

Espresso Blocks

Self-configuring Building Blocks

by

Michael Philetus Weller

A thesis submitted in partial fulfillment of the

requirements for the degree of

Master of Architecture

University of Washington

2003

Program Authorized to Offer Degree:

Department of Architecture

University of Washington

Graduate School

This is to certify that I have examined this copy of a

master’s thesis by

Michael Philetus Weller

and have found that it is complete and satisfactory in all

respects, and that any and all revisions required by the

final examining committee have been made.

Committee Members:

Ellen Yi-Luen Do

Mark D. Gross

Jim Nicholls

Wei-chih Wang

Date: ______________________

In presenting this thesis in partial fulfillment of the

requirements for a Master’s degree at the University of

Washington, I agree that the Library shall make its copies

freely available for inspection. I further agree that

extensive copying of this thesis is allowable only for

scholarly purposes, consistent with "fair use" as

prescribed in the U.S. Copyright Law. Any other

reproduction for any purposes or by any means shall not be

allowed without my written permission.

Signature___

Date__

 i

Table of Contents

List of Figures .. v

Introduction ... 1

1 Vision .. 3

1.1 A self-configuring building block 3

1.2 Dynamic structures 4

1.3 Block delivery 6

1.4 Block control 8

1.5 Block configuration 10

1.6 Urban form .. 10

1.7 Outposts .. 12

2 Precedents ... 13

2.1 Decomposition of the shed 15

2.2 Dynamic structures and land use 18

2.3 Modular robotics 19

 ii

2.3.1 Chain modules 20

2.3.2 Crystalline modules 23

2.3.3 Module latches 25

2.4 Summary ... 26

3 Design ... 27

3.1 Crystalline module constraints 27

3.2 First generation 29

3.2.1 Latch .. 30

3.2.2 Actuator 32

3.2.3 Services 33

3.2.4 First generation prototype 34

3.3 Second generation 35

3.3.1 Second generation prototype 36

3.3.2 Magnetic latch 39

3.3.3 Water exclusion and reclamation 49

3.3.4 Actuator 50

 iii

3.4 AutoCAD Visual Basic simulation 52

3.4.1 Control panel 53

3.4.2 Recording actions 55

3.4.3 Internal representation 56

4 Future work .. 59

4.1 Functional block prototype 59

4.2 Freestanding simulator 59

4.3 Blocks solve goal shapes 60

4.4 Blocks avoid unstable configurations 60

4.5 Block furniture 60

Annotated Bibliography 62

A. Modular Robotics 62

B. Reconfigurable and Dynamic Structures 65

Appendix A: Thesis Presentation Comments............... 70

Appendix B: Baristas Unite!............................ 78

Appendix C: Simulation Source Code..................... 82

 iv

BlockBuilder ... 82

EspressoBlock .. 88

EspressoBlockArm 92

EspressoBlockList 98

PositionArray ... 106

 v

List of Figures

Figure Number Page

1 Espresso block expanding................................ 3

2 Shigeru Ban’s 9 Square Grid House....................... 5

3 Pallets of blocks delivered to a site................... 7

4 Single block being selected............................. 8

5 Blocks that would have to move glow green............... 9

6 Blocks glow red until they are finished moving.......... 9

7 Archigram's "A Walking City"........................... 13

8 “Flop Out 2” metamorphic kit of parts.................. 15

9 Keymatic bot... 16

10 "Bot call-up device".................................. 17

11 Wheel from hamster house.............................. 18

12 Polybot gaits... 21

13 Crystalline atom module............................... 23

 vi

14 Telecube module....................................... 24

15 Block movement paradigm............................... 28

16 Block inchworm motion................................. 29

17 Cut-away axonometric of first generation block........ 30

18 Green small arm latching with yellow big arm.......... 31

19 Detail of arms latching............................... 32

20 Prototype of first-generation tube.................... 34

21 Second generation prototype........................... 36

22 Section diagram of second-generation block............ 37

23 Block dimensions...................................... 38

24 Telecube magnetic latch............................... 40

25 Springs in Telecube-style latch....................... 41

26 Halbach array flux diagram............................ 42

27 Halbach array latch diagram........................... 43

28 Halbach array latch layout............................ 44

29 Second latch prototype................................ 46

 vii

30 Magnets embedded in sliding panel..................... 47

31 Gaskets and water reclamation membranes............... 49

32 Screenshot of simulation.............................. 52

33 Block control panel................................... 53

34 Pallet to wall action................................. 56

35 Position hash structure............................... 57

1

Introduction

In the nineteen-sixties the architectural collective

Archigram began to explore the design of dynamic

structures, buildings that moved around and reconfigured

themselves to suit the needs and whims of their

inhabitants.1 But without a system to actually construct

dynamic structures research into their architectural

applications has been limited. Robotics researchers have

recently developed several modular robotics systems with

groups of identical tiny robotic modules that reconfigure

themselves to take on a variety of forms.2 Espresso blocks

is an attempt to adapt the design of modular robotics

systems to the scale of a brick or concrete block to create

a platform for the exploration of the design possibilities

of dynamic structures.

1 Ron Harron and Bryan Harvey. “A Walking City,” Archigram, no. 5, 1964.

2 M. Yim, D. Duff, K. Roufas. "PolyBot: a Modular Reconfigurable Robot,"

IEEE Intl. Conf. on Robotics and Automation (ICRA), San Francisco, CA,

April 2000. pp514-519.

2

This document is divided into four chapters. The first

chapter explains what a modular building block and a

dynamic structure are and what they could be used to

create. The second chapter surveys some precedents for the

architectural form of dynamic structures and the technology

employed to create the blocks. Our initial efforts to

create a modular building block prototype are described in

the third chapter. And the fourth chapter outlines the next

steps to be taken towards the realization of a functional

prototype espresso block system.

3

1 Vision

1.1 A self-configuring building block

Figure 1 Espresso block expanding

The goal of the espresso blocks project is to produce a

prototype self-configuring building block to explore the

potential uses of dynamic structures. A self-configuring

building block (Figure 1) is a module on the scale of a

brick or concrete masonry unit that can be stacked to

create a load-bearing structure. Unlike a traditional

masonry unit, a self-configuring building block has

latches, actuators and a control system. Blocks can latch

to neighboring blocks and use their actuators to push each

4

other around. Through the blocks' control systems, these

movements are coordinated to produce dynamic structures.

1.2 Dynamic structures

A structure composed of self-configuring building blocks

can be reconfigured throughout the day to satisfy the

desires of its occupants. There are existing buildings that

allow occupants to adjust their spaces to accommodate

different activities through the use of moveable partitions

or sliding doors. An example that is particularly

reconfigurable is Shigeru Ban’s 9 Square Grid House3,(Figure

2) a fusion of the traditional Japanese house with movable

screens and the modernist tradition exemplified by Gerrit

Rietveld’s Schroeder House4. These structures are not

dynamic in the same sense because a limited number of

configurations were designed into the structure when it was

built, while a dynamic structure composed of self-

3 “9 Square Grids House,” Japan Architect, no. 30, Summer 1998. pp30-35.

4 Lenneke Butler and Frank den Oudsten. “Schroeder House: the work of

Gerrit Rietveld between myth and metaphor,” Lotus International, 1989

no. 60. pp32-57.

5

configuring blocks can be redesigned to take on an

arbitrary novel form as long as it observes the constraints

of the blocks. The other advantage of a dynamic structure

over a merely reconfigurable space is that it erects itself

on the site, and never needs to be demolished. When it is

given the command it loads itself onto pallets so that the

blocks can be re-used.

Figure 2 Shigeru Ban’s 9 Square Grid House5

5 “9 Square Grids House,” Japan Architect, no. 30, Summer 1998. pp30-35.

6

Dynamic structures could use resources more efficiently

than traditional structures. They use land more efficiently

by accommodating a variety of uses within one space. They

use materials more efficiently because blocks can be reused

in other buildings rather than thrown into a landfill or

downcycled into another building material.

1.3 Block delivery

Dynamic structures are capable of erecting themselves, so

to build a dynamic structure it is only necessary to get a

sufficient number of blocks and the desired accessories to

the site. Blocks and accessories can be purchased at a

building supply retailer, or ordered online and delivered

to the site on pallets by a truck (Figure 3). For delivery

to more remote locations crates of blocks can be airlifted

and dropped at global positioning system (GPS) coordinates

specified on the online order form. The only required

accessories are a remote control, which could be a cell

phone or personal digital assistant (pda) such as a palm

pilot with the block control software installed on it, and

a fuel cell generator or batteries to supply power. Other

accessories like an incinerator toilet, a drinking water

7

supply tank and a gray water reclamation tank may be

desired.

Figure 3 Pallets of blocks delivered to a site

Once these elements have been gathered at the site it is

only necessary to plug the blocks into the power supply and

select a configuration from the choices supplied with the

block control software. If the new occupants are not

satisfied with any of the pre-programmed configurations,

they can create a new configuration through the design

interface on their remote control or download a

configuration from the internet that someone else has

designed and posted.

8

1.4 Block control

Figure 4 Single block being selected

The configuration of a dynamic structure is controlled by

sending messages from a palm pilot or cell phone with an

infrared port running the block control software. There are

three stages to the reconfiguration process. The first

stage is the selection stage (Figure 4). On the remote

control, the preferred selection granularity, which can be

a single block, a surface, an entire room, or an object, is

indicated. When the remote control is pointed at a

potential selection, the selected blocks light up. Once a

selection is made a list of possible configurations is

presented, beginning the second phase of the configuration

process. As the occupant cycles through the potential

configurations on the remote control the blocks that would

have to move to realize that configuration light up green

9

to indicate which part of the structure is going to be

affected (Figure 5).

Figure 5 Blocks that would have to move glow green

Confirming a new configuration begins the final phase. All

of the blocks that are going to move light up red and begin

moving (Figure 6). Once a block has reached its final

position, it goes dark, to indicate to the occupants that

the reconfiguration has been completed.

Figure 6 Blocks glow red until they are finished moving

10

1.5 Block configuration

The block control software comes with a variety of preset

configurations. These include both entire rooms, such as an

office, a bedroom, a bathroom, and an espresso stand, as

well as modifications to a room such as windows and doors,

and objects within a room such as a table, chair and bed.

To create a new configuration, there will be a design

interface in the block control program that allows blocks

to be manipulated individually and in groups to create new

configurations. More complex configurations can be created

in a block simulation program with more sophisticated

design tools that can be run on a personal computer and

then downloaded onto the remote control. New configurations

can then be traded between remotes or posted on web sites

for others to download.

1.6 Urban form

Dynamic structures' portability and adaptability allow the

creation of a variant of the espresso stand typology, the

live/work espresso stand. Like a typical espresso stand,

these live/work spaces are erected on semi-public land,

either empty space in front of a building set back from the

11

street or space in a pay parking lot, rented from the

landlord. In enlightened municipalities dynamic structures

can even be erected in on-street parking spaces rented

directly from the city.

During the day these spaces function as owner-operated

businesses that can quickly change locations to take

advantage of shifting economic conditions. At night they

house residential communities in otherwise abandoned

commercial districts, or provide affordable housing in

high-rent residential neighborhoods where the demand for

services is high but there are few housing options for

service workers.

In areas like parking lots where there is space for several

dynamic structures units can share party walls to create

marketplaces and housing blocks. With party walls, fewer

blocks are necessary to enclose each space, and residents

that do not have generators or water tanks can purchase

electricity and water from their neighbors. These markets

allow new inhabitants to start their own business with less

capital, as they need to buy fewer blocks to enclose a

space, and can purchase services from their neighbors until

12

they have made enough money to buy their own accessory

systems. Once an aspiring microcapitalist has acquired

enough blocks and accessories to be self-sufficient, the

structure can be moved to a new area of the city with less

competition.

1.7 Outposts

Dynamic structures are also ideally suited for providing

shelter in remote locations. Crates of blocks dropped from

a plane can immediately assemble themselves with no

additional tools. In politically unstable areas blocks can

quickly assume a defensive configuration, either as a

precautionary measure at night or in response to an

immediate threat. Parts of a structure that malfunction or

are damaged can simply be replaced by spare blocks. And if

it becomes desirable to move to a new location, blocks can

load themselves onto whatever form of transportation is

available, from helicopters to camels.

13

2 Precedents

Figure 7 Archigram's "A Walking City"6

In their 1964 proposal for a walking city7 (Figure 7), the

architectural collective Archigram describes huge

residential multi-use complexes that roam around on stilts.

