
A Framework for Interaction and Task
Decomposition for Objects Emulating

Agency Behavior

Safwan Aly

Dissertation
Submitted to the School of Architecture of

Carnegie Mellon University in fulfillment of the requirements
for the degree of Doctor of Philosophy

School of Architecture
Carnegie Mellon University

Advisory Committee

Ramesh Krishnamurti [Chair]
Professor

School of Architecture
Carnegie Mellon University

Ömer Akin
Professor

School of Architecture
Carnegie Mellon University

Jens Pohl
Professor

College of Architecture
California Polytechnic State University (San Luis Obispo)

Len Myers
Professor

School of Computer Science
California Polytechnic State University (San Luis Obispo)

I hereby declare that I am the author of this dissertation.

I authorize Carnegie Mellon University to lend this dissertation to other institutions or
individuals for the purpose of scholarly research.

I further authorize Carnegie Mellon University to reproduce this dissertation by
photocopying or by other means, in total or in part, at the request of other institutions or

individuals for the purpose of scholarly research.

Safwan Aly

Copyright C 2000 by Safwan Aly
All rights reserved

Ph.D. Thesis - Spring 2000

ABSTRACT

Computational systems for decision support are typically stand-alone tools. These are often designed to provide
assistance with respect to a single aspect of the decision making. In a design process, where decision making is
integral to the activity, designers use such computational tools to generate alternative solutions, to model and
simulate the behavior of the artifact being designed, and to produce design documents. Stand-alone tools
provide design assistance, but not without pitfalls:

• Each tool requires designers to commit to a schema of representation.
In order to examine various aspects of a design, the same artifact would be represented differently
according to the schema of the tool employed.

• Interdependency among the various design aspects is rarely examined.
A lack of a unified representation leaves such examination to the judgement of the designer.

• Designers are often required to provide vast amounts of information even for the smallest task.
• Designers seldom have access to the mechanism by means of which a tool internally decomposes a

design problem. Designers are, thus, deprived of opportunities to make decisions that may,
incrementally, impact on the evaluation process.

In an attempt to improve the efficiency of these tools, research groups undertook the task of developing models
for comprehensive design environments where multiple design tools share the same representation schema.
Designers use modeling and generative tools to produce a model of the artifact being designed, where other tools
simulate, according to some domain expertise, the behavior of the model within the same shared representation.
Such design environments are often described as multi-agent decision making environments. Agents are the
designer(s) and/or the computational applications each of which encompasses a specific domain expertise.
Agents interact and execute tasks to manipulate the design objects until the collective state of these objects are
deemed acceptable by the designer(s).

In this thesis I introduce an enhancement to the design of computational assistant tools, mainly geared toward
multi-agent design environments that use shared representation schemes. I propose an expansion of the notion of
agency to include design objects in which agents may interact with other agents in the execution of design tasks
related to the objects. I call this the objects as agents approach, where objects are selectively activated to
participate in design decision making sessions to execute tasks regarding their immediate design states. In this
sense, an object-agent is a design object that is activated to perform tasks. I provide a framework for an object-
agent-based design environment, in which domain applications are global problem solving nodes, object-agents
are local coordination and management nodes, and, collectively, the designer(s) act as coordinator and final
judge. In this sense, the designer orchestrates this fine grained agent environment through incremental
interactions until the model arrives at an acceptable design state. Within this framework, I address various issues
pertaining to the notion of agency in design such as autonomy, planning and interaction. Vital to the success of
such an object-agent-based design environment is the ability of an object-agent to manage assigned or self-
initiated tasks. Managing tasks relies on the ability to decompose and delegate such tasks. I provide a
decomposition/aggregation mechanism to enable object-agents to manage their tasks. Such a mechanism
provides the designer with access to a wealth of local decision making information.
iii

ACKNOWLEDGMENT

I believe that developing a Ph.D. thesis is a small part of a larger experience, during which I interacted with many
people; advisors that helped making an idea an exciting yet a valid research topic; students who made me strive
to become a decent teacher; colleagues who made tough times seems enjoyable; administrative personal who
eased the way through; and certainly family who made a Ph.D. degree worthwhile. I am not sure I can give each
and everyone of them their dues in just a few lines, but at least I can try:

Without an open minded and a sharp principal advisor and a friend such as Ramesh Krishnamurti I would not
have been able to develop such an unconventional thesis. Many of the ideas introduced through out the thesis are
direct results of fruitful discussions with him. In addition, while co-teaching with him I learned how to prepare
and prefect course material, an essential part of making a decent teacher. I was also fortunate to have an advisor
such as Jens Pohl during the Masters and the Ph.D. His dreams and eagerness to explore new endeavors truly
helped making the idea of this thesis a research reality. His support during the proposal time was fundamental.
During the proposal and the development of this thesis Len Myers broad knowledge of the AI field provided a
needed credibility and validity and helped me define and tune the idea. Last but certainly not least, Ömer Akin,
his insightful comments in research ensures the quality and the integrity of the process and the final product.
Ömer’s support throughout the duration of my stay at CMU is another key element to the success of the whole
experience.

Friends, colleagues, teammates and roommates such as Magd Donia and Georg Suter makes a Ph.D. worth while
repeating (sure not!). Especially, with loads of Swiss chocolate shipped monthly from Switzerland by Georg’s
mom and a daily cup of tea prepared by Georg himself. I certainly owe the entire Suter family! I also cannot skip
Judy Kampert, an administrator who keeps the wheels in motion for the entire school. She managed to always
solve most of my administrative problems and to make my teaching career very successful and pleasant. Many
thanks Judy.

During the Ph.D. I lost my two parents one after the other. A wonderful father, dean, professor, and a world class
historian whose support morally and financially was unlimited during his life and beyond. And the best teacher
and kind mother that ever existed! God bless both Abdullatif and Zeinab. I don’t know if my prayers can pay
them back part of what they invested in me. I am certainly very proud of being their son.

After my mother I could not resist having another Zeinab in my life, my daughter is currently carrying the same
Z and the same beautiful spirit. Finally, this all goes to my friend, my doctor and my wife Amal. I don’t know
how did she manage to put up with me during such time (and even afterwards!!), I love you Amal!

Before and after, thanks and praises be all to Allah, most knowledgeable most compassionate and most merciful.

Safwan Aly
v

Table of Contents

Abstract .. iii
Acknowledgment ... v
Table of Contents .. vii
List of Figures .. xi
List of Tables ... xv

Chapter 1 Problem Statement ... 1
1.1 Belief... 1
1.2 Computational design environments .. 2
1.3 Problem and Proposal .. 4
1.4 Objectives and Method .. 6
1.5 Thesis Structure .. 7

Chapter 2 Review of Related Work. ... 9
2.1 Background ... 9
2.2 Agent and Agency .. 9
2.3 Objects vs. Agents .. 20

Chapter 3 Framework of an OA-Based Environment 23
3.1 Functions of an OA-Based Design Environment 23
3.2 Agent Interactions ... 28

3.2.1 Activation ... 29
3.2.2 Decision support .. 31
3.2.3 Communication .. 31

3.3 The modeling process ... 33
3.4 Decision making with OAs ... 37
3.5 Advancing a design state with multiple OAs 47

3.5.1 Agent autonomy ... 48
3.5.2 Short term planning vs. long term planning in design... 49

Chapter 4 From Scenarios to Interaction Algorithms 53
4.1 Event-trace Charts ... 53
4.2 Chart 1. Activation of a DOs/Deactivation of an OA 55
4.3 Chart 2. Task Execution .. 58
4.4 Chart 3. Conflict Handling .. 63
vii

viii
4.5 Chart 4. Cost Evaluation Task (Classified per Room-DO) 70
4.6 Chart 5. Daylight Evaluation Task .. 77
4.7 Chart 6. Structural Analysis Task ... 82
4.8 Chart 7. Handling Conflict Over Window Glazing Area 88

Chapter 5 Task Handling Algorithms ... 95
5.1 Which Tasks? .. 95
5.2 OA Task Execution Algorithms .. 97

5.2.1 Evaluation .. 97
5.2.2 Conflict Handling .. 116

5.3 Examples of P_Domain protocols. ... 127
5.3.1 Cost Evaluation Protocols .. 127
5.3.2 Structural Analysis Protocols 127
5.3.3 Daylighting evaluation protocols 128

Chapter 6 Implementation Design .. 129
6.1 Object Oriented Implementation .. 129
6.2 The Object Models .. 131

6.2.1 The general object model ... 131
6.2.2 A domain specific object model 140

6.3 DO-Hierarchies ... 142
6.4 Implementation Design of the Activation Process 144
6.5 The Objects Implementation Design 148

6.5.1 The object structure ... 148
6.5.2 Characterized attributes of objects in the OA model ... 151

Chapter 7 Conclusions .. 159
7.1 Contributions .. 159

7.1.1 Specific contributions .. 159
7.2 Research Topics and Agenda for Future Work 160

7.2.1 Object-agents knowledge ... 161
7.2.2 Conflict handling mechanism 161
7.2.3 Object-agent autonomy in design 161
7.2.4 Interface of an object-agent-based environment 162

Bibliography .. 165

Appendix A: Terms and Definitions .. 183
A.1 Decision Makers, Designers and Artifacts 183
A.2 Data-Objects. ... 184
A.3 Agents .. 185
A.4 Task Execution ... 188
A.5 Task Decomposition ... 189
A.6 Conflict Handling ... 191
A.7 Abbreviations ... 193

Appendix B: Actions, Tasks and Interactions ... 195
ix

x

List of Figures

FIGURE 1.1 ... 6
A concepual architecture of a multi-agent environment and issues of focus in
this dissertation.

FIGURE 3.1. ... 29
Categories of interaction of an OA-based design environment.

FIGURE 3.2. ... 38
Decomposition types.

FIGURE 3.3. ... 39
Task and decomposition.

FIGURE 3.4. ... 42
Hierarchy and decomposition 1.

FIGURE 3.5. ... 43
Hierarchy and decomposition 2.

FIGURE 4.1. ... 55
Event-trace of the activation of a DO and the deactivation of an OA.

FIGURE 4.2. ... 58
Event-trace of task execution by a leaf-OA (where no further task
decomposition is applicable).

FIGURE 4.3. ... 64
Event-trace of conflict handling among two leaf-OAs.

FIGURE 4.4. ... 66
Conflict handling cases.

FIGURE 4.5. ... 70
Event trace of a cost evaluation task executed by a BFloor-OA (classified per
Room-DO).
xi

xii
FIGURE 4.6. ... 78
Event-trace of a daylighting evaluation task for a BFloor-OA.

FIGURE 4.7. ... 82
Event-trace of a structural analysis task executed by a Building-OA.

FIGURE 4.8. ... 90
Event-trace of a conflict handling session over a Window-OA glazing area
attribute.

FIGURE 5.1. ... 98
Decomposition of a Block-DO cost evaluation task.

FIGURE 5.2. ... 99
Decomposition of a Block-DO cost evaluation task (classified per BFloor-DO).

FIGURE 5.3. ... 100
Decomposition of a Block-DO cost evaluation task of StructElement-DOs’
(classified per VZone-DO).

FIGURE 5.4. ... 101
Decomposition of a Block-DO structural analysis task.

FIGURE 5.5. ... 102
Decomposition of a BFloor-DO daylighting evaluation task.

FIGURE 5.6. ... 108
Relation between hierarchies (general case): min-domain-hierarchy < OA-
hierarchy < max-domain-hierarchy.

FIGURE 5.7. ... 109
Special case relation between hierarchies:
A) Case 1: min-domain-hierarchy < max-domain-hierarchy < OA-hierarchy.
B) Case 2: OA-hierarchy < min-domain-hierarchy < max-domain-hierarchy.

FIGURE 5.8. ... 110
Relation between a Skiplist and an Activationlist (general case).

FIGURE 6.1. ... 131
A general object model of an OA environment.

FIGURE 6.2. ... 140
An object model of an architectural environment.

FIGURE 6.3. ... 141
An object model of a structural environment.

FIGURE 6.4. ... 143
An architectural object hierarchy.

FIGURE 6.5. ... 144
Object model for geometrical representation.

FIGURE 6.6. ... 146
The implementation design of the activation process.

FIGURE 6.7. ... 147
Object model of an OA.

FIGURE 6.8. ..152
Session, Environment and Scenario objects.

FIGURE 6.9. ... 153
DataObject (DO), Constraint and ConstraintArc objects.

FIGURE 6.10. ... 154
Agent and A_Object (OA) objects.

FIGURE 6.11. ... 155
Task, Goal, and Result objects.
xiii

xiv
FIGURE 6.12. ... 156
Protocol, P_D_Decomposition and P_D_Sorting objects.

FIGURE B.1. .. 199
The interaction types.

List of Tables

TABLE 5.1.
An example of an Interestlist of a DO Attribute... 119

TABLE B.1.
Simple Actions.. 195

TABLE B.2.
Complex Actions .. 196

TABLE B.3.
Evaluation Task Actions ... 197

TABLE B.4.
Recommendation and Generation Task Actions ..197

TABLE B.5.
Conflict Handling Task Actions .. 198

TABLE B.6.
Implementation Task Actions ... 198

TABLE B.7.
Types of Agent Interaction .. 199
xv

xvi

1 Problem Statement
1.1 Belief

The context of this dissertation is architectural design. Within this context, I
view the process of design as being characterized by the following distinguishing
features:

• Design is an intelligent activity involving complex forms of decision
making.

• Design problems, in general, can be decomposed to smaller problems that
are easier to handle.

• Designing is a collaborative effort of many individuals or agents all of
whom may act independently in a self-regulating manner, with the proviso
that all work towards an agreed eventual goal state.

• Agents work cooperatively to change the current design state.

• The flow of relevant information with respect to any design state is always
considered as significant to the designer.

• Certain design values are best decided by judgement of the designer(s).

Design problems are multi-faceted, involving many aspects that contribute, in
varying degrees, to the final solution. In architecture (and, also, engineering), the
complexity of a design problem is a product of the number of its aspects. In most
cases, design tasks are sufficiently complex that the scope of a problem and its
solution is beyond the capability of a single contributor. Such problems can be
solved in a reasonable time only by decomposing them into more manageable
sub-tasks. This requires a team effort, in which the sub-tasks are delegated to
members. Team members have pluralistic backgrounds, interests and agendas,
yet, they typically agree on a common design solution [Schon 88]. The success
Ph.D. Thesis, Spring 2000 1

2

of the collective team effort depends on the organization of team members and
resources.

1.2 Computational design environments

Computational design environments are computer systems that are meant to
provide designers with assistance in a wide range of design activities which
includes, but is not limited to, formulating design specifications and architectural
programing, generation of preliminary design alternatives, configuration of
details, simulation analysis of performance in respect to various design criteria,
and modeling of complete artifact for presentation and, possibly, production.

The development of computational design tools has been mostly oriented along a
single tool approach. Each tool simulates the intelligence, knowledge and
expertise of a single member of the design team, such as lighting or structural
experts in an architectural design team. This notion of stand-alone tools has
proven insufficient due to the inevitable need for interaction between the many
members of the design team in real world situations. Members plan their
activities while keeping in mind the actions of other members. This suggests that
the development of a computational design environment should be concerned
with the representation of a community of agents that interact by cooperation,
coexistence and/or competition.

The notion of multi-agent design environments is an attractive proposition for the
following three main reasons. These environments:

• accommodate the diversity of design activities and knowledge, based on
geographic or functional criteria.

• provide rich environments based on contributions from multiple agents,
where the designer can seek better opportunities of handling the design
tasks.

• provide opportunities for reducing complexity by breaking the knowledge
down into different cooperative entities.

A number of design environments have been investigated by various research
labs. Some have reached closure, e.g., IBDE [Fenves 89], ICADS [Pohl 92 and
Myers 93] and EDM [Eastman 92]; others are still under development, e.g.,
SEED [Flemming 95], ICODES [Pohl 97], SEMPER [Mahdavi 96], and FDCA

[Khedro 93]1. At present, there is still no design environment as such that is
Problem Statement

available for commercial use for a variety of reasons, chief of these are the
following two:

• For commercial purposes, design environments require vast investments
for development. Moreover, they pose difficult marketing issues.

• For technical reasons, design environments are difficult to develop owing
to the diversity of the bodies of knowledge involved and the complexity of
integration. Additionally, the lack of unified representations makes the
use of off-the-shelf stand alone applications inefficient.

There are stand alone architectural design applications that are widely available
commercially, e.g., DOE2, CALPAS (energy simulation); Premavera, Quicknet
(scheduling and cost analysis); LightScape, LumenMicro, Radius (daylighting
simulation), BOSE (acoustic simulation), AutoCAD, MicroStation, ARRIS,
FormZ, ProEngineer (geometric modeling). However, designers using such tools
have to recreate a model of the building according to the representational needs
of each tool.

A computational representation of a design environment relies on individual
domain applications (which in this dissertation are considered as agents), domain
objects of artifacts being designed, and the flow of information amongst these
applications and objects. Typically, domain applications represent domain
expertise. These exist in the form of procedural programs, expert systems, or at
the very least, as sets of macros. Domain objects encapsulate information about
the real world objects they represent. Domain objects exist in the form of sets,
libraries or prototypical databases. In general, a computational design
environment is a collection of domain expert applications and libraries of
prototypical objects. The infrastructure of communication (i.e, local and global
massage passing system), translators between representations (such as mapping
and language bindings), interfaces (for designer/applications/domain objects/
databases), process and configuration management mechanisms (for resource
allocation and synchronization) all facilitate the coexistence of the environment
players and the interactions amongst them.

1. “Federation of Collaborative Design Agent”, a system that facilitates communication
among designers in A/E/C. Although this is not a comprehensive design environment I
elect to list it here because it is an effort to provide a structure for a comprehensive
design environment and it addresses some of the issues investigated in this thesis.
Ph.D. Thesis, Spring 2000 3

4

1.3 Problem and Proposal

The problem addressed in this dissertation is focused on the representation of
design objects and how applications can be modified to take advantage of the
proposed representation in a design environment. The key to the solution of this
problem is, I believe and one which I propose and describe in this dissertation,
lies in the augmentation of the representation of design objects through agency
behavior. It may seem, at first glance, that the development of computational
design environments is still at a stage where further enhancement of design
object representations is inappropriate or ahead of the game. However, I believe
that such augmented representation of design objects opens new needed
directions in the development of design environments and, therefore, this
research has been focused on the representation of design objects.

Typically, an expert application which represents domain knowledge of a real
world expert is an active player, while a design object which represents a real
world object is a passive player. Active players possess pertinent knowledge to
manipulate the passive players. In other words, agents manipulate objects.
Decision making is thus a characteristic of agents.

However, design environments made up of active and passive players typically
suffer from some of the following problems though headway has been claimed
towards their resolution, e.g., in the IMMACCS system [Pohl 99].

• elimination of rich sources of design information from local nodes2;

• difficulties to identify problem sources in their immediate settings;

• loss of capability to handle problems at the local level;

2. The IMMACCS (A Multi-Agent Decision-Support System), among other features in
the system, relies on an extensive shared representation of objects and their relations,
agents with reasoning capabilities, an object browser, and UI with customized views.
Modifications to this shared representation is continually updated and accordingly can
be viewed across the entire environment through the browser or in the customized
views. The browser and views, in this sense, provide direct access to the information
of local nodes (objects with their current attribute values and relations). However,
when an object own/related information changes, the object is not able to manage the
evaluation of its new state in respect to a single or multiple domains. It is the agents
(of each domain) who receive/gather the information (using the shared representation
and the extensive viewing mechanism) and then evaluate the new state of the object
and may accordingly initiate or recommend certain actions.
Problem Statement

• inability to handle design problems with a high level of abstraction, or the
need for relatively excessive information (which is mostly irrelevant)
while dealing with relatively smaller design problems.

