

COMPUTER-AIDED CRITIQUING SYSTEMS

Lessons Learned and New Research Directions

YEONJOO OH, MARK D GROSS
CoDe Lab, School of Architecture, Carnegie Mellon University
Email addresses: yeonjoo@cmu.edu, mdgross@cmu.edu

AND

ELLEN YI-LUEN DO
College of Architecture and College of Computing, Georgia Institute
of Technology
Email address: ellendo@cc.gatech.edu

Abstract. A critiquing system helps designers improve their design
artifacts by providing feedback. Computer-aided critiquing systems
have been built in many fields and provide us with useful lessons. In
this paper we analyze existing critiquing systems in terms of (1)
critiquing process, (2) critiquing rules, and (3) intervention techniques.
Based on this analysis, we suggest new research directions for
critiquing systems in the domain of architectural design.

1. Introduction

A computer-aided critiquing system analyzes proposed design solutions and
provides designers with feedback. This paper reviews existing systems in
terms of three aspects: critiquing process, critiquing rules, and intervention
techniques.

1.1. DEFINITIONS OF CRITIQUING SYSTEMS

A brief look at how one-on-one critiquing sessions function in design studio
can help us form a better picture of how computer assisted critiquing might
work in architectural design. A studio teacher observes students’ progress by
looking at their drawings and models and listening to their descriptions of
their design. The teacher comments by interpreting and evaluating the
design, offering alternatives and precedents or asking questions to raise new
issues that students may not have thought about. The student reflects on and
modifies the design based on these critiques .

Automated critiquing systems have been built to support design in
different domains. Most critiquing systems focus on finding errors or
problems in proposed designs. For instance, Silverman (1992) defines
critiques as “What the program thinks is wrong with the user-proposed
solution” In this view, a critiquing system corrects user’s mistakes at hand.

2 YEONJOO OH, MARK D GROSS, ELLEN YI-LUEN DO

Others researchers see critiquing systems a little differently. Fischer et al.
(Fischer et al., 1991b) state that “Critics operationalize Schön’s concept of a
situation that talks back” Robbins (1998) explains: “A design critic is an
intelligent user interface mechanism embedded in a design tool that analyzes
a design in the context of decision-making and provides feedback to help the
designer improve the design.” In this view, critiquing systems not only offer
negative critiques, but also help designers improve their solutions with
“constructive” feedback. In summary, a design critiquing system is a tool
that analyzes a work-in-progress and provides feedback to help a designer
improve the solution. It may ask relevant questions, point out errors, suggest
alternatives, offer argumentation and rationale, or (in simple and obvious
cases) automatically correct errors.

1.2. WHY REVIEW CRITIQUING SYSTEMS?

Although critiquing is essential in traditional architectural design, relatively
few critiquing systems for architecture have been built. These architecture
critiquing systems support only checking building codes. For instance,
Singapore’s CORENET system (2004) reads architectural drawings to check
building codes and regulations such as fire safety requirements. The system
provides graphic annotations (red circles) on CAD drawings to indicate
problematic parts and generates a text document with the list of errors.

Existing critiquing systems for architectural design such as CORENET
(2004), ICADS (Chun and Ming-Kit Lai, 1997), or Solibri Checker
(Solibri.Inc., 2007) only point out errors. They are not tightly integrated with
design process nor do they offer ‘constructive’ feedback to provide
opportunities to improve designs. We believe that critiquing systems have
potential to support architectural design beyond simply checking for errors.
Much can be learned from existing critiquing systems in various design
domains. Critiquing systems in civil engineering, medical treatment
planning, and programming provide several implementation strategies such
as timing, activation, modalities of feedback and types of feedback that
would also be useful in the context of architectural design..

1.3. REVIEW CRITERIA

We chose critiquing systems that (1) support a human designer in making
things, (2) store design knowledge to automatically detect parts or aspects of
designs that can be improved, and (3) provide machine-generated feedback
on design artifacts at hand.

Studio teachers often refer students to building precedents, which can be
considerd a form of critiquing. Various Case-Based design systems have
been built, such as Archie (Pearce et al., 1992) and DYNAMO
(Neuckermans et al., 2007). We do not consider a Case-Based Design Aid as
a critiquing system although a critiquing system could certainly present a
designer with cases relevant to the task at hand.

This survey is organized into four sections. Section 2 identifies aspects of
critiquing system research. Section 3 suggests new directions for critiquing
systems in architectural design. We then conclude with a summary.