Having buildings walk around on legs was probably intended

as a dramatization of the societal effects of capitalism on

the urban population rather than a blueprint for a built

work. As their jobs required them to frequently change

locations, city dwellers led an increasingly nomadic

6 Ron Harron and Bryan Harvey. “A Walking City,” Archigram, no. 5, 1964.

7 Ibid.

14

existence. In the four decades since “A Walking City” was

published the pace of urban change has only accelerated,

and we propose that dynamic structures not only illustrate

this effect but enable an appropriate architectural

response.

Espresso Blocks allow inhabitants to pick up and move

around the city, or across the country to follow shifting

economic conditions, new careers, or personal interests.

Block structures can move short distances by inchworming

down the street or load themselves onto a truck to travel

further.

15

2.1 Decomposition of the shed

Figure 8 “Flop Out 2” metamorphic kit of parts8

In the late 1960s Archigram experimented with the idea that

a building can be viewed as a collection of devices that

each provide a certain function rather than a shed with

some stuff in it. In “Flop Out 2” (Figure 8) they propose

that "the single element enclosure becomes irrelevant when

thinking in terms of our metamorphic kit of parts."9 Their

8 "Summer Collection at Woburn Alley Flop Out 2," Archigram, no. 8,

1968.

9 Ibid.

16

L.A.W.U.N. project suggests that it would be much more

pleasant to live in a park than a small box, and we could

all replace our boxes with a "bottery" of "bots" and go

live in the park.10 Each bot would perform a function that

had previously been provided by the house.

Figure 9 Keymatic bot11

The "keymatic" bot (Figure 9) performs domestic duties like

cooking and cleaning, the "mowbot" keeps the grass neatly

cut, and with "combot" people are "networked into their

office in town and don't need to commute anymore."12 All of

10 David Green. “L. A. W. U. N.”, Archigram, no. 9, 1970.

11 Ibid.

12 Ibid.

17

the bots are controlled with a small “bot call-up device”

(Figure 10).13

Figure 10 "Bot call-up device"14

In a self-configuring modular building block structure, all

of the functions of a house are replaced by the block

module and a small group of accessory modules. More blocks

or accessory modules can be added to any unit to customize

individual units. They also provide a more compact kit of

parts solution because one group of blocks can take the

form of several of the parts in a kit.

13 Ibid.

14 Ibid.

18

2.2 Dynamic structures and land use

Figure 11 Wheel from hamster house15

Dynamic structures allow one space to be used for several

different functions by shifting new forms and accessories

into the space rather than requiring a space for each

function. This strategy for making efficient use of built

space was suggested by the Viennese architecture firm Alles

Wird Gut's Hamster house16, which employs human-sized

15 "turnOn," http://www.alleswirdgut.cc/turnon/, June 5, 2002.

16 “Try Living in the 'Wheel' World,” Wired News. February 18, 2002.

http://www.wired.com/news/gizmos/0,1452,50243,00.html

19

hamster wheels (Figure 11) to provide several different

functions within one space.

In the bathroom module, the toilet, sink and shower are

arranged around the wheel. After a shower, you wheel around

until the sink comes down and then you can brush your

teeth. A dynamic structure's small footprint enables the

occupation of previously unoccupiable spaces, allowing the

development of underused public and semi-public space.

2.3 Modular robotics

The espresso block module adapts the design of modular

robotics systems developed at PARC17 and other labs to the

scale of a building block. While a traditional robot is

composed of a variety of parts assembled in a predetermined

configuration, a modular robot is composed of a group of

identical modules that can rearrange themselves to take on

different configurations. One application that has been

suggested is the design of robots for the exploration of

17 "modular robotics at PARC,"

http://www2.parc.com/spl/projects/modrobots/, March 15, 2003.

20

distant or dangerous environments.18 The modules are

identical, so if one module fails it can be jettisoned and

replaced with a spare. As words can be rearranged to form a

novel sentence to describe an unprecedented experience, the

blocks of a dynamic structure can be arranged into novel

forms when faced with unforeseen circumstances.

2.3.1 Chain modules

Modular robots with the means to latch to one other module

at either end, to create a chain of modules, are classified

as "chain" modules by PARC researchers. PARC's chain module

system, called 'Polybot' has two types of modules. The

chain module has a latch at either end and a motor in the

middle that allows the module to bend like an elbow. The

hub module is a cube with latches on all six sides, but no

motor. A hub cannot move, but allows several chains to link

together.19

18 M. Yim, D. Duff, K. Roufas. "PolyBot: a Modular Reconfigurable

Robot," IEEE Intl. Conf. on Robotics and Automation (ICRA), San

Francisco, CA, April 2000. pp514-519.

19 Ibid.

21

Figure 12 Polybot gaits20

Researchers at PARC are investigating Polybot's potential

for extraplanetary exploration. A prototype system

demonstrated its ability to adapt different "gaits" (Figure

12) to navigate different types of terrain. The modules,

arranged in one long chain, inch across a surface like a

snake. For faster movement over relatively smooth terrain

the chain bites itself on the tail, latching the two ends

together to create a loop, and rolls. To scramble over

rocks and other obstacles the ends of the chain reach

around and latch to a hub module near the middle to create

four legs.21

20http://www2.parc.com/spl/projects/modrobots/chain/polybot/demonstratio

ns/g2demos.html, March 15 2003.

21 Yim, M., D. Duff, K. Roufas. "PolyBot: a Modular Reconfigurable

Robot," IEEE Intl. Conf. on Robotics and Automation (ICRA), San

Francisco, CA, April 2000. pp514-519.

22

Each latch on a Polybot module has an array of infrared

sensors that the module uses to triangulate its position

relative to other free latches and calculate the sort of

motion necessary to bring the two latches together.22

Although chain modules show a great deal of potential for

building robot scouts, chains do not easily lend themselves

to the enclosure of space, and are saddled with the

computing and design overload of tracking their position in

space. Modular building blocks do not need the range of

motion of an ambulatory robot and would be better served by

a simpler system capable of forming planar surfaces.

22 Ibid.

23

2.3.2 Crystalline modules

Figure 13 Crystalline atom module23

Marsette Vona calls the modular robotic system he and

Daniela Rus developed "crystalline atoms",24 because the

modules latch together to form a lattice like the atoms in

a crystal. Although the prototype he built (Figure 13) only

expands in four directions, he proposed a module in which

23 “The Crystalline Atomic Unit Modular Self-reconfigurable Robot,”

http://www.ai.mit.edu/~vona/xtal/, July 20, 2003.

24 Daniela Rus and Marsette Vona. "Crystalline Robots: Self-

reconfiguration with Compressible Unit Modules," Autonomous Robots,

Vol. 10, Issue 1, January 2001. pp107-124.

24

all six faces have latches and can extend half the width

of a module so that two modules can reach across a one-

module space and latch together. The modules do not have to

adjust their approach to the other module's position

because they are constrained by the lattice so that they

line up. Crystalline modules also lend themselves to the

construction of planar architectural forms like floors and

walls.

Figure 14 Telecube module25

25 http://www2.parc.com/spl/projects/modrobots/lattice/telecube/, March

15, 2003.

25

2.3.3 Module latches

The Polybot and Crystalline Atoms both employ mechanical

latches to connect to each other. Both systems report

problems with latches seizing and failing to disengage

while under strain. To avoid this problem, a crystalline

module system being developed at PARC, the "Telecube,"26

(Figure 14) uses a switchable array of permanent magnets to

create a connection between modules. When the array is in

the on position, its field extends outward and latches to a

metal plate on the face of the other module. Even if two

faces are not exactly lined up when they attempt to latch

together the attraction of the magnetic field pulls them

into line with each other. When the array is switched to

the off position the magnetic field flip-flops to the

opposite side of the array, releasing the metal plate, and

there are no interlocking parts to seize up and prevent the

separation of the modules.

26 J. Suh, S. Homans and M. Yim. "Design Tradeoffs for Modular Self-

Reconfigurable Robots: The Mechanical Design of Telecubes (A Case Study

in Progress)," IEEE Intl. Conf. on Robotics and Automation (ICRA)

Workshop on Self-reconfigurable Robots, Seoul, Korea, May 2001.

26

2.4 Summary

The trend towards a nomadic culture recognized by Archigram

half a century ago suggests an architectural form that can

quickly change its form and location to respond to its

occupants’ shifting needs. The emerging field of modular

robotics promises to provide a structural system that meets

these specifications. By adapting the modular robotic form

best suited to architectural applications, a cubic

crystalline module, we can create a building block for the

construction of dynamic structures.

27

3 Design

To demonstrate how modular robotics can be adapted to

create an architectural system capable of supporting

dynamic structures we are building a prototype modular

building block and a computer simulation for modeling block

interactions. We present here the basic constraints on our

block design, the first two generations of blocks and the

first generation block simulation.

3.1 Crystalline module constraints

The prototype espresso block module for the construction of

dynamic structures is designed as a crystalline module

similar to the Telecube and Crystalline Atoms modules. It

thereby avoids the complexity of modules having to align

with one another and takes a simple architectural form, the

load-bearing masonry wall, avoiding the complication of a

skeleton and skin architectural system like a wood frame

house or a steel skyscraper.

28

Figure 15 Block movement paradigm

The blocks move like the tiles in a nine tile puzzle game

(Figure 15). A block can push away from or pull itself

towards a neighboring block to slide across a one block

wide space. Two blocks can reach across a one block wide

space and latch together. To perform an inchworm motion,

(Figure 16) where the head block is pushed forwards by the

tail block, latches to another block and then pulls the

tail after itself, each block must be able to lift itself

and one other block. To move along one of its three axes, a

block structure must be at least two blocks deep in that

dimension. For this reason, the basic form of a block

structure, the load bearing wall, must be at least two

blocks thick to be able to extend a block from its surface.

29

Figure 16 Block inchworm motion

The scale of a block module is born of an attempt to

satisfy two opposing constraints. A block should be as

large as possible to avoid having to fabricate a large

number of blocks to build even a small structure. But a two

block thick wall must not be so wide that it consumes as

much floor area as the space it encloses. The initial goal

size for a contracted block is six inches (~15cm) across,

which makes a load bearing wall in a dynamic structure a

foot (~30cm) thick.

3.2 First generation

In the first block design, (Figure 17) a block is composed

of three tubes, with two extendable arms nested inside each

tube, so that one arm extends from each face of the block.

Two blocks connect by extending the small arm of one block

into a socket in the large arm of the next block, engaging

a mechanical latch to hold the two blocks together. The

cavities left by the three tubes are enclosed with a clear

30

plastic shell to fill out the cube, and then the entire

block is wrapped in a firm plastic gel, providing a

comfortable surface to sit and stand on.

Figure 17 Cut-away axonometric of first generation block

3.2.1 Latch

Two blocks achieve a rigid connection when they latch

through the overlap of the big arm and the small arm

(Figure 18). The theoretical maximum overlap, if each arm

is the full length of a block and the two arms must reach

across a one block wide space to latch, and there is an

equal overlap with the containing tube and the arm being

latched to, is one third of the width of a block. For the

31

initial design the goal was an overlap of one quarter of

the width of a block. To allow the big and small arms to

latch even if they are not precisely aligned, and to avoid

having to extend the small arm of one block to make room

for the small arm of the immediately adjacent block to

latch to it, both the end of the small arm and the socket

to accept it into the big arm are angled.

Figure 18 Green small arm latching with yellow big arm

The mechanism that holds the two arms together is a spring-

loaded clip on the end of the small arm. (Figure 19) The

32

spring engages the latch when it is fully extended into

the socket of a big arm. The latch is disengaged by running

an electrical charge through a shape memory alloy (SMA)

spring to depress the clip, and then retracting the small

arm out of the socket.

Figure 19 Detail of arms latching

3.2.2 Actuator

The extension of the arms is powered by a thread drive. A

compartment at one end of each tube houses the belts that

transfer power from the motor to the two threaded rods.

33

Each rod is threaded through a captive nut on the arm it

drives and by running the motor the arms are extended and

retracted. When the motor is not running the mechanism is

self-braking, avoiding the need for a separate braking

system and allowing a dynamic structure to maintain its

configuration in the event of power supply failure.

3.2.3 Services

Each tube in a block has a compartment to house services

such as drinking water and electricity. When two adjacent

blocks are latched together, plugs on one face extend into

sockets on the other. The services of the three tubes in

each block are tied together through internal sockets and

connections. The sockets on each exterior face allow block

accessories or other appliances to be plugged in.