In this dissertation, I propose to expand, in a specific way, the notion of
representing design knowledge to include the design object level. Passive
players (design objects) can be given active roles through agency. This does not
necessarily imply fragmentation of domain knowledge, but rather the
proportional distribution of knowledge among all members of a decision making
environment. In this sense, design objects can acquire agent behavior and,
therefore, can manage initiated and assigned tasks during a decision making
session. Mainly, these would interact with other environment agents to assess
their current situation and continually (or upon request) provide valuable
information to other agents of the environment. To make use of this stream of
local information, the main concern then becomes the coordination of the acts of
potentially large number of distributed decision makers.

As a short hand, I call a design object which is capable of performing such
activities an object-agent. What object-agents can do and when these can
participate in the decision making process are questions that are explored through
out this dissertation.

In a computational design environment, design objects represent the artifact
being designed at various levels of abstraction. To act as agents, these should be
endowed with task management and problem solving knowledge. A potential
benefit of this design object agentification approach is the enrichment of the
design environment with adequate information about the state of each design
object in respect to its performance requirements (see Chapter 5). In addition,
design tasks can be broken down into smaller self-regulating sub-tasks that are
easier to understand and manage. Such sub-tasks are distributed to the applicable
object-agents.

To illustrate the basic premise of the object-agent approach, in an architectural
design setting, consider a room, a domain object, that can find its required or
prototypical daylighting level from the architectural program (or a prototypical
database), and then, can interact with a daylighting application to evaluate its
current daylighting level. During the course of executing this daylighting
evaluation task the room decomposes the task to its openings (e.g., to determine
Ph.D. Thesis, Spring 2000 5

6

covered

visited

not covered

Issues addressed

FIGURE 1.1

A conceptual architecture of a
multi-agent environment and issues
of focus in this dissertation.
the amount of daylighting coming through each opening) and room surfaces
(e.g., for reflection). A window may be found to admit less daylighting than
anticipated due to its glazing type. Such detailed information can be
communicated to the designer to modify the glazing area or take another action
to increase the daylighting level of the room (e.g., resizing an existing window or
adding another). This type of domain object representation draws in a number of
related issues which must be addressed, for instance, the degree of agent
autonomy granted to an object-agent in such an environment. In the previous
example, one would have to address how, with reference to the room, is a
daylighting evaluation task initiated. By the room itself (as an object-agent)? or
be assigned to the room by another environment agent? Other issues such as the
planning of agent acts, the handling of agent conflicts, dealing with domain
object constraints, are each addressed in this dissertation.

1.4 Objectives and Method

The objective of this dissertation is to explore the potential benefits and
disadvantages, from a designer stand point, of adopting an object-agent approach
in a computational design environment. A consideration of this objective is to
develop a model for an object-agent design environment; another is to explore
the implications of engineering such a design environment.

Figure 1.1 illustrates a conceptual architecture for a multi-agent design
environment without further consideration to the specifics of each component.

application application application

database application server

client client client

Representation

Control

Communication

Conflict

Interface

Collaboration

Decomposition

(objects) (object-agents)

(designers)

(experts)
Problem Statement

The database stores objects, designers use client applications/interface to handle
objects and other applications. The application server deals with both objects as
passive players and object-agents as active players in dealing with client and
expert application requests.

The model has to accommodate an initial set of domain-objects and applications
and is, at the same time, expansive to new entities within the same framework.
This is achieved through multiple layers of development. To develop such model
for an object-agent based environment I use the following method:

• Developing a framework for a design object-agent based environment.
The framework is comprised of interaction categories. Each category is
identified by a set of members (e.g., domain expert agents, tools,
databases etc.) which interacts in a context. The players and the context of
interaction within each category is identified and discussed in Chapter 3.

• Identifying the patterns of interactions among the modules of the
framework. This is achieved through the development of a series of
general and domain specific scenarios of the object-agent interactions with
other environment agents (including the designer). In Chapter 4 scenarios
of interaction are captured in event-trace charts [Rumbaugh 91]. The use
of charts is enhanced to ease the process of algorithm development for the
reusable patterns of interaction.

• Developing a set of task handling algorithms that enable an object-agent
to manage the execution of its tasks in respect to the developed scenarios.
Algorithms for general object-agent tasks are described in Chapter 5.

• Engineering a detailed implementation design of such an environment
using object models and state diagrams following a rigorous object
oriented software methodology [Pree 95] and [Gamma 95].

1.5 Thesis Structure

The outline of the dissertation is as follow:

• Chapter 2 provides additional motivation for adopting an object-agent
approach in a computational decision making environment. Chapter 2
reviews the literature of agent environment developments and research
efforts, in particular those which attempted to enhance the representation
of objects to adopt more intelligent behavior. It also touches upon a
Ph.D. Thesis, Spring 2000 7

8

related field namely distributed artificial intelligence (DAI) since the
object-agent approach depends on the notion of distribution of activities
and decomposition of tasks.

• Chapter 3 outlines a framework of an object-agent based environment and
discusses the traditional role of design objects vs. the agentification of
design objects, which is a major focus of this proposal. It also presents the
theoretical view of the design problem solving activity that involves
multiple agents with various capabilities.

• Chapter 4 presents a series of general and domain specific scenarios of
agent interactions in an elaborate event-trace form. The event-trace charts
are followed by a step by step explanation which provides the bases for the
development of a set of interaction and task handling algorithms in the
following Chapter.

• Chapter 5 introduces a set of task handling algorithms that are
fundamental to object-agents. It also presents a dynamic mechanism for
task decomposition that can be used by the object-agents.

• Chapter 6 presents an implementation design of an object-agent design
environment using an object oriented software engineering methodology.
However, a full scale implementation of a design environment with the
object-agents requires team effort and is not part of the scope of this
dissertation.

• Chapter 7 identifies the research contributions and the research issues
raised by the object-agent approach that need further investigation.
Problem Statement

2 Review of Related Work
2.1 Background

The subject matter of this dissertation was proposed and presented in February
1993. At the time distributed artificial intelligence (DAI) and, in particular, the
notion of computational agency were emerging research fields. The proposal
included a literature review that was geared toward the application of DAI in
computer science and engineering design. DAI research has since expanded and
the notion of agency is widely adopted. There are multiple applications in use
for both research and commercial purposes. Therefore, it is neither important to
justify (or validate) the notion of agency in computational decision making
environments, nor it is necessary in this dissertation to review and enumerate
multi-agent research and application. Instead, design objects with agency
behavior are the main focus of this thesis. Accordingly, I provide, in this chapter,
a review of agency properties as defined in the literature, as these relate to objects
acquiring agency behavior. In addition, I provide a review of related research
that is concerned with the enhancement of object behavior, and how such object
roles relate and differ from other agents in multi-agent environments.

2.2 Agent and Agency

The Latin word ‘agans’ means ‘to act’. Accordingly, the word ‘agent’ is defined
as the producer of an effect, an active substance, a person or thing that performs
an action, or a representative. Tokoro [Tokoro 94] considers the later two
meanings of the word to best describe the word use in multi-agent research,
where an agent is “an individual that performs an action” and a multi-agent
system is “a system composed of multiple individuals which perform actions.”
Tokoro suggests that multi-agent research (with its two main fields, Distributed
Ph.D. Thesis, Spring 2000 9

10

Computational Agents
Problem Solving ‘DPS’ and Agent-Oriented Programming) mainly investigates
whether higher level tasks can be achieved by cooperation between multiple sub-
systems, each of which has lower ability.

There are no rigorous principles about what constitutes an agent or how an agent
should behave. Most dictionary definitions embody three senses of agency: as an
actor with the power to act, as an assistant with the power to represent, or as an
instrument with the power to effect. Most computational agent definitions
require an agent to be ‘situated’ in an environment from which it receives
perceptual input and which it affects by acting autonomously to achieve goals.
To cause an effect, agents takes action. Wobcke makes this clear:

Actions are distinguished from mere random behavior in that action is
goal directed whereas not all behavior need be. The clearest cases of
action involve deliberation, choice intention, and subsequent execution
of an intention, but not all agents have intentions [Wobcke 97].

Daniel Rasmus suggests that, in a network of agents, an agent must include
reasoning capability, embracing beliefs, goals and commitments [Rasmus 95].
The main characteristic of agency (and one which is emphasized throughout this
dissertation) is the ability to accomplish self-initiated or assigned tasks. Such
assigned tasks are often the result of a decomposition of a larger task and
distributed among agents:

Within its limited domain, an agent will try to accomplish a task. It may
be a sub-task of a larger task that a knowledge broker distributed among
its brethren, or it may be a simple task like scheduling a meeting [Rasmus
95].

Agent environments should be so designed that the collective efforts of agents
toward executing their tasks lead to achieving higher goals. Again, Rasmus
makes this clear by the following paragraphs:

Agents don’t do very much as individuals. They know how to schedule
a meeting, buy a ticket, or cut a deal for a conference room. They may
be the part of some larger conceptual system, eventually aggregating into
a material requirements planing system or electronic data exchange
system, but as individual bits of knowledge, agents live restricted
existences.
Agents need more than an operating system for survival. They require
cooperating partners, information sources, and end users. A given set of
agents performing a given set of tasks in a given company, end up
working in a digital biome [Rasmus 95].
Review of Related Work

Steiner et al.[Steiner 93] discuss the definition of agent in IMAGINE (an
Integrated Multi-AGent INteractive Environment), where an agent may represent
software, human or a combination of both. Their definition relies on three
characteristics: rationality, cooperation and reactivity:

Rational Agent: An agent should structure its behavior in a way that, as
it reasons, will optimally satisfy its goals. The exact definition of
optimality is dependent upon the type of goals of the agent and its ability
to reason about achieving them.
Generic Cooperation: When several agents cooperate, they should do so
in ways that are, in important respects, independent of particular domain.
Reactivity: The architecture of an agent should be such that it can react
in timely fashion to changes in the environment [Steiner 93].

Steiner et al. further draw a distinction between agent tasks and goals, and
assumes that an agent will carry out a task, only if it thinks it leads towards a goal
(defined as a description of a future state of the world). In fact the authors tie the
existence of an agent to the existence of a goal:

In the simplest model an agent comes into existence with one goal; it
derives a course of action, that is a plan, to achieve that goal; it executes
the plan; it terminates [Steiner 93].

For an agent to carry out more than one goal Steiner suggest that a more complex
taxonomy is needed.1 According to the rational agent characteristic, the agent
may have various ways to select how to reach to a goal. In a multi-agent
environment goal decomposition and task delegation may be the only way an
agent may reach a goal:

Agents in multi-agent systems may find that optimal means (from their
point of view) to reach their goal is to get other agents to carry out certain
actions. The process of several agents working out a future course of
action together and carrying it out is how we define cooperation [Steiner
93].

Goals are activated either internally, when an agent react to events in the
environment, or externally, when an agent responds to requests. The Steiner et
al. model uses goals to direct the firing of actions in a more deliberative planning

1. Since such goals can be conjunctive (when goals conflict with each other), negative
(when goals depend on properties that is no longer valid), temporal (when goals
depends on agents ability to reason about time), sub-goals (when goals describe a
subset of another goal), or predecessor (when goals represent an intermediate state to
the ultimate goal).
Ph.D. Thesis, Spring 2000 11

12

Agent models
process. Accordingly, the agents must be provided with planning capabilities to
allow them to build plans for given goals. Such planning capabilities vary in its
degree of sophistication where “reactive agents may have predefined plans
linking their goals immediately to the corresponding tasks.” Such predefined
plans are based on certain key events in the world and an appropriate reaction to
them.

Agency can be defined by linking the notion of goals to the ability to perform
actions. Wobcke proposes that:

Agency is best understood as self-controlled goal-directed activity,
where the notion of action being under the control of an agent is
intimately tied to the agent’s ability to perform that action successfully
under normal conditions [Wobcke 97].

The ‘normal’ conditions referred to in Wobcke’s proposal is determined by the
context of the action taken (or the situatedness). Wobcke does not subscribe
entirely to the view that agent ability rests on the repeatability and reliability of
the agent to perform an action, nor that the action and its outcome must be
completely under the agent’s control. Instead, Wobcke requires that the action:

• normally succeeds when it is attempted by the agent;

• is only under the control of the agent if the agent can influence the
outcome of the attempt;

• be within the control of the agent in the sense that it is within the agent’s
power not to do the action (or at least it is possible that the agent cannot do
the action).

Wagner proposes a model of an agent based on agent actions. He lists five basic
transitions of what he calls ‘vivid agent system’, namely, perception, reaction,
planning, action and replanning:

A vivid agent is a software-controlled entity whose state is represented
by a knowledge-base and whose behavior is represented by means of
action and reaction rules [Wagner 96].

Wagner further emphasizes the difference between action and reaction where
agent actions are deliberatively planned in order to solve a task or to achieve a
goal, while agent reactions are triggered by perception and communication
events. An agent needs to react when environmental circumstances demand
action. Werner argues that traditional planning approaches are not suitable for
Review of Related Work

agents since planning needs time, instead reactive strategies are more appropriate
to enable an agent to deal with given circumstances [Werner 94]. The
complexity of such strategies should correspond to the complexity of the
problems that the environment agents are required to deal with. In other words,
the complexity of the environment mirrors the complexity of its agent reactions
(which in turn represents a higher level reasoning).

In an elaborate research effort to identify the characteristics of an agent, Foner
reviews the behavior of a prototypical ‘Mud’ agent (a multi-person text-based
virtual reality agent) known as ‘Julia’2 [Foner 93]. Julia was found to satisfy
most of the agency properties identified by Foner. I summarize these properties
here:

• Autonomy: where periodic action, spontaneous execution and initiative
enable an agent to independently pursue an agenda of tasks.

• Personality: where learning and memory enable an agent to improve its
ability to handle tasks across time.

• Discourse: where an agent shares the user’s agenda about what and how a
task should be executed (resembling a contract about what is to be done).

• Cooperation: where an agent collaborates with the user rather than
receiving commands.

• Risk and trust: where a balance between trust and risk is necessary since
the notion of task delegation implies both believing that an agent can
perform a job but in the same time involves relinguishing control where
mistakes can be costly.

• Domain: where the seriousness of the delegated task requires a relative
degree of trust (risky domains require more robust agency behavior).

• Graceful degradation: where an agent should strive to execute a task or a
subset of the task in case of communication or domain mismatch.

• Expectations: where user expectations from an agent should not exceed
agent ability to perform especially in dynamic domains where goals,
means and tasks are constantly changing (and therefore the balance
between risk and trust is harder to achieve).

2. Developed by Michael Mauldin at the Center for Machine Translation at Carnegie
Mellon University, Pittsburgh PA.
Ph.D. Thesis, Spring 2000 13

14

Commitment
• Anthropomorphism: where an agent depicts human behavior. Though
agency does not imply a need for anthropomorphism and not all entities
that claims such behavior are considered agents.

It should be noted that not of all of these properties are pertinent to agent-based
decision making environments. In this dissertation, I consider autonomy,
cooperation, domain and expectation.

The notions of discourse, risk and trust, domain, graceful degradation and
expectations overlap with a widely accepted notion in the multi-agent world
known as ‘commitment’ from an agent to another and is held with respect to
some goal. Wooldridge and Jenning [Wooldridge 95b] draw distinction between
two commitment related concepts, ‘commitment’ and ‘convention’. They define
commitment as a pledge or promise, while convention is a means of monitoring a
commitments. A convention specifies both the conditions under which a
commitment can be abandoned. This is identified as an important property of
commitment called ‘commitments persist’, that is:

Having adopted a commitment, we do not expect an agent to drop it until,
for some reason, it becomes redundant. The conditions under which a
commitment can become redundant are specified in the associated
convention- examples include the motivation for goal no longer present,
the goal being achieved, and the realization that the goal will never be
achieved [Wooldridge 95b].

Durfee et al. [Durfee 92] add another dimension to the notion of commitment,
that is, an agent should not only be concerned of how it models other agents but
also should consider how it is modeled by other agents. It is of interest to an
agent to influence how other agents model it (since an agent takes actions based
on its models of the others). During agent interactions, if other agents have a
better model of an agent (closer belief about its capabilities and interest) the
expected commitment of that agent (or the type of assigned tasks) is more likely
to be fulfilled. Models that survive for longer periods of time are typically more
abstract:

By propagating more abstract models of itself, an agent commits itself to
fewer specifics, and thus retains more flexibility in the face of its
dynamic environment.
Of course, being overly abstract will sometimes make coordination
inefficient.
The degree to which the models provide enough information to lead to
Review of Related Work

effective collective interactions determines the coordination
performance [Durfee 92].

Durfee et al. suggest that an agent can dynamically influence how it is modeled
by other agents through control of its communications and observable actions.
By engaging in a ‘flurry of communication/observation,’ agents may modify
their models of each other. The rate by which such modifications take place is
variable. Durfee et al. describe four different rates of dynamic modification;
reactive planning, rescheduling, replanning, and legislation. The four
modification rates represent a common hierarchical space of agent behaviors. In
reactive planning, agents formulate new action to take based on constant
observations; in rescheduling, agents react to a change in schedule; and in
replanning agents develop new joint plans in response to unexpected states.
Legislation requires new rules of interaction. Durfee et al. conclude that an agent
must be able to commit to a range of interactions without necessarily specifying
details. Accordingly, an important goal in modeling agents is to allow them to
decide dynamically how to best coordinate their actions.

In a later research effort, Singh discusses the notion of commitment in
information-rich environments and shows that commitment is acquired by agents
as a consequence of adopting a role [Singh 97]. His research is focused on
developing abstractions for building flexible cooperative information systems
(CISs) to the standard robustness of traditional systems. He presents the pros and
cons of using interacting agents in open information systems vs. traditional
database transactions and extended (or open) database transactions. The problem
of structuring computations in open information systems leads Singh to argue
that commitment is essential to help coordinate and structure multi-agent systems
achieve coherence in their actions.

The main problem is to structure activities in a manner that can respect
the autonomy of the information resources. The database approach are
restrictive. The agent approaches are flexible, but there is need for tools
and formal approaches for designing them. In particular, there is need
for a notion of commitment that flexibility reflects the organizational
structure of how agents interact [Singh 97].

Singh presents an approach called ‘Spheres of Commitment’ (SoCom)3. In
SoCom, agents interact by forming commitments toward one another.
Commitments are formed in a context, which is given by the enclosing CIS. A
commitment comes with specification of how it may be satisfactorily discharged
Ph.D. Thesis, Spring 2000 15

16

Planning and
reactiveness
and a specification of how it may be canceled (i.e., concomitant commitments).
The act of joining a CIS (by an agent) corresponds to creating commitments.
Agents must make sure that they have the capabilities and resources required to
take any additional role and its concomitant commitments.

The above views of commitment as a property of agency lead to the belief that a
representation of an agent must include, at its minimum, the notion of a ‘task’ as
a form of agent commitment. And, in turn, a representation of a task must
include representations of both a ‘goal’ and a ‘result’ to provide the means to
achieve commitment monitoring. Such representation issues are considered in
Chapter 6 which relates to implementation design.

Planning is another property of agency that depends on agent ability to reason
about other agents. Russel and Norvig [Russel 95] explain how an agent may
reason using first-order logic. They identify five capabilities which must exist in
such an agent; reaction, abstraction of states, maintenance of internal models of
relevant aspects of the world, sorting and relating actions to circumstances, and
using goals in conjunction with knowledge about actions to construct plans.
Russel and Norvig share the belief that in multi-agent domains, it becomes
important for an agent to reason about the mental process of the other agents.

In effect, we want the model of the mental objects that are in someone’s
head (or knowledgebase) and of the mental processes that manipulate
those mental objects. The model should be faithful but it does not have
to be detailed [Russel 95].

