to see what kind of information exists within them. This
information includes both design entities of various kinds as well as simple chat
messages that users can post to hierarchical peergroups in a ‘blog’ fashion. Online
collaboration can take place by simply exchanging information in simple message
form, as opposed to the more complicated process of becoming involved in design
entities and assuming roles in them.

8.2.4 Environment to represent and establish organizational norms

In DPM organizational norms are defined by the content of process loop models,
as well as the type of constraints and linked entities that are created. Using the
prototype feature that in DPM is built into the process of creating new entities,
enables users to learn quickly about how others are using the system and to adjust
their behavior correspondingly.

DPM depend on group of people creating histories of working together and to
see histories of collaborations between various peers assuming a variety of roles.
This process of producing a visible common, collaborative history is of great
importance in structuring collaborative work.

8.2.5 Building of user-configured online teams

Enables users to build online teams and other types of communities quickly, using
minimal software. This is a result of DPM leveraging the capabilities of JXTA—
a sophisticated open-source P2P framework.

148.
8.3 Future research agenda

8.3.1 Increase the reliability of information transfer

As detailed above there are ways of possibly improving the reliability of
information transfer, without corrupting the basic P2P approach and its benefits.
This process could involve investigating whether peers could hold information
about peergroups they may not have a direct involvement in, but have an interest
in storing for other peers, without going so far as having all peers hold information
about every peergroup found in the whole system. Use of pipe connections that
would directly connect peers should also be investigated.

8.3.2 Build more sophisticated prototype mechanisms

The manner in which prototypes are found or created in DPM is in fact
fundamental to its operation, although the testing process barely touched on this
aspect. It is the mechanism in which group activity is encouraged to converge
towards user-defined organizational norms. Greater study is required to see how
this process works exactly and whether more sophisticated prototype algorithms
could enhance it.

8.3.3 Explore information persistence

DPM up to now has had little study in how the life spans (or ‘time to live’) of
design entities created in DPM should be manipulated to best effect. Distributed
systems depend on distributed objects created within them having limited life
spans. If objects do not have limited life spans, then the distributed system is soon
choked with obsolete information.

It is expected that some information should never become obsolete and should
endure in process histories for a long time. It is also expected that users should not
be able to set life spans manually, since they lack sufficient knowledge of the
issues involved to do it well. The consequence of doing it badly is that the
distributed system could soon become unusable.

It is unclear what the criteria for setting life spans should be. Presumably, this
life span setting process should be an emergent process that depends on how users
make use of existing information. It should also be a process that is transparent to
the user.

8.3.4 Simplify the process of modeling process loops

Currently, modeling using Petri net models is cumbersome for users. It is unclear
how to make this process easier. It appears that most users simply lack a
background in process representation techniques, and therefore must be exposed
to this technology and its concepts quickly when exposed to DPM for the first
time. The basic Petri net-based technology of the DPM approach has been of
fundamental importance in providing distributed process models that peers can
create, modify and run. Therefore, the basic technical foundation of DPM will
remain Petri net-based.

149.
9 References

Aalst, W. v. d., Basten, T., Verbeek, H., Verkoulen, P., & Voorhoeve, M. 1999, August.
Adaptive Workflow: An Approach Based on Inheritance Proceedings of 16th. Interna-
tional Joint Conference on Artificial Intelligence. M. Ibrahim & B. Drabble Eds. Stock-
holm, Sweden. 36-45.

Action Technologies. 1998. Business Process Integrity in ActionWorks. Action Technolo-
gies Inc. Available: www.actiontech.com.

Agre, P., & Chapman, D. 1989. What are plans for? A.I. Memo 1050a. Cambridge, MA:
Artificial Intelligence Laboratory, MIT.

Akin, Ö. 1986. Psychology of Architectural Design. London, UK: Pion.

Akin, Ö. 1991. A structure and function-based theory for design reasoning. In N. Cross &
K. Dorst & N. Roozenburg Eds. Research in Design Thinking. Delft, Netherlands: Delft
University Press.

Akin, Ö., Sen, R., Donia, M., & Zhang, Y. 1995. SEED-Pro: Computer-Assisted Architec-
tural Programming in SEED. Journal of Architectural Engineering. vol.1. No.4. 153-
161.

American Institute of Architects. 1994. Architects Handbook of Professional Practice.
Washington, DC: AIA.

AngeloPeerRendezvous. 2004. AngeloPeerRendezvous: p2p-based software for intra-en-
terprise communication. Available: http://angelopeerrendezvous.jxta.org/servlets/Pro-
jectHome [2004, August 2].

Axelrod, R. 1997. The Complexity of Cooperation: Agent-Based Models of Competition
and Collaboration. Princeton, NJ: Princeton University Press.

Bach, K. 1995. Speech act theory. In R. Audi Ed. Cambridge Dictionary of Philosophy.
Cambridge, UK: Cambridge University Press.

Biberstein, O., & Buchs, D. 1998. An Object-oriented Specification Language based on Hi-
erarchical Algebraic Petri Nets. Available: http://lglwww.epfl.ch.

Bijker, W. 1995. Of bicycles, bakelites, and bulbs: toward a theory of sociotechnical
change. Cambridge, MA: The MIT Press.

Blazewicz, J., Ecker, K., Pesch, E., Schmidt, G., & Weglarz, J. 1996. Scheduling Computer
and Manufacturing Processes. Berlin: Springer Verlag.

Boehm, B., & Hansen, W. 2001. The Spiral Model as a Tool for Evolutionary Acquisition.
Crosstalk: The Journal of Defense Software Engineering. May. 4-11.

Bowker, G., & Star, S. L. 1999. Sorting Things Out: Classification and its Consequences.
Cambridge, MA: The MIT Press.

Brooks, R. 1991. Intelligence without Representation. Artificial Intelligence. 47. 139-160.

Bucciarelli, L. L. 1994. Designing Engineers. Cambridge, MA: The MIT Press.

Bucciarelli, L. L. 2003. Engineering Philosophy. Delft, Netherlands: DUP Satellite, Delft
University Press.

150.
Canadian Architectural Councils. 1995. Canadian Handbook of Practice for Architects:
RAIC, and Committee of Canadian Architectural Councils. Ottawa: Royal Architectural
Institute of Canada.

Carmichael, D. 1989. Construction engineering networks: techniques, planning, and man-
agement. New York, NY: John Wiley & Sons.

Chomsky, N. 1969. Aspects of the Theory of Syntax. Cambridge, MA: The MIT Press.

Cindio, F. d., Michelis, G. d., & Simone, C. 1992. The Communication of Disciplines of
CHAOS. In D. Marca & G. Bock Eds. Groupware: Software for Computer-Supported
Cooperative Work. Los Alamitos, CA: IEEE Computer Society Press.

Clancey, W. 1993. Situated Action: A Neuropsychological Interpretation Response to Vera
and Simon. Cognitive Science. No.17. 87-116.

Clancey, W. 1997. Situated Cognition: On Human Knowledge and Computer Representa-
tions. Cambridge, UK: Cambridge University Press.

Clark, H. H. 1996. Using Language. Cambridge, UK: Cambridge University Press.

Coalesce. 2004. Coalesce: A seedbed for growing ideas. Available: http://coalesce.jxta.org/
servlets/ProjectHome [2004, August 2].

Coyne, R., Rosenman, M., Radford, A., & Gero, J. 1987. Innovation and Creativity in
Knowledge-Based CAD. In J. Gero Ed. Expert Systems in Computer-Aided Design. Am-
sterdam: Elsevier.

Cross, N. 1993. Science and Design Methodology: A Review. Research in Engineering De-
sign. vol.5. 63-69.

Cross, N., Christiaans, H., & Dorst, K. 1996. Introduction: The Delft Protocols Workshop.
In N. Cross & H. Christiaans & K. Dorst Eds. Analysing Design Activity. Chichester, UK:
John Wiley & Sons.

Cross, N., & Cross, A. C. 1996. Observations of Teamwork and Social Processes in Design.
In N. Cross & H. Christiaans & K. Dorst Eds. Analysing Design Activity. Chichester, UK:
John Wiley & Sons.

Cuff, D. 1991. Architecture: The story of practice. Cambridge, MA: The MIT Press.

Cumming, M. 2003, 26-30 July 2003. Sharing knowledge within organizational hierarchies
using flexible peergroups Proceedings of 10th ISPE International Conference on Concur-
rent Engineering: Research and Applications. J. Cha & R. Jardim-Gonçalves & A.
Steiger-Garção Eds. Madeira, Portugal. 591-598.

Cumming, M., Akin, Ö., & Donia, M. 1998. SEED-Pro Tutorial Manual Unpublished soft-
ware manual. Pittsburgh, PA: School of Architecture, and Institute for Complex Engi-
neered Systems, Carnegie Mellon University.

Darke, J. 1984. The Primary Generator and the Design Process. In N. Cross Ed. Develop-
ments in Design Methodology. New York, NY: John Wiley & Sons.

Donia, M., Flemming, U., Akin, Ö., Sen, R., & Cumming, M. 1998. SEED-Pro Reference
Manual Unpublished software manual. Pittsburgh, PA: School of Architecture, and Insti-
tute for Complex Engineered Systems, Carnegie Mellon University.

Dym, C., & Levitt, R. 1991. Knowledge-Based Systems in Engineering. New York, NY:
McGraw-Hill.

Ennis, C., & Gyeszly, S. 1991. Protocol Analysis of the Engineering Systems Design Pro-
cess. Research in Engineering Design. vol.3. 15-22.

Evan, W. 1993. Organizational Theory: Research and Design. New York, NY: Macmillan.

151.
Extreme Programming Organization. 2004. Extreme Programming: A gentle introduction.,
[Web site]. extremeprogramming.org. Available: http://www.extremeprogramming.org/
index.html [2004, August 2].

Fenves, S., Flemming, U., Hendrickson, C., Maher, M. L., Quadrel, R., Terk, M., & Wood-
bury, R. 1994. Concurrent Computer-Integrated Building Design. Englewood Cliffs, NJ:
Prentice Hall.

Fenves, S., & Rivard, H. 2004. Generative Systems in Structural Engineering Design Pro-
ceedings of GCAD '04: Generative CAD Systems Symposium. Ö. Akin & R. Krishna-
murti & K. P. Lam Eds. Carnegie Mellon University, Pittsburgh, PA.

Fenves, S., Rivard, H., Gomez, N., & Chiou, S. 1995. Conceptual Structural Design in
SEED. Journal of Architectural Engineering. vol.1. No.4. 179-186.

Ferber, J. 1999. Multi-agent Systems: An introduction to distributed artificial intelligence.
Harlow: Addison-Wesley.

Ferraro, A., & Rogers, E. 1997. Petri Nets in the Evaluation of Collaborative Systems Pro-
ceedings of The 1997 IEEE International Conference on Systems, Man, and Cybernetics
Orlando, FL.

Flemming, U. 1998. SEED-Layout Tutorial Unpublished software tutorial. Pittsburgh, PA:
School of Architecture, and Institute for Complex Engineered Systems, Carnegie Mellon
University.

Flemming, U. 2004. Computer-aided architectural design: looking back, looking forward
Proceedings of GCAD '04: Generative CAD Systems Symposium. Ö. Akin & R. Krish-
namurti & K. P. Lam Eds. Carnegie Mellon University, Pittsburgh, PA.

Flemming, U. 2004. Keynote address: Computer-aided Architectural Design: Looking
back, looking forward Proceedings of GCAD '04: International Symposium on Genera-
tive CAD Systems. Ö. Akin & R. Krishnamurti & K. P. Lam Eds. School of Architecture,
Carnegie Mellon University, Pittsburgh, PA.

Flemming, U., Aygen, Z., Burrow, A., Chan, T. W., Chien, S.-F., Chiou, S., Choi, B., Cum-
ming, M., Datta, S., Donia, M., Drogemuller, R., Erhan, H., Fenves, S., Garrett, J., Go-
mez, N., Johnstone, J., Han, K., Moustapha, H., Ozkaya, I., Rivard, H., Sen, R., Snyder,
J., Tsai, J., Woodbury, R., & Zhang, Y. 2000. The SEED Experience Unpublished Tech-
nical Report prepared at the end of the SEED contract for: US Army Corps of Engineers
Construction Engineering Research Laboratory (USACERL). Pittsburgh, PA: School of
Architecture, and the Institute for Complex Engineered Systems (ICES), Carnegie Mel-
lon University.

Flemming, U., & Chien, S.-F. 1995. Schematic Layout Design in the SEED Environment.
Journal of Architectural Engineering. vol.1. No.4. 162-169.

Flemming, U., & Chien, S.-F. 1998. SEED-Layout Reference Manual Unpublished soft-
ware manual. Pittsburgh, PA: School of Architecture, and Institute for Complex Engi-
neered Systems, Carnegie Mellon University.

Flemming, U., & Woodbury, R. 1995. Software Environment to Support Early Phases in
Building Design (SEED): Overview. Journal of Architectural Engineering. 1. 4. 147-
152.

Flores, F., Graves, M., Hartfield, B., & Winograd, T. 1992. Computer Systems and the De-
sign of Organizational Interaction. In D. Marca & G. Bock Eds. Groupware: Software
for Computer-Supported Cooperative Work. Los Alamitos, CA: IEEE Computer Society
Press.

152.
Genesereth, M., & Fikes, R. 1992. Knowledge Interchange Format, Version 3.0 Reference
Manual Logic-92-1. Stanford, CA: Computer Science Department, Stanford University.