For a block to provide a connection through these sockets

there must be an unbroken path of latched adjacent blocks

to the source of the service, such as the power supply or

water tank. Blocks must disengage their service sockets

from adjacent blocks to move and would be left without

power while moving around. To provide power to blocks while

they are in motion there is a secondary system to transmit

34

power through the arms of the blocks. When two blocks

latch together, a connection is made between contacts on

the outside end of the small arm and the inside of the

socket in a big arm.

3.2.4 First generation prototype

Figure 20 Prototype of first-generation tube

In the early stages of design a prototype tube (Figure 20)

was constructed to explore how the thread drive and arms

could fit into one tube without interfering with each

other. Due to our limited available means of fabrication,

the prototype is built out of sheet metal hand bent and

riveted together. The goal was to build two tubes with arms

and motors to demonstrate the block's latching and

actuation mechanisms, but due to the time-intensive nature

35

of the construction method it was abandoned after the

completion of the first outer tube.

3.3 Second generation

After our first attempt to construct a tube of the first

generation block we realized that we lacked the means to

fabricate it. The second generation block (Figure 21) has

been designed to take advantage of the one rapid-

prototyping device available to us, a computer-driven laser

cutter. A second generation block is built out of laser-cut

acrylic panels tied together by standard electrical and

plumbing pipes and hardware. To address the problem of

mechanical latch seizure observed in the Polybot and Atomic

Crystals prototypes the second generation design adopts a

magnetic latching system similar to the Telecube module's.

While the first generation blocks have an arm extending

from each face to make a male-female connection with the

arm of the next block, the entire face of a second

generation block extends outwards and latches to the face

of the next block with magnets instead of making a

mechanical connection.

36

Figure 21 Second generation prototype

3.3.1 Second generation prototype

The six faces of the block (Figure 22) that extend out are

mounted on the end of an arm that retracts into a tube in

the block core. The core is a 4-1/2 inch (~11.5cm) cube

(yellow) formed out of six laser cut acrylic panels that

snap together. Each panel has two holes in it for the six

five inch (~12.5cm) arm housing pipes that tie the panels

together with o-rings threaded onto each end. Each arm

housing tube has a 3-1/2 inch (~9cm) long one eighth inch

(~3mm) wide slot in each side and a one half inch (~1.5cm)

37

fin on the end of each arm rides in the slots and keeps

the faces on track.

Figure 22 Section diagram of second-generation block

Three of the faces of each block are magnet arrays housed

in a stack of laser cut sheets bolted together. Sheet metal

dishes bent to receive a magnet array form the opposite

faces. All six faces are mounted on five inch (~12.5cm)

plastic pipe arms. The sheet metal faces are each one half

inch (~1.5cm) deep, the magnet arrays are one inch (~2.5cm)

thick and each arm has three inches (~7.5cm) of travel,

38

making each block 6-1/2 inches (~16.5cm) wide contracted

and 12-1/2 inches (~31.5cm) wide expanded. The extra half

inch (~1.5cm) of each magnet array fits into the one half

inch (~1.5cm) deep sheet metal face of the block it is

latched to, making the blocks six inches (~15cm) on center

when contracted and twelve inches (~30cm) on center when

expanded (Figure 23). To maintain this goal spacing while

allowing contracted blocks to move past each other the next

prototype will have quarter inch (~6mm) deep dish faces,

three quarter inch (~19mm) or one half inch (~13mm) deep

magnet array faces and 3-1/4 inches (~8cm) of travel for

each arm.

Figure 23 Block dimensions

39

3.3.2 Magnetic latch

The latch, adapted from the Telecube’s27, uses an array of

permanent magnets to connect to a metal plate on the face

of the opposite block. Electromagnets are not used because

they cannot maintain a connection if the power supply

fails. Permanent magnets cannot be turned off like an

electromagnet, but by shifting the configuration of the

array the magnetic field can be flipped from the outside of

the face to the inside so that most of the field no longer

reaches the metal plate on the opposite face, allowing it

to be retracted.

PARC's Telecube module latch (Figure 24) has two raised

areas housing magnet arrays and two recessed areas with

metal plates on each face. The raised arrays fit into the

recessed area on the opposite face to prevent the magnet

27 J. Suh, S. Homans and M. Yim. "Design Tradeoffs for Modular Self-

Reconfigurable Robots: The Mechanical Design of Telecubes (A Case Study

in Progress)," IEEE Intl. Conf. on Robotics and Automation (ICRA)

Workshop on Self-reconfigurable Robots, Seoul, Korea, May 2001.

40

arrays from shearing off of the metal plates.28 The

espresso block module uses a simplified version of this

design with one entire face raised to house a magnet array

and the entire opposite face recessed to receive the magnet

array, greatly reducing the number of moving parts and only

requiring them in every other face.

Figure 24 Telecube magnetic latch29

28 J. Suh, S. Homans and M. Yim. "Design Tradeoffs for Modular Self-

Reconfigurable Robots: The Mechanical Design of Telecubes (A Case Study

in Progress)," IEEE Intl. Conf. on Robotics and Automation (ICRA)

Workshop on Self-reconfigurable Robots, Seoul, Korea, May 2001.

29 http://www2.parc.com/spl/projects/modrobots/lattice/telecube/, March

15, 2003.

41

The initial design of the magnetic array was modeled

after the Telecube's scheme. Disk magnets are arranged in

alternating north-south rows in the on configuration, and

to switch to the off position pairs of columns are shifted

down one row into a semi-checkerboard pattern.30 We built a

prototype (Figure 25) out of laser-cut acrylic panels with

an eight by eight array of 3/8 inch diameter 1/16 inch

thick neodymium magnets. Two panels in the center of the

face each have two columns of the array embedded in them

and slide on a track to shift between configurations.

Figure 25 Springs in Telecube-style latch

30 Ibid.

42

We were unable to observe any significant change in the

strength of the magnetic field when the array was shifted

between the nominal on and off configurations. It is

unclear whether we misunderstood some essential element of

PARC's design, if their design is misrepresented in their

paper and on their website, or the Telecube's latch is not

actually able to unlatch. We decided to abandon the

Telecube's magnet array design and created a new design

based on a Halbach array. 31

Figure 26 Halbach array flux diagram32

31 http://www.otherpower.com/danf/halbach.html, May 22, 2003.

32 Ibid.

43

While in the Telecube design the disk magnets are facing

either up out of the face or down into it, a Halbach array

(Figure 26) is composed of cubic magnets and each up or

down magnet is flanked by two magnets facing sideways to

redirect the fields of the up and down magnets to extend

almost entirely to one side of the face.

Figure 27 Halbach array latch diagram

In the off configuration of our Halbach array latch design

(Figure 27) each magnet with its poles normal to the face

of the block is bounded on either side by sideways facing

44

magnets that redirect the magnetic field toward the

inside of the block. The rows of Halbach arrays alternate

so that when the sideways facing magnets are shifted down

one row into the on configuration the fields of the arrays

in the center of the face are redirected outwards and the

magnets at either end no longer arranged into Halbach

arrays extend their fields equally to the inside and

outside of the face.

Figure 28 Halbach array latch layout

Shape memory alloy springs slide panels of magnets to shift

between on and off configurations in both the latch design

45

adopted from the Telecube (Figure 25) and our Halbach

array (Figure 28) latch design. Two steel springs hold the

panels in the on configuration with two SMA tension springs

on the opposite side pulling the panels toward the off

configuration. To unlatch the array electrical current is

run through the two SMA springs and they contract,

overcoming the steel strings and shifting the panel into

the off configuration. When the current is stopped the SMA

springs relax as they cool off and the steel springs pull

the latch back into the on configuration.

In the initial disk magnet design the magnets are epoxied

into holes cut for them in the outside layer of the block

face. Embedding the magnets in the outside layer allows

them to come directly in contact with the metal plate and

exert the strongest possible force, but this has several

drawbacks. Because the magnets are extremely powerful each

magnet must be individually glued and held in place until

the epoxy sets, a time consuming process that is not

conducive to producing large numbers of blocks. Two two-

layer thick panels in the center of the face house the

magnets that shift to switch between configurations. The

two layers of each panel are bolted together and the bolts

46

continue through to a cavity inside the face to allow

springs to be attached to the panels. When the magnets are

epoxied into place some epoxy leaks between the two layers

and onto the track the panels slide on, making it sticky.

The magnets are not mechanically held in place, and if the

epoxy fails the magnets could be pulled out of the face. We

also observed a high degree of friction between the panels

of magnets and the metal plate, so that it would be

difficult to provide enough force with SMA springs to

switch to the off configuration while latched to another

block.

Figure 29 Second latch prototype

In the second latch design (Figure 29) the 3/16 inch cubic

neodymium magnets are held in place mechanically without

47

glue between two two-layer thick plates, (Figure 30) one

fixed and one that slides. One layer of the outside fixed

plate has holes to hold the magnets normal to the face and

slots to allow the sideways magnets to slide, and the

inside sliding plate has holes to hold the sideways magnets

and slots for the magnets normal to the face. The magnets

are sandwiched between the two plates so that when the

inside plate slides it pulls the sideways magnets with it

and leaves the up and down magnets in place shifting the

configuration from on to off. (Figure 27) All of the moving

parts are contained inside the face, avoiding the problems

with friction between the sliding panels and metal plate

observed in the disk magnet latch.

Figure 30 Magnets embedded in sliding panel

In the Halbach arrays the sideways magnets repel from the

magnets normal to the face so that the two plates are

pulled apart. In our first prototype of the design the face

48

is held together by bolts in the four corners of the

face, and the force of the magnets bends the center of the

acrylic panels enough to allow the magnets to pop out of

the plates. To remedy this problem our second prototype has

an island through the center of the block with two bolts

through it to prevent the center of the face from being

pulled apart by the force of the magnets. The moving plate

has a slot in its center to accommodate the island which

also has space for an infrared sensor and electrical

contact to provide communications and power between blocks.

To hold the magnets in place during assembly, strips of

packing tape are placed across the holes before the plates

are bolted together. The tape is strong enough to hold the

magnets in place while placing the magnets in each plate,

but it is very difficult to put the two plates together

without pulling some magnets out of position. Even once the

plates are together with all the magnets in position, it is

still necessary to hold the plates tightly together while

assembling the rest of the block as the six bolts that hold

the plates together cannot be tightened until the whole

face is assembled because they run through the entire face

to nuts on its back. In the next prototype the moving plate

49

will be slid in from the side after the containing

assembly is bolted together.

Before our first Halbach array prototype self-destructed,

we observed a significant drop in the strength of the

magnetic field when it was switched to the off position,

but have not yet had the opportunity to measure the force

necessary to separate the magnet array from the metal plate

in either configuration.

3.3.3 Water exclusion and reclamation

Figure 31 Gaskets and water reclamation membranes

Block structures need to be able to maintain a dry interior

when it is raining and capture water used inside for

washing or showering without letting it run out onto the

street. In a future block prototype the sheet metal faces

50

of each block will have a gasket running around their

outside edge (Figure 31) so that when blocks latch together

they will form a watertight connection on one side. A

membrane on the back of each sheet metal face will absorb

any water that falls onto the block from it above and

direct it into the structure's graywater reclamation tank

for reuse.

3.3.4 Actuator

In our initial design for the second generation block the

extension and retraction of the faces is actuated by a

solenoid coil. After our initial prototype of the solenoid

assembly failed to induce any motion in the arm we

calculated the number of coils we would need to lift a

block with a reasonable amount of current. Using the Biot-

Savart Law, the force in Teslas (T) of the magnetic field B

produced by a current i in a circular current loop is

(1) 2/322

2

)(2 xR
iRB o

+
= µ

where x is distance away from the loop you are measuring

the field B, R is the radius of the loop and µo is the

51

coefficient of permittivity. If you measure at a distance

much greater than the radius the equation becomes

(2) 3

2

2x
iRB oµ= .

Considering loops with N turns the equation becomes

(3) 3

2

2x
NiRB oµ= .

To produce a field with the strength of just one of the

permanent magnets in our latch, .35T, as in equation 5,

(4) 3

26

)15.0(2
)01.0()1026.1(35. Ni−×=

(5) 26

3

)01.0)(1026.1(
)15.0)(2(35.

−×
=Ni

the product of the number of loops and current in Amps

would have to be

(6) 61033.8 ×=Ni

Our prototype solenoid has 100 coils and we were running 10

Amps of current through them, giving us

(7) 3101×=Ni

falling orders of magnitude short of the force of even one

permanent magnet. We realized that it is not feasible to

52

produce the amount of force we would require with

anywhere near the amount of current we intended to make

available to a block. We are currently investigating using

a stepper motor to drive a rack and pinion assembly for

each arm.