Russel and Norvig then discuss alternative representations of mental objects.
They introduce the term ‘propositional attitude’ that associates with agents
behavior such as ‘believes’, ‘knows’, and ‘wants’ in relation to other agents.
They present a model based on an approach called ‘syntactic theory’ where
strings written in a representation language represent such mental objects. The
argument considers three different directions to enhance the representation of

3. SoCom relies on an older notion used by the database community known as ‘Spheres
of Control’ (SoC) presented in [Davies 78] and re-visited in [Gray 93]. SoC attempts
to contain the effects of an action as long as there may be a necessity to undo them.
The entire execution history is maintained and its rolled back to undo the effect of
committed activities then rolled forward to redo the necessary computations. Singh
[Singh 97] argues that a draw back in SoC, as a data-centric approach, is that
commitment depends solely on the computation that commits, not on the interplay
between the two ends of the commitment, a drawback which favors the notion of
multi-agent environments.
Review of Related Work

mental objects. First, it is unrealistic to expect that there will be any real logical
agents and accordingly define limited rational agents which make limited number
of deductions in a limited time. Second, axioms for other propositional attitudes
(based on a common definition that ‘knowledge is justified true belief’), in which
case a representation of ‘knows what’ would include an agent, a term and a
predicate that must be true to answer. Finally, propositional attitude changes
over time and accordingly introduce a representation of time.

The purpose of such models is to make an agent useful by helping an agent to do
some actions it could not have done before or to chose better actions when
executing tasks. Actions have ‘knowledge preconditions’ and ‘knowledge
effects’. Russel and Norvig draw an important deduction, which supports an
important notion presented in this thesis: each action has its own requirements on
the form of the knowledge.

Chaib-Draa and Levesque categorize the types of interaction among agents based
on the situation; routine situations, familiar situations and unfamiliar situations
[Chaib-Draa 94]. They argue that reasoning about other agents is mainly needed
when agents face unfamiliar situations. In such events, agents rely on intensive
communications when they do not succeed in making decisions about what to do
next with other agents. Such arguments assume that coordination is more
important in routine situations (where agent behavior is governed by ‘stored
patterns of predefined procedures, that map directly from perception to an
action’, known as skill-based level4), or in familiar situations (where agent
behavior is governed by ‘a set of heuristics, that is a set of stacked rules’, known
as rule-based level), while communication is more important in unfamiliar
situation (where agent behavior is governed by ‘goal and utility and more
generally by reasoning about others’, known as knowledge-based level).
Accordingly, the authors suggest that:

Agents should prefer low levels (i.e., routine and familiar situations) than
high level (i.e., unfamiliar situations). The reason is that low levels are
fast, effortless and are propitious for coordinated activities between
agents, whereas the high level is slow laborious and can lead to conflicts
between agents [Chaib-Draa 94].

4. As described by Rasmussen [Rasmussen 86] in his skill-rule-knowledge levels which
define the hierarchical models of human behavior and reasoning techniques.
Ph.D. Thesis, Spring 2000 17

18
In multi-agent environments autonomy leads to uncoordinated activities due to
the uncertainty (or ignorance) of each agent’s actions. Therefore, to support
harmless autonomy, the notion of ‘known about the others’ should be considered
as an integral part of agency in multi-agent environments (since the ability of an
agent to initiate actions can be hampered by not knowing about the other agents
abilities and actions). However, the Chiab-Draa and Levesque argument
suggests that the importance of the notion of ‘knowing about others’ can be
scaled down in environments where unfamiliar situations are minimized or
designed not to be handled solely by the computational agents (e.g., in systems
designed to allow human intervention in unfamiliar situations such as conflict).

Wooldridge and Jennings support the notion that agents as ‘intelligent reactive
systems’ need to know about the abilities, skills and interests of the other agents
of the environment, especially when they have goals that depends on the existing
of such community members [Wooldridge 95b]. In a later publication Jennings,
Sycara and Wooldridge present an overview in agents and multi-agents systems
in which they present an adopted definition of an agent [Jennings 98]. They
consider three main concepts: situatedness, autonomy and flexibility; and,
accordingly, define an agent as:

A computer system, situated in some environment, that is capable of
flexible autonomous action in order to meet its design objectives
[Jennings 98].

According to them, ‘Situatedness’ means that the agent receives sensory input
from an environment that it is situated in (such as the internet) and that it can
perform actions which change the environment in some way. ‘Autonomy’ means
that the agent should be able to act without direct intervention of humans (or
other agents), and that it should have control over its own actions and internal
state. Learning from experience is a stronger sense of autonomy that is
acknowledged by the authors but not considered necessary. ‘Flexible’ means that
an agent is first; responsive in a timely fashion to changes that occur in its
environment, second; pro-active, meaning to be able exhibit opportunistic, goal
directed behavior and take initiative where appropriate, third; social, meaning to
be able to interact with other humans and agents to complete their own problem
solving and help others with their activities. The authors do acknowledge other
aspects such as mobility and adaptability that are considered by other researchers
as properties of agency, but believe that the essence of agency is captured by
these three key concepts: situatedness, autonomy and flexibility.
Review of Related Work

Patterns of
interaction
An object-agent, as proposed in this thesis, should exhibit a wide range of social
and responsive behavior as described above, however, pro-activeness (or
initiating actions on its own) depends to a large degree on the ability to interpret
sensed information from its environment. In a design environment, with
thousands of design objects, many changes can be interpreted as closely related
information which may require a large number of agents to initiate actions (such
as re-evaluation of own state in respect to the environment changes). Therefore,
I consider that filtered or controlled agent pro-activeness are more appropriate in
design environments. Filtered or controlled pro-activeness, in turn, reduces the
degree of autonomy an agent enjoy (see discussion on object-agent autonomy in
design environment in Chapter 4).

Jennings distinguishes multi-agent systems from other software paradigms (such
as object-oriented systems, distributed systems, and expert systems) by the
complex patterns of interaction that may take place among agents of such
characteristics:

Multi-agent systems are ideally suited to representing problems that have
multiple problem solving methods, multiple perspectives and/or multiple
problem solving entities. Such systems have the traditional advantage of
distributed and concurrent problem solving, but have the additional
advantage of sophisticated patterns of interactions. Examples of
common types of interactions include: cooperation (working together
towards a common aim); coordination (organizing problem solving
activity so that harmful interactions are avoided or beneficial interactions
are exploited); negotiation (coming to an agreement which is acceptable
to all parties involved). It is the flexibility and high-level nature of these
interactions which distinguishes multi-agent systems from other forms of
software and which provides the underlying power of the paradigm
[Jennings 98].

Lyons and Hendriks [Lyons 95] discuss the importance of extracting the inherent
patterns of interaction among the environment agents for re-use by the agents to
achieve their objectives. They present an approach which allows an agent to
dynamically ‘exploit’ such interaction patterns to achieve reactive behavior. The
notion of reusing interaction patterns is emphasized later in this thesis for the
purpose of developing the interaction protocols to be used by objects acquiring
agency behavior (see Chapter 5).
Ph.D. Thesis, Spring 2000 19

20
2.3 Objects vs. Agents

Luck and d’Inverno presented a three-tiered hierarchy of entities comprising
objects, agents and autonomous-agents [d’Inverno 96]. In this hierarchy, an
‘action’ is a discrete event which changes the state of the environment; an
attribute is a perceivable feature; a ‘goal’ is a set of attributes that describe the
state of affairs in the world; a ‘motivation’ is any desire or preference that can
lead to the generation of and adoption of goals and which affects the outcome of
reasoning or behavioral task intended to satisfy those goals. Accordingly, the
three-tiered hierarchy defines an ‘object’ as an entity with a set of attributes and
capabilities to take actions; an ‘agent’ as an object with a set of goals and finally
an ‘autonomous agent’ as an agent with a set of motivations. In particular, an
autonomous agent is any agent which has its own set of motivations.
Motivations are non-derivative and governed by internal inaccessible rules, while
goals are derivative. In this sense, performing an assigned task is adopting goals
of other entities of the environment. This hierarchy narrows the gap between the
notion of objects and the notion of agents, and assumes that an agent is an object
with goals. However, it stops short from formalizing the dynamic transformation
of an object to an agent status as proposed in this thesis.

Jennings, Sycara and Wooldridge [Jennings 98] describe objects (in object-
oriented programming) as “entities that encapsulate some state, are able to
perform actions, or methods on this state and communicate by message
passing.” Accordingly they provide three arguments to differentiate between
objects and agents. The first argument is around the degree of autonomy and in
particular around the self-control over its own behavior. The argument suggests
that even though encapsulation provides an object with a degree of control over
its own state the notion of public methods (or public instance variables), where
other objects can invoke, limits the object control over its own behavior.
Normally, in an object oriented system this drawback can be remedied if the
objects in the system are designed so that their methods can only be accessed by
objects that share common goals with them. However, in a multi-agent system,
where agents may be designed by different developers such common goals may
not exists, and therefore, agents must have more control over their own behavior
“they do not invoke methods upon one-another, but rather request actions to be
performed.” In other words, the decision of what to perform is a property of the
agent receiving the request while in an object case it is a property of the external
object invoking the method. The authors acknowledge that a multi-agent system
can be implemented using object oriented techniques where a layer of control can
Review of Related Work

be added to the object methods to provide the objects with more control over its
own behavior and thus a stronger degree of autonomy but autonomy is still “not a
component in the basic object oriented model.”

The second argument is drawn around the agency notion of being ‘flexible’ with
its three elements of autonomous behavior (reactive, pro-active, social).
Standard object models are not designed to accommodate such behavior (even
though it can be implemented to emulate such behavior). The third argument is
that each agent has its own thread of control, so a multi-agent system may
contain multiple threads of control executed concurrently, while a standard object
model has one thread of control (again multi threaded programming for object
models are available in some languages, such as Java, to support concurrency,
but that still does not capture the idea of agents as autonomous entities).

Rasmus describes agents as a form of objects with the ability to utilize the
resources of environments’ they live in:

Agents turn out to be specialized objects running in a common
information environment. Because they are likely to consume and
redistribute information, exist in communities, and become subject to a
form of natural selection, it would be valuable to introduce some organic
metaphors that help define agents and their environments [Rasmus 95].

Accordingly, Rasmus draws similarities between the concept of agent
environments and bacteria, where agents interact with the host without being
completely part of it, and ‘exploit their hosts’ native capabilities to compensate
for internal deficiencies. For instance, access to databases might be provided by
Information Builders EDA/SQL, the agent, then, would not require constructs for
SQL, but would use whatever SQL the host employs.

As a second distinction from objects Rasmus suggests that not all agents are
necessarily fully formed upon creation. Agents, in some cases, will have the
capability to learn new rules that apply to their tasks, or will have the ability to
exchange or search for such rules in order to satisfy their changing goals or
circumstances. Such a characteristic, in the first glance, seems to suite multi-
agent environments where constant goal changing is a common behavior, such as
design environments (see Chapter 3 for further discussion about design
environments characteristics).
Ph.D. Thesis, Spring 2000 21

22
The last example I review is taken from an agent related project from a School of
Architecture. Based on the notion of an intelligent object, Schmitt [Schmitt 94]
and Smith et al. [Smith 96] present a design system called ‘Interactive Design
using Intelligent Objects and Models’ (IDIOM). The intelligent object in IDIOM
is defined as:

An intelligent object is a part of real case which can be interpreted for
each new design task using models of their function, behavior and
structure. Models provide explicit representations of physical principles,
thereby avoiding the brittleness associated with traditional rule based
systems [Smith 96].

The development of IDIOM depends on a prototype for an interactive multi-
agent interface named ‘Sculptor’ [Engeli 96] where design objects contain
elementary forms of agency. Conceptually, the objects in Sculptor (essentially
simple polyhedra) provide reactive, autonomous, and interactive behavior.
Reactive behavior is demonstrated by the objects in the form of falling because
of gravity or in collision avoidance with other object. Autonomous behavior is
represented in motion and transformation where objects can change their position
in three dimensional space over time. The interactive behavior is represented in
the communication capabilities of the objects among themselves.

In principal, Sculptor objects did enjoy little of the agency behavior discussed in
the earlier sections of this chapter, however, they stop short from being agents
due to the lack of object knowledge and autonomy to initiate or decompose and
delegate tasks. In addition, they only enjoyed limited ability to conduct complex
interactions with the designer or the rest of the environment agents. This was
certainly realized by the authors who conclude that the next step for Sculptor is to
turn its objects into design agents that can be guided by the designer.
Review of Related Work

3 Framework of an OA-Based Environment
3.1 Functions of an OA-Based Design Environment

In a computer-based design environment, design objects are treated as
information entities without ability to initiate actions external to their domain.1
The designer (DA2) models the design state by manipulating design objects
whereas expert-agents (EAs3) (e.g., cost-agents, structural-agents, acoustic-
agents) evaluate the individual or collective performance of the design objects,
based on the design information represented in the model and the prototypical
information available in the databases or provided by the designer. Accordingly,
EAs may warn about performance paucities. Advanced EAs may be capable of
recommending and even carrying out the implementation of recommended
changes to the design objects (i.e., their attributes or relations).

The proposed approach based on object-agents (OAs) supports design through
interactions among designers and a group of design agents in the course of
developing a model. The approach suggests that the design objects (referred to in
this thesis as data-object or DOs) themselves can be made responsible to perform
and manage various design tasks to assist the DA in making various design
decisions.

1. The object methods in an object oriented implementation environment are typically
geared toward the manipulation of the object’s internal data (or linking internal data
with internal data of other objects).

2. The designers are treated as distinct agents and are collectively referred to as the DA
(see also footnote 3).

3. The definitions and terminology used in this chapter is given in the glossary (see
Appendix A).
Ph.D. Thesis, Spring 2000 23

24

Changing states vs.
 producing solutions

 Evaluation
The single most important question that must be addressed is: what can be
achieved in such an OA-based design environment ?

“a CAD tool, AI-based or not, should always be seen as a complement to
human designers that assists them in tasks where they perform less well,
but does not compete in areas where they are doing just fine (as many
recognition tasks) or where automation is hard to defend for reasons of
principle (as in matters of judgment)”

Flemming [93]

The proposed OA-based design environment is not intended to automate the
design process, instead it is to support the DA by providing adequate information
about the current design state, its DOs and their relations and how they satisfy the
design requirements. The concept of objects endowed with agency provides the
DA with adequate information. An environment where OAs are able to
incrementally obtain information (through the interaction with other agents) that
is most relevant to their immediate tasks provides the DA with rich facilities for
the incremental development of the design state.

The continuous change of the state of the design objects is required until the
current state is considered to be acceptable by the DA. The intention of such an
environment is not to provide the DA with an optimum solution for a given
design problem, instead, it is to incrementally change the current state of the
design through the interaction among the various agents within the environment.

The OA representation is intended to provide the DOs with properties of agency
to allow them (when required) to interact and manage other environment agents
to carry fundamental design tasks such as evaluation, recommendation,
generation, conflict handling, and implementation concerning its own attributes
in respect to expected performance.

The DOs can be activated to provide various evaluations of their current state
upon DA request. Evaluation tasks may be limited to the collection of the DOs
factual information or could be extended to the assessment of the expected
performance of the DOs in respect to the specified design goals and
requirements. The later evaluation task requires a search for the DOs’
performance requirements (prototypical or DA specified) and computations of
the current performance values. In this sense, an OA interacts with the
environment agents (e.g., DA, SAs) to obtain performance requirements
(prototypical, DA specified or represented in the model in various forms such as
Framework of an OA-Based Environment

 Recommendation

 Generation

 Conflict handling
constraints networks). The OA then interacts with the EAs which assess the OA
performance based on the information provided by the OA and in respect to
specified requirements. This dissertation focuses on the evaluation tasks as its
means to illustrate the approach advocated.

Upon DA request, the OA may extend the evaluation session to obtain
recommendations from the EAs (i.e., to suggest necessary changes to the OA
state in order to meet the performance requirements). If all recommendations
have been, exhaustively, considered and the OA still does not meet its
performance requirements, the OA may request a DA interference to either relax
the performance criteria or suggest changes that may assist the EAs involved to
produce acceptable recommendations.

If there are generative agents, the DA may interact with such generative-EAs to
generate new alternatives. Recommendation can be viewed as a limited form of
generation. However, recommendation, in a general sense, is the generation of
instructions of how the current state can be modified toward a goal state while
generation is the complete production of alternative states.4

Recommended modifications of attribute values should be checked for potential
conflicts before they are implemented. The OA should provide the DA with a
list of DO attributes and EAs with interest in the attribute values subject to
modification. Each attribute of a DO has a list of other DO attributes and EAs
that are interested in the value of such attribute. The interest in any attribute is
either registered by the EAs or specified in the DO class (during the creation of
the class), or by the DA in the task dependent hierarchy.5 For instance, a
daylighting-EA may be linked to a window glazing area; for any change in the
value of this glazing area, the DA should be provided with a list that includes, but
not limited to, the daylighting-EA (for potential conflict over the new glazing
area). The DA may make use of such information by either modifying the

4. The generated states can be searched, optimized or tested against a goal state. If the
generative-EA adopts a constraint generation mechanism the generated states are valid
states (in respect to the requirements of the goal state which is implicitly represented
by the constraints).

5. See A.5.12. See also Chapter 5 for more details on how the interest of a DO attribute in
another DO attribute is registered. Basically, attributes of DO types are linked to
attributes of other DO types by default or by DA specifications (who can also link
attributes of selected instances of DOs). Attributes of the same DO class may also be
linked.
Ph.D. Thesis, Spring 2000 25

26
recommendations to avoid potential conflicts with interested DOs and EAs,6 or
by ignoring the list and request the OA to implement the current
recommendations. To deal with potential conflicts, the DA will have to request
further information about such conflicts, in which case the interested DOs7 may
be activated to evaluate their performance in respect to the recommended
change. Conflict detection is therefore the beginning of a conflict handling
session.

After the potential conflicts are identified, upon DA request, a conflict
resolution session is run. That is, a conflict resolution is a series of local
bilateral evaluation sessions involving the interested DOs and EAs where the
decision maker examines various DO attribute values to either resolve the
conflict or reach an acceptable state of all the parties involved. Each evaluation
session involves the decision maker and one of the interested parties. Evaluation
results are communicated to the decision maker, no direct communication
amongst the interested parties regarding the conflict is permitted. Validating the
conflict resolution results is the sole responsibility of the decision maker.

The DA may reduce the potential conflicts through the control of tasks being
executed, DO relations and hierarchies and DOs’ lists of interested DOs and EAs
(referred hereafter as interestlist). This is conflict control or prevention. The
DA should be in control of such conflict handling session (detection and
resolution) to eliminate the exponential number of DOs that can be brought into
the conflict handling session. Each change in a DO attribute may invoke a
number of interested DOs, each of which may accordingly result in changing
other attributes values to balance its own performance in respect to other domain
requirements. This in turn, may trigger other conflicts and may require the
involvement of more DOs and EAs. A large number of DO activations may
occur in response to an initial conflict which can cause dependency locks and
infinite loops of task assignments or conflict handling sessions. The DA can
avoid such situations by limiting the:

• evaluation domains (e.g. daylighting, cost) involved in each session;

6. Detection of conflict is implementation dependent. For instance, if the representation
of the DO attributes and relations maintains a constraint network, conflicts can be
detected as soon as a propagated constraint violates an existing one. The notion of
interested DOs and EAs is specific to the framework presented in this dissertation.

7. Including the DO of the OA that is currently executing the task (only if an attribute of
the DO are cross registered in the list of the attribute being modified).
Framework of an OA-Based Environment

• involved DOs (or OAs);
• the depth of layers of interested DOs in respect to the conflict in hand (i.e.,

how many layers of interested DOs to be involved in the current session).

In fact, successful bilateral resolution sessions are not always sufficient for
resolving conflicts, especially when an indirect conflict is triggered by a bilateral
conflict session. For instance, resolving a conflict between a cost and a lighting
agents over a window glazing area (e.g., enlarging the glazing area, within the
total budget, to admit more lighting) does not insure that the total cost is still
within the budget. A thermal agent (not involved in the original bilateral conflict
session) may find that enlarging the glazing area increases the heating and air-
conditioning load which, in turn, requires a more expensive mechanical system
that causes the total cost to be above the budget. The thermal agent may
accordingly try to reduce the glazing area of the same window erasing the result
of the original bilateral conflict resolution session. Such chain effects can be
automatically detected by the system if the history of the conflict session is
stored. However, conflict handling requires OAs and EAs to have certain
capabilities, a rigorous treatment of which is beyond the scope of this thesis.
These capabilities include the continuous monitoring of certain events in the
environment or the continuous communication with interested agents and DOs.