Gong, L. 2001. JXTA: A Network Programming Environment. IEEE Internet Computing.
5. 88-95.

Gordon, D. 1999. Ants at Work: How an Insect Society is Organized. New York, NY: The
Free Press.

Gorti, S., Gupta, A., Kim, G., Sriram, R., & Wong, A. 1998. An object-oriented represen-
tation for product and design processes. Computer-Aided Design. vol.30. No.7. 489-501.

Guindon, R. 1990. Designing the Design Process: Exploiting Opportunistic Thoughts. Hu-
man-Computer Interaction. vol.5. 305-344.

Hafner, K. 2001, January 18, 2001. Web Sites Begin to Self Organize, [Newspaper article].
Available: http://www.nytimes.com/2001/01/18/technology/18SELF.html?pagewant-
ed=1&ei=5070&en=571d62b7ace54095&ex=1094702400.

Harel, D. 1988. On Visual Formalisms. Communications of the ACM. vol.31. No.5. 514-
530.

Hendrickson, C., & Au, T. 1989. Project Management for Construction. Englewood Cliffs,
NJ: Prentice Hall.

Hendrickson, C., & Au, T. 1990. Project Management for Construction. Englewood Cliffs,
NJ: Prentice Hall.

Hoare, C. 1985. Communicating Sequential Processes. Englewood Cliffs, NJ: Prentice
Hall.

Hogg, T. 1998. Controlling Chaos in Distributed Computational Systems. IEEE Transac-
tions on Systems, Man, and Cybernetics. 1. 632-637.

IAI. 2004. International Alliance for Interoperability. IAI. Available: http://www.iai-inter-
national.org/iai_international/ [2004, Oct. 23].

Iowa Electronic Markets. 2004. Trader's Manual, [web page]. Iowa Electronic Markets.
Tippie College of Business. University of Iowa. Available: http://www.biz.uiowa.edu/
iem/trmanual/ [2004, 14 June].

Jacobson, I. 1995. The Use-Case Construct in Object-Oriented Software Engineering. In J.
Carroll Ed. Scenario-Based Design: Envisioning Work and Technology in System Devel-
opment. New York, NY: John Wiley & Sons.

Jacobson, I., Christerson, M., Jonsson, P., & Overgaard, G. 1992. Object-Oriented Software
Engineering: A Use Case Driven Approach. Reading, MA: Addison-Wesley.

java.sun.com. 2004. Online documentation for Class java.util.HashMap. Available: http://
java.sun.com/j2se/1.4.2/docs/api/java/util/HashMap.html [2004, August 26].

Jeng, T.-S. 1998. Design Coordination Modeling: A Distributed Computer Environment for
Managing Design Activities. Ph.D. Thesis. Department of Architecture, Georgia Institute
of Technology, Atlanta, GA.

Jennings, N. R. 1996. Coordination techniques for distributed artificial intelligence. In G.
O'Hare & N. R. Jennings Eds. Foundations of Distributed Artificial Intelligence. 187-
210. New York, NY: John Wiley & Sons.

Jensen, K. 1996. Coloured Petri Nets: Basic Concepts. 2nd ed. vol. 1. Berlin: Springer Ver-
lag.

Jensen, K. 1997. A Brief Introduction to Coloured Petri Nets. Computer Science Depart-
ment, University of Aarhus. Available: http://www.daimi.au.dk/CPnets/.

153.
Jones, J. C. 1984. A Method of Systematic Design. In N. Cross Ed. Developments in Design
Methodology. New York, NY: John Wiley & Sons.

Jones, J. C. 1992. Design Methods. New York, NY: Van Nostrand Reinhold.

JUnit Organization. 2004. Introduction to Software Testing Using JUnit, [Web site].
Junit.org. Available: http://www.junit.org/index.htm [2004, August 2].

Jxcube. 2004. Jxcube: Jxta eXtreme Cube - Fully Distributed Collaboration Platform.
Available: http://jxcube.jxta.org/servlets/ProjectHome [2004, August 2].

JXTA. 2004. Project JXTA, [Web site for JXTA.org]. jxta.org. Available: http://www.jx-
ta.org [2004, Jan 23].

KBSI. 1998. IDEF Methods. Knowledge Based Systems, Inc. Available: www.kbsi.com
[2004, Jan 26].

Kiritsis, D., Xirouchakis, P., & Gunther, C. 1998. Petri Net Representation for the Process
Specification Language - Part 1: Manufacturing Process Planning. CAD/CAM Labora-
tory, EPFL, Lausanne, Switzerland. Available: http://www.mel.nist.gov/psl/pubs.html.

Klein, M. 1998. Coordination Science: Challenges and Directions. In W. Conen & G. Neu-
mann Eds. Coordination Technology for Collaborative Applications. 161-176. Berlin:
Springer Verlag.

Klein, M., Sayama, H., Faratin, P., & Bar-Yam, Y. 2001. What Complex Systems Research
Can Teach Us About Collaborative Design Proceedings of International Workshop on
CSCW in Design. London, Ontario, Canada. 5-12.

Kusumoto, S., Mizuno, O., Kikuno, T., Hirayama, Y., Takagi, Y., & Sakamoto, K. 1997. A
New Software Project Simulator based on Generalized Stochastic Petri nets Proceedings
of 1997 International Conference on Software Engineering. Boston, MA.

Lakos, C. 1994. From Coloured Petri Nets to Object Petri Nets Technical Report TR94-9.
Hobart: Computer Science Department, University of Tasmania.

Lawson, B. 1990. How Designers Think 3rd ed. Oxford, UK: Butterworth Architecture.

Li, H. 1998. Petri net as a formalism to assist process improvement in the construction in-
dustry. Automation in Construction. vol.7. 349-356.

Lu, S., & Jin, Y. 1998. Engineering as Collaborative Negotiation. The IMPACT Laborato-
ry, University of Southern California. Available: http://impact.usc.edu/.

Lu, S., Udwadia, F., Burkett, W., Cai, J., & Jin, Y. 1998. Conflict Management in Collab-
orative Engineering Design Research Workshop Report. Los Angeles, CA: The IM-
PACT Research Laboratory, University of Southern California.

Maia, A., Haeusler, E., & Lucena, C. d. 1996. A model for cooperative software design Pro-
ceedings of Descriptive Models of Design Conference. Ö. Akin & G. Saglamer Eds.
Istanbul, Turkey.

Malone, T., & Crowston, K. 1992. What is Coordination Theory and How Can It Help De-
sign Cooperative Work Systems? In D. Marca & G. Bock Eds. Groupware: Software for
Computer-Supported Cooperative Work. Los Alamitos, CA: IEEE Computer Society
Press.

McGinty, T. 1979. Design and the Design Process. In J. C. Snyder & A. Catanese Eds. In-
troduction to Architecture. New York, NY: McGraw-Hill.

Medina-Mora, R., Winograd, T., Flores, R., & Flores, F. 1992, 31 October - 4 November.
The Action Workflow Approach to Workflow Management Technology Proceedings of
CSCW '92. J. Turner & R. Kraut Eds. Toronto. 281-288.

154.
Merriam-Webster Inc. 1999. Merriam-Webster Online, [Online dictionary]. Available: ht-
tp://www.m-w.com/dictionary.htm [1999, Jan. 14].

Meta Software Corp. 1993. Design/CPN Tutorial for X-Windows. Cambridge, MA: Meta
Software Corp.

NetBeans. 2004. The NetBeans Profiler Project. NetBeans.org. Available: http://profil-
er.netbeans.org/ [2004, Dec 10].

Newell, A., & Simon, H. 1972. Human Problem Solving. New York, NY: Prentice-Hall Inc.

NIDCD. 2004. Glossary. National Institute on Deafness and Other Communication Disor-
ders. Available: http://www.nidcd.nih.gov/health/glossary/glossary.asp#C [2004, July
4].

Nuseibeh, B., & Easterbrook, S. 2000, June 4-11. Requirements engineering: a roadmap
Proceedings of ICSE 2000: The Future of Software Engineering. Limerick, Ireland. 35-
46.

Oaks, S., Traversat, B., & Gong, L. 2002. JXTA in a Nutshell. Sebastopol, CA: O'Reilly.

Oestereich, B. 1999. Developing Software with UML: Object-Oriented Analysis and Design
in Practice. Reading, MA: Addison-Wesley.

P2pconference. 2004. P2pconference: A tool to conduct remote, text-based conferences.
Available: http://p2pconference.jxta.org/servlets/ProjectHome [2004, August 2].

Pahl, G., Beitz, W., Wallace, K., Blessing, L., & Frank, B. 1996. Engineering Design: A
Systematic Approach 2nd ed. Berlin: Germany: Springer-Verlag Telos.

Peer-to-Peer Working Group. 2002. Peer-to-Peer Working Group, [web site]. Available:
http://www.peer-to-peerwg.org/ [24 Jan, 2002].

Petri, C. 1962. Kommunikation mit Automaten (Communicating with automata). Ph.D. the-
sis. Technical University Darmstadt, Darmstadt, Germany.

Prior, C. 2004. Workflow and Process Management, [Section of the Workflow Manage-
ment Coalition Process Handbook]. wfmc.org. Available: http://www.wfmc.org/infor-
mation/Workflow_and_Process_Management.pdf [2004, June 13].

Reisig, W. 1998. Elements of Distributed Algorithms: Modeling and Analysis with Petri
Nets. Berlin: Springer Verlag.

Renew. 2004. Renew: The Reference Net Workshop. Theoretical Foundations Group, De-
partment for Informatics, University of Hamburg. Available: http://www.renew.de/
[2004, Feb. 23].

Resnick, M. 1994. Turtles, Termites, and Traffic Jams: Explorations in massively parallel
microworlds. Cambridge, MA: The MIT Press.

Rivest, R. 2004. comp.software.testing Frequently Asked Questions (FAQ), [Web page].
comp.software.testing newsgroup. Available: http://www.faqs.org/faqs/software-eng/
testing-faq/ [2004, August 2].

Roozenburg, N., & Cross, N. 1991. Models of the design process: integrating across the dis-
ciplines. Design Studies. vol.12. No.4. 215-220.

Ruckdeschel, W., & Onken, R. 1994. Modeling of Pilot Behavior Using Petri Nets Proceed-
ings of 15th International Conference on the Application and Theory of Petri Nets. Zara-
goza, Spain.

SAA. 1984. Handbook for Architectural Administrators: A manual of design office prac-
tice. Washington, DC: The Society of Architectural Administrators.

155.
Schön, D. 1983. The Reflective Practitioner: How Professionals Think in Action. New
York, NY: Basic Books.

Searle, J. 1969. Speech Acts. Cambridge, UK: Cambridge University Press.

Searle, J. 1991. Response: Meaning, Intentionality, and Speech Acts. In E. Lepore & R. v.
Gulick Eds. John Searle and his Critics. Oxford, UK: Blackwell.

Silberschatz, A., & Peterson, J. 1988. Operating System Concepts. Reading, MA: Addison-
Wesley.

Silva, M., & Valette, R. 1989. Petri Nets and Flexible Manufacturing. In G. Rozenberg Ed.
Advances in Petri Nets 1989. Berlin: Springer Verlag.

Simon, H. 1981. The Sciences of the Artificial 2nd ed. Cambridge, MA: The MIT Press.

Simon, H. 1984. The Structure of Ill-structured Problems. In N. Cross Ed. Developments in
Design Methodology. New York, NY: John Wiley & Sons.

Smith, M. 2004. Donald Schon (Schön): Learning, Reflection, and Change. The Encyclo-
paedia of Informal Education. Available: http://www.infed.org/thinkers/et-schon.htm
[2004, July 10].

Snyder, J. 1998. Conceptual Modeling and Application Integration in CAD: The Essential
Elements. Ph.D. Dissertation. School of Architecture, Carnegie Mellon University, Pitts-
burgh, PA.

Stellingwerff, M. C. 2004. Reality, mind & media: virtual views in an urban and architec-
tural design context. Ph.D. dissertation. Faculty of Architecture, Delft University of
Technology, Delft, Netherlands.

Step Tools, I. 2004. What is STEP?, [Web site]. Step Tools, Inc. Available: http://
www.steptools.com/library/standard/step_1.html [2004, Nov 2].

Stouffs, R., & Krishnamurti, R. 2001. On the road to standardization Proceedings of CAAD
Futures 2001. B. d. Vries & J. v. Leeuwen & H. Achten Eds. Eindhoven, Netherlands.
75-88.

Sun Microsystems, I. 2002. Project JXTA v2.0: Java Programmer's Guide. Sun Microsys-
tems Inc. Available: http://www.jxta.org/docs/jxtaprogguide_final.pdf [2003, 30 May].

Surowiecki, J. 2004. The Wisdom of Crowds: Why the Many are Smarter than the Few.
London, UK: Little, Brown.

TOI. 2004. Technical Design and Informatics, [Web site]. Chair of Technical Design and
Informatics, Faculty of Architecture, TU Delft. Available: http://www.bk.tudelft.nl/bt/
toi/ [2004, July 2].

Varela, F., Thompson, E., & Rosch, E. 1991. The Embodied Mind: Cognitive Science and
Human Experience. Cambridge, MA: The MIT Press.

Vera, A., & Simon, H. 1993. Situated Action: Reply to William Clancey. Cognitive Science.
No.17. 117-133.