3.4 AutoCAD Visual Basic simulation

Figure 32 Screenshot of simulation

To demonstrate that block structures can transition between

useful configurations despite a block's limited range of

motion a block simulation was built in AutoCAD with Visual

Basic (Figure 32). The simulation allows a group of blocks

to be created and then manipulated by selecting a block,

53

unlatching it from some of its neighbors to give it the

freedom to move, and extending and retracting its arms.

While the simulation does not impose physical constraints

like gravity it makes it possible to show that the blocks'

limited range of motion does not preclude the

transformation between two configurations.

3.4.1 Control panel

Figure 33 Block control panel

When the simulation is started, a block and a window with

controls appear on the screen. (Figure 32) The view and

rendering mode can be changed through the AutoCAD

interface. The control panel window (Figure 33) is a mock

up of the remote control interface that will be run on a

palm pilot to send instructions to blocks. It displays a

list of blocks, controls for each face of the selected

54

block, and a message window. When a block is selected, it

is highlighted on the screen in red, and control functions

that are unavailable to that block are grayed out. The

controls for each face include arrow buttons to allow the

arm to be extended or retracted, a '*' button that is

active if the selected block is latched to another block on

that face to unlatch from the neighboring block, a '+'

button to create a new block latched to this face which is

only available if there is no other block in the way, and a

'>' button that is active if there is another block

adjacent to this face, to select that block.

If when the arm of a block is extended or retracted, that

arm is attached to another block, and that block is free to

move, it moves along with the arm. If the block attached to

the arm is not free to move, but the block that owns it is,

then the block whose arm is being extended or retracted

moves and the arm stays in place. A block is free to move

if it is not attached to any blocks besides the one trying

to move it, or is only attached to one other block that is

not attached to any other blocks. When an arm extends, if

it would have to push more than two blocks to extend, it

doesn't, and prints “can’t move arm that far” to the

55

message window. If an attempt is made to extend or

retract an arm that would move it past its maximum or

minimum bounds, the arm does not move and a message is

printed to the error window.

3.4.2 Recording actions

Moving individual blocks around is a slow process. The

record tab on the control panel brings up an interface that

allows a transition (Figure 34) to be recorded so that it

can be played back again. An action is recorded by entering

a name for the action, pressing the record button,

switching back to the control interface and performing the

transition, and switching back to the record tab and

pressing stop when the transition is complete. In the

current implementation a button must be manually created on

the actions tab, but the goal is that a button will

automatically appear when an action is created. When the

control program is run on a palm pilot, it will then be

possible to trade the action with other remote controls or

upload it to a web site.

56

Figure 34 Pallet to wall action

3.4.3 Internal representation

The simulation program has three parts, the control panel,

a collection of block projects, and a world object that

maintains a hash of the positions of all of the blocks.

When a button on the control panel is pressed to extend the

arm of a block it sends a call to the currently selected

block to extend its arm. If the arm is not latched to

another block, it calls the world object to determine if

there is a neighboring block the arm being extended could

latch to.

The world object's position hash (Figure 35) contains an

index of all of the x positions currently occupied by a

block. Each x position contains a list of all the y

57

positions occupied by blocks at that x coordinate. Each y

position has a list of z positions occupied by blocks at

that x, y coordinate. And each z position has a reference

to the block object that occupies that position.

Figure 35 Position hash structure

The world object looks to see if there is another block

lined up with the face of the arm being extended within one

block length. If there is no block the arm is extended and

the world object is called to redraw the screen and reset

the control panel buttons. If there is a block within one

block length and the combined extension of the two arms

bridges the gap between the blocks they are latched

together.

58

If the arm being extended is latched to another block the

selected block calls the block the arm is latched to to

determine if it is free. If the latched-to block is free it

calls the world object to see if the space that it is going

to move into is occupied by any other blocks. If the space

is free the world object updates the block's position in

the position dictionary, the selected block is sent the ok,

and both the arm and the block it is latched to move. If

there is another block in the way the selected block is

sent a message, nothing moves and an error message is

printed to the control panel's message window.

59

4 Future work

4.1 Functional block prototype

The first future goal of the project is to complete a few

working prototype blocks so testing on their control

program can begin. A suitable actuator needs to be added

and tested in conjunction with the latch. Once the latching

and actuating mechanisms are functioning each block will

need infrared sensors for communications and range finding,

electrical contacts to carry power between blocks and a

processor to coordinate everything.

4.2 Freestanding simulator

We have already begun to build a freestanding version of

the block simulation program with Python and the OpenGL

graphics library. The same code that will run on the

prototype block's processors will be used to model the

block's behavior in the simulation, allowing preliminary

testing of the block control code and modeling of complex

block structures.

60

4.3 Blocks solve goal shapes

The first generation block simulation requires the designer

to specify every action each block takes. Once the basic

block control functions are worked out our goal is to allow

designers to specify a goal shape and have either the

blocks or the remote control determine a course of action

to achieve that shape.

4.4 Blocks avoid unstable configurations

Before blocks are deployed to form inhabitable structures

we will to add an additional layer to the block control

program that models the statics of block structures and

prevents blocks from attempting to adopt unstable

configurations.

4.5 Block furniture

An entire block structure will require such a large number

of blocks that it will probably be unreasonable to

construct one until a facility is set up to mass produce

blocks. The first application for the prototype blocks will

instead be pieces of furniture. Designing and testing

transitions between different forms of furniture will allow

61

experimentation with the interaction between people and

dynamic structures without the danger of suspending loads

overhead.

62

Annotated Bibliography

A. Modular Robotics

Agrawal, S.K., S. Kumar, M. Yim, J. Suh. "Polyhedral Single

Degree-of-freedom Expanding Structures," IEEE Intl.

Conf. on Robotics and Automation (ICRA), Seoul, Korea,

May 2001.

Explores the idea of building a lattice structure that

has only a few moving parts that change the shape of

the whole structure. A interesting and applicable

idea, but they did not actually build it so there is

little guidance offered on technical issues.

"Modular Robotics at PARC,"

http://www2.parc.com/spl/projects/modrobots/, March

15, 2003.

PARC's modular robotics site describes several

interesting prototypes that they have actually built

with diagrams and videos.

Roufas, K., Y. Zhang, D. Duff, M. Yim. "Six Degree of

Freedom Sensing for Docking Using IR RED Emitters and

63

Receivers," Experimental Robotics VII, Lecture Notes

in Control and Information Sciences, Eds. Daniela Rus

and Sanjiv Singh Springer, 2001. pp271-9.

Describes a system of sensors to guide two modular

robots to dock with one another. Getting this to work

is one of the most difficult problems involved in

having modules reconfigure themselves, and this system

seems to be functional and fairly inexpensive to

build.

Rus, Daniela and Marsette Vona. "Crystalline Robots: Self-

reconfiguration with Compressible Unit Modules,"

Autonomous Robots, Vol. 10, Issue 1, January 2001.

pp107-124.

Suh, J., S. Homans, M. Yim. "Design Tradeoffs for Modular

Self-Reconfigurable Robots: The Mechanical Design of

Telecubes (A Case Study in Progress)," IEEE Intl.

Conf. on Robotics and Automation (ICRA) Workshop on

Self-reconfigurable Robots, Seoul, Korea, May 2001.

Describes a system of cubes that attach to each other

on all six faces, with faces that telescope out. A

cube can extend a face and attach to another cube, and

64

then pull itself over to the cube it attached to. A

block system is promising for architectural

applications. They have built working prototypes and

have a lot of useful technical information.

Yim, M., D. Duff, K. Roufas. "PolyBot: a Modular

Reconfigurable Robot," IEEE Intl. Conf. on Robotics

and Automation (ICRA), San Francisco, CA, April 2000.

pp515-519.

Describes a modular robot with two module types. The

chain type is a cube that has two faces that can

attach to another cube, and a motor in between that

allows it to twist. Several attached together make a

snaking chain. The second type is a cubic node that

can attach to another cube on all six faces, but

doesn't move at all. Several snaking chains can attach

to a node to create a robot with legs and walk around.

Then it can bend into a circle and roll. Although the

chain robot type is not suitable for producing

enclosure, this project is on the third generation of

robots, and has a lot of technical issues worked out.

65

B. Reconfigurable and Dynamic Structures

“9 Square Grids House,” Japan Architect, no. 30, Summer

1998. pp30-35.

Shigeru Ban’s 9 Square Grid House draws on traditional

Japanese houses with movable screen partitions and the

modernist aesthetic of house as machine to create a

grid of nine spaces separated by sliding wall

partitions.

Bell, Jonathan and Sally Godwin. “Transformable

Architecture for the Homeless,” Architectural Design,

v. 70, no. 4, 2000, pp34-39.

For housing for refugees and the displaced to be

successful, it must allow the inhabitants to customize

the space to suit the chaotic and changing needs of a

marginal existence. One of the central goals of this

projects is to restore control of the space to the

inhabitants.

Brown, Kate and David Bamford. “Manifest TentCity,” Arcade,

summer 1999, p16.

66

Discusses Seattle’s tent city, and its

marginalization by city authorities. Suggests a

variety of options for developing the tent city,

either small portables or a large superstructure.

While this project is not necessarily geared towards

housing the homeless, it aims to occupy a similarly

marginalized site.

Butler, Lenneke and Frank den Oudsten. “Schroeder House:

the work of Gerrit Rietveld between myth and

metaphor,” Lotus International, 1989 no. 60. pp32-57.

Schroeder House

67

Cook, Peter, Warren Chalk, Dennis Crompton, Ron Herron,

David Green and Mike Webb. “Cut-out Puzzle,”

Archigram, no. 7, 1966.

Two pages of cutout ‘living pods’, shed units,

streets, and a triangular superstructure. The reader

is invited to cut them out, design a community,

photograph it and send it in. The vision of living

pods that can be moved around and reconfigured

resonates.

Green, David. “L. A. W. U. N.,” Archigram, no. 9, 1970.

Modular ‘bots’ provide for human needs, making houses

unnecessary and allowing people to live in parks. The

relevant idea is that services are not provided by

spaces but by invisible modules that are deployed as

necessary.

Herron, Ron and Bryan Harvey. “A Walking City,” Archigram,

no. 5, 1964.

A vision of a city walking around on legs. This

project proposes the same idea, but on a much smaller

scale, with each building block walking around and

68

interfacing with other building blocks to create new

spaces.

Richardson, Phyllis. XS: Big Ideas, Small Buildings. New

York: Universe Publishing, 2001.

Contains drawings, plans and a short description of a

variety of projects with a small footprint. The

chapter on portable designs is particularly relevant,

as the description of a small sidewalk newspaper kiosk

that unfolds into several different configurations and

then collapses down to a small box at night.

"Summer Collection at Woburn Alley Flop Out 2," Archigram,

no. 8, 1968.

"turnOn," http://www.alleswirdgut.cc/turnon/, June 5, 2002.

Alles Wird Gut's hamster house arranges the different

elements of a room around a human-sized hamster wheel,

so that when you are sitting on the toilet in the

bathroom, the bathtub is over your head. To get to the

bathtub, you walk up the wall, and it rotates down to

you. The prefabricated rooms are arranged along a

cylinder, so that you move along the cylinder from

69

room to room, and then rotate a room to move around

within it.

70

Appendix A: Thesis Presentation Comments

[These are the comments made by the jurors at my final

thesis review, as transcribed by Ellen Do.]

MASTERS THESIS PRESENTATIONS

Spring Quarter 2003

May 14,15,16 - ROOMS ARCH 202 AND 135

WEDNESDAY AM, MAY 14

Jurors: Ed Weinstein, Weinstein/Copeland

Anne Schopf, Mahlum

Jay Deguchi, Suyama, Peterson, DeGuchi Architects

Lucia Pirzio-Biroli, Studio Ecktypos

Moderator: Peter Cohan

12:00: Michael Weller, espresso blocks

Committee: Do, Gross, Nicholls, Wei-Chih Wang

Comments:

* The project can go 2 directions, ideal and reality.

71

* If going for the reality, comfort should be considered,

hard brick furniture would not be comfortable to sit on and

use.

* Could consider using a soft material.

* This is a thought provoking thesis. You are asking

questions. There is no doubt about the intellect and talent

in this project.