Conflict detection does not necessarily require the agents to be aware of the tasks
and capabilities of the other parties (i.e., agents involved in the same conflict); on
the other hand, direct negotiation does. Agents involved in a direct negotiation
process should be aware of the other parties needs and goals. OAs in this sense
should obtain planning capabilities that are external to their local coordination
knowledge. Conceptually, the OA approach does not impose any restrictions on
direct negotiations between the agents. However, within the framework of this
thesis, negotiation is only conducted through the DA. That is, complex
negotiation between OAs is prohibited; however, OA communication is
encouraged. OAs may detect conflicts on their current (or recommended)
attribute values and may report it to the DA (only if the DA elects to be informed
of the conflicts resulting from performing the assigned tasks). To resolve a
conflict the DA may change conflict parameters by modifying the evaluation
criteria or the current state of DOs (modifying attribute values, removing or
introducing new DOs). After various local evaluation sessions changing the
above parameters the DA may choose to temporarily or permanently adopt the
current DO state with its unresolved conflicts.
Ph.D. Thesis, Spring 2000 27

28

 Implementation
 Upon DA validation of any recommendation or the successful termination of a
conflict handling session, the DA may implement or ask each OA involved to
carry the implementation of any recommendation concerning its own attributes.
To implement a recommendation (e.g., change a window dimension) the OA
interacts with the CAD-agent and provides the new attribute values (e.g., new
window height) or the attribute values of the new related DOs to be placed (e.g.,
select a shading device from the DO library for the window).

3.2 Agent Interactions

The creation of OAs to perform various task types depends to a large degree on
the ability of the OAs to interact with the different agents of the environment. I
consider five functional categories of interaction: activation, query, decision
support, interface, database. The players involved in the different categories are
illustrated in Figure 3.1. Each functional category is shaded differently and
reflects possible agent types involved in its operations and their possible
relationships. Three types of relationships are identified. The first two types
represent direct interactions.

• Two-way relations between agents, where an agent may ‘inform’ or
‘request’ information or ‘assign’ tasks to the other.

• One-way relations between an agent and an entity (e.g., DO, database),
where an agent may ‘request’ information, ‘update’ or ‘manipulate’ the
entity information.

• Secondary relations which represent the relation ‘has access’ to
information. These are referred to as secondary since they do not
necessarily represent interactions. For instance, the relationship between a
CAD-agent and a DO database is an example of a secondary relation.

It is instructive to note that not all agents are involved in all categories of
interaction. For example in activation the data-base and query-agents do not
have role. Likewise, in decision support the OAs play a role whereas the
corresponding DOs do not. Only in query and interface interactions might all
types of entities concurrently play a part.

I look at two categories: activation and decision support; and one aspect of the
interface category: communication.
Framework of an OA-Based Environment

two way relation

one way relation

secondary relation

activation

query

decision

database

interface

FIGURE 3.1.

Categories of interaction of an
OA-Based Design Environment

 Activation
3.2.1 Activation

Activation is essential to any OA-based environment. There are four main
functions: activating a DO, deactivating an OA, loading an EA, and unloading an
EA.

The activation of a DO is the creation of an OA which represents the DO in any
interaction that requires agency behavior. The OA contains a copy of the DO
attribute values, relations and a copy of the behavior expected from this DO type
(e.g., problem solving protocols), and all the properties of agency planted in an
OA (Chapter 6 contains detailed description). The created OA acts on behalf of
the DO performing tasks assigned to the DO and reporting to the DA and other
interested agents when required.

Agent

Activation
Agent

(DO)
Data

Object

Agent
Interface
Agent

(DA) Designer

(UA)(UA)
CAD

Object
Agent

(OA)(EA)

Data
Base Query

(EA)

Agent

(EA)
Expert
Ph.D. Thesis, Spring 2000 29

30

 Deactivation

 Loading

 Unloading
The deactivation of an OA is the termination of the OA upon the completion of
all assigned tasks. Updating of the DO (i.e., the DO attribute values and
relations), informing interested parties with any updates, and informing the DA
of any potential or detected conflicts in respect to the updated information, must
all be completed prior to termination.

Loading an EA is to invoke the EA in the current session. In an architectural
design session the DA may need to temporarily work with set of selected EAs or
a single EA, say the lighting-EA to evaluate the current lighting performance of a
room, the DA may then load the lighting-EA and unload8 all other EAs.

Unloading is then revoking an EA from the current session. An EA cannot be
unloaded if it is involved in any task currently being executed.9

Activation operates in two modes:

• In the DA mode, the DA requests the activation or the deactivation of an
OA or EA. The request takes place through the CAD-agent or an
interface-agent and are executed by an activation-agent.10

• In the OA mode, an OA requests the activation of another DO. This
request is sent directly to the activation-agent without involvement of the
DA.

8. The DA should have the liberty of selecting the appropriate agents for the current
session. According to the assigned task other agents (not loaded by the DA) may be
brought into play to perform related tasks to the task being executed.

9. Unloading in this sense is one way of disabling an EA from participating in the current
session. There may exist other ways of implementing a “disable” function, however,
unload is conceptually transparent and helps reduce overhead

10.The activation-agent is a conceptual agent; that is, its existence as a separate entity is
implementation dependent. In an object oriented language implementation, as in C++,
activation and deactivation methods can reside in the DO class, and the loading and
unloading methods can reside in the agent class. In this case there is no need for an
independent activation-agent. The activation can be done directly between the
requester and the DO and likewise for loading an EA. In a an expert system language
implementation, say in CLIPS, an activation-agent can contain all four functions of
activation. In such a case any of the four activation requests must be directed to and
carried out by the activation agent. While the first approach is direct since only two
parties are involved in the activation process, the second is closer to activation, as
described in this dissertation.
Framework of an OA-Based Environment

3.2.2 Decision support

Decision support is the core of an OA-based environment. In this dissertation,
this function is to allow the DA to orchestrate the efforts of the local and
global nodes during the course of performing tasks. The EAs are domain
specific problem solving nodes, the OAs are local coordination nodes while the
DA is global coordinator, principal planner and evaluator. The DA is the only
participant who is aware of the motives behind the group effort led by him/her.
Crucial to decision support is DA interaction with agents. The interactions of the
DA with the DOs, OAs, and EAs, are facilitated by both CAD-and interface
agents.

Upon DA request, the agents provide information (continually or temporally)
about the individual or collective states of the DOs. The DA orchestrates the
efforts of the agents involved in acquiring information about the current state of
the DOs or in changing the current DOs’ state toward a goal state (which is either
known solely to the DA or represented explicitly in the model).

Decision support involves a variety of task types (see Appendix B): evaluation,
recommendation, generation, conflict handling, implementation. Tasks can be
local as evaluating the current state of a single or multiple DOs with respect to a
single domain (e.g., cost), or global as evaluating the current state of single or
multiple DOs with respect to multiple domains. The state of a DO with respect
to a single domain may be unsatisfactory although it may be satisfactory with
respect to the collective state of DOs and vice versa.

3.2.3 Communication

How agents communicate ? and what is being communicated ? are two
fundamental questions that need to be addressed. Communication among agents
are facilitated, through interface- agent(s). Conceptually, interface-agents
provide a common language to communicate among the various agents, and a
message handling system to facilitate their interactions. The communication is
available to agents locally, within the same environment, or globally, across
remote environments. The interface-agents, common language and message
system are implementation dependent.

Interface agents provide the elements of communication; a message system to
pass information among agents locally within the same environment and globally
Ph.D. Thesis, Spring 2000 31

32
across multiple environments; and a common language which at the minimum
contains a set of terms that triggers agents actions. Such terms adhere to the
agents abilities to execute actions, this institutes that new terms are added when
agents with new capabilities are introduced to the environment.

Interface-agents may use local and global message passing that is most
appropriate to the nature of the environment. For instance, in an object oriented
implementation local message system may be replaced by the direct use of object
methods of the other environment agent. In other words, agents use object
methods to communicate.

The process by which the agents know about the existence of other agents in the
environment is important. Conceptually, two approaches are considered:

• The global communication approach assumes that an OA does not
necessarily know about the other agents of the environment. To assign a
task an agent may globally broadcast the task and the appropriate EA
responds to the message. This approach emphasizes the role of the
common language used by the agents and requires the EA to be
continually observing the broadcasted messages within the environment
(e.g., through a bulletin board-like system designed to facilitate this type
of global communication). This approach complies more with the notion
of agency since it does not require the agents to know about the existence
or the abilities of the other agents of the environment. On the other hand
this approach relies heavily on either the agents’ ability to interpret and
filter the global messages observed (which can be a very large number
considering the number of agents interacting simultaneously).11

• The direct communication approach assumes that the agents are
knowledgeable of the other agents’ abilities (in particular, the OA
protocols are designed to identify the agent most suited to the task on
hand). To insure a response for sent messages the agents must be
continually informed as to which agents are currently loaded or unloaded
in the environment. In this sense, an agent knows about the existence of
other agents and their expertise. Both Lesser and Gmytrasiewicz support
this approach and claim that in a cooperative problem solving
environment it is more efficient if the agents have detailed models about

11.The number of related messages to be filtered can be reduced using a message
classification mechanism provided by the message system.
Framework of an OA-Based Environment

the other agents in the environment [Lesser 92] and [Gmytrasiewicz 93].
Within the scope of the thesis, this direct communication approach is
adopted.

3.3 The modeling process

Computer-based design environments offer various approaches to modeling a
design state. Environments where generative mechanisms are at the core of
modeling process provide detailed degrees of design alternatives in accordance to
a set of defined constraints. For example, in the SEED project the generation of
alternative layouts is interactively controlled by the DA within the SEED Layout
module [Flemming 95]. The DA selects a layout where another set of alternative
3D projections and building skins can be generated within the SEED-Config
module [Woodbury 95]. A set of alternative structural schemes can also be
generated within the SEED-Struct module [Fenves 95]. Preceding the generation
of layouts, the design requirements and constraints defined by the client and the
DA can be formulated as an architectural program within the SEED-Pro module
[Akin 95] and [Donia 98]. The main advantage of such interactive and dynamic
design environments is to insure the integrity of the design model throughout the
different generation process. In addition, no model is generated unless it satisfies
the design requirements and constraints as represented throughout the process.
This is a ‘constrained generation’ modeling process [Baykan 92].

With the absence of a generative mechanism, the DA takes a more involved role
in modeling the geometric and non-geometric information of the building (or
artifact being designed). The DA incrementally introduces the requirements and
constraints using his/her design knowledge.12 In some previous environments,
such as ICADS, the model is incrementally evaluated as every component of the
building is interactively being added or modified [Pohl 92]. The evaluation
process is automated and tied to the construction of the model. This is an
‘incremental generate and test’ modeling process.

12.The design requirements and constrains are implicitly considered in the models
generated by the DA. Firstly since the DA knowledge encompasses such information.
Secondly since the utilization of prototypical databases with reusable parts also
encompasses chunks of such information. However, the DA take a bigger role in
maintaining the integrity of model information.
Ph.D. Thesis, Spring 2000 33

34

 DO Relations
and Hierarchies
In other environments, such as SEMPER, the evaluation process does not take
place until the model representation is completed [Mahdavi 96]. The DA runs
the model through various simulation sessions involving domain expert
applications to assess the performance of the current model in respect to the
design requirements and constraints. The DA iteratively modifies the current and
subsequent models to improve their expected performance until the model is
deemed satisfactory. This is a ‘generate and test’ modeling process.

In order to utilize the OA the DA must incrementally interact with OAs to
develop an acceptable model. Therefore, an OA-based design environment lends
itself to the ‘incremental generate and test’ modeling process.

The DA may use a bottom-up approach to develop a building model from an
aggregation of rooms, zones, building floors, and building blocks. Alternatively,
the DA may wish to follow a top-down approach and first model the building
mass, then develop the blocks, floors, zones and rooms within that mass. Both
approaches, or a combination of both approaches, are supported in an OA-based
design environment. The DA may also use generative agents (if these exist in the
environment) to suggest alternative layouts or building blocks. Using a top-
down or a bottom-up approach the DA interacts with the environment agents
including the OAs to incrementally arrive at an acceptable design model.

To better understand the modeling process by which a DA may interact with a an
OA-based environment the following scenario assumes a DA using a bottom-up
approach to generate a design model of an office building. Through out this
scenario various design issues concerning the architecture of an OA-based
environment are discussed.

The DA selects rooms from a pool of predefined Room-DO types (or defines a
new Room-DO type).13 The DA may then choose to add Wall-DOs, Opening-
DOs, Floor-DOs, Ceiling-DOs, etc. and link them to the Room-DO. Linking two
DOs is to define the nature relation between them. Three main relation status are
currently identified;

• no-relation (the default status).
• constituent-of/contains;

13.The DA needs to follow the implementation specific procedures provided by the
environment for defining a new DO type.
Framework of an OA-Based Environment

• associated-with;

The relation “constituent-of/contains” has two parties involved; a sub-DO and a
super-DO (as defined in Chapter 3), where the super-DO contains the sub-DO
and the sub-DO is a constituent-of the super-DO. A Wall-DO is logically a sub-
DO of a Room-DO. However, it should be permitted that the same Wall-DO be a
super-DO of the same Room-DO if needed. The DA should be able to assign any
type of relation between any DO types, the logic behind any relation is solely
dependent on the DA’s views of how the DOs should be linked. There is no
reason why a Wall-DO should not have a constituent-of/contains or associated-
with relation with a Room-DO even if it is not geometrically located within the
volume of that Room-DO. Visually, thermally and acoustically (for instance)
this Wall-DO can still be associated with the Room-DO even if it is located on
the volume of an adjacent Room-DO. On the other hand, there may not be a need
to establish a relation between a door-DO and a BFloor-DO (building floor) if no
agent in the environment can utilize such relation.

A DO can be a sub-DO of more than one DO simultaneously. For instance, a
Window-DO can be a sub-DO of a Wall-DO and a Facade-DO in the same time.
A Wall-DO can also be a sub-DO of two Room-DOs at the same time in which
case the Wall-DO is a joint-DO (see definition in Appendix A).

The relation “associated-with” involves two DOs where a non-hierarchal
functional or semantic link is needed in the model. Two DOs may be associated
by one or more of their attributes. For instance, A Wall-DO thickness attribute
may be associated with a Room-DO thermal and acoustic attributes. The relation
“associated-with” is temporarily assigned during a design session (e.g., during
the execution of a task as explained below). This relation can be used to register
a DO or and EA in the list of interested DOs and EAs of a DO attribute.

A relation between two DOs is task dependent. For instance, an interior Wall-
DO that is perpendicular to the facade can be linked to the Facade-DO when the
later is performing a task to modify its proportions. The location of interior Wall-
DO may consequently be changed if the proportions of the facade is modified
(even though the interior Wall-DO is not a constituent-of the Facade-DO). The
hierarchy of the DOs is specified by their relations according to the task in hand.
That is, the DOs should only have task dependent hierarchies.
Ph.D. Thesis, Spring 2000 35

36
The DOs should not have a hierarchy as they reside in the database (i.e., the
database should contain a flat set of DOs). Any hierarchy should only be
established during the progress of the design session. The DA assigns the
relations which, in turn, establish a hierarchy. The DA may also establish
multiple hierarchies of the same objects. A Column-DO can exist in a structural
hierarchy of a Building-DO and, at the same time, in an enclosure hierarchy of a
Room-DO.

The questions are then: how does the DA assign relations between DOs ? and
whether it is necessary that the environment provide means to assist the DA in
assigning relations and establishing the task depend hierarchies among the
DOs ?.

It can be argued that if the DA is to assign each single relation among DOs,
modeling a large building with thousands of DOs becomes a tedious task. The
answer to such an argument is that, in most cases, the design state advances in
stages by making decisions at any given time. Therefore, the DA need only to
assign those relations that are needed for the current tasks on hand. On the
contrary, if the environment provides DOs with predefined hierarchies a large
number of unnecessary relations are produced and may need to be disabled in
order to perform certain tasks. That can be a more tedious task than simply
assigning the needed relations. It is necessary that the environment adopts the
DA’s mental model of the design state and not force the DA to adopt a predefined
model imposed by a set of default DO relations and hierarchies.

The environment may provide support to the DA in assigning relations amongst
DOs in various ways:

• Through interface-agents which should provide the DA with multiple
techniques of assigning relations amongst singular DOs as well as groups
of DOs (e.g., establish a relation with all Wall-DOs of a Room-DO, a
Floor-DO, or an entire Building-DO). The interface-agents should also
allow the DA to disable or eliminate relations and inform the DA of any
dependencies which may be effected by such elimination. The existence
of DOs in a flat set is independent from its relations, therefore, side effects
caused by modifying other DOs should be minimal. In addition, any
hierarchy established (to perform a task) during a design session can be
saved and reused while performing similar tasks within the same session
or in later sessions.
Framework of an OA-Based Environment

 Decomposition
• Predefined hierarchies of DOs may only be used to provide the DA with
an experimental test beds. The environment can support the DA by
providing exemplary task dependent hierarchies. The DA should be able
to import complete or subsets of such hierarchies. The use of such
hierarchies is, therefore, dependent on DA preference, and on the task in
hand.

• The environment should provide domain specific agents that are geared
toward establishing hierarchies amongst the DOs of the model. The DA
can interactively (or graphically) use such agents to establish the task
dependent hierarchy needed for the task in hand. At any modeling state
such agent can be loaded into the current session to suggest and/or assign
relations among the DOs, based on the agent knowledge of the task
domain and based on the agent’s ability to interpret the model (e.g.,
semantically, or geometrically).

To summarize the discussion about the DO relations and hierarchies:

• DOs have no relations to other DOs unless specified by the DA or other
supporting agents according to the DA preference;

• relations between DOs are temporal;
• hierarchies established between DOs are task dependent.

3.4 Decision making with OAs

The OA-based approach suggests that a DO is activated (as an OA) to perform a
task regarding its own design state. An OA may perform the task directly or
activates other related DO (as sub-OAs) and decompose the task to sub-tasks
amongst the sub-OAs. The decomposition is dependent on the relations and
hierarchies established between the OA and its sub-OAs.

When performing a task two types of decompositions can be identified as
illustrated in Figure 3.2

• Flat/Simple decomposition.
• Complex decomposition.

A flat decomposition is performed whenever

• the result of the task assigned to the OA is the aggregation of all the
results of the sub-tasks assigned to its sub-OAs.
Ph.D. Thesis, Spring 2000 37

38

DO

DODO

DO

DDODO

FIGURE 3.2.

Decomposition types.
• each DOs can only be a constituent of one DO (no joint-DO in the
hierarchy).

A cost estimate task for a building block materials is an example of a flat
hierarchy (Figure 3.3A). The material cost of a building block is the cost of all
its material components represented in the a hierarchy as the leaf nodes of the
hierarchy tree. The aggregated cost of all leaf nodes regardless of its DO type or
its spatial location in the block adds up to the total cost of the building block.
The hierarchy needed to perform such a task is established around the
constituent-of relations. In such a hierarchy each DO can be a direct constituent
of the Block-DO.

A cost estimate task may require an aggregation of multiple levels of flat
decompositions. Such a hierarchy is needed for a cost estimate task of a building
block carpeting classified per room (e.g. the carpeting cost of each room in
addition to the total cost of the building block carpeting) (Figure 3.3B). The
carpet area need not to be represented in the hierarchy since the area of the room
floor can be sufficient for calculating the carpeting area. Various flat
decompositions can be established around different classifications of the same
task.

DODO DODO

DODO

DO

DODO

Flat Decomposition

DO

DO DO

DODODO

DO

DO

DODO

DO

O

DO

DODO

Complex Decomposition
Framework of an OA-Based Environment

FRAMING CONCRETE

ROOM 1 ROOM

BLOCK 1

WALL 1 WALL

ROOM 1

FLOOR 1 FLOO

(A) Flat Decomposition
cost estimate of building block

(B) Flat Decomposition

(C) Complex Decomposition
cost estimate of a building fram

FIGURE 3.3.