Whitfield, R. I., Coates, G., Duffy, A., & Hills, B. 2000. Coordination Approaches and Sys-
tems - Part I: A Strategic Perspective. Research in Engineering Design. 12. 48-60.

Whitney, D. 1990. Designing the Design Process. Research in Engineering Design. vol.2.
3-13.

Wikimedia.org. 2004. Wikipedia: The Free Encyclopedia. Wikimedia Foundation. Avail-
able: http://en.wikipedia.org/wiki/Main_Page [2004, Nov. 2].

Winograd, T., & Flores, F. 1987. Understanding Computers and Cognition: A new founda-
tion for design. Reading, MA: Addison-Wesley.

156.
Woodbury, R., & Chang, T. W. 1995. Massing and Enclosure Design with SEED-Config.
Journal of Architectural Engineering. vol.1. No.4. 170-178.

Workflow Management Coalition. 2004. Website for the WfMC. wfmc.org. Available: ht-
tp://www.wfmc.org/ [2004, August 12].

157.
10 Appendices

10.1 Appendix A: Instructions for installing Design Process
Modeler (DPM)
Michael Cumming
m.cumming@bk.tudelft.nl
Last revision: 30 November 2004

10.1.1 Introduction

DPM is a design process coordination tool, which enables users to:
• Communicate information to other users in a peer-to-peer (P2P) fashion, using

the JXTA P2P framework (see: www.jxta.org).
• Build collaborative description hierarchies of design entities.
• Assume roles, and collaboratively specify the state of these entities.
• Assign various state/transition models for each entity.
• Link design entities to other entities to form process models.

10.1.2 Obtaining the software

There are two ways of obtaining the software:

1. Download it from the author’s web site
• Download link:

www.bk.tudelft.nl/users/cumming/internet/dpm.zip
• Download by entering this URL in your browser. File download should

start automatically. Please contact Michael Cumming if it doesn’t (m.cum-
ming@bk.tudelft.nl).

• Save the zip file in an empty folder anywhere on your computer.
• Extract the zip file into the same folder.
• Run the application by double-clicking on dpm.0.75.exe

2. Get it on CD:
• Save the zip file in an empty folder on your computer.
• Extract the zip file into the same folder.
• Run the application by double-clicking on dpm.0.75.exe

10.1.3 Prerequisites for running the DPM application

1. Your computer is connected to the Internet. This application requires an open
Internet connection.

1. Java 1.4, or later, is installed on your system. Download Java at: http://ja-
va.sun.com/j2se/1.4.2/download.html. The java version installed on your

158.
computer can be determined by typing the command ‘java -version’ in a Com-
mand Prompt window (in Windows).

10.1.4 Configuration of JXTA

The first thing that should run is the JXTA configuration window. It should open
automatically. This configuration tool is built into JXTA.

The JXTA Configurator has four tabs: Basic, Advanced, Rendezvous/Relays,
Security. For each tab of the JXTA Configurator:

1. Basic
• Enter your peer name (e.g. ‘MC’). This is the name that you will be known

by on-line.
• Don’t check “Use a proxy server” unless you're behind a firewall.

Figure 53 Basic JXTA configuration panel.

159.
2. Advanced

In both TCP and HTTP Settings, check:
• ‘Enable Outgoing Connections’
• ‘Enable Incoming Connections’

Figure 54 Advanced JXTA configuration panel.

NOTE: if running multiple instances of JXTA run on the same computer (for
example, while testing) it is important that each instance of DPM has different
ports specified.

In the example above, TCP connections use the 9701 port, while Http
connections use the 9700 port. If more than one instance is configured, and if these
port numbers have been already used, simply change these numbers to different
ones (for example: 9711 for TCP, and 9710 for Http).

If instances of DPM run on different computers, then their port numbers need
not be changed from the default values. Manually changing port numbers is only
required when running multiple instances of DPM on the same computer.

160.
3. Rendezvous/Relays
• Click the button “Download relay and rendezvous lists”
• Click the button “Load”
• Wait until addresses load
• Click the button “Dismiss”
• Check the following check boxes:

• Act as a Rendezvous
• Act as a Jxta Proxy
• Act as a Relay
• Use a Relay

Figure 55 Rendezvous/relay JXTA configuration panel.

161.
4. Security
• Enter Secure Username (e.g. mikefromDelft)
• Enter Password (Needs a minimum of 8 characters. Remember it for later

access).

Figure 56 Security JXTA configuration panel.

Once the configuration is completed the application should open. DPM then
begins and looks for peers and peergroups on-line. It may take a few minutes for
it to find any. Once it finds them it saves them in a semi-persistent cache.

10.1.5 Reconfiguration

When JXTA starts, it creates a directory called ‘.jxta’ into the same folder where
the application was downloaded. In this directory, there are two sub-directories:
‘cm’ and ‘pse.’ ‘cm’ holds information that is exchanged between peers, while
‘pse’ holds a peer’s password and user name.

If the user wants to delete the peer specific details such as peer name and
password, then one can simply delete the ‘pse’ directory. The JXTA Configurator
will then run the next time that DPM is run. This does not affect the data stored in
the local ‘cm’ cache.

162.
Deletion of the ‘cm’ directory, removes all the cached information that has been
discovered by the peer. The next time that DPM is run, this cache will be recreated
automatically by JXTA.

If a user closes DPM and opens it later, DPM doesn't have to look for the same
things again—it remembers what it has discovered before by storing discovered
information in its ‘cm’ cache.

Figure 57 Typical local user cache in JXTA.

uuid-3FD35406FFC44A81A406B8C1C7C79E1302

.jxta

cm

pse

jxta-NetGroup

PlatformConfig

jxta.properties

jxta-NetGroup

163.
10.2 Appendix B: Package and class descriptions
A list of the most important packages, organized alphabetically by Java package
name. Abstract classes have italicized names in upper case. Concrete classes have
non-italicized names in upper case. Java packages have names in lower-case.

10.2.1 dpm.container.tree

Classes that implement leaves and nodes for two types of tree displays: one for
displaying peergroup trees, and another for displaying trees of links between
design entities. The trees themselves are implemented as sub-classes of Java
JTrees.

Figure 58 UML diagram of package: dpm.container.tree

10.2.2 dpm.content

This package contains the abstract class DesignEntity in which UserNamedEntity
is the only concrete sub-class. Also contains the class ContentStorage, which
organizes all data that the application receives from other peers and which the user
creates while using the application. EntityRelatedContentStorage organizes
information that is bound to a particular design entity. In this class, all policies,
roles, inputs, histories, incoming and outgoing links are stored. Note that the two
types of content storage are not persistent, and must be re-populated when starting
the application, using information that JXTA stores persistently (with a ‘time-to-
live’ attribute) in a user’s local cache.

164.
Figure 59 UML diagram of package: dpm.content

10.2.3 dpm.content.advertisement

Advertisements in JXTA are XML-encoded messages communicated between
Peers. All content in the DPM application is implemented as sub-classes of
JXTA’s Advertisement class. The AdvUtilities class contains methods for
creating, communicating, and storing locally, all content.

In distributed systems, deletion of content is a non-trivial issue: it is easy to
delete local content, however to delete it on remote Peers’ computers over which
any one user has no control, is problematic. A type of advertisement called a
DeleteAdvertisement addresses this problem. One is created when a user deletes
content in the application. This is then communicated to remote Peers. Currently,
in order for a user to delete content, she must be the original author of that content.

165.
It is unclear at this stage whether this approach is adequate to avoid problems of
deletion synchronization—that is, avoiding situations where users work on
obsolete content that has been previously deleted by other users.

Figure 60 UML diagram of package: dpm.content.advertisement

10.2.4 dpm.content.constraint

This package implements the two types of state-change constraining classes in
DPM: Links and Policies. Links are constraints between two existing entities,
while Policies are constraints specific to a single transition in a design entity. The
DeleteChecker class checks to see if advertisements handled by the application
have been deleted by users. If deleted, then the application does not handle them
further. Deletion of an entity is therefore considered a type of constraint placed on
that entity.

166.
Figure 61 UML diagram of package: dpm.content.constraint

10.2.5 dpm.content.state

This package contains utility classes for state-change mechanisms. The
LoopNetReader takes a Petri net representation of a state-transition loop, and
makes an XML-encoded advertisement based on the information contained in the
net.

Figure 62 UML diagram of package: dpm.content.state

10.2.6 dpm.dpmApp.desktop

This package contains the DpmAppTopFrame class that has the top-level user
interface components, as well as the application’s ‘main()’ method. All static
variables in the application’s code is centrally located in the DpmTerms class.

167.
Figure 63 UML diagram (abridged) of package:
dpm.dpmApp.desktop

10.2.7 dpm.dpmApp.desktop.forms

Contains all the user interface forms other than the top-level ‘topFrame.’ All are
sub-classes of the Java Swing interface classes: JFrame or JPanel.

168.
Figure 64 UML diagram of package:
dpm.dpmApp.desktop.forms

10.2.8 dpm.peer

A concrete class that organizes content relevant to a Peer, and all the information
the application discovers while online. The concept of ‘Peer’ exists in JXTA, but
not the implementation.

169.
In order to distinguish various distributed Peers over the Internet, each is
assigned a unique PeerID in JXTA. In P2P applications, Peers exchange
information by passing messages to other Peers. In order to do so, they need to be
members of the same Peergroup. Each Peer is a discrete entity that is not a part of
any other Peer. If Peers need to be grouped together, they join Peergroups. Peers
can be located anywhere, so long as they are connected to other Peers via the
Internet.

Each Peer must have a single computer it calls ‘home.’ This home is defined as
a unique (IPaddress x Port) combination: (e.g. 130.161.162.233 x 9701). Most
computers have a large number of available ports—usually a large proportion of
the maximum possible number of 64 k (under Windows). This number is assumed
to be adequate for the purposes required here. Therefore, each computer in theory
able to house an arbitrary number of Peers. However, most users will only need to
use one Peer per computer. Each Peer (sub-class Person) can assume multiple
roles.

Figure 65 UML diagram of package: dpm.peer

170.
10.3 Appendix C: User interface forms
Top Frame Form (main user interface window)

The main user interface window for users. Contains a tree-display window for
peergroups and their contents, and below that, a message area. All user commands
are accessed by menus found at the top of the form.

Figure 66 Top Frame Form.

10.3.1 New User Named Entity Form

Enables users to construct a new User Named Entity (a concrete sub-class of
DesignEntity). For a new User Named Entity a user specifies the state-transition
loop to be assigned to it, and policy constraints for each of its transitions.

171.
Figure 67 New Design Entity Form.

10.3.2 New Peergroup Form

Enables users to create a sub-peergroup using an existing one as its parent. In
JXTA, sub-peergroups define logical partitions of their parents. User must first
select an existing peergroup, to serve as the parent for the new peergroup. In
JXTA, the top-level peergroup is called the ‘World’ peergroup.

Figure 68 New Peergroup Form.

10.3.3 New sub-entity relation Form.

Enables users to specify a sub-entity relation between two existing design entities.
User first selects an entity to serve as the Parent Entity.

172.
Figure 69 New sub-entity relation form.

10.3.4 New sequential relation Form.

Enables users to specify a sequential relation between two existing design entities.
User first selects a design entity to serve as the Preceding Entity.

Figure 70 New sequential relation Form.

10.3.5 New Constraint Link Form

Enables users to add Constraint Links between any two existing design entities.
Constraint links are constraints that link a transition of one entity to a state of
another. Available transitions and states depend on the state-transition loop
assigned to a design entity at its construction.

173.
Figure 71 New Constraint Link Form.

10.3.6 New Information Link Form

Similar to the Constraint Link Form above, however an Information Link simply
joins two entities, rather than connects their states and transitions. User can use
existing link names (e.g. ‘doBefore, ‘componentOf’), or can add new ones.

Figure 72 New Information Link Form.

10.3.7 Show Links Form

Show users all links both leading into and out from any design entity. Shown in a
tree representation, with a design entity at the root. Users can dynamically choose
new roots, and can specify the direction—whether to show incoming or outgoing
links—and the name of the link. Constraint links have the static link name of
‘doBefore.’ Children are added to the link tree at each level, when users manually
double-click on a parent node. In this way trees are navigated step-by step, and link
cycles are shown to users as repetitions of parent child relations.

174.
Figure 73 Show Links Form.

10.3.8 History Viewer Form

Enables users to view a chronologically ordered list of all state changes that have
occurred to a design entity throughout its lifetime.

Figure 74 History Viewer Form.

10.3.9 New Policy Form

Enables users to add a policy constraint to specific transitions of a particular design
entity. Users can add one or more role-name policies to each transition.

175.
Figure 75 New Policy Form.

10.3.10 New Role Form

Enables users to assume a role for a specific design entity. Users have the option
of using an existing role name, or adding new role names.

Figure 76 New Role Form.

10.3.11 New Input Form

Enables users to add an input to a design entity. This means that the user, playing
a specific role, considers that the design entity is in a position to change its state.
User must assume a role in an entity (e.g. ‘performer’, ‘author’), before they can
make an input based on that role. The form automatically adds check boxes for
appropriate roles. The form also gives information about the current and next state
of the entity.

176.
Figure 77 New Input Form.

177.
10.4 Appendix D: Information panels

10.4.1 DPM Information Panel

Provides general information and sources of included code for the Design Process
Modeler (DPM).

Figure 78 DPM Information Panel.

10.4.2 Petri net Loop Information Panel

Provides instructions to users in how to construct their own Petri net state-
transition loops, used in the state change mechanism for design entities.