 COMPUTER-AIDED CRITIQUING SYSTEMS 3

2. Aspects of Critiquing Systems

We review existing critiquing systems and identify three aspects of systems
that would be useful for building critiquing systems for architectural design:
(1) the process of critiquing, (2) the rules used by the system to trigger
critiques, and (3) the techniques to decide when and how to intervene.

2.1. CRITIQUING PROCESS

All critiquing systems assume a simple cycle: the detection of problems and
subsequent design improvement based on the offered criticism. In his survey
of critiquing systems, Robbins (1998) identifies five phases: Activate –
Detect – Advise – Improve – Record. Although the systems we review do
not all cover all phases, his model can be a good starting point to look at
critiquing systems. The Activate phase enables/ disables critiquing rules to
support a user’s current tasks. The Detect phase identifies problems by
comparing a user’s work with critiquing rules. The Advise phase informs
users of the detected conflicts. The Improve phase provides suggestions
about how to fix the indicated problems. Finally, the Record phase records
how designers resolve breakdowns based on the critiques offered.

We modify Robbins’ model to situate critiquing systems in architectural
design. We have added a Construct phase into Robbins’s model because an
environment where designers make things is essential. We have merged
Robbins’ two phases (Advise – Improve) because critiques include various
types of feedback in one-on-one critiquing sessions: they point out mistakes,
they demonstrate how to fix errors, or they make suggestions for subsequent
design moves (Schön, 1985). Our model is composed of Construct – Parse –
Check – Critique – Maintain. In the Construct phase, designers make
drawings to find solutions. For instance, Janus supports placing kitchen
appliances in the working window (Fischer et al., 1989). Likewise, architects
sketch a floor plan diagram in Design Evaluator (Oh et al., 2004). In the
Parse phase a system converts a drawing into a symbolic representation of
recognized elements and spatial relationships. In the Check phase, the
system finds problematic parts by comparing the symbolic representation
with previously stored rules. In the Critique phase, the system offers
feedback to help users understand the status of their designs and indicate
problems that may be improved. Finally, in the Maintain phase, the system
records how designers revise their designs based on critiques and updates a
user model or a task model.

2.2. CRITIQUING RULES

2.2.1. Forms of Rules
All the critiquing systems we reviewed are rule-based, where rules are
defined in a ‘predicate-action’ format. Predicates represent particular
situations in design solutions such as <dishwasher is placed in the left side of
sink>. When the situation is found in a user’s design, the defined set of
actions is invoked such as <notifying a conflict has been detected>. Actions
include argumentations, suggestions, precedents, interpretation or priorities/
importance of problems.

4 YEONJOO OH, MARK D GROSS, ELLEN YI-LUEN DO

2.2.2. Completeness of Knowledge
Existing systems commonly employ what Robbins (1998) calls ‘comparative
critiquing’, ‘analytic critiquing’ or both. Comparative critiquing uses
complete and extensive domain knowledge to generate presumably good
solutions. In this approach, the system develops solutions by applying the
stored rules and the specified problems by users. It then compares a user’s
work against generated solutions and reports the differences between them.
TraumaTIQ (Gertner and Webber, 1998) supports a physician’s treatment
planning. It infers goals from treatment plan and generates its own plan. It
then detects differences between physician’s plan and the generated one. A
comparative critiquing is more suitable for well-structured domains than ill-
structured ones. Alternately, analytic critiquing requires only that the system
has sufficient knowledge to detect possible problems. It offers critiques by
evaluating a user’s solution against the stored rules. For example, the Janus
family evaluates users’ kitchen layouts against constraints (Fischer et al.,
1989). The analytic critiquing supports exploratory problem solving better
than the comparative critiquing because design problems seldom have one
right answer.

2.2.3. Management of Critiques (Critiquing Rules)
Some systems manage critiquing rules to offer relevant and timely feedback
according to users, tasks and goals. They use specific representations to
control how rules (critiques) are activated: (1) a model of the task the user is
engaged in; (2) a model of the particular user who is doing the task; and (3) a
model of the user’s goals.

The purpose of a task model is to provide relevant and timely critiques to
the task at hand. SEDAR (Fu et al., 1997) supports critiques of a roof design
based on constructability standards. It models tasks (e.g. roof component
layout, equipment layout, etc.) in a hierarchical structure to infer which
critiquing rules are relevant to the current situation and provides feedback
appropriate to the task at hand.