Task and decomposition.

cost estimate of a block carpetin
BLOCK

ROOFING ELECTRIC PLUMBING

BFLOOR

BUILDING

 2 ROOM 1 ROOM 2 ROOM 3 ROOM 1

BLOCK 2 BLOCK 3

2 WALL 2

ROOM 2 ROOM 3

R 2 FLOOR 1 FLOOR 2 FLOOR 1 FLOOR 2

material (detached blocks)

e classified per block

g classified per room
Ph.D. Thesis, Spring 2000 39

40
A complex decomposition is performed whenever

• the result of the task assigned to the OA is not necessarily the aggregation
of all the results of the sub-tasks assigned to its sub-OAs.

• at least one DO is a constituent of more than one DO (a joint-DO).

Performing a framing cost estimate for a building classified per building blocks
requires a complex decomposition. The frame cost of each building block is the
cost of all its frame components (and labor). Some components may be shared
(joint-DOs) by other building blocks. A joint-DO such as a shared wall requires
an additional layer of computation to determine the exact share of each shared
wall (Figure 3.3C). For any classified quantity tack-off task for materials such as
paint, dry walls, insulations, pluming, electrical installations all of which may be
represented as a constituent of a wall, requires complex decompositions if shared
walls are involved. .

Tasks which do not depend entirely on aggregation of sub-results may require
complex decompositions as well. For instance, the structure analysis of a
building floor is not necessarily the analysis of each individual room of that
building floor. The building floor may be divided in structural zones each of
which may contain more than one room (some of which may not contain any
structural elements). The structural analysis of a zone may not be independent
from other zones as well. Columns can be shared among rooms and loads may
be distributed along continuous beams or frames which runs across multiple
zones. In addition, different structure systems may exist in the same floor which
require separate or different structural analysis method. In a multi-story building
of identical floors the aggregation of the individual structural analysis of each
building floor (top down) may be a valid decomposition.

The hierarchy (or hierarchies) established for a structural analysis task is
completely dependent primarily on the type of suggested structure and on the DO
type (e.g., Building-DO, BFloor-DO, Room-DO).

Comparing alternative structural systems the DA may need to find the total cost
of a structural system of the building. The aggregation of the cost of all
structural elements such as foundation, columns, beams, trusses constitutes a
valid decomposition (considering the labor cost). On the other hand, if
classification according to individual rooms is requested, the same
decomposition may not be sufficient. As discussed previously, a Room-DO may
Framework of an OA-Based Environment

contain no structural elements such as columns and beam; however, this does not
imply that there is no structural cost to this Room-DO. The structural cost of a
space is related to its floor area, the distribution of the total cost of the structural
system of the building among the total floor area provides the structural cost per
square foot. This is an average cost vs. actual cost. Average cost is more
appropriate in buildings with homogeneous structures14 (Figure 3.4).

There are many ways by which a building can be decomposed, according to its
spatial components such as blocks, floors, zones, rooms, or according to its
internal subsystems such as structural, electrical, thermal etc., or according to its
functional use of spaces such as management zones, working zones etc. To
perform an evaluation of building using an OA-based environment the
appropriate decomposition must be applied. Four main factors affect the
required decomposition. Three of which are task related: DO type, task domain,
task type, and task focus.

It is, therefore, more appropriate to allow the DA to establish the hierarchies
according to the nature of task in hand. In such case, task decomposition among
sub-DOs can be a direct reflection of the established hierarchy. The question is
then how does an OA decompose a task among it is sub-DOs?

How do the OAs decompose a task?

An OAs knowledge of how to handle any task in hand is embedded within its
problem solving protocols. These protocols are general guidelines of how a task
can be decomposed when necessary and of how sub-tasks are delegated to the
sub-OAs, or executed by the OA directly when no decomposition is necessary.
The protocols are therefore specific to DO-type and task domain, type and focus
(see Chapter 6 for detailed examples of decomposition protocols). For instance,
a Wall-DO would have an evaluation protocol that is specific to cost tasks. Using
such protocol a Wall-DO may return its total cost based on average costs of such
a wall type as provided in the prototypical database. If classification is requested
the DA may need to establish a constituent-of relations to its components (e.g.,

14.A multi-story office building with the same structure in each floor is a homogeneous
structure. A multipurpose building may contain multiple structures such as a concrete
frame for a theater space next to a skeleton for an office space. Such building structure
is a non-homogeneous. In which case the building may have an average cost for each
structural system and general average cost for entire building (including all structural
systems).
Ph.D. Thesis, Spring 2000 41

42

ZONE-OA 1 ZONE-OA

STRUCT

Cost estimate of structural ele

FLOOR-OA 1 FLOOR

BLOCK-OA 1

ZONE-OA 1

Structural analysis of a buildi

ZONE-OA

STRUCT

FIGURE 3.4.

Hierarchy and decomposition 1.
FLOOR-OA 1

ZONE-OA N2

FLOOR-OA 2 FLOOR-OA N

. ELEM. 1 STRUCT. ELEM. N STRUCT. ELEM. 1

ZONE-OA 1 ZONE-OA NZONE-OA 2

ments (classified per zone)

BUILDING-OA

-OA N

BLOCK-OA 2 BLOCK-OA N

ng

ZONE-OA N 2

FLOOR-OA 1 FLOOR-OA N FLOOR-OA 1 FLOOR-OA N

. ELEM. 1 STRUCT. ELEM. N STRUCT. ELEM. 1
Framework of an OA-Based Environment

FLO

ZONE

STRUCT. ELEM. 1 STRUCT.

RO

FLO

ZONE

(A) & (B) Two examples o

ROOM-OA 1 ROOM

FIGURE 3.5.

Hierarchy and decomposition 2.
wood frame, dry walls). The protocol would use this hierarchy to activate the
sub-DO and delegate the tasks to the sub-OAs.

If a building bfloor-OA is not linked in a hierarchy with its structural elements,
the OA would (when assigned a structural analysis task) interact with the
structural-agent to provide the DA with a structural analysis based solely on the

OR-OA 1

ZONE-OA N-OA 1

FLOOR-OA N

ELEM. N STRUCT. ELEM. 1 STRUCT. ELEM. N STRUCT. ELEM. 1 STRUCT. ELEM. N

OM-OA 1 ROOM-OA 1ROOM-OA N ROOM-OA N

ZONE-OA 1 ZONE-OA N

OR-OA 1

ZONE-OA N-OA 1

FLOOR-OA N

STRUCT. ELEM. 1 STRUCT. ELEM. N ROOM-OA 1

ZONE-OA 1 ZONE-OA N

f cost estimate of a bfloor structural elements (classified per room)

ROOM-OA N-OA N
Ph.D. Thesis, Spring 2000 43

44

 Evaluating the model
bfloor own geometry and attributes. If the DA establishes a hierarchy between
the bfloor-OA and structural elements, the bfloor-OA would be able to provide
the structural-agent with more information about its sub-structural elements and
relations. The structure-agent, in turn, would be able to provide more specific
analysis of the building floor structural performance (see the section on The
Level of Abstraction on page 46). In another words, the OA needs a hierarchy to
apply the more sophisticated problem solving protocols. The OA may assist the
DA in establishing the hierarchies needed. Upon request by the DA the OA
provides the DA with the information embedded in the protocols of how a task
should be decomposed. Accordingly, the DA should be able to interactively
establish the relations needed among the related DOs. Since the hierarchies are
used locally (i.e. task specific), there is a strong argument to allow the OAs to
establish the required hierarchies needed by themselves. Interacting with agents
that are capable of interpreting the functional or the spatial relation among the
candidate DOs an OA may be able to acquire the needed hierarchy for the task in
hand. In such case the use of the established hierarchy for task decomposition is
better monitored or validated by the DA.

Each problem solving protocol is primarily intended to enable the OA to locate
and interact with the appropriate EAs to accomplish the task in hand, and when
necessary to decompose the assigned task to a set of sub-tasks, delegate the sub-
tasks to other OAs (namely its sub-OAs), and manage the sub-OAs while
executing the sub-tasks. It does not pertain any domain specific knowledge of
how to execute the task (e.g., how to calculate the cost or how to analyze or
recommend a structural system). In a short, the problem solving protocols
provide the OA with management and planning knowledge regarding the task
types to be performed.

When a new DO-types is added to the environment a set of protocols applicable
to such type must be made available to its OAs. If multiple DOs of different DO-
types is to be activated as one composite-OA (e.g., a corner-OA which may be a
composition of walls floors and ceilings) a new set of protocols need also to be
made available to such composite-OA. The aggregation of the protocols of the
DO types involved in the composite-OA does not necessarily represent the
required behavior of the composite-OA.

When a DA adds a new DO to the environment, the DO remains in passive status
until the DA links it to a hierarchy and activates it in order to perform a task (e.g.,
Framework of an OA-Based Environment

activating a Room-DO to evaluate the its daylighting performance). The DO is
activated and the newly created Room-OA starts interacting with the appropriate
agents which will assist in executing the assigned task.

The problem solving protocols of the Room-DO type which is loaded into the
room-OA during its creation prompts it to first try to identify the daylighting
requirements for this room (e.g., bedroom, reading space). This can be achieved
by either posting a global request to which other agents may respond, or by direct
communications (see Communications, Section 3.2.3) with the query-agent that
is responsible for browsing through the prototypical databases. In either case, the
room-OA obtains the required daylighting levels either through the query-agent
or from other agents in the environment that have access to such information
(such as another room-OA of the same type that is concurrently executing a
similar task) or, finally, from the DA if no other agent is able to provide the
required information.

The room-OA then assigns an evaluation task to the domain EA (i.e., the agent
most related to the task in hand, namely the daylighting-EA in this case). The
daylighting-EA requests information about the room-OA such as its dimensions,
orientation, where it is located in respect to its neighbors, number of openings,
opening sizes, and non-geometric information such as surface reflectivity,
glazing type, overhangs and so on.

The OA should be able to provide information about itself, whether this
information is geometric or non-geometric. Its geometric boundary and its
coordinates are residing in its original DO or obtained through interaction with
the CAD-agent. Its geometric relation to other DOs is calculable, upon request.
Such calculations should be performed based on actual request, however,
selected information may be stored temporarily and therefore calculations may
not necessarily be performed upon each request. To obtain such information the
room-OA would assign a task to a spatial-relations-agent to find specific
information relating to its adjacencies. The spatial-relations-agent performs the
necessary calculations, and provide the results back to the room-OA which, in
turn, provided to the requester.

If the lighting levels are found to be below the required values (which is obtained
from the prototypical database or from the DA), the room-OA notifies the DA
Ph.D. Thesis, Spring 2000 45

46

 The Level of Abstraction

 The design of an EA
that current lighting level are below required, which in turns require further
modifications to the current state in order to meet the performance requirements.

The information provided to the EA by the OA should be relative to the degree of
abstraction of the model. Therefore, an EA should be able to provide the
appropriate level of response to the level of model abstraction. For a room-OA,
the level of abstraction can vary from a simple 2D geometric configurations to a
solid complex objects with attributes, constraints and so on. A Room-DO may
be represented as a labeled rectangle or as a 3D solid enclosure. It may be linked
in a hierarchy with its walls. A wall can be represented as a solid with attributes
such as surface colors and materials and can be linked to openings with attributes
such as glazing number, reflectivity, types and so on. The lower the level of
abstraction of the OAs the more detailed the EAs’ response should be. The
minimum level of abstraction that an EA can respond to is dependent on both the
task domain and type. For instance, a zoning-EA should be able to perform an
evaluation task based on the room use and minimal spatial information such as its
coordinates. A structural-EA, meanwhile, may not be able to respond to the
same level of information when performing a structural evaluation task. The
same information may be sufficient if the task is a structural recommendation
task. Based solely on the room dimensions and location in respect to the
neighboring rooms the structural-EA should be able to recommend a structural
schema (e.g., wood, skeleton, steel), and possibly specify the location and
dimensions of the structural elements needed.

How does an EA deal with various levels of abstraction of the information
provided by an OA ?

Two main factors contribute to answering this question; the design of the EAs
and the role of the interface-agents.

An EA should not be designed to expect a complete set of information before it
provides a response. An EA should also strive to obtain any missing information
to complete the minimal set required to provide a response.

Typically an EA requests all the information it needs to provide a detailed
response to the assigned task. The OA provides relative information which may
be a subset of the information requested by the EA. The algorithms of the EAs
should be designed to enable the OA to handle any subset of information
received from the OA. The response should be relative to the amount of
Framework of an OA-Based Environment

 The role of the
 interface agents

 Executing tasks
 in parallel
information provided by the OA. If necessary, the EA may request more
information from a query-agent or from the DA, or may inform the DA that the
information provided is inadequate or not compatible with the assigned task.

An alternative to changing the design of the EAs is to make the interface-agents
(which is facilitating the interactions between the EA and the OA) responsible for
recognizing the level of abstraction of the information provided by an OA before
it is delivered to the EA. The interface-agent would also be responsible to
complete the minimal set of information needed by the EA to perform the
assigned task. In this sense, an interface-agent must know what is needed by
each EA in the environment. The knowledge of the interface-agent would be
altered when new EAs are added to the environment. Conceptually, this is a
violation of the notion of agency for both the interface-agents and the EAs. An
interface-agent should not pertain to any domain specific knowledge and
accordingly its performance should not be affected when new EAs are added to
the environment. The role of the interface-agents should, therefore, be limited to
how to facilitate the interactions among agents and not to what is being interacted
with. On the other hand, the design of the EA problem solving protocols should
not depend on the existence of intermediate agents to complete, filter or classify
the information sent to them. An EA should be able to independently react to
any received information.

When assigned a task, an EA might be working on a prior task from another
agent. In this case, the new request can either place the tasks in a queue, or
spawn a duplicate process to perform the task concurrently. An OA, should
always handle multiple tasks in parallel by duplicating itself. This requires the
OA to have access to process management knowledge (which may reside in some
UAs of the environment). This also requires a more complex mechanism for
updating the original DO data upon the termination of any task while the
concurrent tasks are being executed using the initial un-updated DO data. Note
that DO data are not updated until all duplicates have completed their tasks.

3.5 Advancing a design state with multiple OAs

A decision making environment that comprises multiple agents relies, to a large
degree, on the contribution of each agent to the collective effort of the group.
The contribution of an agent depends on its degree of autonomy and its ability to
plan and execute actions. The following sections discuss the various degrees of
autonomy of an agent, and the planning capabilities that each type of agent may
Ph.D. Thesis, Spring 2000 47

48
incorporate according to the proposed design environment. The following
section presents the proposed approach of how the cooperation of agents with
different capabilities can support the design activities.

3.5.1 Agent autonomy

The term autonomy describes the degree to which an agent controls its own
activation, execution and termination. Non-autonomous agents are slaves to
external agents that trigger them. Autonomous agents decide for themselves
when they should activate, execute and terminate. Semi-autonomous agents turn
to an active state by a combination of their own and external commands.

EAs, such as query agents, are primarily non-autonomous since they can only act
upon request for information or service by other agents. However, it may be
possible that an SA, especially EAs, can self-activate when they see fit. This
requires the EAs to be able to identify those problems that relate to their area of
expertise. In systems such as ICADS, the intelligent design tools (IDTs) run
continuously to evaluate the current values of the evolving solution. Whenever a
new design object is added to the CAD environment, the IDTs are automatically
activated [Pohl 92].

Quadrel describes a system comprising an asynchronous team of autonomous
agents (only system-agents), that are sensitive to events in the environment at
large, in a network like structure [Quadrel 91]. When applied to design tasks, the
coordination of such an organization is rather complex even when the kind of
agents are limited to SAs only. In an OA-based design environment with a large
number of agents (SAs and OAs), coordination is an extremely complex task if
the OAs are to be fully autonomous.

Agency behavior implies that an OA, as agent, should have the abilities to self-
activate itself when it sees fit. This requires that an OA should have the ability to
interpret the other agent actions and to coordinate its actions accordingly. The
coordination of the activities conducted by agents depends on the ability of each
individual agent to plan its activity and to participate in plans made by other
agents in the environment, including the DA. Rothman suggests that agents can
be classified to many levels of complexity, but they can only be considered
intelligent when they possess planning capabilities [Rothman 93]. An agent
creates ‘plans’ based on ‘models’ of itself and the environment from which
action sequences, consisting of instruction level commands, are generated. The
Framework of an OA-Based Environment

models are used to predict possible future events and states. An agent that is not
able to anticipate future events through the use of models is called reactive.
Reactive agents respond only to the current and past states of the environment.
To construct such models, agents must obtain communication capabilities with
the rest of the environment in order to be able to acquire information to generate
such complex behaviors. Therefore, planning (or intelligence of an agent) is an
emergent property of the interactions.

Within the scope of this thesis OAs are semi-autonomous agents. That is, they
should be activated when there is a task to be performed. Accordingly, there
would be no fully autonomous agents apart from the DA.

3.5.2 Short term planning vs. long term planning in design

Any type of planning aims at a set of DA goals to be achieved and a set of
requirements to be met. In short term planning, agents monitor the situation and
take actions in reaction to it. The reaction is triggered by information from other
agents. These are considered data-driven actions. The agents follow rules to
map states to actions without a long-term view of how actions will lead to
achieving goals. While Durfee describes this type of planning as ‘reactive
planning’, he considers it also important for a problem solving environment to
adopt what he calls ‘strategic planning’ [Durfee 88]. Strategic planning is a form
of long term planning where an entire sequence of actions is to be taken starting
from an initial state to a goal state. These are considered goal-directed actions.

In long term planning, a set of global goals are to be accomplished. Local and
sub-goals are set to distribute the tasks among the participating agents. It is
possible to achieve the long term global goals even if a group of the local and
sub-goals are modified or changed during the execution of the plan. However, it
is difficult to deal with a long term plan when both global and local goals are
subject to continuous modification and change. DAs tend to change a
considerable number of their design goals during the process of design. In turn,
the goals of cooperation between the various agents involved may differ as the
design develops, and the style of cooperation may depend heavily on the problem
domain. Accordingly, a dynamic set of coordination mechanisms are needed to
allow the agents to achieve the appropriate goals of cooperation in many given
situations. Such coordination mechanisms would be necessary if agents are to be
responsible for long term planning. This is a very questionable proposition and
requires further discussion.
Ph.D. Thesis, Spring 2000 49

50
It is important to emphasize that global design goals do exist at any point during
the design, but they may differ at different points in time. If the OAs are to be
responsible for long term planning and designing a sequence of problem solving
procedures, it would be necessary for each OA to take into account the possible
role of the other OAs that may be involved, and the requirements of the other
OAs in respect to their design domains (e.g., acoustics, structure, cost). There
exist many sequences of actions that lead the OAs to different states where these
global design goals are totally or partially satisfied. The possible number of
paths from a current state to a long term goal state are typically large. There may
also exist many ways of judging the relevance of the current state to the goal
state. Therefore, it is neither feasible nor necessary to encode, in the knowledge
of the OA, either a long term planning strategy (or a set of strategies) that enables
it to consider the different possibilities of how to arrive at a goal state, or an
evaluation mechanism to judge the current state. On the other hand, if the
planning strategy is to adopt one or even a few alternatives it may restrict the
system from accommodating many feasible paths. This constrains the creative
nature of design and may eliminate interesting design alternatives that could be
realized by the DA during the design process.

Since changing goals are a property of design, especially creative design, it is
appropriate to emphasize the role of the DA as the principal long term or
strategic planner while agents (SAs or OAs) should focus mainly on short term
activities, and therefore, should be endowed with knowledge that enables them to
only execute short term and reactive plans.

Accordingly, I suggest that the DA should be responsible for the long term
planning and for the collective evaluation of the different states of design.
However, it does not rule out the possible involvement of the OAs if their
knowledge is further enhanced so that they are able to support the capabilities of
the DA for long term planning or for evaluation. This endorses the notion of
changing goals and emerging ideas that distinguishes design from other
practices. Distributing the roles among the DA and the other agents according to
such an approach does not impose on the DA a specific design process.