178.
Figure 79 Petri net Loop Information Panel.

179.
10.5 Appendix E: Non-TOI sample state-transition loops

Figure 80 Design Task state-transition loop.

Figure 81 Design Product state-transition loop.

0.In_pre_negotiation

1.In_performance

2.In_post_negotiation

3.Retired

0.agreeToPerform=this task should be done

1.performanceCompleted=this task has been completed

2.agreeToRetire=this task has been completed to your satisfaction

3.reuseExistingEntity=use this task again

0.In_pre_design_phase

1.In_schematic_design_phase

2.In_design_development_phase

3.In_construction_documents_phase

4.In_post_design_phase

5.Retired

0.requirementsGathered=design requirements have been gathered

1.agreeToDesignInDetail=this product should be developed in detail

2.designDevelopmentCompleted=this product should have construction documents prepared

3.documentsCompleted=this product's construction documents have been completed

4.postDesignComplete=the design contract has been fulf illed

5.reuseExistingEntity=use this task or product again

180.
10.6 Appendix F: Sample advertisements
All advertisements in JXTA are text-based, XML-encoded documents. Important
methods in this application are ones that parse these documents and turn them into
Java objects, and in the opposite direction, take Java objects and make XML
documents from them. It is not difficult for developers to add additional attributes
to any of these advertisements, and to implement new advertisement sub-classes.

All advertisement in JXTA have unique IDs. These IDs are represented in the
current implementation by the XML attributes ‘DesignEntityID’ or ‘AdvID.’ All
IDs are generated by JXTA’s IDFactory class, and are guaranteed to be unique.
Having unique IDs for its distributed objects, is an essential feature that enables
JXTA to function as a distributed system.

Advertisements in this application document who authored them, and when they
were created.

10.6.1 Design entity advertisements

Design entity advertisements describe entities and their descriptions, authors, date
of creation, etc.

‘NetName’ is the name of the state-transition loop used by the entity. Users are
free to use different loops to the defaults provided by the application.

‘Iteration’ represents the number of times the entity has iterated its state-
transition loop.

‘BaseName’ refers to the name provided by their author at their first
construction. This provides the base that is appended with the iteration number
when entities are recycled. For example, if a task is called ‘T1’, then the name that
is suggested for its second iteration is ‘T1_2.’ Users are free to call the iterated
entity any name they wish, however.

181.
10.6.1.1 User Named Entity Advertisement

<!DOCTYPE jxta:UserNamedEntityAdv>
<jxta:UserNamedEntityAdv xmlns:jxta=”http://jxta.org”>

<DesignEntityID>
urn:jxta:uuid-

F1076F5D195D45F8910FA2279BCD6BBC9C1624A4C92046EA97458A3B8198ABE501
</DesignEntityID>
<Name>

Concrete slab_2
</Name>
<BaseName>

Concrete slab
</BaseName>
<Description>

Description of the product
</Description>
<Iteration>

2
</Iteration>
<DateCreated>

Apr 14, 2004 2:23:46 PM
</DateCreated>
<AuthorID>

urn:jxta:uuid-
59616261646162614A78746150325033D5D101E6DBB74F909F32ADE2E257D7E403

</AuthorID>
<AuthorName>

MC
</AuthorName>
<NetName>

DesignContractLoop
</NetName>
<DateDue>

Apr 14, 2004 12:00:00 AM
</DateDue>

</jxta:UserNamedEntityAdv>

10.6.2 Advertisements linked to particular design entities

‘TargetName’ refers to the design entity for which this is a policy.

10.6.2.1 Policy Advertisement

A policy advertisement applies to only one transition of one design entity. It
specifies which role names are needed to make input, to allow state change. It can
specify one, or multiple roles names, as constraints.

182.
<!DOCTYPE jxta:PolicyAdv>
<jxta:PolicyAdv xmlns:jxta=”http://jxta.org”>

<AdvID>
urn:jxta:uuid-

F1076F5D195D45F8910FA2279BCD6BBCFF78E653ED9C4092ACF08CAB83FB55C701
</AdvID>
<TargetTransition>

5.reuseExistingEntity
</TargetTransition>
<TargetID>

urn:jxta:uuid-
F1076F5D195D45F8910FA2279BCD6BBC9C1624A4C92046EA97458A3B8198ABE501

</TargetID>
<TargetName>

P2_2
</TargetName>
<TargetType>

DesignProduct
</TargetType>
<DateCreated>

Apr 14, 2004 2:23:46 PM
</DateCreated>
<AuthorID>

urn:jxta:uuid-
59616261646162614A78746150325033D5D101E6DBB74F909F32ADE2E257D7E403

</AuthorID>
<AuthorName>

MC
</AuthorName>
<Roles>

<RoleName>
entity recycler

</RoleName>
</Roles>

</jxta:PolicyAdv>

10.6.2.2 Role Advertisement

Role advertisements represent roles (represented as a simple string) that a single
peer assumes for a single design entity. Role apply to all transitions of the entity.
The ‘RoleName’ attribute is the one that defines the role.

183.
<!DOCTYPE jxta:RoleAdv>
<jxta:RoleAdv xmlns:jxta=”http://jxta.org”>

<AdvID>
urn:jxta:uuid-

F1076F5D195D45F8910FA2279BCD6BBC17C099B95A1A4106AD5BB41759B2C36A01
</AdvID>
<DesignEntityID>

urn:jxta:uuid-
F1076F5D195D45F8910FA2279BCD6BBC9C1624A4C92046EA97458A3B8198ABE501

</DesignEntityID>
<Name>

P2_2
</Name>
<AuthorID>

urn:jxta:uuid-
59616261646162614A78746150325033D5D101E6DBB74F909F32ADE2E257D7E403

</AuthorID>
<AuthorName>

MC
</AuthorName>
<DateCreated>

Apr 14, 2004 2:23:46 PM
</DateCreated>
<RoleName>

author
</RoleName>

</jxta:RoleAdv>

10.6.2.3 Input Advertisement

An input advertisement represents the role name or names that must provide input
for a single named transition to be enabled, for a single design entity.

184.
<!DOCTYPE jxta:InputAdv>
<jxta:InputAdv xmlns:jxta=”http://jxta.org”>

<AdvID>
urn:jxta:uuid-

F1076F5D195D45F8910FA2279BCD6BBCB9FFFD62325646EE9307AC464675561C01
</AdvID>
<DesignEntityID>

urn:jxta:uuid-
F1076F5D195D45F8910FA2279BCD6BBCDE0350AE538F46BD99D4928113F5D98F01

</DesignEntityID>
<Name>

P2
</Name>
<AuthorID>

urn:jxta:uuid-
59616261646162614A78746150325033D5D101E6DBB74F909F32ADE2E257D7E403

</AuthorID>
<AuthorName>

MC
</AuthorName>
<DateCreated>

Apr 14, 2004 12:44:11 PM
</DateCreated>
<TransitionName>

0.requirementsGathered
</TransitionName>
<RoleName>

performer
</RoleName>

</jxta:InputAdv>

10.6.2.4 History Advertisement

History advertisements document each state change for a single design entity.
They also document which peers, filling which roles, contributed to this state
change. History advertisements are shown in the ‘History Viewer’ part of the
application, where they are ordered by their ‘DateCreated’ attribute.

185.
<!DOCTYPE jxta:HistoryAdv>
<jxta:HistoryAdv xmlns:jxta=”http://jxta.org”>

<AdvID>
urn:jxta:uuid-

F1076F5D195D45F8910FA2279BCD6BBC63C2075E0D2C4366866DACE60DD2FFC001
</AdvID>
<DesignEntityID>

urn:jxta:uuid-
F1076F5D195D45F8910FA2279BCD6BBCDE0350AE538F46BD99D4928113F5D98F01

</DesignEntityID>
<Name>

P2
</Name>
<DesignEntityType>
</DesignEntityType>
<AuthorID>

urn:jxta:uuid-
59616261646162614A78746150325033D5D101E6DBB74F909F32ADE2E257D7E403

</AuthorID>
<AuthorName>

MC
</AuthorName>
<DateCreated>

Apr 14, 2004 2:22:58 PM
</DateCreated>
<TransName>

2.designDevelopmentCompleted
</TransName>
<State>

3.In_construction_documents_phase
</State>

<Roles>
<Role>

<RoleName>
performer

</RoleName>
<Peers>

<PeerName>
MC

</PeerName>
</Peers>

</Role>
<Role>

<RoleName>
client

</RoleName>
<Peers>

<PeerName>
MC

</PeerName>
</Peers>

</Role>
</Roles>

</jxta:HistoryAdv>

10.6.3 Advertisements linking entities

186.
Link advertisements are of two types: those that provide constraint for state
changes (Constraint Links), and those that are merely informative (Information
Links).

The state of the source entity, and the target transition must be specified for
constraint links. For information links, such information is not required or
relevant.

Constraint link advertisements currently have the static ‘ConstraintName’ of
‘doBefore.’ For information links, any ‘ConstraintName’ value is acceptable.

187.
10.6.3.1 Constraint link advertisement

<!DOCTYPE jxta:LinkAdv>
<jxta:LinkAdv xmlns:jxta=”http://jxta.org”>

<AdvID>
urn:jxta:uuid-

F1076F5D195D45F8910FA2279BCD6BBCE0868CC32E5E497B987BAA37583D46D301
</AdvID>
<ConstraintName>

doBefore
</ConstraintName>
<SourceState>

0.In_pre_negotiation
</SourceState>
<TargetTransition>

0.requirementsGathered
</TargetTransition>
<SourceID>

urn:jxta:uuid-
F1076F5D195D45F8910FA2279BCD6BBC4899961F18514A12836AA3535D892F8301

</SourceID>
<SourceName>

T1
</SourceName>
<SourceType>

DesignTask
</SourceType>
<TargetID>

urn:jxta:uuid-
3FD35406FFC44A81A406B8C1C7C79E13532964A896684079912F95A38876B84A01

</TargetID>
<TargetName>

P1
</TargetName>
<TargetType>

DesignProduct
</TargetType>
<DateCreated>

Apr 14, 2004 12:21:01 PM
</DateCreated>
<AuthorID>

urn:jxta:uuid-
59616261646162614A78746150325033D5D101E6DBB74F909F32ADE2E257D7E403

</AuthorID>
<AuthorName>

MC
</AuthorName>

</jxta:LinkAdv>

10.6.3.2 Information link advertisement

<!DOCTYPE jxta:LinkAdv>
<jxta:LinkAdv xmlns:jxta=”http://jxta.org”>

<AdvID>
urn:jxta:uuid-

F1076F5D195D45F8910FA2279BCD6BBCE7E47AD0358840F9B23C810A781454A001
</AdvID>
<ConstraintName>

188.
friendOf
</ConstraintName>
<SourceState>

not relevant
</SourceState>
<TargetTransition>

not relevant
</TargetTransition>
<SourceID>

urn:jxta:uuid-
F1076F5D195D45F8910FA2279BCD6BBC4899961F18514A12836AA3535D892F8301

</SourceID>
<SourceName>

T1
</SourceName>
<SourceType>

DesignTask
</SourceType>
<TargetID>

urn:jxta:uuid-
3FD35406FFC44A81A406B8C1C7C79E13532964A896684079912F95A38876B84A01

</TargetID>
<TargetName>

P1
</TargetName>
<TargetType>

DesignProduct
</TargetType>
<DateCreated>

Apr 14, 2004 12:11:59 PM
</DateCreated>
<AuthorID>

urn:jxta:uuid-
59616261646162614A78746150325033D5D101E6DBB74F909F32ADE2E257D7E403

</AuthorID>
<AuthorName>

MC
</AuthorName>

</jxta:LinkAdv>

189.

190.