The Argo system supports software design with user constructed UML
(Unified Modeling Language) diagrams that represent software components
and interactions among them. When Argo detects conflicts against
previously defined rules, it offers feedback. There, the user must explicitly
choose the current tasks (e.g. system typology, component selection, etc.)
from the listed tasks (Robbins and Redmiles, 1998). The system activates
only critiquing rules that match those tasks that the user selected. For
instance, when a user indicates that she is making a rough organization,
critiques related to details should not be active.

A user model enables systems to adapt to a particular designer’s
preferences, knowledge and past actions, tailoring explanations according to
an individual user’s level of expertise. Or a user model may control rules by
considering the user’s preferences. For instance, Lisp-Critic (Mastaglio,
1990) utilizes this user model representing a programmer’s understanding of
Lisp, and usage preferences. For instance, when a programmer prefers to use
the function named ‘first’ over the more traditional form ‘car’, Lisp-Critic
turns off the rule that triggers the critique: ‘car-to-first transformation’.

A user may create a goal model by specifying his/her task goals besides
developing design solutions. This tells the system what the user is trying to

 COMPUTER-AIDED CRITIQUING SYSTEMS 5

accomplish. In Janus a user fills out a form to enter goals (Fischer et al.,
1989, Fischer et al., 1991a), so the system would activate only rules relevant
to the specified design goals. For example, if a user defines the goal model
to be a kitchen for one person, Janus deactivates critiquing rules associated
with family kitchen design.

2.2.4. End User Critiquing Rule Authoring
Rules in most critiquing systems are written by system designers in advance.
Once written, there is no easy way for the user to adjust the established rules
or to incorporate new rules. However, critiquing scope and contents may
need to be changed from time to time in various situations. This insight has
led several researchers to explore rule authoring. For instance, Qiu and
Riesbeck (2004) explored the question of how users can create critiquing
rules. An interesting feature of their Java Critiquer, a system to teach
programming, is to integrate authoring with usage of the critiquing system,
so that a teacher can review or modify the critiques that are generated in a
feedback process. The teacher can insert critiques in addition to the feedback
that Java Critiquer generates. Over time, teachers gradually extend
knowledge-base by documenting predicates and the associated critiques they
trigger. Rule authoring improves the accuracy, relevance and scope of
critiquing. It enables users to store their own rules. It is an important feature
that enables systems to deal with diverse situations. Rule authoring
empowers designers to participate in the system’s feedback process.

2.3. INTERVENTION TECHNIQUES

2.3.1. Timing
An important aspect of intervention is timing—when the software offers
critiques. Fischer (1989) identifies a classification dimension: reactive and
proactive. Reactive critiquing offers feedback on the work that the designer
has done. Proactive critiquing guides the designer by presenting guidelines,
before s/he makes a design move. Silverman (1992) identifies another
dimension: before, during and after. Before critiquing corresponds to
Fischer’s proactive critiquing. During and after critiquing can be considered
as reactive. The difference between during and after critiquing is whether a
designer’s task is completed. SEDAR adopts Silverman’s dimensions and
takes all three strategies: before (error prevention), during (design review
critic, design suggestion) and after (error detection) (Fu et al., 1997). Most
building code checking systems in architecture provide reactive critiques
after a designer has finished his/her work. For instance, ICADS (Chun and
Ming-Kit Lai, 1997) checks building codes (e.g. fire exit) and rules-of-
thumb of interior design, after all design decisions have been made.

2.3.2. Activation
Fischer (1989) has identified two activation strategies: active and passive.
Active critiquing continuously monitors design moves and offers feedback.
Passive critiquing provides feedback when a designer requests it. Anderson
et al. (1995) studied how differently users respond in these two activation
settings. While using the passive setting, users do not ask for evaluation until
they have completed a preliminary solution. In the active setting most users

6 YEONJOO OH, MARK D GROSS, ELLEN YI-LUEN DO

fixed the errors immediately 80% of the time. Their experiments show us
that active critiquing can be a better activation method. However, active
critiquing may distract users in their designing tasks.