Goals for short term planning of immediate tasks with fewer facets can be
defined and evaluated in a less complicated fashion than larger tasks with many
facets. Distributing the tasks among small entities, such as the OAs, makes it
feasible to set an acceptance criterion for each task.
Framework of an OA-Based Environment

According to the approach proposed, OAs are to deal with small and immediate
tasks, which are more applicable to short term planning strategies. Each OA is
provided with problem solving protocols that are appropriate to its data-object
type (e.g., wall, floor, space). The protocols contain sets of domain specific rules
to deal with conventional problems in each domain (e.g., problems relating to
daylighting). The protocols are not intended to provide predefined solutions for
predefined problems, they should only provide guidelines for how the OA should
react in respect to each class of problems (e.g., decomposing, delegating,
managing).15 The DA should be able to interactively modify these protocols to
meet the needs of different design situations. The OAs change their status when
necessary and to the extent of the knowledge imbedded in their protocols.

The change of an OA status also depends on the support and response of other
agents in the environment. Each change in an OA status is an incremental
change for the entire design state. It is up to the DA to decide whether the
change made by an OA serves the design goals, even if all other agents in the
environment do not object to the change. The DA may not be aware of many of
the individual activities of the agents. Further, it is not intended that the DA
guide each event conducted by each agent. However, it is the DA's responsibility
to guide the efforts of the agents toward a goal state and to force conversions
when he/she sees fit. While the agents in the environment may not be aware of
the DA's intentions, it is the DA who should recognize solution opportunities and
orchestrate the agents to arrive at an acceptable state.

The DA's role is to evaluate the current state (independently or with the support
of other agents), and to participate in the process of changing the design state by
manipulating the DOs (i.e., introducing new DOs to the CAD environment,
modifying attributes of current OAs, etc.), and even by modifying the design
goals. More importantly, the DA is required to direct and guide the effort of the
other agents to advance the current state towards an acceptable design. An
acceptable design, in this case, is the state of the DOs and their relations which
the DA considers satisfactory, even if the initial design requirements are not fully
met. Such an environment can better accommodate the possible change in DA
goals that may occur as a result of the incremental change and development.

15. It is possible to store solutions for conventional domain problems in a prototype
database which OAs can access (directly or through query-agent), however, this is
beyond the scope of this thesis.
Ph.D. Thesis, Spring 2000 51

52 Framework of an OA-Based Environment

4 From Scenarios to Interaction Algorithms
4.1 Event-trace Charts

An OA-based environment is a highly interactive system. Dynamic models show
the time-dependent behavior of the system and the objects in it (agents and DOs
in an OA-based environment). In an interactive system, logical correctness
depends on the sequence of interactions, not the exact time of the interactions
[Rumbaugh et al. 91]. The concept of event-traces are used to demonstrate how
an OA-based design environment operates. Each event-trace typically identifies
a scenario of interactions among different agents across time through the
performance and execution of a task. As a concept, event-traces are not novel
[Rumbugh, 91]. In this dissertation I have extended the original notion of event-
traces to include loops, conditional events, non-interaction events (self executed
events) and referencing of external event-traces (simulating function calls where
the same members of the event-trace interact to execute related tasks in order to
execute the task in hand).

Event-traces are best described through charts that reflect two-dimensional
relationships over time between entities (namely DOs and agents), where an
event is recognized, in the chart, by the passing of a message between a pair of
entities at some time moment. Each message is associated with a sub-task.

In this chapter, I describe charts that illustrate a variety of scenarios for an
architectural design session based on an OA design environment. Two sets of
charts are developed for general and domain specific tasks. The general charts
shows the main interactions among agents needed to perform tasks of the certain
type such as evaluation tasks, conflict handling tasks, etc. (no domain is
specified). The domain specific charts shows detailed scenarios of the expected
Ph.D. Thesis, Spring 2000 53

54

General
 events charts

Domain specific
 events charts
interactions among different agents to perform an actual assigned task such as
cost evaluation of a room or handling conflict about a window attribute.

The scenario of events represented by a chart is described after the chart. Each
event (or interaction) in the chart is described in detail. I adopt the following
convention. Each numbered step of the explanation corresponds to the
identically numbered event in the chart. The steps that are explained in smaller
italic text correspond to events located in the gray zone of the chart. These are
not directly related to the focus events of the chart (located in the white zone of
the chart). Note that events may be conditional in the sense that their execution
depends on the successful completion of certain tasks within the execution of a
given task.

Event-trace charts (1-3) are developed for:

1. Activation of a DO and the deactivation of its OA after the execution of
an assigned task.

2. Task execution by a leaf OA (the last node in a decomposed task).
3. Conflict handling among two leaf OAs of the same DO over shared

attribute.

Event-trace charts (4-7) are developed for four distinct applications.

1. Execution of a material cost evaluation task by BFloor-OA (building
floor), classified according to its sub-DO (each rooms material cost) is
required.

2. Execution of daylighting evaluation task by a BFloor-DO.
3. Execution of a structural analysis task executed by Building-DO.

4. Execution of a conflict handling session among two Room-OAs1 over a
recommended reduction of a the glazing area attribute of a Window-DO
(room cost vs. room daylighting levels).

1. Each OA is responsible for the one task for clarity (though both conflicted attribute
values are of the same DO).
From Scenarios to Interaction Algorithms

provide clone

make OA instance

register

register

request DO clone

provide results

update

de-register

de-register

terminate

OA Instance

ta
sk

 a
ss

ig
nm

en
t l

oo
p

DO OA
Class

Environment
Agents

Agent
Instance Instance

load protocols

ac
tiv

at
io

n
ta

sk
 e

xe
cu

tio
n

te
rm

in
at

io
n

conditional message
message

internal action

implement results

01
02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

conditional loop

activate

assign task

validate results or provide alternative values

18

confirm implementation

request service

provide results

19

20

21

store

22

23

request service

provide results

service interactions

aggregate

se
rv

ic
e

re
qu

es
t l

oo
p

task execution interactions

check for conflict

validate results (of the conflict handling session) / implement

conflict handling session

24

25

26

27

28

implement
4.2 Chart 1. Activation of a DO/Deactivation of an OA

See Definitions A.3.10 and A.3.11. The event-trace is shown in Figure 4.1 The
main steps are 1-6 and 25-28. Steps 7-24 deal with task execution and these are
shown in gray.

1. An Agent sends an activation message to a DO.

2. The DO instantiates an OA of its DO type from the OA class.
An OA of the same DO type is created.

3. The created OA registers itself as an OA of the DO.

4. The created OA requests a clone (a complete copy) of the DO.

5. The DO provides a clone of itself to the sub-OA.

6. The OA registers itself as sub-OA of the super-agent (of step 1).
FIGURE 4.1.

Event-trace of the activation of a
DO and the deactivation of an
OA.
Ph.D. Thesis, Spring 2000 55

56
7. The super-agent assigns the created sub-OA a task.

8. The sub-OA loads the appropriate protocols for the task.

9. Interacting with the appropriate agents in the environment the sub-OA initiates a task
execution session.

10. Task execution interactions (see Chart 2 steps 7-19).

11. The environment agent (of step 9) provides it task execution result to the sub-OA.
The OA stores the results until validated.

12. The sub-OA provides its super-agent (of step 1) with the task execution results.
Conditional (if aggregation is needed): The super-agent aggregates the results of its
sub-OAs (if more than one sub-OA is executing related tasks).

13. Conditional (if aggregation is performed in step 12): The super-agent requests an
environment agent (e.g., an EA) to evaluate the aggregation results.

14. Conditional (if step 13 is executed): Evaluation interactions to check the aggregation
results provided in step 12 (see Chart 2 steps 23-31).

15. Conditional (if step 13 is executed): The environment agent (of step 13) provides its
evaluation of the aggregation results to the super-agent.
The super-agent stores the results until validated.

16. Conditional (if the results of step 12 or 15 are not satisfactory): The super-OA
remanages either a task execution session in which case steps 7-16 are repeated, or an
aggregation session in which case steps 13-16 are repeated.

17. The super-agent validates the results of the task execution, or:
 provides an alternative set of attribute values for task reassignment.

18. Conditional (if alternative values are provided in step 17): The OA reassigns the task
to the environment agent to examine the alternative attribute values In such case steps
9-18 are repeated.

19. Interface option (to allow for conflict check): The super-agent requests a conflict
check (with other interested DOs or EAs) before the attribute values of the sub-OA are
modified.

20. Conditional (if step 19 is executed): Conflict handling interactions, the super-agent
manages a conflict handling session regarding the targeted attribute values (see Chart
3 steps 20-45).

21. Conditional (if the results provided in step 20 is not satisfactory): The super-agent
reassigns the sub-OA with a modified task.

22. Conditional (if step 20 is executed): The super-agent validates the results (of step 20),
and:
Interface option (to allow for implementation): The super-agent requests the
implementation of the validated results (if attributes values of the sub-OA are
recommended for modification).
From Scenarios to Interaction Algorithms

23. Conditional (if requested in step 22): The sub-OA interacts with the appropriate
agents in the environment (e.g., CAD-agent) to implement the results.
The environment agent carries the implementation of the results.

24. Conditional (if step 23 is executed): The environment agent which carried the
implementation confirms its execution.

25. The sub-OA updates its DO information (provided that no other OA of the
same DO is performing tasks. If more than an OA is to update the same
information of the DO an update management session is required. Such a
session may include conflict handling among the different OAs involved).

26. The sub-OA de-registers itself as a sub-agent of the super-agent.

27. The OA de-registers itself as an OA of the DO.

28. The OA terminates itself.
Ph.D. Thesis, Spring 2000 57

58

Agent DO OA
Instance(s)(super-agent)

activate
make sub-OA instance

assign tasks

provide results

validate results or provide alternative values

update

OA (sub-OA)

implement results (add/modify/remove DOs)
confirm implementation

terminate

activation interactions
conditional message
message

store

internal action

Class

load protocols

request service (interactions dependent on domain/type/focus)

check for conflict

ac
tiv

at
io

n
ta

sk
 e

xe
cu

tio
n

te
rm

in
at

io
n

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

ta
sk

 a
ss

ig
nm

en
t l

oo
p

conditional loop

request data

provide data

19

20

21

Expert Query
AgentAgent

DO
(sub-DOs)

se
rv

ic
e

re
qu

es
t l

oo
p

provide data

conflict handling interactions

termination interactions

request data

provide data

da
ta

 re
qu

es
t l

oo
p

validate results (of the conflict handling session) / implement

calculate

browse

22

23

24

25

26

27

28

29

30

31

32

Environment
Agent

update

provide results

qu
er

y
re

qu
es

t l
oo

p request data

request data

provide data

provide data
qu

er
y

re
qu

es
t l

oo
p request data

request data

provide data

provide data

request service

request data

provide results

aggregate

33

34

35
36

37

38

39

40

41

42

43

44

45

activate
4.3 Chart 2. Task Execution

See Section A.4 for relevant definitions. The event-trace is shown in Figure 4.2.
The main steps are 4-35; all other steps (1-3 and 36-45) deal with necessary task
management activities such as agent activation, result validation and so on.
FIGURE 4.2.

Event-trace of task execution by
a leaf-OA (where no further task
decomposition is applicable).
From Scenarios to Interaction Algorithms

1. Conditional (if the targeted DO is not activated): An agent sends an activation
message to a DO The agent is activating a DO to assign it a task.

2. Conditional (if step 1 is executed): The DO instantiates an OA of its DO type from the
OA class.
An OA of the same DO type is created.

3. Conditional (if step 2 is executed): Activation interactions (see Chart 1, steps 3-6).

4. The super-agent assigns a task to the created OA (a sub-OA in the task
dependent hierarchy).

5. Conditional (if the appropriate protocols are not loaded): The sub-OA loads
the appropriate protocols for the assigned task.

6. Interacting with the appropriate agent in the environment (e.g., an EA) the
sub-OA manages a task execution session.

7. The EA requests information from the sub-OA (e.g., geometric and non-
geometric information of the sub-OA).

8. Conditional (when information of a sub-DO is needed and the DO is not
activated and the activation of such sub-DO is not necessary): The sub-OA
requests information from its sub-DO(s) in the hierarchy (if a DO is activated
the information must be requested from its OA).

9. Conditional (if step 8 is executed): The sub-DOs provide the information
requested to the sub-OA (as available).

10. Conditional (if the information provided in step 9 is not sufficient): The sub-
OA requests additional information from its sub-DOs.

11. The sub-OA provides the applicable information to the EA.

12. Conditional (if the information provided in step 11 is not sufficient): The EA
requests additional information from the sub-OA.

13. Conditional (if additional information is needed to execute the task): The EA
requests information from a query-agent (e.g., prototypical information).
The query-agent browses through the available data-base(s).

14. Conditional (if the query-agent was not able to locate the requested
information of step 13). The query-agent requests information from the
super-agent (or from the DA).

15. Conditional (if step 14 is executed): The super-agent provides the EA with the
requested information.

16. Conditional (if the information provided in step 15 is not sufficient): The
query-agent requests additional information from the super-agent (or the DA).
Ph.D. Thesis, Spring 2000 59

60
17. Conditional (if step is 13 executed): The query-agent provides the EA with
the applicable information (as available).

18. Conditional (if the information provided in step 17 is not sufficient): The EA
requests additional information from the query-agent In such case steps 13-18
are repeated.

19. Conditional (if the targeted DO is not activated): The EA sends an activation
message to another DO(s) if the execution of the task in hand is dependent on
other task execution results to be carried by the activated DO(s). It should be
noted that such dependencies need to be monitored and controlled by the DA
to avoid infinite loops of activations and task assignments. The DA
confirmation should be obtained when such activations is requested.
If the information needed is collected the EA executes the assigned task (of
step 6).

20. The EA provides the sub-OA with the task execution results.
The sub-OA stores the task execution results until validated.

21. The sub-OA provides the super-agent (of step 1) with the task execution
results.
Conditional (if aggregation is needed): The super-agent aggregates the results
of its sub-OAs.

22. Conditional (if aggregation is performed in step 21): The super-agent requests
an environment agent (e.g., an EA) to evaluate the aggregation results.

23. The EA requests information from the super-agent.

24. The super-agent provides the applicable information to the EA.

25. Conditional (if the information provided in step 24 is not sufficient): The EA
requests additional (or missing) information from the super-agent. In such
case steps 23-25 are repeated.

26. Conditional (if the results of step 24 are not satisfactory or if prototypical
information is required): The EA sends a query request to the query-agent to
obtain either prototypical information or any additional information needed to
perform the task. The query-agent browses through the environment (or
DOs) data-bases to obtain the requested information.

27. Conditional (if the information requested in step 26 is not found in the
environment): The query-agent requests the super-agent or the DA to provide
the information requested in step 26.
From Scenarios to Interaction Algorithms

28. Conditional (if step 27 is executed): The super-agent or the DA provides the
query-agent with the requested information.

29. Conditional (if the information provided in step 28 is not sufficient): The
query-agent requests the super-agent or the DA to provide additional
information. In such case steps 27-29 are repeated.

30. Conditional (if step 26 is executed): The query-agent provides the EA with
applicable information (as available).

31. Conditional (if the information provided in step 30 is not sufficient): The EA
sends another query request for additional information. In such case steps 26-
31 are repeated.
If the information provided to the EA is sufficient the EA evaluates the
aggregation results provided by the super-agent in step 22.

32. Conditional (if step 24 is executed): The EA provides its evaluation of the
aggregation results to the super-agent.
The super-agent stores the results until validated.

33. Conditional (if the results provided in either step 21 or 32 are not
satisfactory): The super-OA remanages either a task execution session with a
modified task in which case steps 4-33 are repeated, or an aggregation
evaluation session in which case steps 22-33 are repeated.

34. The super-agent validates the results (of step 21 or 32), or:
 provides the sub-OA with alternative attribute values for task reassignment
(or for another aggregation evaluation session).

35. Conditional (if alternative values are provided by the super-agent in step 34):
The sub-OA remanages a task execution session to examine the alternative
values.

36. Interface option (to allow for conflict check): The super-agent requests a conflict
check (with other interested DOs or EAs) before the attribute values of the sub-OA are
modified.

37. Conditional (if step 36 is executed): Conflict handling interactions, the super-agent
manages a conflict handling session regarding the targeted attribute values (see Chart
3 steps 20-45).

38. Conditional (if the results of the conflict handling session provided in step 37 are not
satisfactory): The super-agent reassigns a modified task to the same sub-OA (of step
Figure 4).
Ph.D. Thesis, Spring 2000 61

62
39. Conditional (if step 36 is executed): The super-agent validates the results (of step 37),
and:
Interface option (to allow for implementation): The super-agent requests the
implementation of the validated results (if the attribute values of the sub-OA are
recommended for modification).

40. Conditional (if requested in step 39): The sub-OA interacts with the appropriate
agents in the environment (e.g., CAD-agent) to implement the results.
The environment agent carries the implementation of the results.

41. Conditional (if step 40 is executed): The environment agent which carried the
implementation confirms its execution.

42. The sub-OA updates the information of its sub-DOs effected by the implementation.

43. The sub-OA updates its DO information (if the DO is activated the update must be
conducted through its OA).

44. Conditional (if no other task is to be executed): Termination interactions (see Chart 1
steps 26 & 27).

45. Conditional (if step 44 is executed): The OA terminates itself.
From Scenarios to Interaction Algorithms

Conflict handling types
4.4 Chart 3. Conflict Handling

See Section A.6 for relevant definitions. The event-trace is shown in Figure
4.3. The important steps are 20-45. Each attribute of a DO has an attached list of
interested DOs, EAs and other attributes (see explanation in Section 3.1 & details
in Section 5.2.2). This list is compiled when the DO class is created. Within a
session, the list can be modified (after the DO has been instantiated). I recap that
an interested DO is a DO with at least one attribute registered in the list, and an
interested EA is an EA registered for at least one attribute in the list. This list is
provided by a DO instance upon request and serves as a reminder of which DO
attribute or EA may be affected by any modification to the particular attribute
value. Such modifications may constitute conflicts with some members of the
list. The order of the list members is insignificant, however, when a DA selects a
set of members of a list for conflict check it should be a sorted set. The DA sorts
the activation of members of the selected set according to a personalized criteria
for conflicts that are considered most critical. When a DA selects a set to proceed
with a conflict check:

• an OA should be created for each DO (or attribute of the same DO) in the
set. For instance, if a depth attribute of a Beam-DO is selected from the
interestlist of a width attribute of a Room-DO a Beam-OA should be

created for the conflict handling session (about the change in the Room-
DO width). The activated Beam-OA may perform a stress analysis task to
examine the beam strength in respect to the new width of the Room-DO.

• an OA of the same DO should be created for each selected EA in the set.
For instance, if a daylighting-EA is selected from the interestlist of a

glazing-area attribute of a Window-DO, a Window-OA should be created
to represent the daylighting-EA in the conflict handling session. The
activated Window-OA may perform a daylighting evaluation task to
examine the new glazing area of the Window-DO.

The OA approach can accommodate a variety of mechanisms and guide lines for
conflict handling. However, the mechanisms and guidelines adopted within the
scope of this work are intended to demonstrate the potential benefits of the OA
approach.