	Chapter 1 Research definition 7
	Chapter 2 Background 15
	Chapter 3 Application requirements 63
	Chapter 4 Actors, use cases, and required objects 77
	Chapter 5 Application design and implementation 89
	Chapter 6 Constructing process models by linking entities 105
	Chapter 7 Application testing and validation 119
	Chapter 8 Conclusion 143
	Chapter 9 References 149
	Chapter 10 Appendices 157
	List of Figures
	Fig. 1 Top-down and bottom-up design team-forming processes. 10
	Fig. 2 Separation of state determination mechanisms from content. 13
	Fig. 3 In integrated generative systems, iterative processes involving Specification, Generation,...
	Fig. 4 Overall SEED architecture (Flemming et al., 2000, p.13). 19
	Fig. 5 Architectural programming process as supported by SEED-Pro (right), compared to a traditio...
	Fig. 6 Relationship between a building entity and associations with nodes of a technology hierarc...
	Fig. 7 Simple node and arrow process diagram for a lump sum architectural design contract (Canadi...
	Fig. 8 Activity-on-arrow process diagram. 29
	Fig. 9 Activity-on-node process diagram. 29
	Fig. 10 IDEF3 process representation (KBSI, 1998). 31
	Fig. 11 Simple statechart. 31
	Fig. 12 Simple place/transition Petri net before and after firing of a transition, showing input ...
	Fig. 13 Hierarchical Petri net using transition substitution. 33
	Fig. 14 Spiral model of design as applied to software development (Boehm & Hansen, 2001, p.6). 35
	Fig. 15 Action and reflection cycles in design (Smith, 2004). 35
	Fig. 16 Components of a cognitive information processing system (Akin, 1986, p.13). 37
	Fig. 17 Process model based on a professional contractual arrangement (Canadian Architectural Cou...
	Fig. 18 Peergroups as logical partitions of the top-level ‘world’ peergroup. 47
	Fig. 19 Commitment-based process loops found in ActionWorks (Action Technologies, 1998). 58
	Fig. 20 UML diagram of peers and their roles. 66
	Fig. 21 A product hierarchy, under the relation ‘componentOf.’ 67
	Fig. 22 A process hierarchy, under the relation ‘doBefore.’ 68
	Fig. 23 An organizational hierarchy under the relation ‘reportsTo.’ 68
	Fig. 24 Interdependency of tasks and products in design descriptions. 69
	Fig. 25 State change based on Petri net-based constraints in which incoming arrows represent cons...
	Fig. 26 Interaction diagram: Create design entity. 78
	Fig. 27 Interaction diagram: Create a structured container for process-related information. 80
	Fig. 28 Interaction diagram: Assume role in a design entity. 81
	Fig. 29 Interaction diagram: Make input for design entity state change. 82
	Fig. 30 Interaction diagram: Link design entity to another design entity. 83
	Fig. 31 Interaction diagram: Create a state-transition model. 84
	Fig. 32 Link constraints. 93
	Fig. 33 Input constraints that specify which roles must contribute to specific transitions of an ...
	Fig. 34 Top-level state change method from DPM’s Java code. 94
	Fig. 35 Link constraint. 96
	Fig. 36 Choice point constructed using a mutual exclusion structure. 101
	Fig. 37 State determination method. 112
	Fig. 38 Policies and linked entities from a prototype used to recreate new entity structures. 114
	Fig. 39 Complex constraint-linked entity network. 115
	Fig. 40 Sub-entity relation in DPM. The black dots signify the current states of the entities. 116
	Fig. 41 Alternative diagram showing sub-entity relation. 116
	Fig. 42 Sequential relation between entities in DPM 116
	Fig. 43 Alternative diagram showing sequential relation. 117
	Fig. 44 Branch-out and Branch-in precedence structures based on sequential relations. 117
	Fig. 45 TOI course process. 121
	Fig. 46 Assignment process. 122
	Fig. 47 Examination process. 122
	Fig. 48 TOI_Course state-transition loop. 123
	Fig. 49 TOI_Assignment state-transition loop. 123
	Fig. 50 TOI_Examination state-transition loop. 124
	Fig. 51 One possible peergroup organization for the integration test. 132
	Fig. 52 Revised peergroup node refresh code. 140
	Fig. 53 Basic JXTA configuration panel. 158
	Fig. 54 Advanced JXTA configuration panel. 159
	Fig. 55 Rendezvous/relay JXTA configuration panel. 160
	Fig. 56 Security JXTA configuration panel. 161
	Fig. 57 Typical local user cache in JXTA. 162
	Fig. 58 UML diagram of package: dpm.container.tree 163
	Fig. 59 UML diagram of package: dpm.content 164
	Fig. 60 UML diagram of package: dpm.content.advertisement 165
	Fig. 61 UML diagram of package: dpm.content.constraint 166
	Fig. 62 UML diagram of package: dpm.content.state 166
	Fig. 63 UML diagram (abridged) of package: dpm.dpmApp.desktop 167
	Fig. 64 UML diagram of package: dpm.dpmApp.desktop.forms 168
	Fig. 65 UML diagram of package: dpm.peer 169
	Fig. 66 Top Frame Form. 170
	Fig. 67 New Design Entity Form. 171
	Fig. 68 New Peergroup Form. 171
	Fig. 69 New sub-entity relation form. 172
	Fig. 70 New sequential relation Form. 172
	Fig. 71 New Constraint Link Form. 173
	Fig. 72 New Information Link Form. 173
	Fig. 73 Show Links Form. 174
	Fig. 74 History Viewer Form. 174
	Fig. 75 New Policy Form. 175
	Fig. 76 New Role Form. 175
	Fig. 77 New Input Form. 176
	Fig. 78 DPM Information Panel. 177
	Fig. 79 Petri net Loop Information Panel. 178
	Fig. 80 Design Task state-transition loop. 179
	Fig. 81 Design Product state-transition loop. 179

	Abstract
	Acknowledgments
	Dissertation thesis
	1 Research definition
	1.1 Motivation
	1.1.1 Introduction
	1. How to represent design processes such that a designer could understand their overall structur...
	2. How to enable the lessons learned from past design processes to inform current design processes.

	1.1.2 Coordination of complex processes
	1.1.3 Provision of design support while avoiding negative consequences
	1.1.4 Gathering of process histories

	1.2 Research problems
	1.2.1 Building flexible and dynamic online teams
	Figure 1 Top-down and bottom-up design team-forming processes.
	1.2.1.1 Problems identified
	1. How can designers construct design teams in a flexible manner, while still supporting normal p...
	2. How can designers easily communicate information, useful for design process coordination?

	1.2.2 Determining design entity states
	1.2.2.1 Problems identified
	1. How can design entities be arranged to have both machine-mediated and so�cially mediated states?
	2. How can designers work together to determine the state of design entities?
	3. How can an application provide state changing mechanisms?

	1.2.3 Separating state-defining mechanisms from entity content
	1. Names, and other attributes of the design entity.
	2. The structured relationships to other design entities, such as hierarchical rela�tion, and oth...
	3. The state/transition model: the possible states and transitions that the design entity can ent...
	1.2.3.1 Problems identified

	1. How do users add content to design entities? Of particular importance—how can they specify the...

	1.3 Research scope
	1.3.1 Concentration on entity state determination
	1. Facilities for making detailed plans, and providing an ability to ‘re-plan.’ One problematic a...
	2. Facilities for deriving plans from smaller process-related components.

	1.3.2 Avoidance of handling the semantics of entity state
	1.3.3 Avoidance of role semantics
	Figure 2 Separation of state determination mechanisms from content.

	2 Background
	2.1 Integrated design systems
	2.1.1 IBDE
	2.1.2 STEP and IFC’s
	2.1.3 SEED project
	Figure 3 In integrated generative systems, iterative processes involving Specification, Generatio...
	1. Design unit (DU): A DU is a spatial or physical part of a building with an identifiable spatia...
	2. Functional unit (FU): A FU represents a combination of functions to be satis�fied by a single ...
	3. Specification unit (SU): An SU collects the design intentions and criteria to be satisfied by ...
	4. Technology: A technology is the final stage of design representation in SEED-Config and repres...

	2.1.4 The overall SEED approach
	2.1.4.1 Existing SEED modules
	Figure 4 Overall SEED architecture (Flemming et al., 2000, p.13).

	2.1.5 The SEED-Pro (SP) module
	2.1.5.1 SP’s objectives
	2.1.5.2 Description of the programming process in SP
	1. Define the building project.
	2. Capture the requirements the planned building has to satisfy in terms of Speci�fication Units....
	3. Generate Functional units to be placed in the building, using different FU categories to expre...
	4. This general process can be adapted in a wide variety of ways and would accommodate, in princi...
	Figure 5 Architectural programming process as supported by SEED-Pro (right), compared to a tradit...

	2.1.6 Technologies in SEED-Config
	Figure 6 Relationship between a building entity and associations with nodes of a technology hiera...
	2.1.6.1 Discussion of the SEED-Config design process

	2.1.7 Process aspects of SEED
	2.1.7.1 Designer control of the design process
	1. the definition of problems and requirements, and
	2. selection of preferred generated alternatives, such that they can be further re�fined and elab...
	2.1.7.2 Routine design and SEED
	2.1.7.3 SEED’s changes to a traditional design process

	2.2 Process modeling in design
	2.2.1 Introduction to the concept of ‘process’
	2.2.2 Process representations
	2.2.3 Simple representations
	Figure 7 Simple node and arrow process diagram for a lump sum architectural design contract (Cana...

	2.2.4 Network representations such as CPM
	1. Activity on arrow: Where the events are the links, and the dependencies be�tween the events ar...
	2. Activity on node: Where the events are the nodes, and the dependencies are the links.
	Figure 8 Activity-on-arrow process diagram.
	Figure 9 Activity-on-node process diagram.

	2.2.5 IDEF methods
	Figure 10 IDEF3 process representation (KBSI, 1998).

	2.2.6 Statecharts
	Figure 11 Simple statechart.

	2.2.7 Petri nets
	Figure 12 Simple place/transition Petri net before and after firing of a transition, showing inpu...

	2.2.8 CPNs and hierarchical decomposition
	1. Transition substitutions: Here a transition in a CPN can be substituted for an entire sub-CPN....
	2. Fusion places: Here a set of places in a CPN are grouped together, such that are seen by the C...
	Figure 13 Hierarchical Petri net using transition substitution.

	2.3 Collaborative design theory
	2.3.1 Introduction
	2.3.2 Design methodologies
	1. clarification of the task,
	2. conceptual design,
	3. embodiment design, and
	4. detail design.
	Figure 14 Spiral model of design as applied to software development (Boehm & Hansen, 2001, p.6).
	Figure 15 Action and reflection cycles in design (Smith, 2004).

	2.3.3 Cognitive models of design
	Figure 16 Components of a cognitive information processing system (Akin, 1986, p.13).

	2.3.4 Handbooks of professional practice
	Figure 17 Process model based on a professional contractual arrangement (Canadian Architectural C...

	2.3.5 Social processes in design
	2.3.6 Coordination theory
	2.3.6.1 Centrality of commitments and conventions hypothesis
	1. all coordination mechanisms can ultimately be reduced to commitments and their associated (soc...
	2. commitments are viewed as pledges to undertake a specified course of action, and
	3. conventions provide a means of monitoring commitments in changing circumstances.
	2.3.6.2 'Plans-as-programs' vs. ‘plans-as-communications’
	2.3.6.3 Recurrent social processes

	2.3.7 Design processes from a top-down perspective
	2.3.8 Design processes from a bottom-up perspective

	2.4 Peer-to-peer software
	2.4.1 Introduction
	2.4.2 What does P2P mean for computing?
	2.4.3 JXTA by Sun Microsystems
	2.4.3.1 Peers
	2.4.3.2 Peergroups
	1. Define a set of services and resources
	2. Provide a secure region
	3. Create a scoping environment
	Figure 18 Peergroups as logical partitions of the top-level ‘world’ peergroup.

	2.4.3.3 Information exchange between peers
	2.4.3.4 Issues of hierarchy in P2P systems

	2.5 Wisdom of crowds
	1. Cognition problems: problems involving conceptualization of appropriate problems and solutions...
	2. Coordination problems: problems involving adapting their behaviors to the behaviors of others,...
	3. Cooperation problems: these involve getting people to work together on common projects that in...

	1. Diversity of opinion: what people know and believe, or the conceptual and cognitive perspectiv...
	2. Independence: people are in a position to think about events in a way not unduly influenced by...
	3. Decentralization: people have access to local or specialized knowledge.
	4. Aggregation: A mechanism exists to covert distributed private judgments into a collective deci...

	1. Voting, or rating systems: found in democratic elections, the page-ranking algorithm of Google...
	2. Markets, in which buyers and sellers coordinate their behavior. This is found in financial mar...
	3. Imitation and influence systems: in which people base their behavior by imitating what others ...

	2.5.1 Relevance to collaborative design

	2.6 Centralized and distributed systems compared
	2.6.1 Factors that promote the centralized approach to collaborative design
	2.6.1.1 The suitability of centralized architectures in development of centralized, integrated pr...
	2.6.1.2 An approach towards collaborative design that favors rationally planned processes
	2.6.1.3 The lack of credible alternatives to centralized systems, such as P2P
	2.6.1.4 Accessibility of unified design representations
	2.6.1.5 Rational design of information infrastructures
	2.6.1.6 Usefulness in routine design processes

	2.6.2 Disadvantages of centralized systems
	2.6.2.1 Covert conceptual prescriptions
	2.6.2.2 Location of proprietary data
	2.6.2.3 Necessity of 'up-front' work

	2.6.3 Advantages of distributed systems
	2.6.3.1 A better model of data sharing?
	2.6.3.2 Distributed control
	2.6.3.3 Chance of creative emergence
	2.6.3.4 No requirement for 'global' knowledge
	2.6.3.5 Multiple knowledge sources rather than singular ones

	2.6.4 Disadvantages of distributed systems
	2.6.4.1 Lack of a central representation
	2.6.4.2 Lack of central control
	2.6.4.3 Possibility of behavioral chaos

	2.6.5 Conclusions regarding centralization and decentralization

	2.7 Related work: design support and coordination systems
	2.7.1 Adaptive workflow
	2.7.2 Action workflow approach to process coordination
	Figure 19 Commitment-based process loops found in ActionWorks (Action Technologies, 1998).

	2.7.3 Thesis by Tay-Sheng Jeng
	2.7.4 Peer-to-peer projects in JXTA
	2.7.4.1 Jxcube: Jxta eXtreme Cube - Fully Distributed Collaboration Platform
	2.7.4.2 P2pconference: A tool to conduct remote, text-based conferences
	2.7.4.3 AngeloPeerRendezvous: p2p-based software for intra-enterprise communication
	2.7.4.4 Coalesce: A seedbed for growing ideas

	3 Application requirements
	3.1 Introduction
	3.1.1 Application content
	1. The idea that design coordination requires communication between design team members. This com...
	2. The need to provide designers, on a real-time basis, representations of the tasks they need to...
	3. The need to represent the state of tasks, and to inform the user at all times what action is r...
	4. The usefulness of structured representations of tasks, to help organize the de�sign process.