* The project is carried out nicely. No one would have the

real answers. The thesis is getting all of us to believe

it, and to think about all the possibilities.

* Your scenario is in urban setting. However, it appeared

that it may be more suitable for a suburban instead of

urban setting. There would be lots of space to play with

different block configurations.

* Shouldn't you have more than one type of block? For

example, there are different kinds of CMU blocks, not just

one type.

* The scenario may be one 'container' that can have

different uses. The question is what kind of rooms, places

to occupy, can you create.

72

* The Espresso Blocks will be suitable for frontier

situations, for example, outer space.

* Is your focus on efficiency? What about time saved for

construction, and cost effectiveness?

* This project can be nicely combined with the previous

presentation of the Tent City, easily built and portable.

* People have psychological needs. The Blocks may be able

to address different environmental perceptions, but you

need to consider human needs in a space.

* There is something about how we will be shaping

habitation. People bring baggage into the environment.

* This project is maybe asking about the social impact of

and fundamental change of how we perceive habitat.

* Think out of the box. Think about what it means for

construction technique, and architectural program. What

different type of social program and applications can it

support/do you want to engage in?

73

* Think about how generic code can do multiple things.

Once wireless devices get into the workspace, how would the

building respond?

* This gives tremendous space for the future. For example,

one can change the wall colors or texture according to your

feeling. The room could be a new visionary environment. For

example, it could be a conference room, and once you are

in, the room understands that you are having a

teleconference, it would automatically show you display

screens, connect you, and you don't need to do any

complicated setup. Another example: if you miss your

children, the blocks will call up the school for you to

check on them or bring up the images of their activities on

your wall.

* This provides incredible opportunity for space layouts.

You should think about modular blocks, not just one kind,

but a series of different ones, so that can create

different types of architecture with one single type or

more. There could be complexities if for example, you have

3 elements.

74

* Humans are a species with psychological responses. With

innovation, maybe some of the issues can be addressed.

* There is new social class that is mobile. The Archigram

reference of 40 years ago is nice. It was meant to be an

idea, ideology, not really intended to be built, but

promote the asking of questions. This thesis has the same

spirit.

* You never know. There is new urbanism. ;-)

* This project has phenomenal inventiveness. There is a new

class of people that have not existed before. And mobile

homes are spreading.

* If you are going for the practical route. The gasket idea

is good. But it seems to only address static concerns and

not all of the mechanical parts.

* What do you do when you want to replace a window? Can you

have curtains, to let air in? (Transparent bricks?)

* Who will use Espresso Blocks? Would it be for cool

buildings, loft apartment types? Frontier applications make

sense.

75

* It could also potentially be used to build shelters,

emergency tents, for rescue. There might be military uses

for this. You should not give up once you graduate. You

should keep pursuing this. There is whole future waiting

for you, and I won't be surprised if you can find money,

maybe the military will be interested.

* Can the Blocks address the issue of drawers, and maybe a

new kind of fabric?

* The room could probably create holograms easily. The

blocks can figure out where to project images, and meetings

with virtual environments.

* People will always have stuff. There should be place for

stuff.

* A storage room can be perceived as a big box for stuff.

* What's the possible other scale of the project? Right now

it's same as a CMU, but should it be much bigger, a mobile,

suitcase? Should it be much smaller, like nano blocks?

What's the biggest block you can handle?

* People are more familiar with the hot desk concept.

76

* People are nomadic. All the students have on average

moved 7 times in the last 3 years!

* How will you do temperature control? Would it become

cooler inside a block?

* This project is wildly successful.

* It is fabulous. We are all convinced that it can work. We

are looking at the model in front of us, and the story you

told us. We keep moving into alternatives to make this

work.

* This is impressive. You have a successful presentation,

and animation, and powerful little thing (full mock-up).

The animation showing what the blocks can do really works

to demonstrate the idea.

* This may be a good tool for astronauts in outer space to

control building of machines, measure the terrain, or build

habitats.

* Where is the reference /is there a reference to

starbucks? ;-)

* Where is the espresso?

77

* Have you thought about playing with the 'speed' notion

of espresso? Quick, build it fast?

78

Appendix B: Baristas Unite!

[This is an essay I wrote for an architecture theory class

that was the inspiration for the espresso blocks project.]

The automation and globalization of the industrial

workforce has promoted the rise of a new class of college-

educated professionals to manage the distant resources of

multinational corporations, and stifled the demand for

industrial labor. The majority of the citizens who do not

have a professional degree or accreditation are now left

with few employment options. Most of the available jobs

involve working for near minimum wage at some sort of

corporate service chain, a Kinko's, a Starbuck's, or, for

the desperate, a McDonald's.

Due to rising density and land values in urban areas, and

the lower wages paid by the corporate service industry,

both parents in a typical family are forced to work full

time to pay the rent on a house or apartment with a large

kitchen no one has time to use. And single-parent service

class families are increasingly unable to afford housing,

or services. Even many professionals are forced by the

79

rising cost of urban living to give up private practice

and take jobs with large corporate firms.

There is hope that the members of the new service class can

escape this dilemma by adopting the strategy of the

espresso cart. By providing the services demanded by the

urban economy, while occupying a minimum amount of

expensive urban real estate, from a mobile platform that

can move with the changing urban economy, citizens of urban

areas can escape the yoke of multinational corporations by

embracing capitalism on a smaller scale.

By applying the constraints of the espresso cart to their

housing as well, these entrepreneurs could take advantage

of a type of architecture where space is placed at a

premium. Rather than having several human-size spaces to

accommodate different functions, one human-size space is

able to change to provide a variety of different functions.

One experiment at creating this kind of space is Alles Wird

Gut's hamster house33, where the elements of several

different rooms are arranged around the edge of a circle,

33 http://www.alleswirdgut.cc/turnon/

80

and to go to another room, rather than leaving the space,

you walk up the wall like a hamster in a wheel, and the

components of the next room rotate down to the floor level.

The hamster house conserves floor space by providing only

one element of each room at a time. It would be more

desirable to have one whole room on the floor at a time,

with all the other rooms stored away. This goal can be

achieved through adopting the technologies of modular

robotics to construct reconfigurable spaces.

Taking a modular robotics approach will also allow the

building system to gracefully accommodate multiple

occupants and higher density. Several modules could be

linked together to create one larger space, or could

provide larger spaces for each module by sharing walls in a

hive formation. The zone of subsidized parking between the

street and the sidewalk will be reclaimed by the

disenfranchised to build new layer of urban infill.

Because of the marginal nature of this relationship to the

city, the modules will be off of the city grid. Each module

will store its own water, to be refilled either by

purchasing from nearby buildings, trading with other

81

modules in the hive, or appropriating it from hydrants or

unprotected water lines. Modules will generate their own

power, from a fuel cell or solar cell, or purchase it from

other modules in the hive. Greywater will be filtered and

reused. Sewage will be composted and either used in gardens

or sold. This decentralized strategy for providing services

will create a market for services within each hive, and

allow a great number of modules to be absorbed into a city

with minimal impact.

82

Appendix C: Simulation Source Code

BlockBuilder

Option Explicit 1
 2
' build autocad block definitions to be inserted 3
Public Sub build(ByVal blocksize As Double) 4
 5
 ' build tube block 6
 tubes blocksize 7
 8
 ' build big arm block 9
 bigarms blocksize 10
 11
 ' build small arm block 12
 smallarms blocksize 13
 14
End Sub 15
Private Sub tubes(ByVal blocksize As Double) 16
 17
 ' blue tubes 18
 onetube blocksize, "tubes", acBlue 19
 20
 ' red selected tubes 21
 onetube blocksize, "selectedtubes", acRed 22
 23
End Sub 24
' build tubes blocks 25
Private Sub onetube(ByVal blocksize As Double, ByVal tubename As 26
String, ByVal tubecolor As AcColor) 27
 28
 ' block variables 29
 Dim tubeblock As AcadBlock 30
 Dim insertatzero(0 To 2) As Double 31
 32
 ' array of tube boxes 33
 Dim tubebox(0 To 2) As Acad3DSolid 34
 35
 ' create block 36
 Set tubeblock = ThisDrawing.Blocks.add(insertatzero, 37
tubename) 38
 39
 ' build tube boxes for each axis 40
 Dim axis 41
 For axis = 0 To 2 42
 43
 ' box variables 44
 Dim bigbox As Acad3DSolid 45
 Dim smallbox As Acad3DSolid 46
 47
 ' dimension variables 48
 Dim center(0 To 2) As Double 49
 Dim length As Double, width As Double, height As Double 50
 51

83

 ' draw tubebox 52
 settubedimensions blocksize, axis, center, length, width, 53
height 54
 Set tubebox(axis) = tubeblock.AddBox(center, length, 55
width, height) 56
 57
 ' draw bigbox 58
 setbigdimensions blocksize, axis, center, length, width, 59
height 60
 Set bigbox = tubeblock.AddBox(center, length, width, 61
height) 62
 63
 ' draw smallbox 64
 setsmalldimensions blocksize, axis, center, length, 65
width, height 66
 Set smallbox = tubeblock.AddBox(center, length, width, 67
height) 68
 69
 ' subtract bigbox and smallbox from block 70
 tubebox(axis).Boolean acSubtraction, bigbox 71
 tubebox(axis).Boolean acSubtraction, smallbox 72
 73
 Next 74
 75
 ' join tubes together 76
 tubebox(0).Boolean acUnion, tubebox(1) 77
 tubebox(0).Boolean acUnion, tubebox(2) 78
 79
 ' set color 80
 tubebox(0).color = tubecolor 81
 82
End Sub 83
' build big arm blocks 84
Private Sub bigarms(ByVal blocksize As Double) 85
 86
 ' create block for each axis 87
 Dim axis 88
 For axis = 0 To 2 89
 90
 ' block variables 91
 Dim bigblock As AcadBlock 92
 Dim insertatzero(0 To 2) As Double 93
 94
 ' box variables 95
 Dim bigbox As Acad3DSolid 96
 Dim smallbox As Acad3DSolid 97
 98
 ' dimension variables 99
 Dim center(0 To 2) As Double 100
 Dim length As Double, width As Double, height As Double 101
 102
 Set bigblock = ThisDrawing.Blocks.add(insertatzero, 103
"bigarm" & axis) 104
 105
 ' draw bigbox 106
 setbigdimensions blocksize, axis, center, length, width, 107
height 108
 Set bigbox = bigblock.AddBox(center, length, width, 109
height) 110
 111

84

 ' draw smallbox 112
 setsmalldimensions blocksize, axis, center, length, 113
width, height 114
 Set smallbox = bigblock.AddBox(center, length, width, 115
height) 116
 117
 ' move smallbox down axis 118
 Dim newcenter(0 To 2) As Double 119
 newcenter(0) = center(0) 120
 newcenter(1) = center(1) 121
 newcenter(2) = center(2) 122
 newcenter(axis) = center(axis) - blocksize * 1 / 6 123
 smallbox.move center, newcenter 124
 125
 ' subtract smallbox from bigbox 126
 bigbox.Boolean acSubtraction, smallbox 127
 128
 ' set color 129
 bigbox.color = acYellow 130
 131
 Next 132
 133
End Sub 134
' build small arm blocks 135
Private Sub smallarms(ByVal blocksize As Double) 136
 137
 Dim axis 138
 For axis = 0 To 2 139
 140
 ' block variables 141
 Dim smallblock As AcadBlock 142
 Dim insertatzero(0 To 2) As Double 143
 144
 ' box variables 145
 Dim smallbox As Acad3DSolid 146
 147
 ' dimension variables 148
 Dim center(0 To 2) As Double 149
 Dim length As Double, width As Double, height As Double 150
 151
 ' create block 152
 Set smallblock = ThisDrawing.Blocks.add(insertatzero, 153
"smallarm" & axis) 154
 155
 ' draw smallbox 156
 setsmalldimensions blocksize, axis, center, length, 157
width, height 158
 Set smallbox = smallblock.AddBox(center, length, width, 159
height) 160
 161
 ' set color 162
 smallbox.color = acGreen 163
 164
 Next 165
 166
End Sub 167
' set dimensions to draw outer tube box 168
Private Sub settubedimensions(blocksize, axis, center, length, 169
width, height) 170
 171