A task dependent hierarchy consists of multiple levels of DOs from the DA down
to the leaf DOs. A conflict handling session may involve OAs in the same level
or in different levels of the same hierarchy or in multiple hierarchies. The DA
Ph.D. Thesis, Spring 2000 63

64

OA2
(sub-OA1)

DO
Instance

OA

(sub-OA2)

assign task

validate results

update

assign task

EnvironmentOA1

check for conflict

provide check results

validate conflict session results

update

ta
sk

 a
ss

ig
nm

en
t l

oo
p

(super-OA) Agents

conditional message

store

internal action

load protocols

load protocols

co
nf

lic
t d

et
ec

tio
n/

ha
nd

lin
g

va
lid

at
e/

up
da

te
ta

sk
 e

xe
cu

tio
n

request service

service interactions

DA
(an agent)

request service

provide potential conflict list
activate

activation interaction

provide results

validate results or provide alternative values

request data
provide data

ac
tiv

at
io

n
lo

op

terminate

terminate

termination interactions

termination interactions

01
02

03
04

05
06
07
08
09
10
11

12

13

14
15

16
17
18
19
20
21
22
23
24
25

26

27
28

30

31
32
33
34

conditional loop

provide results

provide results

create OA

message

OA3

Class

provide results

validate results or provide alt.

aggregate

request service

provide results

provide results

provide results

check for interested DOs&OAs

35
36
37
38
39
40

41
42
43
44

29

validate results or provide alternative values

service interactions

se
rv

ic
e

re
qu

es
t l

oo
p

service interactions

provide results
service interactions

se
rv

ic
e

re
qu

es
t l

oo
p

request service

ta
sk

 a
ss

ig
nm

en
t l

oo
p

provide results

service interactions

45
46
47

48

49
50

51

se
rv

ic
e

re
qu

es
t l

oo
p

browse

se
rv

ic
e

re
qu

es
t l

oo
p

request service
may inquire about an interestlist of an OA that is assigned tasks either by the DA
or by another agent. Note that the OA that provides an interestlist is considered
the conflict focus (see Def. A.6.11). The DA selects a sub-set of the interestlist to
check for conflict, the members of that sub-set are not necessarily from the same
FIGURE 4.3.

Event-trace of conflict handling
among two leaf-OAs.
From Scenarios to Interaction Algorithms

Details of
the interactions
level at the hierarchy nor from the same hierarchy. The two OAs involved in the
conflict constitute the conflict zone. A direct conflict handling session involves
two OAs one of which is the conflict focus. An indirect conflict handling
session involves two OAs neither of which is the conflict focus. Accordingly, the
conflict zone does not necessarily include the conflict focus. In other words, two
OAs may have a conflict over an attribute value of a a third OA. In such a case
the two OAs (who constitute the conflict zone) are involved in an indirect
conflict about a third OA attribute (who is the conflict focus). The tasks that
triggers the conflict may be assigned by the OAs or the DA, however, the DA
may need to interact with OAs which were not directly assigned tasks by DA (the
DA interacts to provide alternative values for iterative evaluations and to validate
the conflict results). Figure 4.4 shows various cases of direct and indirect conflict
handling among OAs in the same or in different levels of a hierarchy. The various
conflict cases in the figure illustrate that conflict types may require different
patterns of interaction between the DA and the OAs involved. In particular, the
figure shows how an OA environment can help the designer be aware of the most
relevant DOs to a conflict. Chart 3 is an example of a direct conflict handling
session for two OAs in the same level (case C of Figure 4.4). Chart 7 is an
example of an indirect conflict handling session for two OAs in the same level
(case E of Figure 4.4). The two Charts demonstrate how the conflict type affects
the pattern of DA interaction with the OAs of the task zone and task focus.

1. A super-OA assigns a task to a sub-OA (sub-OA1 in this chart).

2. Conditional (if the appropriate protocols are not loaded): Sub-OA1 loads the
appropriate protocols for the assigned task.

3. Interacting with the appropriate agent in the environment (e.g., an EA) sub-OA1
initiates a task execution session.

4. Task execution interactions (see Chart 2 steps 7-19).

5. The environment agent provides its task execution results to sub-OA1.
Sub-OA1 stores the results until validated.

6. Interface option (to allow the DA to validate task results not assigned directly by him/
her): Sub-OA1 provides the DA with the task execution results.

7. Conditional (if step 6 is executed): The DA validates the results of sub-OA1, or:
 provides an alternative set of attribute values for task reassignment.

8. Conditional (if alternative values are provided in step7): Sub-OA1 reassigns the task
to the EA to examine the alternative values. In such case steps 3-8 are repeated.
Ph.D. Thesis, Spring 2000 65

OA2

OA1

2

5 7

836

DA

OA3

1

4

L1

L2

L3

OA1

2

53

6

DA

1

4

L1

L2OA2

OA2

OA1

5 7

8

36

DA

OA3

1

4

L1

L2

L3

OA2

OA1

2

5 7

8

36

DA

OA3

1

4

L1

L2

L3

OA1

2

53

6

DA
1

4

L1

L2

L3

OA2

OA1

2

5 7

8

36

DA

OA3

1

4

L1

L2

L3

OA2

(A & B) direct conflict handling for an OA performing a task assigned by a DA

(E & F) indirect conflict handling for an OA performing a task not assigned by a DA
same level different levels

same level different levels

same level different levels

(C & D) direct conflict handling for an OA performing a task not assigned by a DA

OA with conflict focus
OA activated for conflict
OA performing initial task

OA conflict zone

co
nf

lic
t l

is
t

ge
t c

on
fli

ct
 li

st

ta
sk

re
su

lts

ta
sk

2

re
su

lts

ta
sk

re
su

lts

ta
sk

re
su

lts

co
nf

lic
t l

is
t

ge
t c

on
fli

ct
 li

st

re
su

lts

ta
sk

ta
sk

re
su

lts

co
nf

lic
t l

is
t

ge
t c

on
fli

ct
 li

st

ta
sk

re
su

lts

ta
sk

re
su

lts

ta
sk

re
su

lts

co
nf

lic
t l

is
t

ge
t c

on
fli

ct
 li

st

ta
sk

re
su

lts

ta
sk

re
su

lts

ta
sk

re
su

lts

co
nf

lic
t l

is
t

ge
t c

on
fli

ct
 li

st

ta
sk

re
su

lts

ta
sk

re
su

lts

co
nf

lic
t l

is
t

ge
t c

on
fli

ct
 li

st

ta
sk

re
su

lts

ta
sk

re
su

lts

(if different from conflict focus)
FIGURE 4.4.

Conflict handling cases.
66 From Scenarios to Interaction Algorithms

9. Sub-OA1 provides its task execution results to the super-OA.
Conditional (if aggregation is needed): The super-OA aggregates the results of its sub-
OAs.

10. Conditional (if aggregation is performed in step 9): The super-agent requests an
environment agent (e.g., an EA) to evaluate the aggregation results.

11. Conditional (if step 10 is executed): Evaluation interactions to check the aggregation
results provided in step 10 (see Chart 2 steps 23-31).

12. Conditional (if step 11 is executed): The environment agent (of step 10) provides its
evaluation of the aggregation results to the super-agent.
The super-agent stores the results until validated.

13. The super-OA provides the DA with results (of step 9 or 12) for validation.
Conditional (if aggregation is needed): The DA aggregates the provided results.

14. Conditional (if aggregation is performed in step 13): The DA requests an environment
agent (e.g., an EA) to evaluate the aggregation results.

15. Conditional (if step 14 is executed): Evaluation interactions to check the aggregation
results provided in step 14 (see Chart 2 steps 23-31).

16. Conditional (if step 15 is executed): The environment agent (of step 14) provides its
evaluation of the aggregation results to the DA.
The DA stores the results until validated.

17. Conditional (if the results provided in either step 13 or step 16 are not satisfactory):
The DA/super-agent remanages either a task execution session in which case steps 1-
17 are repeated, or an aggregation session in which case steps 14-17 are repeated.

18. The DA validates the results (of step 13), or:
provides the super-OA with alternative attribute values for task reassignment or to run
another aggregation session for the sub-results provided in step 10.

19. Conditional (if alternative values are provided by the DA in step 18): The super-OA
remanages either a task execution session to examine the alternative values, in which
case steps 1-19 are repeated, or an aggregation session, in which case steps 10-19 are
repeated.

20. Interface option (to allow for conflict check): The DA requests a conflict
check (with other interested DOs or EAs) before the attribute values of the
sub-OA1 are modified.

21. Sub-OA1 checks with its DO for a list of DOs and OAs with interest in the
targeted attribute values (i.e., which is subject to modification according to
the task execution results). The interested DOs or EAs are potential
candidates for conflict over the recommended attributes values.

22. The DO provides a list of DOs and EAs interested in the targeted attribute
values.

23. Sub-OA1 provides the DA with the list of interested DOs and EAs.
Ph.D. Thesis, Spring 2000 67

68
24. Conditional (if the list contains one or more DO or OA): The DA selects a set
of DOs and EAs from the list (according to the DA’s criteria for most critical
conflicts) to activate for conflict check.
Conditional (if the targeted DO is not activated): The DA sends an activation
message to the first DO on the selected set.

25. Conditional (if step 24 is executed): The DO instantiates an OA of its DO
type from the OA class.
Sub-OA2 is created.

26. Conditional (if step 25 is executed): Activation interactions (see Chart 1 steps
3-6).

27. The DA assigns an evaluation task to examine the recommended attribute
values (which is the focus of the conflict handling session) with respect to the
sub-OA2 (activated in step 24).

28. Conditional (if the appropriate protocols are not loaded): sub-OA2 loads the
appropriate protocols for the assigned task.

29. Interacting with the appropriate agent in the environment (e.g., an EA) sub-
OA2 initiates a task execution session.

30. Task execution interactions (see Chart 2 steps 7-19).

31. The EA (of step 29) provides sub-OA2 with the task execution results.
Sub-OA2 stores the results until validated.

32. Sub-OA2 provides its task execution results to the DA.
Conditional (if aggregation is needed): The DA aggregates the sub-results
provided in step 31.

33. Conditional (if aggregation is performed in step 32): The DA requests an
environment agent (e.g., an EA) to evaluate the aggregation results.

34. Conditional (if step 33 is executed): Evaluation interactions to check the
aggregation results provided in step 33 (see Chart 2 steps 23-31).

35. Conditional (if step 34 is executed): The environment agent (of step 33)
provides its evaluation of the aggregation results to the DA.
The DA stores the results until validated.

36. Conditional (if the results provided in either step 32 or step 35 are not
satisfactory): The DA remanages either a task execution session in which case
steps 27-36 are repeated, or an aggregation session in which case steps 33-36
are repeated, or:
From Scenarios to Interaction Algorithms

37. The DA validates the results (of step 32), or:
provides alternative attribute values for task reassignment.

38. Conditional (if alternative values are provided by the DA in step 37): Sub-
OA2 runs another session to examine the alternative values. In such case
steps 29-38 are repeated.

39. Conditional (if the results provided in step 32 are not satisfactory): The DA
sends a query request to obtain information from the environment agents
(e.g., a query-agent) to help in reassigning the task to either sub-OA1 or to
sub-OA2 with alternative attribute values.

40. Conditional (if step 39 is executed): The environment agents provide the DA
with the applicable information (as available).

41. Conditional (if the information provided in step 40 is not sufficient): The DA
sends a modified query request to the environment agents. In such case steps
39-41 are repeated.

42. Conditional (if the results of step 32 are not satisfactory): The DA reassigns
another evaluation task to either sub-OA1 in which case steps 1-42 are
repeated, or to sub-OA2 in which case steps 27-42 are repeated.

43. The DA validates the conflict handling session results (started in step 20).

44. The super-OA validates the results of sub-OA1 (provided in step 9).

45. Conditional (if there are more than one DO or EA in the set selected in step
24): The DA either activates the next DO in the set, in which case steps 27-45
are repeated, or assigns another evaluation task to sub-OA1 in relation to the
next EA in the set, in which case steps 1-45 are repeated.

46. Sub-OA2 updates its DO information (after the implementation of the task results, see
Chart 2 steps 39-41).

47. Conditional (if no other task is to be executed): Termination interactions (see Chart 1.
steps 26 & 27).

48. Conditional (if step 47 is executed): Sub-OA2 terminates itself.

49. Sub-OA1 updates its DO information (after the implementation of the task results, see
Chart 2 steps 39-41).

50. Conditional (if no other task is to be executed): Termination interactions (see Chart 1.
steps 26 & 27).

51. Conditional (if step 50 is executed): Sub-OA1 terminates itself.
Ph.D. Thesis, Spring 2000 69

70

conditional message
message

ta
sk

 a
ss

ig
nm

en
t l

oo
p

BFloor
DO

OA
Class

BFloor OA

Room
DO

OA
Class

Room OA

Wall
DO

OA
Class

Cost
Agent

Environment
Agents

Wall OA

DA
(an agent)

activate
create OA

activation interactions

assign tasks

load protocols
activate

create OA

activation interactions

assign tasks

activate
create OA

assign tasks

provide results

provide results

request service

request service

provide results

provide results

request data

request service

provide results

provide results

validate results or provide alt.

validate results

validate results
update

termination interaction

terminate
update

termination interaction

terminate
update

termination interaction

terminate

aggregate
browse
store

decompose

internal action

ta
sk

-e
xe

cu
tio

n/
va

lid
at

io
n

ac
tiv

at
io

n/
de

co
m

po
si

tio
n

te
rm

in
at

io
n

provide results
validate results or provide alternative values

validate results or provide alternative values
provide results

(& floor/roof)

load protocols

activation interactions

load protocols

01
02
03

04
05

06
07
08

09
10

11
12
13

14
15

16
17

26
27
28
29
30
31

41
42
43

44
45

46

conditional loop

service interactions

service interactions

ta
sk

 a
ss

ig
nm

en
t l

oo
p

service interactions

ta
sk

 a
ss

ig
nm

en
t l

oo
p

request service

service interactions

provide results

18
19
20
21
22
23
24

25

32
33
34

35

36
37
38
39
40

47

48
4.5 Chart 4. Cost Evaluation Task (Classified per Room-DO)

This is the first of four applications illustrating the OA-based design
environment. The event-trace chart for cost-evaluation is shown in Figure 4.5.
For this task I first describe the assigned task, identify the main players, the
FIGURE 4.5.

Event trace of a painting cost
evaluation task executed by a
BFloor-OA (classified per Room-
DO).
From Scenarios to Interaction Algorithms

The assigned task

The main players

The major events

The expected results
major events, the expect results before giving a description of the detailed
scenario of interactions.

The DA is interested in evaluating the cost of painting a BFloor-DO. The
evaluation should include the total painting cost of the BFloor-DO and a cost
classification per Room-DO. This includes the total cost of each individual
Room-DOs and an itemized cost of its activated sub-DOs such as Wall-DOs,
Ceiling-DOs (and any DO that need to be painted).

There are three main players in the scenario for this task: a DA, a BFloor-OA and
a cost-EA (and the geometry-EA as a secondary player).

There are three main events which are listed below.

• The DA activates the BFloor-DO and assigns it a classified cost evaluation
task, which, in turn, triggers a chain of activation by the BFloor-OA down
the hierarchy to its Room-DOs to all leaf-DOs (i.e., the last nodes in the
task hierarchy such as Walls, Partitions and Ceilings).

• Interacting with the cost-EA, each activated OA runs a cost evaluation
session regarding its own state. The sequence of evaluation sessions starts
from the leaf OAs where the results are provided to their super-agents up
to the DA level. As a leaf node, a Wall-DO interacts with the cost-EA to
calculate its painting cost. The cost-EA requests the total solid area of the
Wall-DA. Accordingly, the Wall-DO interacts with the geometry-EA to
calculate the required area and then provides the cost-EA with the
requested painting cost. Each super-agent aggregates the results provided
by its sub-OAs. Note: There may exist many alternatives of how the cost
may be calculated. For instance it is possible to aggregate the areas and
calculate the total cost at once, however, calculating the cost of each Wall-
DO (or Ceiling-DO, etc.) provides more value to the designer.

• The OAs update the information of its DOs and terminates itself.

The following two are additional optional results.

• The DA triggers a conflict handling session.

• The DA requests the implementation of new attribute values.

There are two results that can be expected from this task and two additional
optional result.
Ph.D. Thesis, Spring 2000 71

72

Details of
the interactions
1. For each evaluation session2 the assigned BFloor-OA provides the DA with

information3 that may contain at least one of the following:

• painting cost of the BFloor-DO, and the classified cost as assigned (see the
assigned task);

• prototypical cost of each of the DOs above;

• a warning for each DO that exceeds the specified prototypical cost.

2. The DA examines either new DO attribute values for DOs in the task
dependent hierarchy or new cost constraints.

3. (Optional) The DA examines new DO attribute values for DOs interested in
the attribute values of the DOs in the task dependent hierarchy. This may
occur as a result of conflict handling sessions (if executed).

4. (Optional) Implementation of examined DO attribute values and updating of
the DO relations.

The main steps are 16-41.

1. Conditional (if the targeted BFloor-DO is not activated): A DA sends an activation
message to a BFloor-DO.

2. Conditional (if step 1 is executed): The BFloor-DO instantiates a BFloor-OA.
A BFloor-OA is created.

3. Conditional (if step 2 is executed): Activation interactions (see Chart 1 steps 3-6).

4. The DA assigns the painting cost evaluation task to the created BFloor-OA.

5. Conditional (if the appropriate protocols are not loaded): The BFloor-OA loads the
cost evaluation protocols.
The BFloor-OA uses the protocols to decompose the task among potential sub-DOs
(linked to the BFloor-OA in a hierarchy)

6. Conditional (if the targeted sub-DOs are not activated): The BFloor-OA sends
activation messages to all qualified sub-DOs (Room-DOs in this case).

2. An evaluation session is defined as “an evaluation by the EA (namely the cost-EA in
this chart) of one set of DO attribute values with respect to either saved prototypical
values, predefined constrains, or requirements”.

3. The form by which this information is presented (e.g., lists, charts, diagrams) is
implementation dependent. The DA should be able to interactively and graphically
modify such information.
From Scenarios to Interaction Algorithms

7. Conditional (if step 6 is executed): The Room-DO class instantiates a Room-OA for
each activated Room-DO.
The created Room-OAs are sub-OAs to the BFloor-OA.

8. Conditional (if step 7 is executed): Activation interactions (see Chart 1 steps 3-6).

9. The BFloor-OA assigns painting cost evaluation sub-tasks to the created Room-OAs.

10. Conditional (if the appropriate protocols are not loaded): Each Room-OA loads the
cost evaluation protocols.
Each Room-OA uses the protocols to decompose the task among potential sub-DOs
(linked to each Room-OA within the task hierarchy). The protocols identifies the
shared-DOs in the hierarchy (such as walls, floors etc.) Other environment agents
(e.g., geometry-agent) identifies the portion of any shared DO to be considered as a
sub-DO of its room-super-agent4.

11. Conditional (if the targeted DOs are not activated): Each Room-OA sends activation
messages to all its qualified sub-DOs. For the shared DOs, the activation may only
occur by one room-super-agent, the rest of the room-super-agents (sharing the same
DO) may only assign tasks to the created sub-OA.

12. Conditional (if step 11 is executed): The Wall-DO/Ceiling-DO/Floor-DO classes (and
any other sub-DO in the hierarchy that requires painting) instantiate Wall-OA/
Ceiling-OA/Floor-OA etc. for each activated DO.
Each created OA is a sub-OA to its Room-OA (as a super OA).

13. Conditional (if step 12 is executed): Activation interactions (see Chart 1. steps 3-6).

14. The Room-OA assigns painting cost evaluation sub-tasks to the created sub-OAs.

15. Conditional (if the appropriate protocols are not loaded) Each sub-OA loads the cost
evaluation protocols. The decomposition process terminates when no other sub-DOs
are found in the hierarchy. Therefore, the sub-OAs of step 12 are considered leafs in
the decomposition tree.

16. Interacting with the cost-EA each leaf OA initiates an evaluation task
execution session.

17. Task execution interactions (see Chart 2 steps 7-19). This may include
interactions among a geometry-EA and the each leaf-OA to provide the cost-
OA with requested areas of each leaf-OA.

18. The cost-EA provides its cost evaluation results (as assigned; current cost,
relation to prototypical cost etc.) to the each sub-OA.
Each sub-OA stores its results until validated.

4. The recognition of the sub-parts depends on a large degree on the representation of
DOs and on the capabilities of the agents that are concerned with interpreting
geometric representations.
Ph.D. Thesis, Spring 2000 73

74
19. Interface option (to allow the DA to validate task results not assigned directly
by him/her): Each sub-OA provides its cost evaluation results to the DA.

20. Conditional (if step 19 is executed): DA validates the sub-OAs cost
evaluation results, or:
provides the sub-OA with alternative attribute values for task reassignment.

21. Conditional (if alternative values are provided in step 20): The sub-OA
reassigns the task to the cost-EA to examine the alternative values. In such
case steps 16-21 are repeated.