	3.1.2 Application development method

	3.2 Creation of a social context
	3.2.1 Complex processes and distributed control
	Req’t 1 Enable design team members to interact in a flexible and agile way, without assuming, a-p...

	3.2.2 Process management involves communication of process content between involved parties
	Req’t 2 Enable users to communicate information relevant to design processes.
	Req’t 3 Maximize the chance of creating ‘common ground’ by having people communicate in a public ...

	3.2.3 Collaborative design processes involve ‘stakeholders’ assuming roles
	Client
	Performer
	Observer
	Author
	Figure 20 UML diagram of peers and their roles.
	Req’t 4 Enable users to express their involvement in a task by assuming roles in it.
	Req’t 5 Inform users of the roles they have assumed for each task.
	Req’t 6 Users should be able to add any roles that describe their involve�ment. The application s...
	Req’t 7 Enable actors to assume one, or multiple roles for a particular task.
	Req’t 8 Allow roles to be assumed by multiple actors.
	Req’t 9 Enable actors to change the roles they assume during a design process.
	Req’t 10 Roles that people assume should be public knowledge to all users of the system.
	Req’t 11 Users should only be able to assume roles for themselves, but not for others.

	3.3 Structured representations in design
	3.3.1 Product hierarchies
	Figure 21 A product hierarchy, under the relation ‘componentOf.’

	3.3.2 Process Hierarchies
	Figure 22 A process hierarchy, under the relation ‘doBefore.’

	3.3.3 Organizational hierarchies
	Figure 23 An organizational hierarchy under the relation ‘reportsTo.’

	3.4 Changing state of design entities
	3.4.1 Design entities defined
	Req’t 12 Track both products and tasks, considered as state-changeable design entities. Both are ...
	Figure 24 Interdependency of tasks and products in design descriptions.

	3.4.2 Entities must be able to change state
	Req’t 13 Design entities must be able to change their state in order to capture the dynamism of c...

	3.4.3 Explicit state change mechanisms for design entities
	Req’t 14 Provide explicit state change mechanisms based on Petri net formal�isms.
	Figure 25 State change based on Petri net-based constraints in which incoming arrows represent co...

	3.4.4 Role, input and policy attributes for design entities
	Role
	Input
	Policy
	1. The main task for users when managing a design entity is for them to give their opinion whethe...
	2. Roles that users play should be separated from the users themselves. This enables users to ass...
	3. Input provided by users is balanced by the constraint Policies that may exist for each state t...

	3.4.5 Basing state changes on user input
	Req’t 15 Enable users to provide input based on whether design entities can change their state, a...

	3.4.6 Linking and ‘bundling’ of entities
	Req’t 16 Enable the state change of design entities to be linked with the state change of other d...

	3.4.7 Socially mediated and automated state change
	3.4.7.1 Socially mediated state change
	3.4.7.2 Automated state change

	3.4.8 Task dependencies
	Req’t 17 Enable the representation of ‘branch-in’, and ‘branch-out’ tasks.

	3.4.9 Variability of state-transition models
	Req’t 18 State change models should depend on the entity, and users should be able to specify dif...

	3.4.10 State models as simple state-transition loops
	Req’t 19 To reduce complexity and indeterminism in entity state changes, rep�resent state-transit...

	3.5 Structured representations of design entities
	3.5.1 Hierarchies of design representations
	Req’t 20 Enable design entities to be arranged in information hierarchies, and enable these hiera...

	3.6 Communication between users
	3.6.1 Communication of large amounts of information
	Req’t 21 Provide a communication network that connects users together, and enables them to view t...
	Req’t 22 Enable users to create secure online identities.

	3.6.2 Asynchronous contributions
	Req’t 23 Enable users to make asynchronous contributions to all domain objects.

	3.6.3 Decentralized configuration of software and information
	1. Ease of communication system development: P2P frameworks provide com�munication facilities tha...
	2. Modularization of communication components: using P2P all of the commu�nication requirements a...
	3. Reduction of the number of software components: using P2P technologies, only one software pack...

	4 Actors, use cases, and required objects
	4.1 Introduction
	4.2 System actors
	4.2.1 Peer
	4.2.1.1 Discussion
	1. All functionalities are open to all peers, and that all peers have the same level of privilege...
	2. Peers provide all information that the system might acquire over time. Therefore, there are no...
	3. The peers do all maintenance of the system.

	4.3 Use cases
	4.3.1 Create design entity
	Figure 26 Interaction diagram: Create design entity.
	4.3.1.1 Flow of Events
	1. User highlights an existing EntityContainer in the ContainerTreeWindow, to be used as the new ...
	2. User selects ‘New Entity’ from the application’s main menu.
	3. A NewEntityForm opens. In this form:
	4. The Peer specifies for the new design entity:
	5. The Peer clicks ‘OK’ on the form once all its attributes are set.
	6. The form closes, and the newly created DesignEntity is stored locally, and communicated to oth...
	4.3.1.2 Participating Objects
	4.3.1.3 Pre-conditions
	4.3.1.4 Post-conditions

	4.3.2 Create a structured container for process-related information
	Figure 27 Interaction diagram: Create a structured container for process-related information.
	4.3.2.1 Flow of Events
	1. A Peer selects an existing EntityContainer in the ContainerTreeWindow. This container acts as ...
	2. User selects ‘New Container’ from the Main App’s main menu.
	3. The NewContainerForm opens.
	4. User specifies a name and description for the EntityContainer.
	5. User clicks ‘OK’ in the NewContainerForm.
	6. This new EntityContainer is stored locally in ContentStorage, and communi�cated to other Peers.
	7. The ContainerTreeWindow is updated to show the newly created EntityCon�tainer.
	4.3.2.2 Participating Objects
	4.3.2.3 Pre-conditions
	4.3.2.4 Post-conditions

	4.3.3 Assume role in a design entity
	Figure 28 Interaction diagram: Assume role in a design entity.
	4.3.3.1 Flow of Events
	1. User highlights an existing DesignEntity in the ContainerTreeWindow (a De�signEntity can be im...
	2. User selects ‘New Role’ from the Main App’s main menu.
	3. A NewRoleForm opens.
	4. The user either selects an existing Role, or adds a new Role term.
	5. The user clicks ‘OK’ and the NewRoleForm closes.
	6. The new Role that links the DesignEntity to the role and its author is commu�nicated to other ...
	7. The DesignEntity’s display in the ContainerTreeWindow is updated to reflect the new role addit...
	4.3.3.2 Participating Objects
	4.3.3.3 Pre-conditions
	4.3.3.4 Post-conditions

	4.3.4 Make input for design entity state change
	Figure 29 Interaction diagram: Make input for design entity state change.
	4.3.4.1 Flow of Events
	1. User highlights an existing DesignEntity in the ContainerTreeWindow (a De�signEntity can be im...
	2. User selects ‘New Input’ from the Main App’s main menu.
	3. If the Peer has assumed roles in the entity, a NewInputForm opens; else a mes�sage opens, whic...
	4. In the NewInputForm the roles that the user has assumed are shown.
	5. The user selected each role he wishes to make an input for. Inputs are created for each role s...
	6. These new Inputs are stored locally in ContentStorage, and are communicated to other Peers.
	7. These new inputs could possible change the entity’s state. If so, the entity’s state display i...
	4.3.4.2 Participating Objects
	4.3.4.3 Pre-conditions
	4.3.4.4 Post-conditions

	4.3.5 Link design entity to another design entity
	Figure 30 Interaction diagram: Link design entity to another design entity.
	4.3.5.1 Flow of Events
	1. A Peer selects an existing EntityContainer in the ContainerTreeWindow.
	2. User selects ‘New Information Link’, or ‘New Constraint Link’ from the Main App’s main menu.
	3. The NewLinkForm opens.
	4. User selects a ‘source’ DesignEntity, and a ‘target’ DesignEntity from two separate ContainerT...
	5. If an information link, the user selects an existing link name, or creates a new one; if a con...
	6. User clicks ‘OK’ in the NewLinkForm.
	7. This new Link is stored locally in ContentStorage, and communicated to other Peers.
	8. The ContainerTreeWindow is updated to show the newly created Link.
	4.3.5.2 Participating Objects
	4.3.5.3 Pre-conditions
	4.3.5.4 Post-conditions

	4.3.6 Create a state-transition model
	Figure 31 Interaction diagram: Create a state-transition model.
	4.3.6.1 Flow of Events
	1. User selects ‘New State Transition Model’ from the Main App’s main menu.
	2. A PetriNetModelingApplication opens that enables the user to model using places and transition...
	3. Once the model is complete, the user saves it as a normal file on his computer.
	4. He then selects ‘Convert State Transition Model into an Advertisement’, from the Main App’s ma...
	5. The user specifies the file location of the newly created model, and it is con�verted into a S...
	6. This new StateTransitionModelAdvertisment is stored locally, and communi�cate to other Peers.
	7. The ContainerTreeWindow is updated to show the newly created StateTran�sitionModelAdvertisment.
	4.3.6.2 Participating Objects
	4.3.6.3 Pre-conditions
	4.3.6.4 Post-conditions

	4.4 Required objects as described in use cases
	4.4.1 Domain objects
	4.4.1.1 ContentStorage
	4.4.1.2 DesignEntity
	4.4.1.3 EntityContainer (Peergroup)
	4.4.1.4 Input
	4.4.1.5 Link
	4.4.1.6 Peer
	4.4.1.7 PetriNetAdvertisement
	4.4.1.8 PetriNetFile
	4.4.1.9 Policy
	4.4.1.10 Role
	4.4.1.11 StateTransitionModel

	4.4.2 Interface Objects
	4.4.2.1 ContainerTreeWindow
	4.4.2.2 DesignEntityTree
	4.4.2.3 FileChooserForm
	4.4.2.4 NewContainerForm
	4.4.2.5 NewEntityForm
	4.4.2.6 NewInputForm
	4.4.2.7 NewRoleForm
	4.4.2.8 Petri net Modeling Application

	4.4.3 Control Objects
	4.4.3.1 Communicator
	4.4.3.2 Main App

	5 Application design and implementation
	5.1 What was implemented
	5.1.1 Role of JXTA
	5.1.2 Design Process Modeler (DPM) application
	5.1.3 Peergroups
	5.1.3.1 Peergroups as data containers and online social venues
	5.1.3.2 Peergroups as forum for advertisements
	5.1.3.3 DPM peergroups are distinguished

	5.1.4 Peergroup hierarchies
	5.1.4.1 Hierarchical aspects of peergroups found in JXTA
	PeerGroup newChildPeerGroup = parentPG.newGroup(childPgAdv);

	5.1.5 State change mechanisms
	5.1.5.1 Two separate state constraint mechanisms
	Figure 32 Link constraints.
	Figure 33 Input constraints that specify which roles must contribute to specific transitions of a...
	/**Considers whether state can change from both a local perspective (entity's inputs and roles), ...
	public boolean stateCanChange() {
	return
	stateCanChangeLinks()
	&&
	stateCanChangeInputs();
	}
	Figure 34 Top-level state change method from DPM’s Java code.

	5.1.5.2 Input constraints
	Roles
	Policies
	Inputs

	5.1.6 Process of defining input constraints
	1. A peer assumes a role in the entity (otherwise the peer is unable to make an Input). The peer ...
	2. The peer attempts to make an input to the design entity. The Policy Input Form determines whet...
	3. If the peer has assumed multiple roles, he can make inputs for all of the roles at the same ti...
	4. The peer clicks on the roles that he wishes to provide an input and closes the Input form.
	5. The application redraws the tree in which the entity is displayed for the user. It determines,...
	5.1.6.1 Link constraints
	Source state
	Target transition
	Figure 35 Link constraint.
	5.1.6.2 Process of defining link constraints

	1. Select a node in a tree display that represents a Peergroup.
	2. The Link form opens which shows two panels: the left hand to show the Source entity, while the...
	3. The source state, and the target transitions are chosen from drop-down lists. The content of t...
	4. The user after having chosen the four variables: source entity, source state, target entity, a...

	5.1.7 Information links
	1. A source entity
	2. A link string that defines the link. For example: ‘related to’, ‘composed of’, ‘part of’, ‘dep...
	3. A target entity

	5.1.8 Managing data with ‘Content Storage’

	5.2 Implementation decisions and alternatives
	5.2.1 Peergroups
	5.2.1.1 Have one type of peergroup, then filter the display
	5.2.1.2 Model design projects as peergroups

	5.2.2 Stakeholder involvement: peers, roles, and policies
	5.2.2.1 Apply roles to whole design entity rather than specific transitions within it
	5.2.2.2 Enable users to add roles and policies after an entity’s creation
	5.2.2.3 Suggest policies for each entity transition, rather than prescribe them

	5.2.3 State change
	5.2.3.1 Separate the content of state-transition loops from state change mechanisms
	5.2.3.2 Enable each design entity to have different state-transition loops, if desired
	5.2.3.3 Enable users to design and specify their own state-transition loops
	5.2.3.4 Use internal Java code, instead of Petri nets, to change state

	5.2.4 DPM’s single path approach
	5.2.4.1 Alternatives to the single path approach

	5.2.5 Choice points
	5.2.5.1 Choices that users of DPM can make
	1. Whether to participate in a particular entity by assuming a role or roles in it.
	2. Whether to make input into a particular transition to enable a state change.
	3. Whether to abandon or delete entities which she has authored, once they are seen as unnecessary.
	5.2.5.2 Choice points using available DPM features

	1. Created multiple entities in DPM, and having as many entities as conceivable output paths from...
	2. Add Choice Point entities. These entities have state-transition loops with two states: choiceM...
	3. In order to enable one entity, its linked Choice Point entity must be made in its favor. This ...
	Figure 36 Choice point constructed using a mutual exclusion structure.