85

 If axis = 0 Then ' x axis tube 172
 173
 ' set center 174
 center(0) = blocksize * 1 / 2 175
 center(1) = blocksize * 1 / 4 176
 center(2) = blocksize * 1 / 4 177
 178
 ' set length, width and height 179
 length = blocksize 180
 width = blocksize / 2 181
 height = blocksize / 2 182
 183
 ElseIf axis = 1 Then ' y axis tube 184
 185
 ' set center 186
 center(0) = blocksize * 3 / 4 187
 center(1) = blocksize * 1 / 2 188
 center(2) = blocksize * 3 / 4 189
 190
 ' set length, width and height 191
 length = blocksize / 2 192
 width = blocksize 193
 height = blocksize / 2 194
 195
 ElseIf axis = 2 Then ' z axis tube 196
 197
 ' set center 198
 center(0) = blocksize * 1 / 4 199
 center(1) = blocksize * 3 / 4 200
 center(2) = blocksize * 1 / 2 201
 202
 ' set length, width and height 203
 length = blocksize / 2 204
 width = blocksize / 2 205
 height = blocksize 206
 207
 End If 208
 209
End Sub 210
' set dimensions to draw outer big arm box 211
Private Sub setbigdimensions(blocksize, axis, center, length, 212
width, height) 213
 214
 If axis = 0 Then ' x axis arm 215
 216
 ' set center 217
 center(0) = blocksize * 5 / 12 218
 center(1) = blocksize * 1 / 4 219
 center(2) = blocksize * 1 / 4 220
 221
 ' set length, width and height 222
 length = blocksize * 5 / 6 223
 width = blocksize * 5 / 12 224
 height = blocksize * 5 / 12 225
 226
 ElseIf axis = 1 Then ' y axis arm 227
 228
 ' set center 229
 center(0) = blocksize * 3 / 4 230
 center(1) = blocksize * 5 / 12 231

86

 center(2) = blocksize * 3 / 4 232
 233
 ' set length, width and height 234
 length = blocksize * 5 / 12 235
 width = blocksize * 5 / 6 236
 height = blocksize * 5 / 12 237
 238
 ElseIf axis = 2 Then ' z axis arm 239
 240
 ' set center 241
 center(0) = blocksize * 1 / 4 242
 center(1) = blocksize * 3 / 4 243
 center(2) = blocksize * 5 / 12 244
 245
 ' set length, width and height 246
 length = blocksize * 5 / 12 247
 width = blocksize * 5 / 12 248
 height = blocksize * 5 / 6 249
 250
 End If 251
 252
End Sub 253
' set dimensions to draw small arm box 254
Private Sub setsmalldimensions(blocksize, axis, center, length, 255
width, height) 256
 257
 If axis = 0 Then ' x axis arm 258
 259
 ' set center 260
 center(0) = blocksize * 7 / 12 261
 center(1) = blocksize * 7 / 24 262
 center(2) = blocksize * 1 / 4 263
 264
 ' set length, width and height 265
 length = blocksize * 5 / 6 266
 width = blocksize * 1 / 4 267
 height = blocksize * 1 / 3 268
 269
 ElseIf axis = 1 Then ' y axis arm 270
 271
 ' set center 272
 center(0) = blocksize * 17 / 24 273
 center(1) = blocksize * 7 / 12 274
 center(2) = blocksize * 3 / 4 275
 276
 ' set length, width and height 277
 length = blocksize * 1 / 4 278
 width = blocksize * 5 / 6 279
 height = blocksize * 1 / 3 280
 281
 ElseIf axis = 2 Then ' z axis arm 282
 283
 ' set center 284
 center(0) = blocksize * 1 / 4 285
 center(1) = blocksize * 17 / 24 286
 center(2) = blocksize * 7 / 12 287
 288
 ' set length, width and height 289
 length = blocksize * 1 / 3 290
 width = blocksize * 1 / 4 291

87

 height = blocksize * 5 / 6 292
 293
 End If 294
 295
End Sub296

88

EspressoBlock

Option Explicit 1
 2
' block variables 3
Private blocklist As EspressoBlockList 4
Private blockindex As Integer 5
Private blockposition() As Integer ' corner of block 6
Private blocktubesbox As AcadBlockReference 7
Private blockarm(0 To 2, 0 To 1) As EspressoBlockArm ' arm array 8
' access arm array 9
Public Property Get arm(ByVal axis As Integer, ByVal isbig As 10
Boolean) As EspressoBlockArm 11
 If isbig Then 12
 Set arm = blockarm(axis, 1) 13
 Else 14
 Set arm = blockarm(axis, 0) 15
 End If 16
End Property 17
' block index 18
Public Property Get index() As Integer 19
 index = blockindex 20
End Property 21
' build block 22
Public Sub build(parentlist As EspressoBlockList, ByVal 23
startposition, ByVal startindex As Integer) 24
 25
 ' set private variables 26
 Set blocklist = parentlist 27
 blockindex = startindex 28
 blockposition = startposition 29
 30
 Dim insertpoint(0 To 2) As Double 31
 insertpoint(0) = blockposition(0) 32
 insertpoint(1) = blockposition(1) 33
 insertpoint(2) = blockposition(2) 34
 35
 ' build tubes 36
 Set blocktubesbox = 37
ThisDrawing.ModelSpace.InsertBlock(insertpoint, "tubes", 1, 1, 1, 38
0) 39
 40
 ' build arms 41
 Dim buildaxis 42
 For buildaxis = 0 To 2 43
 Dim buildisbig 44
 For buildisbig = 0 To 1 45
 46
 Set blockarm(buildaxis, buildisbig) = New 47
EspressoBlockArm 48
 blockarm(buildaxis, buildisbig).build Me, buildaxis, 49
buildisbig 50
 51
 Next 52
 Next 53
 54
 ' regenerate drawing 55
 ThisDrawing.Regen True 56

89

 57
End Sub 58
 59
Public Property Let hilite(ByVal lite As Boolean) 60
 61
 If lite Then 62
 blocktubesbox.name = "selectedtubes" 63
 Else 64
 blocktubesbox.name = "tubes" 65
 End If 66
 67
 ' regenerate drawing 68
 ThisDrawing.Regen True 69
 70
End Property 71
' access block list 72
Public Property Get list() As EspressoBlockList 73
 Set list = blocklist 74
End Property 75
' adds a new block to the face of this block 76
Public Sub addblock(ByVal addaxis As Integer, ByVal addisbig As 77
Boolean) 78
 79
 ' new block and blockposition array 80
 Dim newblock As New EspressoBlock 81
 Dim newposition() As Double 82
 83
 Me.getadjacentposition addaxis, addisbig, newposition 84
 85
 ' build block 86
 newblock.build blockpallet, newposition 87
 88
 ' add block to blockpallet 89
 blockpallet.addblock newblock 90
 91
 ' add block to control form 92
 ControlForm.BlockListBox.AddItem "block " & 93
(ControlForm.BlockListBox.ListCount) 94
 95
 ' resolve control form buttons 96
 ControlForm.resolvebuttons 97
 98
End Sub 99
Public Property Get position(ByVal xyz As Integer) As Double 100
 position = blockposition(xyz) 101
End Property 102
Public Sub setposition(ByVal xyz As Integer, ByVal newposition As 103
Integer) 104
 105
 ' get offset 106
 Dim xyzoffset As Integer 107
 xyzoffset = newposition - blockposition(xyz) 108
 109
 ' move tubes box 110
 Dim frompoint(0 To 2) As Double 111
 Dim topoint(0 To 2) As Double 112
 topoint(xyz) = xyzoffset 113
 blocktubesbox.move frompoint, topoint 114
 115
 ' remove old position from position array 116

90

 blocklist.removeposition blockindex 117
 118
 ' set blockposition 119
 blockposition(xyz) = newposition 120
 121
 ' add new position to position array 122
 blocklist.addposition blockindex 123
 124
 ' set arm positions 125
 Dim setaxis 126
 For setaxis = 0 To 2 127
 Dim setisbig 128
 For setisbig = 0 To 1 129
 130
 blockarm(setaxis, setisbig).move xyz, xyzoffset 131
 132
 Next 133
 Next 134
 135
 ' regenerate drawing 136
 ThisDrawing.Regen True 137
 138
End Sub 139
Public Sub getposition(newposition) 140
 141
 ' set newposition equal to blockposition 142
 ReDim newposition(0 To 2) 143
 newposition(0) = blockposition(0) 144
 newposition(1) = blockposition(1) 145
 newposition(2) = blockposition(2) 146
 147
End Sub 148
' return true if not latched to more than one block 149
Public Property Get isfree() As Boolean 150
 151
 ' latch counter 152
 Dim latchcounter As Integer 153
 latchcounter = 0 154
 155
 ' loop through tubes and check if they are latched 156
 Dim axiscounter 157
 For axiscounter = 0 To 2 158
 Dim bigcounter 159
 For bigcounter = 0 To 1 160
 161
 ' increment latchedcounter if arm is latched 162
 If blockarm(axiscounter, bigcounter).islatched Then 163
 latchcounter = latchcounter + 1 164
 End If 165
 166
 Next 167
 Next 168
 169
 If latchcounter > 1 Then 170
 isfree = False 171
 Else 172
 isfree = True 173
 End If 174
 175
End Property 176

91

' return the one other block this block is latched to if it is 177
free 178
Public Sub isalmostfree(besidesarm As EspressoBlockArm, 179
alsoblock) 180
 181
 alsoblock = Empty 182
 183
 Dim axis 184
 For axis = 0 To 2 185
 Dim isbig 186
 For isbig = 0 To 1 187
 If blockarm(axis, isbig).islatched And Not besidesarm 188
Is blockarm(axis, isbig) Then 189
 190
 ' if this isn't the first latched block 191
 If Not isempty(alsoblock) Then 192
 alsoblock = Empty 193
 Exit Sub 194
 End If 195
 196
 ' if the block this block is latched to is free 197
 If blockarm(axis, isbig).latchedto.block.isfree 198
Then 199
 Set alsoblock = blockarm(axis, 200
isbig).latchedto.block 201
 End If 202
 203
 End If 204
 Next 205
 Next 206
 207
End Sub208

92

EspressoBlockArm

Option Explicit 1
 2
' arm variables to hold property values 3
Private armbox As AcadBlockReference 4
Private armblock As EspressoBlock 5
Private armaxis As Integer 6
Private armisbig As Boolean 7
Private armextended As Integer 8
Private armislatched As Boolean 9
Private armlatchedto As EspressoBlockArm 10
 11
' build block arm 12
Public Sub build(parentblock As EspressoBlock, ByVal buildaxis As 13
Integer, ByVal buildisbig As Boolean) 14
 15
 ' set private variables 16
 Set armblock = parentblock 17
 armaxis = buildaxis 18
 armisbig = buildisbig 19
 armextended = 0 20
 armislatched = False 21
 22
 ' tube box name 23
 Dim blockname As String 24
 blockname = "smallarm" & armaxis 25
 If armisbig Then blockname = "bigarm" & armaxis 26
 27
 ' insert point 28
 Dim insertat() As Double 29
 armblock.getposition insertat 30
 31
 ' insert arm box 32
 Set armbox = ThisDrawing.ModelSpace.InsertBlock(insertat, 33
blockname, 1, 1, 1, 0) 34
 35
End Sub 36
Public Sub move(ByVal moveaxis As Integer, ByVal moveoffset As 37
Double) 38
 39
 ' point arrays default to zero 40
 Dim movefrom(0 To 2) As Double 41
 Dim moveto(0 To 2) As Double 42
 43
 ' set moveto point 44
 moveto(moveaxis) = moveoffset 45
 46
 ' move box 47
 armbox.move movefrom, moveto 48
 49
End Sub 50
Public Property Get islatched() As Boolean 51
 islatched = armislatched 52
End Property 53
' move arm in or out 54
Public Sub extend(ByVal inorout As Boolean) 55
 56

93

 ' if inorout is true, move arm in, if it is false move arm 57
out 58
 Dim inco As Integer 59
 inco = 1 60
 If inorout Then inco = -1 61
 62
 ' coefficient of bigness 63
 Dim bigco As Integer 64
 bigco = 1 65
 If armisbig Then bigco = -1 66
 67
 ' distance to move arm 68
 Dim offset As Integer 69
 offset = inco * armblock.list.max / armblock.list.step 70
 71
 ' check if new distance is within bounds 72
 Dim minimum As Integer 73
 minimum = 0 74
 If Not armisbig And armislatched Then minimum = 75
armblock.list.size * 1 / 4 76
 If (offset > 0 And armextended = armblock.list.max) Or 77
(offset < 0 And armextended = minimum) Then 78
 79
 ControlForm.debugprint "can't move arm that far" 80
 Exit Sub 81
 82
 ElseIf offset + armextended > armblock.list.max Then 83
 84
 ' adjust offset within bounds 85
 offset = armblock.list.max - armextended 86
 87
 ElseIf offset + armextended < 0 Then 88
 89
 ' adjust offset within bounds 90
 offset = 0 - armextended 91
 92
 End If 93
 94
 ' check if this arm is latched to another 95
 If armislatched Then 96
 97
 ' move this block or the one it is latched to 98
 If Not resolvelatchedto(offset * bigco) Then 99
 100
 ' blocks can't move so this arm can't move 101
 ControlForm.debugprint "can't move arm because blocks 102
are stuck" 103
 Exit Sub 104
 105
 End If 106
 107
 Else ' if it isn't latched 108
 109
 ' check if new distance will set latch 110
 resolvesetlatch offset 111
 112
 End If 113
 114
 ' update armextended 115
 armextended = armextended + offset 116