2.3.3. Modalities of Critiques
We identify three modalities used in existing systems: text messages, graphic
annotations and 3D visualizations. Most systems provide feedback in a
written form. Several critiquing systems provide visual critiques along with
text messages. For instance, Design Evaluator (Oh et al., 2004) makes
graphic annotation on a designer’s floor plan diagram and generates a 3D
texture-mapped VRML (Virtual Reality Model Language) model. It
annotates paths through 3D floor plan. The DAISY system provides graphic
annotation on a UML diagram (Souza et al., 2003). Some building code-
checking systems illustrate results in 3D space by circling problematic parts
in red (Han et al., 2002, Xu et al., 2004). Several researchers emphasize the
strength of graphic annotations on drawings and 3D models. Based on his
usability tests, Fu (1997) argues that graphic annotations help designer
understand the offered critiques better because: designers are working with
drawings; and it is harder for designers to relate text critiques in a separate
window than seeing graphic elements appear in their drawings.

2.3.4. Types of Feedback
Critiquing systems offer negative evaluation as well as positive critiques,
explanations, argumentations, suggestions, examples (precedents), and
interpretations. The Janus system praises the good aspects of a kitchen
layout so that designers might be more likely to retain them in further
revision (Fischer et al., 1991a). Some systems offer critiques with detailed
explanations (Souza et al., 2003) and argumentation about why particular
parts are desirable or problematic (Fischer and Morch, 1991b). Some offer
suggestions to help design revisions. KID (Knowing-in-Design) provides
precedents as potential solutions that could be graphic cues for further design
moves (Nakakoji et al., 1998). Some also interpret design solutions from a
specific viewpoint; for instance, Stanford’s building code checker provides
3D VRML models to predict building user’s movements and the
performance of a disabled user with wheelchairs (Han et al., 2002).

3. New Research Directions of Critiquing systems

Our discussion above suggests several promising research directions.
Integration with design task: Critiquing systems should be tightly

integrated with design tasks while users are situated in their tasks. Currently,
most critiquing systems in architecture support the solutions only after
design tasks have been done, such as code checking. We believe that
critiquing is more powerful when situated in the designing process.

Intervention techniques: Intervention should be based on observations of
the way architects and studio instructors critique in practice. To date,
critiquing systems provide evaluations, suggestions, precedents, and
interpretations. They do not change critiquing types and modalities
according to user’s individual differences, whereas human critics do.

 COMPUTER-AIDED CRITIQUING SYSTEMS 7

Furthermore, people ask questions about design solutions. Such questions
encourage designers to elaborate on their reasoning and decisions and help
them discover design problems by themselves. More sophisticated
intervention techniques can mitigate the negative connotation of critiquing
systems. For example, rather than tell the designer “that doorway is too
small”, a system might point to the doorway and ask, “could you get a
wheelchair through that door?” Intervention techniques and user model that
have been explored in the research community of human-computer
interaction can be adapted to critiquing systems. A critiquing system can
provide feedback in a different form (using visual aids, asking questions,
offering negative and positive evaluation, or offering a detailed description)
that reflects the differing needs of each user.

System engineering opportunities: Another opportunity involves system
engineering issues such as critique authoring and development of a software
toolkit for critiquing systems. Our proposed process model may be a useful
foundation. In this toolkit, one would design a system by entering design
knowledge, designing interfaces and interactions (critiques).

4. Summary

We have reviewed several aspects of critiquing systems (critiquing process
model, critiquing rules, and intervention techniques) and presented a
critiquing process model, Construct – Parse – Check – Critique – Maintain.
We have discussed four topics of critiquing rules by describing forms of
rules, completeness of knowledge, management of critiquing rules and end
user rule authoring. Also we have described intervention techniques such as
timing, activation, modalities of critiques, and types of feedback. These
aspects can be used constructively in a design of a critiquing system.
Furthermore, we have suggested new research directions. First, critiquing
systems need to tightly integrate with in-progress design tasks. Second, more
sophisticated intervention techniques need to be developed to provide more
relevant and useful feedback to users. Third, a software toolkit for critiquing
systems can be developed based on our process model.

Acknowledgements

This research was supported in part by the National Science Foundation Grant ITR-0326054.

References

ANDERSON, J. R., CORBETT, A. T., KOEDINGER, K. R. & PELLETIER, R. (1995)
Cognitive Tutors: Lessons Learned. J. Learning Sciences, 4(2), 167 - 207.

CHUN, H. W. & MING-KIT LAI, E. (1997) Intelligent Critic System for Architectural
Design. IEEE Transactions on Knowledge and Data Engineering, 9(4), 625 - 639.

CORENET (2004) CORENET e-Plan Check System. Retrieved 5th. Dec. 2007,
http://www.corenet.gov.sg/corenet/

FISCHER, G. (1989) Human-Computer Interaction Software: Lessons Learned, Challenges
Ahead. IEEE Software, 6(1), 44 - 52.