	5.2.6 Security and privileges
	5.2.6.1 Enable any user to contribute peergroups, roles, policies or inputs
	5.2.6.2 Possible security problems
	1. Lack of authority or competence
	2. Masking of identity
	3. Error in input
	4. Backtracking state changes
	5. Creation of false information
	6. Duplication of existing information
	7. Creation of contradictory, or deadlocking constraints

	6 Constructing process models by linking entities
	6.1 Introduction
	6.1.1 Information needs in Design
	1. Representations of design projects, such that their participants can get the sense they are wo...
	2. Places to store information related to design projects, including among other things, process ...

	6.2 Hierarchical peergroups
	6.2.1 Design projects as information containers
	6.2.2 Uses for hierarchical peergroups

	6.3 Design entity management
	6.3.1 User defined types
	6.3.2 Deletion and abandonment of entities
	6.3.2.1 Deletion of entities
	6.3.2.2 Deletion approaches
	6.3.2.3 Deletion policies within Wikis
	6.3.2.4 Abandoning entities

	6.3.3 Iteration of entities
	6.3.4 Reuse of entities (using prototypes)
	6.3.4.1 Current entity population selectors
	1. ALL_PEERS (default): finds all entities authored by any user.
	2. THIS_PEER_ONLY: only finds entities that have been authored by the user.
	6.3.4.2 Current prototype algorithms

	1. LATEST (default): finds the most recent entity of a specific entity type, e.g. [DesignTask].
	2. MOST_ACTIVE: finds the entity that has had the greatest number of state changes during its his...
	3. SUM_OF_EXISTING: makes a logical sum of all information found for an entity of a particular en...
	6.3.4.3 Adding new prototypes
	6.3.4.4 Current limitation of prototypes
	6.3.4.5 Bootstrapping needed at beginning

	1. Policies for each transition,
	2. Incoming and outgoing constraint links, and
	3. Linked entities that are connected by these links.
	6.3.4.6 Summary of prototype process

	6.4 Entity state
	6.4.1 Determining state
	Figure 37 State determination method.

	6.4.2 Link and input state changes
	6.4.3 Parallel vs. sequential processes in DPM
	6.4.4 Inputs seen as a type of voting system
	6.4.4.1 Conceivable voting enhancements
	1. Majority of voters: if a majority of voters votes ‘yes’, then the entity can change state.
	2. Non-equal vote values: where some votes are more valued than others—possibly dependent on the ...

	6.5 Constructing process models
	6.5.1 Prototypes and organizational memory: policies and links
	Figure 38 Policies and linked entities from a prototype used to recreate new entity structures.

	6.5.2 Organizational memory vs. bootstrapping from nothing
	1. Content of the process loop used. An appropriate loop may or may not be available. Sufficient ...
	2. Policy advertisements into each transitions of the entity’s loop. These describe which inputs ...
	3. Constraint links that describe entities structures.

	6.5.3 Building structures using constraint links
	Figure 39 Complex constraint-linked entity network.

	6.5.4 Sub-entity / sequential links: branch out/in structures
	6.5.4.1 Sub-entities
	Figure 40 Sub-entity relation in DPM. The black dots signify the current states of the entities.
	Figure 41 Alternative diagram showing sub-entity relation.

	6.5.4.2 Sequential links
	Figure 42 Sequential relation between entities in DPM
	Figure 43 Alternative diagram showing sequential relation.

	6.5.4.3 Branch-in and out
	Figure 44 Branch-out and Branch-in precedence structures based on sequential relations.

	6.5.5 Planning vs. execution
	6.5.6 Chat messages
	6.5.7 Convergence in groups

	7 Application testing and validation
	7.1 Introduction to testing
	7.2 Introduction to TOI
	7.3 TOI and student processes
	7.3.1 Overall nature of these processes
	7.3.2 Aspects modeled for TOI by DPM
	7.3.2.1 Courses
	1. Complete 1st half assignments.
	2. Complete 2nd half assignments.
	3. Pass examination (with re-sits).
	Figure 45 TOI course process.

	7.3.2.2 Assignments within courses
	Figure 46 Assignment process.

	7.3.2.3 Examinations during, and at end of courses
	Figure 47 Examination process.

	7.3.3 TOI state-transition loop models
	Figure 48 TOI_Course state-transition loop.
	Figure 49 TOI_Assignment state-transition loop.
	Figure 50 TOI_Examination state-transition loop.

	7.4 Test specifics
	1. Does the application work as advertised?
	2. Does the performance of the application degrade excessively when confronted with large amounts...
	3. What insights does the application suggest for the planning and management of collaborative de...
	4. What does testing suggest as being the most promising or appropriate direction for future work?

	7.4.1 Pre-test tasks
	1. Briefing the TOI department about the general research concepts that have informed the design ...

	7.4.2 Test 1: Basic functionality of DPM
	7.4.2.1 Description
	7.4.2.2 Participants
	7.4.2.3 Venue
	7.4.2.4 Duration
	7.4.2.5 Tasks to be performed by each tester
	1. Join the DPM network and establish a peer identity that is visible to other users of DPM. How ...
	2.1 Select a peergroup node to serve as the parent.
	2.2 Issue the menu command: File > New Peergroup.
	2.3 Enter a new peergroup’s name in the form that opens.
	2.4 Repeat this multiple times to create a peergroup hierarchy, with at least three branches, and...
	2.5 Once such a peergroup hierarchy is created, exit DPM and see if it still exists when DPM is o...
	3.1 This requires that testers work in pairs, or in groups, and manually observe whether peergrou...
	4.1 Select a peergroup node and issue the command: Peergroup > Join Peergroup.
	4.2 See if the peer is added to the peergroup. Also, see if this membership is communicated to ot...
	4.3 Repeat this process by leaving by issuing the command: Peergroup > Leave Peergroup.
	5.1 Select a peergroup node to serve as the parent peergroup.
	5.2 Issue the menu command: File > New User Named Entity.
	5.3 Create several sample TOI_Courses, TOI_Assignments, and TOI_Examinations.
	6.1 Select a design entity.
	6.2 Issue the menu command: File > New Policy.
	6.3 Add test roles to each transition: e.g. TOI_Grader. If such a role is not present in the list...
	6.4 See if these policy constraints have been added: select the entity they were added to, then i...
	7.1 Select a design entity, e.g. a TOI_Course, to serve as a parent in a sub- entity relation.
	7.2 Issue the menu command: File > New SubEntity Link.
	7.3 In the form that opens, select an entity to serve as a child, e.g. TOI_Assignment. This child...
	7.4 Select the target transition of the sub-entity link. In the SubEntity form, this is shown as:...
	7.5 Do this multiple times for each required TOI_Assignment.
	8.1 Roles in design entities means that the peer can effect state changes. If a role assumed matc...
	8.2 Select a design entity.
	8.3 Issue the menu command: File > New Role.
	8.4 In the form that opens, enter the name of the new role by selecting an item from the list in ...
	8.5 Check to see if the role has been added, by putting the mouse over an entity and viewing the ...
	9.1 State changes in design entities are enabled by either: 1. Adding inputs to satisfy policy co...
	9.2 The loop that an entity uses is listed in the entity’s popup label. If the user opens the ‘lo...
	9.3 If an entity has no constraints, then DPM is currently configured not to allow state changes....
	9.4 Add inputs to satisfy policy constraints to assure that incoming entities are in an appropria...
	10. Deletion and abandonment of entities.
	10.1 In DPM, users can create, delete, and abandon entities. Users can also delete a number of ot...
	10.2 Testers should attempt to create each of these delete-able objects, and then delete them. Th...
	10.3 Design entities can also be abandoned. This means they are still visible, but state changes ...
	10.4 Select a design entity, then issue the menu command: Edit > Abandon Entity. See if entities ...

	7.4.2.6 Criteria for above tests

	1. Effort of setting up peer accounts.
	1.1 Is the setup procedure easy for users of DPM?
	1.2 Can installation and setup of DPM be more automated, and thus avoid novice users having to ma...
	2.1 If a peer creates an object in DPM, do other peers receive it?
	2.2 Can the latency period between creating information and its propagation to other peers create...
	3.1 Are the basic domain concepts of DPM difficult for users to understand?
	4.1 Do some peers have more difficulty than others in receiving DPM information?
	5.1 Are current peergroup tree mechanisms easy to use?
	6.1 Is DPM responsive enough for common user actions?
	7.1 Should peergroup trees appear the same way each time a user opens them up, down to their lowe...

	7.4.3 Test 2: Error production tasks
	1. Register as a peer in DPM, then not have your peer identity visible to other peers.

	7.4.4 Test 3: Integration test
	7.4.4.1 Description
	7.4.4.2 Participants
	7.4.4.3 Venue
	7.4.4.4 Duration
	7.4.4.5 Tasks to be performed by each tester
	1. Peergroup structure to be completed by testers altogether:
	1.1 Space for 30 students taking 3 TOI courses each.
	1.2 Each course (per student) would have: 1 TOI_Course entity, 5 TOI_Assignment entities, and 1 T...
	2. Each tester will assume the role of several students, in order to test a reasonable number of ...
	2.1 Copy the DPM executable to five separate directories on your computer.
	2.2 Have one term that identifies: the tester, and the peer number, and the password. For example...

	3. Create peergroup called ‘Course tests’ that will contain the data created during the test.
	4. Within this peergroup create peergroups for several courses, e.g. ‘TOI_course1’, TOI_course2’,...
	Figure 51 One possible peergroup organization for the integration test.

	5. Each test student, or TOI staff, would make a peergroup within each course’s peergroup, for ea...
	6. Each student who takes this course would join the peergroup, using the menu command: Entities ...
	7. Simulate a course scenario with the following overall process:
	7.1 A student joins an existing course, or a member of the TOI staff, sets up the course structur...
	7.2 All ‘stakeholders’ in each student’s progress—normally the student herself, and several membe...
	7.3 Create multiple assignments for each course, with variable constraints on completion. See whe...
	7.4 Work through state changes for each entity for each student, such that each student attains a...
	7.5 View the history of course changes. This is viewed by selecting a design entity, then using t...

	7.4.4.6 Criteria

	1. Suitability for TOI’s processes.
	1.1 Are there any advantages in using DPM over current TOI information systems?
	1.2 Does DPM provide a new type of information, or does it duplicate information that is already ...
	1.3 Can TOI users create suitable places to put information using DPM?
	1.4 Do different users put information in similar places?
	1.5 Is the granularity of information suitable for what students and TOI need to manage their pro...
	1.6 Is DPM able to adapt to changing processes within TOI?
	2. Entities in DPM.
	2.1 Is the concept of ‘User Named Entity’ clear to users?
	2.2 Is the process of attaching loop state models clear to users?
	2.3 Is having an entity in a particular state significant to users?
	2.4 Do users add inputs when it is suitable for them to do so?

	3. Roles in DPM.
	3.1 Do users comprehend roles and their meanings?
	3.2 Do users continue to create new roles—that may duplicate the meaning of previously used ones?
	3.3 Do roles acquire generally accepted meanings that are clear to users?

	4. Quality of information provided
	4.1 Is information provided by DPM reliable and accurate—that is, do users trust the information ...
	4.2 Is information provided by DPM secure?

	7.5 Testing results
	7.5.1 Things that worked well during testing
	7.5.1.1 State change mechanisms
	7.5.1.2 Synchronization of information
	7.5.1.3 Prototype system

	7.5.2 Things worked less well during testing
	7.5.2.1 Performance
	7.5.2.2 Reliability of communication of basic information
	7.5.2.3 Complexity of whole concept
	7.5.2.4 Poor visibility of process structures
	7.5.2.5 Difficulty in configuration
	7.5.2.6 Steep learning curve of basic concepts

	7.5.3 Safety in testing vs. usability of distributed systems
	7.5.4 Bootstrapping of peergroups
	7.5.5 Transmission of data between peers
	7.5.6 Peergroup size and information specificity
	7.5.7 Revisions to software after testing
	7.5.7.1 Reduction of resource consumption
	public void addChildren(PGTreeNode node) {
	if(node!=null) {
	clearChildren(node);
	ContentSearcherTree searcher = node.getTreeSearcher();
	/**First, populate content storage. This takes little time */
	searcher.localCache_To_csAdvAllTypes();
	/**Add content to tree */
	addAllContentInCSToTree(node);
	/**Expand the tree to show new addition */
	expandOneNode(node);
	/**Now get the remote advs for next time (this takes time) */
	searcher.getRemoteAdvsAllTypes();
	}
	}
	Figure 52 Revised peergroup node refresh code.

	7.5.7.2 Push vs. pull peergroup resource discovery

	8 Conclusion
	8.1 Discussion of results
	8.1.1 Role of P2P
	1. information may not as reliably transmitted between users as would a client- server system, and
	2. trustworthiness and freshness of some data can be low when there is low peergroup membership.

	8.1.2 Aspects impaired by P2P
	8.1.3 Aspects helped by a P2P implementation
	1. Avoidance of ‘global’ information: in a client-server system it is easy to store information t...
	2. Probability of scalable performance: in the event that DPM is used by large numbers of users, ...
	3. Distribution and installation of the software is easy: all that is required of potential users...
	4. Maintenance and security safe-guarding of a server is not required.
	5. All development can happen locally on a single machine without having to gain access to a serv...