94

 117
 ' from and to points 118
 Dim fromposition(0 To 2) As Double 119
 Dim toposition(0 To 2) As Double 120
 121
 ' set to position to offset distance along axis 122
 toposition(armaxis) = offset * bigco 123
 124
 ' move arm box 125
 armbox.move fromposition, toposition 126
 127
 ' regenerate drawing 128
 ThisDrawing.Regen True 129
 130
End Sub 131
' returns true if one of the blocks is moved and false if neither 132
block can be 133
Private Function resolvelatchedto(ByVal offset As Integer) As 134
Boolean 135
 136
 ' neither block moved yet 137
 resolvelatchedto = False 138
 139
 ' check if this block is free 140
 If armblock.isfree Then 141
 142
 ' if it's free, try to move block opposite to the arm 143
offset 144
 If resolvemoveblock(Me, -1 * offset) Then 145
resolvelatchedto = True 146
 147
 ' otherwise check if latchedto block is free 148
 ElseIf armlatchedto.block.isfree Then 149
 150
 ' try to move latchedto block offset distance along axis 151
 If resolvemoveblock(armlatchedto, offset) Then 152
resolvelatchedto = True 153
 154
 Else 155
 156
 Dim alsoblock 157
 armblock.isalmostfree Me, alsoblock 158
 If Not isempty(alsoblock) Then 159
 If resolvemovetwoblocks(Me, alsoblock, -1 * offset) 160
Then resolvelatchedto = True 161
 Else 162
 armlatchedto.block.isalmostfree armlatchedto, 163
alsoblock 164
 If Not isempty(alsoblock) Then 165
 If resolvemovetwoblocks(armlatchedto, alsoblock, 166
offset) Then resolvelatchedto = True 167
 End If 168
 End If 169
 End If 170
 171
End Function 172
' returns true if block is moved and false if it isn't 173
Private Function resolvemoveblock(movearm As EspressoBlockArm, 174
ByVal offset As Integer) As Boolean 175
 176

95

 'block hasn't been moved yet 177
 resolvemoveblock = False 178
 179
 ' check for collision 180
 If armblock.list.resolvecollision(armaxis, offset, 181
movearm.block) Then 182
 183
 ' no collision, so move parent block offset distance 184
along axis 185
 movearm.block.setposition armaxis, 186
movearm.block.position(armaxis) + offset 187
 188
 resolvemoveblock = True 189
 190
 End If 191
 192
End Function 193
' returns true if block is moved and false if it isn't 194
Private Function resolvemovetwoblocks(movearm As 195
EspressoBlockArm, ByVal alsoblock, ByVal offset As Integer) As 196
Boolean 197
 198
 'block hasn't been moved yet 199
 resolvemovetwoblocks = False 200
 201
 Dim alsoespressoblock As EspressoBlock 202
 Set alsoespressoblock = alsoblock 203
 204
 ' check for collision 205
 If armblock.list.resolvecollision(armaxis, offset, 206
movearm.block) _ 207
 And armblock.list.resolvecollision(armaxis, offset, 208
alsoespressoblock) Then 209
 210
 ' no collision, so move parent block offset distance 211
along axis 212
 movearm.block.setposition armaxis, 213
movearm.block.position(armaxis) + offset 214
 alsoblock.setposition armaxis, 215
alsoblock.position(armaxis) + offset 216
 217
 resolvemovetwoblocks = True 218
 219
 End If 220
 221
End Function 222
 223
' test the latchposition of block 224
Private Sub resolvesetlatch(offset As Integer) 225
 226
 ' check if there is a block on axis within a block length 227
 Dim latchedtoblock 228
 armblock.list.resolvelatchposition armaxis, armisbig, 229
armblock, latchedtoblock 230
 231
 ' if there is no block, quit 232
 If isempty(latchedtoblock) Then Exit Sub 233
 234
 ' get arm to latch to 235
 Dim maybearm As EspressoBlockArm 236

96

 Set maybearm = latchedtoblock.arm(armaxis, Not armisbig) 237
 238
 ' get distance between blocks 239
 Dim distance As Integer 240
 distance = Abs(armblock.position(armaxis) - 241
latchedtoblock.position(armaxis)) - armblock.list.size 242
 243
 ' get offset adjustment 244
 Dim maybeoffset As Integer 245
 maybeoffset = distance - (armextended + maybearm.extended - 246
(armblock.list.size / 6)) 247
 248
 ' if arms are close enough to latch 249
 If maybeoffset <= offset Then 250
 251
 ControlForm.debugprint "arms latched" 252
 253
 ' reset offset distance 254
 offset = maybeoffset 255
 256
 ' set this arm and latchedto arm as latched 257
 armislatched = True 258
 Set armlatchedto = maybearm 259
 armlatchedto.islatched = True 260
 Set armlatchedto.latchedto = Me 261
 262
 ' resolve control form buttons 263
 ControlForm.resolvebuttons 264
 265
 End If 266
End Sub 267
 268
Public Property Get block() As EspressoBlock 269
 Set block = armblock 270
End Property 271
Public Property Get axis() As Integer 272
 axis = armaxis 273
End Property 274
Public Property Let islatched(ByVal setto As Boolean) 275
 armislatched = setto 276
End Property 277
Public Property Set latchedto(latcharm As EspressoBlockArm) 278
 Set armlatchedto = latcharm 279
End Property 280
Public Property Get latchedto() As EspressoBlockArm 281
 Set latchedto = armlatchedto 282
End Property 283
 284
Public Property Get extended() As Integer 285
 extended = armextended 286
End Property 287
Public Sub latchtoggle() 288
 If armblock.isfree Or armlatchedto.block.isfree Then 289
 ControlForm.debugprint "can't unlatch from last block" 290
 ElseIf armislatched Then 291
 292
 ' unlatch this arm and the one it is latched to 293
 armlatchedto.unlatch 294
 Me.unlatch 295
 296

97

 ' resolve buttons 297
 ControlForm.resolvebuttons 298
 299
 ' regenerate drawing 300
 ThisDrawing.Regen True 301
 302
 End If 303
End Sub 304
' unlatch and retract arm 305
Public Sub unlatch() 306
 307
 ' unlatch arm 308
 armislatched = False 309
 310
 ' coefficient of bigness 311
 Dim bigco As Integer 312
 bigco = -1 313
 If armisbig Then bigco = 1 314
 315
 ' move arm 316
 Dim frompoint(0 To 2) As Double 317
 Dim topoint(0 To 2) As Double 318
 topoint(armaxis) = extended * bigco 319
 armbox.move frompoint, topoint 320
 321
 ' set extended to 0 322
 armextended = 0 323
 324
End Sub325

98

EspressoBlockList

Option Explicit 1
 2
' dynamic array of all blocks by index 3
Private byindexlist() As EspressoBlock 4
 5
' top-level x position array 6
Private xlist As PositionArray 7
 8
' block variables 9
Private blocksize As Integer 10
Private blockspace As Integer 11
Private selectedblock As EspressoBlock 12
Private armmax As Integer 13
Private armstep As Integer 14
Private blockaction As EspressoBlockActions 15
 16
 17
' create first block and add it to list 18
Public Sub zero() 19
 20
 ' set block variables 21
 blocksize = 12 ' i wouldn't touch that if i were you 22
 blockspace = 1 ' or this either 23
 armmax = blocksize * 2 / 3 24
 armstep = 8 25
 26
 ' build block blocks 27
 Dim bb As New BlockBuilder 28
 bb.build blocksize 29
 30
 ' create x position array 31
 Set xlist = New PositionArray 32
 33
 ' load actions 34
 Set blockaction = New EspressoBlockActions 35
 blockaction.loadlist Me 36
 37
 ' build first block 38
 ReDim byindexlist(0) 39
 Set byindexlist(0) = New EspressoBlock 40
 Dim startposition() As Integer 41
 ReDim startposition(0 To 2) ' defaults to 0,0,0 42
 byindexlist(0).build Me, startposition, 0 43
 44
 ' set it as selected block 45
 Set selectedblock = byindexlist(0) 46
 47
 ' add block to position array 48
 addposition 0 49
 50
 ' add block to control form block list 51
 ControlForm.BlockListBox.AddItem "block 0" 52
 53
 ' select block 0 54
 Me.selected = byindexlist(0) 55
 56

99

 ' resolve control form buttons 57
 ControlForm.resolvebuttons 58
 59
End Sub 60
Public Sub addblock(axis As Integer, isbig As Boolean) 61
 62
 ' get selected block position 63
 Dim startposition() As Integer 64
 selectedblock.getposition startposition 65
 66
 ' get distance to offset new block 67
 Dim offset As Integer 68
 offset = blocksize + blockspace 69
 If isbig Then offset = offset * -1 70
 71
 ' offset new block position along axis 72
 startposition(axis) = startposition(axis) + offset 73
 74
 ' expand block index list 75
 ReDim Preserve byindexlist(UBound(byindexlist) + 1) 76
 77
 ' create and build new block 78
 Set byindexlist(UBound(byindexlist)) = New EspressoBlock 79
 byindexlist(UBound(byindexlist)).build Me, startposition, 80
UBound(byindexlist) 81
 82
 ' add block to position array 83
 addposition UBound(byindexlist) 84
 85
 ' add block to control form block list 86
 ControlForm.BlockListBox.AddItem "block " & 87
UBound(byindexlist) 88
 89
 ' select new block 90
 selected = byindexlist(UBound(byindexlist)) 91
 92
 ' latch to adjacent blocks 93
 latchall 94
 95
End Sub 96
' returns true if the space adjacent to this face is empty 97
Public Property Get emptyadjacent(ByVal axis As Integer, ByVal 98
isbig As Boolean, Optional firstblock) As Boolean 99
 100
 ' no block yet 101
 firstblock = Empty 102
 103
 Dim startpoint() As Integer, endpoint() As Integer 104
 ReDim startpoint(0 To 2) 105
 ReDim endpoint(0 To 2) 106
 107
 ' set off-axis start and end positions 108
 Dim loopaxis 109
 For loopaxis = 0 To 2 110
 startpoint(loopaxis) = selectedblock.position(loopaxis) - 111
blocksize 112
 endpoint(loopaxis) = selectedblock.position(loopaxis) + 113
blocksize 114
 Next 115
 116

100

 ' set axis start and end positions 117
 If isbig Then 118
 119
 startpoint(axis) = selectedblock.position(axis) - (2 * 120
blocksize + blockspace) 121
 endpoint(axis) = selectedblock.position(axis) - 122
(blocksize + blockspace) 123
 124
 Else 125
 126
 startpoint(axis) = selectedblock.position(axis) + 127
blocksize + blockspace 128
 endpoint(axis) = selectedblock.position(axis) + 2 * 129
blocksize + blockspace 130
 131
 End If 132
 133
 ' test if adjacent space is empty 134
 emptyadjacent = emptyspace(startpoint, endpoint, firstblock) 135
 136
End Property 137
Public Sub addposition(ByVal index As Integer) 138
 139
 Dim bp() As Integer ' block position 140
 byindexlist(index).getposition bp 141
 142
 ' if there is not already a y array at this x, create y and z 143
arrays 144
 If Not xlist.isat(bp(0)) Then 145
 146
 ' make y array 147
 xlist.makelistat bp(0) 148
 149
 ' make z array 150
 xlist.listat(bp(0)).makelistat bp(1) 151
 152
 ' if there is not a z array at this y, create one 153
 ElseIf Not xlist.listat(bp(0)).isat(bp(1)) Then 154
 155
 ' make z array 156
 xlist.listat(bp(0)).makelistat bp(1) 157
 158
 End If 159
 160
 ' add this block index to z array at this position 161
 xlist.listat(bp(0)).listat(bp(1)).setindexat bp(2), index 162
 163
End Sub 164
Public Sub removeposition(ByVal index As Integer) 165
 166
 Dim bp() As Integer ' block position 167
 byindexlist(index).getposition bp 168
 169
 ' remove this block from z array 170
 xlist.listat(bp(0)).listat(bp(1)).removeat bp(2) 171
 172
 ' if the z array is empty, remove it from this y array 173
 If xlist.listat(bp(0)).listat(bp(1)).nomore Then 174
 175
 xlist.listat(bp(0)).removeat bp(1) 176