8 YEONJOO OH, MARK D GROSS, ELLEN YI-LUEN DO

FISCHER, G., LEMKE, A. C., MASTAGLIO, T. & MORCH, A. I. (1991a) The Role of
Critiquing in Cooperative Problem Solving. ACM Trans Inf Syst, 9(2), 123 - 151.

FISCHER, G., LEMKE, A. C., MCCALL, R. & MORCH, A. I. (1991b) Making
Argumentation Serve Design. Human Computer Interactions, 6(3-4), 393 - 419.

FISCHER, G., MCCALL, R. & MORCH, A. (1989) JANUS: Integrating Hypertext with a
Knowledge-Based Design Environment. ACM Conference on Hypertext and
Hypermedia. Pittsburgh, PA, ACM Press. 105 - 117.

FU, M. C., HAYES, C. C. & EAST, E. W. (1997) SEDAR: Expert Critiquing System for Flat
and Low-slope Roof Design and Review. J. Computing in Civil Eng 11(1), 60 - 68.

GERTNER, A. S. & WEBBER, B. L. (1998) TraumaTIQ: online decision support for trauma
management. IEEE Intelligent Systems, 13(1), 32 - 39.

HAN, C. S., LAW, K. H., LATOMBE, J.-C. & KUNZ, J. C. (2002) A Performance-Based
Approach to Wheelchair Accessible Route Analysis. Advanced Engineering
Informatics, 16 (1), 53-71.

MASTAGLIO, T. (1990) User Modeling in Computer-based Critics. IEEE The 23rd Annual
Hawaii International Conference on System Sciences., IEEE Press. 403 - 412.

NAKAKOJI, K., YAMAMOTO, Y., SUZUKI, T., TAKADA, S. & GROSS, M. D. (1998)
From Critiquing to Representational Talkback: computer support for revealing
features in design. Knowledge-Based Systems, 11(7-8), 457 - 468.

NEUCKERMANS, H., WOLPERS, M., CASAER, M., & HEYLIGHEN, A. (2007) Data and
Metadata in Architectural Repositories. The 12th Intern’l Conf on Computer Aided
Architectural Design Research in Asia (CAADRIA), Nanjing, China, 489 - 497

OH, Y., DO, E. Y.-L. & GROSS, M. D. (2004) Intelligent Critiquing of Design Sketches. In
DAVIS, R. (Ed.) American Association for Artificial Intelligence Fall Symposium -
Making Pen-based Interaction Intelligent and Natural. The AAAI Press. 127 - 133.

PEARCE, M., GOEL, A. K., KOLODNER, I. L., ZIMRING, C., SENTOSA, L.,
BILLINGTON, R. (1992) Case-based Design Support: A Case Study in
Architectural Design, IEEE Expert, 7(5), 14-20.

QIU, L. & RIESBECK, C. K. (2004) Incremental Authoring of Computer-based Interactive
Learning Environments for Problem-based Learning. IEEE Intern’l Conf. on
Advanced Learning Technologies (ICALT). Finland, IEEE Press. 171 - 175.

ROBBINS, J. E. (1998) Design Critiquing Systems. Tech Report UCI-98-41. Department of
Information and Computer Science, University of California, Irvine.

ROBBINS, J. E. & REDMILES, D. F. (1998) Software Architecture Critics in the Argo
Design Environment. Knowledge-Based Systems, 11(1), 47 - 60.

SCHÖN, D. A. (1985) The Design Studio, London, RIBA.
SILVERMAN, B. G. (1992) Critiquing Human Error: A Knowledge Based Human-Computer

Collaboration Approach, Academic Press.
SOLIBRI.INC. (2007) The World Leader in Design Spell Checking. http://www.solibri.com/
SOUZA, C. R. B. D., OLIVEIRA, H. L. R., ROCHA, C. R. P. D., GONCALVES, K. M. &

REDMILES, D. F. (2003) Using Critiquing Systems for Inconsistency Detection in
Software Engineering Models. The Fifteenth Intern’l Conf on Software Engineering
and Knowledge Engineering (SEKE 2003). San Francisco, CA, USA. 196 - 203.

XU, R., SOLIHIN, W. & HUANG, Z. (2004) Code Checking and Visualization of an
Architecture Design. IEEE Visualization IEEE Computer Society. 10 - 11.