	8.1.4 Solution to the reliability problem?
	1. Have all peers store all information regarding all peergroups on their computers. Comment: thi...
	2. Have all users do all their work in limited numbers of peergroups. Comment: If all users did a...
	3. Separation of information hierarchies from peergroup hierarchies. Comment: this appears promis...
	4. Transfer information directly between peers rather than within peergroups. Comment: this also ...
	5. Have users synchronize their work patterns. Comment: This synchronization might involve only h...
	6. How so many users that information is duplicated and shared widely. Comment: this is the norma...

	8.1.5 Interactive nature of DPM’s process
	8.1.6 Leveraging external technologies
	8.1.6.1 The technology of Petri nets
	8.1.6.2 Leverage of JXTA
	8.1.6.3 Role of the Java language

	8.2 Contributions
	8.2.1 Implementation of a working prototype for design coordination
	8.2.2 Provision of a process coordination framework
	8.2.3 Interactive collaborative modeling tool
	8.2.4 Environment to represent and establish organizational norms
	8.2.5 Building of user-configured online teams

	8.3 Future research agenda
	8.3.1 Increase the reliability of information transfer
	8.3.2 Build more sophisticated prototype mechanisms
	8.3.3 Explore information persistence
	8.3.4 Simplify the process of modeling process loops

	9 References
	10 Appendices
	10.1 Appendix A: Instructions for installing Design Process Modeler (DPM)
	10.1.1 Introduction
	10.1.2 Obtaining the software
	1. Download it from the author’s web site

	10.1.3 Prerequisites for running the DPM application
	1. Your computer is connected to the Internet. This application requires an open Internet connect...
	1. Java 1.4, or later, is installed on your system. Download Java at: http://java.sun.com/j2se/1....

	10.1.4 Configuration of JXTA
	1. Basic
	Figure 53 Basic JXTA configuration panel.
	2. Advanced
	Figure 54 Advanced JXTA configuration panel.

	3. Rendezvous/Relays
	Figure 55 Rendezvous/relay JXTA configuration panel.

	4. Security
	Figure 56 Security JXTA configuration panel.

	10.1.5 Reconfiguration
	Figure 57 Typical local user cache in JXTA.

	10.2 Appendix B: Package and class descriptions
	10.2.1 dpm.container.tree
	Figure 58 UML diagram of package: dpm.container.tree

	10.2.2 dpm.content
	Figure 59 UML diagram of package: dpm.content

	10.2.3 dpm.content.advertisement
	Figure 60 UML diagram of package: dpm.content.advertisement

	10.2.4 dpm.content.constraint
	Figure 61 UML diagram of package: dpm.content.constraint

	10.2.5 dpm.content.state
	Figure 62 UML diagram of package: dpm.content.state

	10.2.6 dpm.dpmApp.desktop
	Figure 63 UML diagram (abridged) of package: dpm.dpmApp.desktop

	10.2.7 dpm.dpmApp.desktop.forms
	Figure 64 UML diagram of package: dpm.dpmApp.desktop.forms

	10.2.8 dpm.peer
	Figure 65 UML diagram of package: dpm.peer

	10.3 Appendix C: User interface forms
	Figure 66 Top Frame Form.
	10.3.1 New User Named Entity Form
	Figure 67 New Design Entity Form.

	10.3.2 New Peergroup Form
	Figure 68 New Peergroup Form.

	10.3.3 New sub-entity relation Form.
	Figure 69 New sub-entity relation form.

	10.3.4 New sequential relation Form.
	Figure 70 New sequential relation Form.

	10.3.5 New Constraint Link Form
	Figure 71 New Constraint Link Form.

	10.3.6 New Information Link Form
	Figure 72 New Information Link Form.

	10.3.7 Show Links Form
	Figure 73 Show Links Form.

	10.3.8 History Viewer Form
	Figure 74 History Viewer Form.

	10.3.9 New Policy Form
	Figure 75 New Policy Form.

	10.3.10 New Role Form
	Figure 76 New Role Form.

	10.3.11 New Input Form
	Figure 77 New Input Form.

	10.4 Appendix D: Information panels
	10.4.1 DPM Information Panel
	Figure 78 DPM Information Panel.

	10.4.2 Petri net Loop Information Panel
	Figure 79 Petri net Loop Information Panel.

	10.5 Appendix E: Non-TOI sample state-transition loops
	Figure 80 Design Task state-transition loop.
	Figure 81 Design Product state-transition loop.

	10.6 Appendix F: Sample advertisements
	10.6.1 Design entity advertisements
	10.6.1.1 User Named Entity Advertisement
	<!DOCTYPE jxta:UserNamedEntityAdv>
	<jxta:UserNamedEntityAdv xmlns:jxta=”http://jxta.org”>
	<DesignEntityID>
	urn:jxta:uuid- F1076F5D195D45F8910FA2279BCD6BBC9C1624A4C92046EA97458A3B8198ABE501
	</DesignEntityID>
	<Name>
	Concrete slab_2
	</Name>
	<BaseName>
	Concrete slab
	</BaseName>
	<Description>
	Description of the product
	</Description>
	<Iteration>
	2
	</Iteration>
	<DateCreated>
	Apr 14, 2004 2:23:46 PM
	</DateCreated>
	<AuthorID>
	urn:jxta:uuid- 59616261646162614A78746150325033D5D101E6DBB74F909F32ADE2E257D7E403
	</AuthorID>
	<AuthorName>
	MC
	</AuthorName>
	<NetName>
	DesignContractLoop
	</NetName>
	<DateDue>
	Apr 14, 2004 12:00:00 AM
	</DateDue>
	</jxta:UserNamedEntityAdv>

	10.6.2 Advertisements linked to particular design entities
	10.6.2.1 Policy Advertisement
	<!DOCTYPE jxta:PolicyAdv>
	<jxta:PolicyAdv xmlns:jxta=”http://jxta.org”>
	<AdvID>
	urn:jxta:uuid- F1076F5D195D45F8910FA2279BCD6BBCFF78E653ED9C4092ACF08CAB83FB55C701
	</AdvID>
	<TargetTransition>
	5.reuseExistingEntity
	</TargetTransition>
	<TargetID>
	urn:jxta:uuid- F1076F5D195D45F8910FA2279BCD6BBC9C1624A4C92046EA97458A3B8198ABE501
	</TargetID>
	<TargetName>
	P2_2
	</TargetName>
	<TargetType>
	Design Product
	</TargetType>
	<DateCreated>
	Apr 14, 2004 2:23:46 PM
	</DateCreated>
	<AuthorID>
	urn:jxta:uuid- 59616261646162614A78746150325033D5D101E6DBB74F909F32ADE2E257D7E403
	</AuthorID>
	<AuthorName>
	MC
	</AuthorName>
	<Roles>
	<RoleName>
	entity recycler
	</RoleName>
	</Roles>
	</jxta:PolicyAdv>

	10.6.2.2 Role Advertisement
	<!DOCTYPE jxta:RoleAdv>
	<jxta:RoleAdv xmlns:jxta=”http://jxta.org”>
	<AdvID>
	urn:jxta:uuid- F1076F5D195D45F8910FA2279BCD6BBC17C099B95A1A4106AD5BB41759B2C36A01
	</AdvID>
	<DesignEntityID>
	urn:jxta:uuid- F1076F5D195D45F8910FA2279BCD6BBC9C1624A4C92046EA97458A3B8198ABE501
	</DesignEntityID>
	<Name>
	P2_2
	</Name>
	<AuthorID>
	urn:jxta:uuid- 59616261646162614A78746150325033D5D101E6DBB74F909F32ADE2E257D7E403
	</AuthorID>
	<AuthorName>
	MC
	</AuthorName>
	<DateCreated>
	Apr 14, 2004 2:23:46 PM
	</DateCreated>
	<RoleName>
	author
	</RoleName>
	</jxta:RoleAdv>

	10.6.2.3 Input Advertisement
	<!DOCTYPE jxta:InputAdv>
	<jxta:InputAdv xmlns:jxta=”http://jxta.org”>
	<AdvID>
	urn:jxta:uuid- F1076F5D195D45F8910FA2279BCD6BBCB9FFFD62325646EE9307AC464675561C01
	</AdvID>
	<DesignEntityID>
	urn:jxta:uuid- F1076F5D195D45F8910FA2279BCD6BBCDE0350AE538F46BD99D4928113F5D98F01
	</DesignEntityID>
	<Name>
	P2
	</Name>
	<AuthorID>
	urn:jxta:uuid- 59616261646162614A78746150325033D5D101E6DBB74F909F32ADE2E257D7E403
	</AuthorID>
	<AuthorName>
	MC
	</AuthorName>
	<DateCreated>
	Apr 14, 2004 12:44:11 PM
	</DateCreated>
	<TransitionName>
	0.requirementsGathered
	</TransitionName>
	<RoleName>
	performer
	</RoleName>
	</jxta:InputAdv>

	10.6.2.4 History Advertisement
	<!DOCTYPE jxta:HistoryAdv>
	<jxta:HistoryAdv xmlns:jxta=”http://jxta.org”>
	<AdvID>
	urn:jxta:uuid- F1076F5D195D45F8910FA2279BCD6BBC63C2075E0D2C4366866DACE60DD2FFC001
	</AdvID>
	<DesignEntityID>
	urn:jxta:uuid- F1076F5D195D45F8910FA2279BCD6BBCDE0350AE538F46BD99D4928113F5D98F01
	</DesignEntityID>
	<Name>
	P2
	</Name>
	<DesignEntityType>
	</DesignEntityType>
	<AuthorID>
	urn:jxta:uuid- 59616261646162614A78746150325033D5D101E6DBB74F909F32ADE2E257D7E403
	</AuthorID>
	<AuthorName>
	MC
	</AuthorName>
	<DateCreated>
	Apr 14, 2004 2:22:58 PM
	</DateCreated>
	<TransName>
	2.designDevelopmentCompleted
	</TransName>
	<State>
	3.In_construction_documents_phase
	</State>
	<Roles>
	<Role>
	<RoleName>
	performer
	</RoleName>
	<Peers>
	<PeerName>
	MC
	</PeerName>
	</Peers>
	</Role>
	<Role>
	<RoleName>
	client
	</RoleName>
	<Peers>
	<PeerName>
	MC
	</PeerName>
	</Peers>
	</Role>
	</Roles>
	</jxta:HistoryAdv>

	10.6.3 Advertisements linking entities
	10.6.3.1 Constraint link advertisement
	<!DOCTYPE jxta:LinkAdv>
	<jxta:LinkAdv xmlns:jxta=”http://jxta.org”>
	<AdvID>
	urn:jxta:uuid- F1076F5D195D45F8910FA2279BCD6BBCE0868CC32E5E497B987BAA37583D46D301
	</AdvID>
	<ConstraintName>
	doBefore
	</ConstraintName>
	<SourceState>
	0.In_pre_negotiation
	</SourceState>
	<TargetTransition>
	0.requirementsGathered
	</TargetTransition>
	<SourceID>
	urn:jxta:uuid- F1076F5D195D45F8910FA2279BCD6BBC4899961F18514A12836AA3535D892F8301
	</SourceID>
	<SourceName>
	T1
	</SourceName>
	<SourceType>
	Design Task
	</SourceType>
	<TargetID>
	urn:jxta:uuid- 3FD35406FFC44A81A406B8C1C7C79E13532964A896684079912F95A38876B84A01
	</TargetID>
	<TargetName>
	P1
	</TargetName>
	<TargetType>
	DesignProduct
	</TargetType>
	<DateCreated>
	Apr 14, 2004 12:21:01 PM
	</DateCreated>
	<AuthorID>
	urn:jxta:uuid- 59616261646162614A78746150325033D5D101E6DBB74F909F32ADE2E257D7E403
	</AuthorID>
	<AuthorName>
	MC
	</AuthorName>
	</jxta:LinkAdv>

	10.6.3.2 Information link advertisement
	<!DOCTYPE jxta:LinkAdv>
	<jxta:LinkAdv xmlns:jxta=”http://jxta.org”>
	<AdvID>
	urn:jxta:uuid- F1076F5D195D45F8910FA2279BCD6BBCE7E47AD0358840F9B23C810A781454A001
	</AdvID>
	<ConstraintName>
	friendOf
	</ConstraintName>
	<SourceState>
	not relevant
	</SourceState>
	<TargetTransition>
	not relevant
	</TargetTransition>
	<SourceID>
	urn:jxta:uuid- F1076F5D195D45F8910FA2279BCD6BBC4899961F18514A12836AA3535D892F8301
	</SourceID>
	<SourceName>
	T1
	</SourceName>
	<SourceType>
	Design Task
	</SourceType>
	<TargetID>
	urn:jxta:uuid- 3FD35406FFC44A81A406B8C1C7C79E13532964A896684079912F95A38876B84A01
	</TargetID>
	<TargetName>
	P1
	</TargetName>
	<TargetType>
	DesignProduct
	</TargetType>
	<DateCreated>
	Apr 14, 2004 12:11:59 PM
	</DateCreated>
	<AuthorID>
	urn:jxta:uuid- 59616261646162614A78746150325033D5D101E6DBB74F909F32ADE2E257D7E403
	</AuthorID>
	<AuthorName>
	MC
	</AuthorName>
	</jxta:LinkAdv>