101

 177
 ' if the y dictionary is empty, remove it from this x 178
dictionary 179
 If xlist.listat(bp(0)).nomore Then 180
 181
 xlist.removeat bp(0) 182
 183
 End If 184
 185
 End If 186
 187
End Sub 188
' return block at a point, or empty if there is no block there 189
Private Sub onpoint(point, pointblock As Variant) 190
 191
 ' is there a block at this position? 192
 If xlist.isat(point(0)) Then 193
 If xlist.listat(point(0)).isat(point(1)) Then 194
 If 195
xlist.listat(point(0)).listat(point(1)).isat(point(2)) Then 196
 197
 ' return block 198
 Set pointblock = 199
byindexlist(xlist.listat(point(0)).listat(point(1)).indexat(point200
(2))) 201
 202
 End If 203
 End If 204
 End If 205
 206
End Sub 207
' find block within distance on axis to this arm 208
Private Sub onaxis(startpoint, ByVal axis As Integer, ByVal 209
distance As Integer, axisblock As Variant) 210
 211
 Dim newpoint() As Integer 212
 newpoint = startpoint 213
 214
 Dim offset 215
 For offset = 0 To distance 216
 217
 ' shift newpoint offset distance along axis 218
 newpoint(axis) = startpoint(axis) + offset 219
 220
 ' test this position for blocks 221
 onpoint newpoint, axisblock 222
 223
 ' if there was a block there, stop 224
 If Not isempty(axisblock) Then Exit Sub 225
 226
 Next 227
 228
End Sub 229
' return true if there is no block in a space 230
Private Function emptyspace(startpoint, endpoint, Optional 231
firstblock) As Boolean 232
 233
 ' no blocks yet 234
 emptyspace = True 235
 firstblock = Empty 236

102

 237
 Dim newpoint() As Integer 238
 newpoint = startpoint 239
 240
 ' test if there is a y array at each x position 241
 Dim xoffset 242
 For xoffset = 0 To endpoint(0) - startpoint(0) 243
 244
 newpoint(0) = startpoint(0) + xoffset 245
 246
 If xlist.isat(newpoint(0)) Then 247
 248
 ' test if there is a z array at each y position 249
 Dim yoffset 250
 For yoffset = 0 To endpoint(1) - startpoint(1) 251
 252
 newpoint(1) = startpoint(1) + yoffset 253
 254
 If xlist.listat(newpoint(0)).isat(newpoint(1)) 255
Then 256
 257
 ' test the z axis for blocks 258
 onaxis newpoint, 2, endpoint(2) - 259
startpoint(2), firstblock 260
 If Not isempty(firstblock) Then 261
 262
 ' there is a block in the way 263
 emptyspace = False 264
 Exit Function 265
 266
 End If 267
 End If 268
 Next 269
 End If 270
 Next 271
 272
End Function 273
Public Property Get size() As Integer 274
 size = blocksize 275
End Property 276
Public Property Get space() As Integer 277
 space = blockspace 278
End Property 279
Public Property Get byindex(index As Integer) As EspressoBlock 280
 Set byindex = byindexlist(index) 281
End Property 282
Public Property Get selected() As EspressoBlock 283
 Set selected = selectedblock 284
End Property 285
Public Property Let selected(newblock As EspressoBlock) 286
 287
 ' unhilite old block 288
 selectedblock.hilite = False 289
 290
 ' set selected block 291
 Set selectedblock = newblock 292
 293
 ' hilite new block 294
 selectedblock.hilite = True 295
 296

103

 ControlForm.debugprint "block position: " & 297
selectedblock.position(0) & ", " & selectedblock.position(1) & ", 298
" & selectedblock.position(2) 299
 300
End Property 301
' max distance to extend arm 302
Public Property Get max() As Integer 303
 max = armmax 304
End Property 305
' number of steps to take extending arm 306
Public Property Get step() As Integer 307
 step = armstep 308
End Property 309
' returns true if there is no block in the way within offset 310
distance 311
Public Function resolvecollision(ByVal axis As Integer, ByVal 312
offset As Integer, resolveblock As EspressoBlock) As Boolean 313
 314
 Dim startpoint() As Integer, endpoint() As Integer 315
 ReDim startpoint(0 To 2) 316
 ReDim endpoint(0 To 2) 317
 318
 ' set off-axis start and end positions 319
 Dim loopaxis 320
 For loopaxis = 0 To 2 321
 startpoint(loopaxis) = resolveblock.position(loopaxis) - 322
blocksize 323
 endpoint(loopaxis) = resolveblock.position(loopaxis) + 324
blocksize 325
 Next 326
 327
 ' set axis start and end positions 328
 If offset < 0 Then 329
 330
 startpoint(axis) = resolveblock.position(axis) - 331
(blocksize) + offset 332
 endpoint(axis) = resolveblock.position(axis) - 333
(blocksize) 334
 335
 Else 336
 337
 startpoint(axis) = resolveblock.position(axis) + 338
(blocksize) 339
 endpoint(axis) = resolveblock.position(axis) + 340
(blocksize) + offset 341
 342
 End If 343
 344
 ' test if adjacent space is empty 345
 resolvecollision = emptyspace(startpoint, endpoint) 346
 347
End Function 348
' if there is a block wihin a block length of arm, return it 349
Public Sub resolvelatchposition(ByVal axis As Integer, ByVal 350
isbig As Boolean, latchblock As EspressoBlock, latchedtoblock As 351
Variant) 352
 353
 ' get block position 354
 Dim startpoint() As Integer 355
 latchblock.getposition startpoint 356

104

 357
 ' set axis start position 358
 If isbig Then 359
 startpoint(axis) = startpoint(axis) - (2 * blocksize + 360
blockspace) 361
 Else 362
 startpoint(axis) = startpoint(axis) + blocksize + 363
blockspace 364
 End If 365
 366
 ' check for block on axis 367
 onaxis startpoint, axis, blocksize + blockspace, 368
latchedtoblock 369
 370
End Sub 371
' select next block 372
Public Sub selectnext(ByVal axis As Integer, ByVal isbig As 373
Boolean) 374
 375
 Dim nextblock 376
 ' if this arm is latched to another arm, select it 377
 If selectedblock.arm(axis, isbig).islatched Then 378
 379
 ' select block 380
 Me.selected = selectedblock.arm(axis, 381
isbig).latchedto.block 382
 383
 ' resolve control form 384
 ControlForm.resolvebuttons 385
 386
 ' if there is a block next to this one, select it 387
 ElseIf Not emptyadjacent(axis, isbig, nextblock) Then 388
 389
 ' select block 390
 Me.selected = nextblock 391
 392
 ' resolve control form 393
 ControlForm.resolvebuttons 394
 395
 End If 396
 397
End Sub 398
Public Property Get action() As EspressoBlockActions 399
 Set action = blockaction 400
End Property 401
' latch to every adjacent block 402
Private Sub latchall() 403
 404
 ' block to latch to in loop 405
 Dim nextblock 406
 407
 Dim axis 408
 For axis = 0 To 2 409
 Dim isbig 410
 For isbig = 0 To 1 411
 412
 ' if there is a block next to this one, latch to it 413
 If Not emptyadjacent(axis, isbig, nextblock) Then 414
 415
 ' latch blocks together 416

105

 If isbig Then 417
 418
 ' extend new block arm 419
 Do While Not nextblock.arm(axis, 420
False).islatched 421
 nextblock.arm(axis, False).extend False 422
 Loop 423
 424
 Else 425
 426
 ' extend selected block arm 427
 Do While Not selectedblock.arm(axis, 428
False).islatched 429
 selectedblock.arm(axis, False).extend 430
False 431
 Loop 432
 433
 End If 434
 435
 End If 436
 437
 Next 438
 Next 439
 440
End Sub 441

106

PositionArray

Option Explicit 1
 2
Private positivelist() 3
Private negativelist() 4
' return list at a position 5
Public Property Get listat(ByVal position As Integer) As 6
PositionArray 7
 If position < 0 Then 8
 Set listat = negativelist(Abs(position)) 9
 Else 10
 Set listat = positivelist(position) 11
 End If 12
End Property 13
' return index at a position 14
Public Property Get indexat(ByVal position As Integer) As Integer 15
 If position < 0 Then 16
 indexat = negativelist(Abs(position)) 17
 Else 18
 indexat = positivelist(position) 19
 End If 20
End Property 21
' return true if there is something at this position 22
Public Property Get isat(ByVal position As Integer) As Boolean 23
 isat = True 24
 If position < 0 Then 25
 If Abs(position) > UBound(negativelist) Then 26
 isat = False 27
 ElseIf isempty(negativelist(Abs(position))) Then 28
 isat = False 29
 End If 30
 Else 31
 If position > UBound(positivelist) Then 32
 isat = False 33
 ElseIf isempty(positivelist(position)) Then 34
 isat = False 35
 End If 36
 End If 37
End Property 38
' set a position to an index value 39
Public Sub setindexat(ByVal position As Integer, ByVal index As 40
Integer) 41
 42
 ' extend array to include position 43
 extendto position 44
 45
 ' set array at position to index 46
 If position < 0 Then 47
 negativelist(Abs(position)) = index 48
 Else 49
 positivelist(position) = index 50
 End If 51
 52
End Sub 53
' create a new position array at a position 54
Public Sub makelistat(ByVal position As Integer) 55
 56

107

 ' extend array to include position 57
 extendto position 58
 59
 ' create new position array at position 60
 If position < 0 Then 61
 Set negativelist(Abs(position)) = New PositionArray 62
 Else 63
 Set positivelist(position) = New PositionArray 64
 End If 65
 66
End Sub 67
' remove position from array and shrink array to next member 68
Public Sub removeat(ByVal position As Integer) 69
 70
 If position < 0 Then 71
 position = Abs(position) 72
 73
 ' set this position to empty 74
 negativelist(position) = Empty 75
 76
 If position = UBound(negativelist) Then 77
 78
 ' find next non-empty position 79
 Do While isempty(negativelist(position)) And position 80
> 1 81
 position = position - 1 82
 Loop 83
 84
 ' shrink array 85
 ReDim Preserve negativelist(1 To position) 86
 87
 End If 88
 89
 Else 90
 91
 ' set this position to empty 92
 positivelist(position) = Empty 93
 94
 If position = UBound(positivelist) Then 95
 96
 ' find next non-empty position 97
 Do While isempty(positivelist(position)) And position 98
> 0 99
 position = position - 1 100
 Loop 101
 102
 ' shrink array 103
 ReDim Preserve positivelist(0 To position) 104
 105
 End If 106
 107
 End If 108
 109
End Sub 110
' returns true if this array contains no lists or indexes 111
Public Property Get nomore() As Boolean 112
 113
 ' if there is more than one item on list, it's not empty 114
 If UBound(negativelist) > 1 Or UBound(positivelist) > 0 Then 115
 nomore = False 116

108

 117
 ' if there is only one item, but it's not empty, list isn't 118
empty 119
 ElseIf Not isempty(negativelist(1)) Or Not 120
isempty(positivelist(0)) Then 121
 nomore = False 122
 123
 ' otherwise list is empty 124
 Else 125
 nomore = True 126
 End If 127
 128
End Property 129
 130
' if position is outside array boundaries, extend array 131
Private Sub extendto(ByVal position As Integer) 132
 133
 If position < 0 Then 134
 position = Abs(position) 135
 136
 If position > UBound(negativelist) Then 137
 138
 ' extend lower bound to position 139
 ReDim Preserve negativelist(1 To position) 140
 141
 End If 142
 Else 143
 If position > UBound(positivelist) Then 144
 145
 ' extend upper bound to position 146
 ReDim Preserve positivelist(0 To position) 147
 148
 End If 149
 End If 150
 151
End Sub 152
 153
Private Sub Class_Initialize() 154
 ReDim positivelist(0 To 0) 155
 ReDim negativelist(1 To 1) 156
End Sub 157