22. Each sub-OA provides its cost evaluation results to its super-OA (Room-OA).
Conditional (if more than one sub-OA provided sub-results to its super-OA):
The Room-OA uses its domain protocols to aggregate the sub-results
collected from its sub-OAs.

23. Conditional (if aggregation is performed in step 22): The Room-OA interacts
with the cost-EA to evaluate its aggregation results, in respect to the design
requirements and the prototypical values in the database.

24. Conditional (if step 23 is executed): Task execution interactions (see Chart 2
steps 23-31).

25. Conditional (if step 24 is executed): The cost-EA provides its aggregation
evaluation results (as assigned; current painting cost, relation to prototypical
cost etc.) to the Room-OA.
The Room-OA stores the results until validated.

26. Interface option (to allow the DA to validate task results not assigned directly
by him/her): Each Room-OA provides its cost evaluation results to the DA.

27. Conditional (if step 26 is executed): The DA validates the results of the cost
evaluation of each Room-OA if satisfactory, or:
provides the Room-OA with alternative attribute values for task
reassignment.

28. Conditional (if alternative values are provided by the DA in step 27): The
Room-OA either reassigns the task to the cost-EA to examine the alternative
values, in which case steps 14-28 are repeated, or run another aggregation
evaluation session, in which case steps 23-28 are repeated.

29. Each Room-OA provides its painting cost evaluation results to its super-OA
(the BFloor-OA in this case).
Conditional (if more than one Room-OA submitted sub-results to the BFloor-
OA): The BFloor-OA uses its protocols to aggregate the sub-results collected
from the Room-OAs.
From Scenarios to Interaction Algorithms

30. Conditional (if aggregation is performed in step 29): The BFloor-OA interacts
with the cost-EA to evaluate the aggregated results (in respect to the design
requirements or the prototypical values in the database).

31. Conditional (if step 30 is executed): Task execution interactions (see Chart 2
steps 23-31).

32. Conditional (if step 31 is executed): The cost-EA provides its aggregation
evaluation results (as assigned; current painting cost, relation to prototypical
cost etc.) to the BFloor-OA.
The BFloor-OA stores the results until validated.

33. The BFloor-OA provides its task execution results to the DA.
Conditional (if more than one BFloor-OA provided sub-results to the DA):
The DA aggregates the sub-results of the BFloor-OAs.

34. Conditional (if aggregation is performed in step 33): The DA interacts with
the cost-EA to evaluate the aggregated results to evaluate the aggregated
results.

35. Conditional (if step is 34 executed): Task execution interactions (see Chart 2
steps 23-31)

36. Conditional (if step 35 is executed): The cost-EA provides the DA with its
aggregation evaluation results (as assigned; current cost, relation to
prototypical cost etc.).
The DA stores the results until validated.

37. Conditional (if the results of steps 33 or 36 are not satisfactory): The DA
either reassigns the initial task (of step 4) to the BFloor-OA with alternative
attribute values or requirements, in which case steps 4-37 are repeated, or run
another aggregation evaluation session, in which case steps 34-37 are
repeated.

38. The DA validates the results of the BFloor-OA (of step 33), or:
provides alternative attribute values for task reassignment.

39. Conditional (if alternative values are provided in step 38): The BFloor-OA
either reassigns the task to the cost-EA to examine the modified values, in
which case steps 9-39 are repeated, or run another aggregation evaluation
session, in which case steps 30-39 are repeated.

40. The BFloor-OA validates the results (of step 29) of each Room-OA.

41. Each Room-OA validates the results (of step 22) of its sub-OAs.
Ph.D. Thesis, Spring 2000 75

76
42. Each sub-OA (of step 12) updates its DO information.

43. Conditional (if no other task is to be executed): Termination interactions (see Chart 1
steps 26 & 27).
Conditional (if step 42 is executed): Each sub-OA terminates itself.

44. Each Room-OA updates its DO information.

45. Conditional (if no other task is to be executed): Termination interactions (see Chart 1
steps 26 & 27).
Conditional (if step 44 is executed): Each Room-OA terminates itself.

46. The BFloor-OA updates its DO information.

47. Conditional (if no other task is to be executed): Termination interactions (see Chart 1
steps 26 & 27).

48. Conditional (if step 47 is executed): The BFloor-OA terminates itself.
From Scenarios to Interaction Algorithms

The assigned task

The main players

The major events

The expected results
4.6 Chart 5. Daylight Evaluation Task

The event-trace chart is shown in Figure 4.6. As before I describe the assigned
task, identify the main players, major events and expected results.

The DA is interested in evaluating the daylighting of a BFloor-DO. The
evaluation should include daylighting levels classified according to each Room-
DO of the BFloor-DO during a specified range of hours of the day.

The evaluation should also include the daylighting levels of each individual
opening within each Room-DO. The bfloor-evaluation should include statistical
information about the number of Room-DOs within the BFloor-DO satisfying the
daylighting constrains and prototypical values.

The scenario of this chart involves three main players; a DA, a BFloor-OA and a
daylighting-EA.

• The DA activates the BFloor-DO and assigns it a daylighting evaluation
task, which, in turn, triggers a chain of activation by the BFloor-OA down
the hierarchy to its Room-DOs (which are the last nodes in the daylighting
task dependent hierarchy).

• Interacting with the daylighting-EA, each activated OA runs a daylighting
evaluation session regarding its own state. The sequence of evaluation
sessions starts from the leaf OAs where the results are provided to their
super-agents. Each super-agent aggregates (when needed) the results
provided by its sub-OAs, and so forth up to the DA level.

• The OAs update the information of its DOs and terminates itself.

The following two events are optional.

• The DA triggers a conflict handling session.

• The DA requests the implementation of new attribute values.

1. For each evaluation session the assigned BFloor-OA provides the DA with
information that may contain at least one of the following:

• daylighting levels of each Room-DO (see the assigned task);

• prototypical daylighting levels of each of the Room-DO types (e.g., living
room, bedroom);
Ph.D. Thesis, Spring 2000 77

78

BFloor
DO

OA
Class

BFloor OA

Room
DO

OA
Class

Room OA

DO Daylight
Agent

Query
Agent

DA
(an agent)

activate

create OA

activation interactions

assign tasks

load protocols

activate

create OA

activation interactions

assign tasks

load protocols

provide results

provide results

validate results or provide alt.

validate results

update

termination interactions

terminate
update

termination interactions

terminate

ta
sk

-e
xe

cu
tio

n/
va

lid
at

io
n

ac
tiv

at
io

n/
de

co
m

po
si

tio
n

te
rm

in
at

io
n

request service

provide results

update

(window/door/skylight etc.)

provide results

validate results or provide alternative values

conditional message
message

calculate
aggregate
browse
store

decompose

internal action

conditional loop

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29
31

32

33

34

35

Instances

service interactions

service interactions

request service

provide results

service interactions

request service

provide results

ta
sk

 a
ss

ig
nm

en
t l

oo
p

ta
sk

 a
ss

ig
nm

en
t l

oo
p

• a warning for each DO that is below the specified or prototypical
daylighting levels.

2. The DA examines either new DO attribute values for DOs in the task
dependent hierarchy or new daylighting constraints.

3. (Optional) The DA examines new DO attribute values for DOs interested in
the attribute values of the DOs in the task dependent hierarchy. This may
occur as a result of conflict handling sessions (if executed).
FIGURE 4.6.

Event-trace of a daylighting
evaluation task for a BFloor-OA.
From Scenarios to Interaction Algorithms

Details of
the interactions
4. (Optional) Implementation of examined DO attribute values and updating of
the DO relations.

The main steps are 11-28.

1. Conditional (if the BFloor-DO is not activated): A DA sends an activation message to
a BFloor-DO.

2. Conditional (if step 1 is executed): The BFloor-DO instantiates a BFloor-OA.
A BFloor-OA is created.

3. Conditional (if step 2 is executed): Activation interactions (see Chart 1 steps 3-6).

4. The DA assigns a daylighting evaluation task to the created BFloor-OA.

5. Conditional (if the appropriate protocols are not loaded): The BFloor-OA loads the
daylighting evaluation protocols.
The BFloor-OA uses the protocols to decompose the task among potential sub-DOs
(linked to the BFloor-OA in a task dependent hierarchy).

6. Conditional (if the targeted DOs are not activated): The BFloor-OA sends an
activation message to its qualified room-sub-DOs.

7. Conditional (if step 6 is executed): The Room-DO class instantiates Room-OAs for
each Room-DO.
The created Room-OAs are sub-OAs to the BFloor-OA.

8. Conditional (if step 7 is executed): Activation interactions (see Chart 1 steps 3-6).

9. The BFloor-OA assigns daylighting evaluation sub-tasks to the created Room-OAs.

10. Conditional (if the appropriate protocols are not loaded): Each Room-OA loads the
daylighting evaluation protocols.

11. Interacting with the daylighting-EA each Room-OA initiates a daylighting
evaluation task session.

12. Task execution interactions (see Chart 2 steps 7-19).
Note: The daylighting-EA activates any adjacent Room-DO (see Chart 2 step
19) which shares one or more internal openings with any Room-OA being
evaluated. The daylighting-EA evaluates the daylighting levels in such
rooms in order to obtain the lighting levels reflected on the shared openings of
the Room-OAs being evaluated. It should be noted that infinite loops of
Room-DO activations and dependencies may occur if the depth and number
of adjacent Room-DOs to effect the lighting levels on a shared opening are
not controlled.
Ph.D. Thesis, Spring 2000 79

80
13. The daylighting-EA provides its daylighting evaluation results (as assigned;
daylighting levels, relation to prototypical values etc.) to each Room-OA
requested service.
Each Room-OA stores its results until validated.

14. Interface option (to allow the DA to validate task results not assigned directly
by him/her): Each Room-OA provides its daylighting evaluation results to the
DA.

15. Conditional (if step 14 is executed): The DA validates the Room-OAs
daylighting evaluation results if satisfactory, or:
provides alternative attribute values for task reassignment.

16. Conditional (if alternative values are provided in step 15): Any Room-OA
may reassign the task to the daylighting-EA to examine the alternative
values. In such case steps 11-16 are repeated.

17. Each Room-OA provides its daylighting evaluation results to the BFloor-OA.
Conditional (if aggregation is needed): The BFloor-OA uses it protocols to
aggregate the sub-results collected from its Room-OAs.
Note: The nature of aggregation of the BFloor-OA daylighting sub-results is
different from that of the cost evaluation sub-results (as in Chart 4) No
additional calculations by the daylighting-EA are required, instead a listing of
all daylighting levels in each of its Room-DO may be sufficient (possibly
done by the BFloor-OA itself).

18. Conditional (if aggregation is performed in step 21): The BFloor-OA requests
the daylighting-EA to evaluate the aggregated results.

19. Conditional (if step is 18 executed): Task execution interactions (see Chart 2
steps 23-31)

20. Conditional (if step 19 is executed): The daylighting-EA provides its
aggregation evaluation results (as assigned; current cost, relation to
prototypical cost etc.) to the BFloor-OA.
The BFloor-OA stores the results until validated.

21. The BFloor-OA provides its evaluation results to the DA.
Conditional (if aggregation is needed): The DA aggregates the sub-results (if
more than one BFloor-OA were executing the daylighting evaluation task
simultaneously).

22. Conditional (if aggregation is performed in step 21): The DA requests the
daylighting-EA to evaluate the aggregated results.
From Scenarios to Interaction Algorithms

23. Conditional (if step is 22 executed): Task execution interactions (see Chart 2
steps 23-31)

24. Conditional (if step 23 is executed): The daylighting-EA provides its
aggregation evaluation results (as assigned; current cost, relation to
prototypical cost etc.) to the DA.
The DA stores the results until validated.

25. Conditional (if the results provided in step 21 or 23 are not satisfactory): The
DA either reassigns the initial task to the BFloor-OA with modified values or
requirements, in which case steps 4-25 are repeated, or runs another
aggregation evaluation session, in which case steps 22-25 are repeated.

26. The DA validates the results (of step 25) of the BFloor-OA, or:
provides alternative attribute values for task reassignment.

27. Conditional (if alternative values are provided in step 26): The BFloor-OA
either reassigns the daylighting task to the daylighting-EA to examine the
alternative values in which case steps 9-27 are repeated, or runs another
aggregation evaluation session in which case steps 18-27 are repeated.

28. The BFloor-OA validates the results (of step 17) of each Room-OA.

29. Conditional (if attribute values of related DOs are to be modified): Each Room-OA
updates the information of its sub-DOs (e.g., opening).

30. Each Room-OA (of step 7) updates its DO information.

31. Conditional (if no other task is to be executed): Termination interactions (see Chart 1
steps 26 & 27).
Each Room-OA terminates itself.

32. The BFloor-OA updates its DO information.

33. Conditional (if no other task is to be executed): Termination interactions (see Chart 1
steps 26 & 27).

34. Conditional (if step 33 is executed): The BFloor-OA terminates itself.
Ph.D. Thesis, Spring 2000 81

82

Building
DO

OA
Class

Building OA

Block
DO

OA
Class

Block OA

BFloor
DO

OA
Class

DO

BFloor OA

DA
(an agent)

activate
create OA

activation interactions

assign tasks

load protocols

activate
create OA

activation interactions

assign tasks

assign tasks

provide results

request service

ta
sk

-e
xe

cu
tio

n/
va

lid
at

io
n

ac
tiv

at
io

n/
de

co
m

po
si

tio
n

Structure
Agent

Query
Agent

conditional message
message

calculate
aggregate
browse
store

decompose

internal action

load protocols
activate

create OA

activation interactions

load protocols

provide results

provide results

validate results or provide alt.

validate results

validate results

update

termination interaction

terminate
update

termination interaction

terminate
update

termination interaction

terminate

te
rm

in
at

io
n

validate results or provide alternative values

provide results

update

validate results or provide alternative values

01
02
03

04
05

06
07
08

09
10

11
12
13

14
15

16
17

18
19
20
21
22
23
24

25
26
27
28
29

30
31

32
33
34
35

36
37
38
39
40
41
42
43
44

45
46

47
48

49

conditional loop

Instances
(Column, Beam, etc.)

service interactions

request service

service interactions

provide results

request service

service interactions

provide results

request service

service interactions

provide results

ta
sk

 a
ss

ig
nm

en
t l

oo
p

ta
sk

 a
ss

ig
nm

en
t l

oo
p

ta
sk

 a
ss

ig
nm

en
t l

oo
p ta
sk

 a
ss

ig
nm

en
t l

oo
p

4.7 Chart 6. Structural Analysis Task

In a structural analysis task, the DA is interested in analyzing the structural
stability of a Building-DO. This should include analysis of building loads
classified according to each block-DO and BFloor-DO. The analysis should also
FIGURE 4.7.

Event-trace of a structural
analysis task executed by a
Building-OA.
From Scenarios to Interaction Algorithms

The main players
include the individual structural elements within each Block-DO or Floor-DO
(e.g., columns, beams, trusses, sheer walls). The analysis should include
statistical information about the number of structural elements (or zones) with
specifications not sufficient for the prospected loads. The event-trace chart for
such a structural analysis is shown in Figure 4.7.

The scenario of this task involves three main players; a DA, a Building-OA and a
structure-EA.

• The DA activates the Building-DO and assigns it a structural analysis task,
which, in turn, triggers a chain of activation by the Building-OA down the
hierarchy to its Block-DOs to their BFloor-DOs (which are the last nodes
in the structural analysis task dependent hierarchy).

• Interacting with the structural-EA, each activated OA runs a structural
analysis session regarding its own state. The sequence of analysis
sessions starts from the leaf OAs where the results are provided to their
super-agents. Each super-agent aggregates (when needed) the results
provided by its sub-OAs, and so forth up to the DA level.

• The OAs update the information of its DOs and terminates itself.

The following are optional events.

• The DA triggers a conflict handling session.

• The DA requests the implementation of new attribute values.

1. For each analysis session the assigned Building-OA provides the DA with
information that may contain at least one of the following:

• structural stability of each block -DO and BFloor-DO (see The task
above);

• a warning for each structural DO (or zone) where its current specification
is not sufficient for the expected loads.

2. The DA examines either new DO attribute values for DOs (or a collection of
DOs in a zone).

3. (Optional) The DA examines new DO attribute values for DOs interested in
the attribute values of the DOs in the task dependent hierarchy. This may
occur as a result of conflict handling sessions (if executed).

4. (Optional) Implementation of examined DO attribute values and updating of
the DO relations.
Ph.D. Thesis, Spring 2000 83

84

Details of
the interactions
The main steps are 16-41.

1. Conditional (if the targeted BFloor-DO is not activated): A DA sends an activation
message to a Building-DO.

2. Conditional (if step 1 is executed): The Building-DO instantiates a Building-OA.
A Building-OA is created.

3. Conditional (if step 2 is executed): Activation interactions (see Chart 1 steps 3-6).

4. The DA assigns a structural analysis task to the created Building-OA.

5. Conditional (if the appropriate protocols are not loaded): The Building-OA loads the
structural analysis protocols.
The Building-OA uses the protocols to decompose the task among qualified sub-DOs
(linked to the Building-OA in a task dependent hierarchy)

6. Conditional (if the targeted block-DOs are not activated): The Building-OA sends
activation messages to its block-sub-DOs.

7. Conditional (if step 6 is executed): The block-DO class instantiate block-OAs for each
block-DO.
The created block-OAs are sub-OAs to the Building-OA.

8. Conditional (if step 7 is executed): Activation interactions (see Chart 1 steps 3-6).

9. The Building-OA assigns structural analysis sub-tasks to the created block-OAs.

10. Conditional (if the appropriate protocols are not loaded): Each block-OA loads the
structural analysis protocols.
The block-OAs uses the protocols to decompose the task among potential sub-DOs
(linked to each block-OA within the task dependent hierarchy).

11. Conditional (if the targeted BFloor-DOs are not activated): Each block-OA sends an
activation messages to all its BFloor-DOs.

12. Conditional (if step 11 is executed): The bfloor class instantiates BFloor-OAs for each
BFloor-DO. The created BFloor-OAs are sub-OAs to the block-OAs.

13. Conditional (if step 12 is executed): Activation interactions (see Chart 1 steps 3-6).

14. The block-OA assigns structural analysis sub-tasks to the created BFloor-OAs.

15. Conditional (if the appropriate protocols are not loaded): Each BFloor-OA loads the
structural analysis protocols.
The decomposition stops when no other sub-DOs are found in the task dependent
hierarchy, the current BFloor-OAs are leafs in the decomposition tree.

16. Interacting with the structural-EA each BFloor-OA initiates a structural
analysis task session.

17. Task execution interactions (see Chart 2 steps 7-19).
In a multi story building, the analysis of the lower BFloor-OAs are dependent
on the higher ones. Therefore, the structural analysis starts from the upper
From Scenarios to Interaction Algorithms

BFloor-OAs to the lower BFloor-OAs.
Note1: If the DA assigned a structural analysis task to a lower BFloor-OA the
later will activate the higher BFloor-OA to execute similar task and so forth
until all higher (or adjacent) BFloor-OA loads are calculated (see Chart 2 step
19).
Note 2: The information requested from the BFloor-OAs during the
interaction with the structural-EA can be obtained directly from the each
BFloor-OA such as the building floor dimensions. Other information of the
sub-DOs (which is not activated) such as beam dimensions and material
requires the interaction of each BFloor-OA with its structural elements sub-
DOs within the task dependent hierarchy (Sub-DOs such as baring Wall-DOs,
Beam-DOs, and Column-OAs). Those sub-DOs may be activated during the
task execution session, but for a basic structural analysis task it is not
necessary to do so. The BFloor-OA can access the information needed from
such linked DOs (see Chart 2 steps 8-10). No agent properties are necessary
for those DOs during the session.

18. The structure-EA provides each BFloor-OA with its structural analysis results
(as assigned; load and stress analysis, stability, relation to prototypical cases
etc.).
Each BFloor-OA stores its results until validated.

19. Interface option (to allow the DA to validate task results not assigned directly
by him/her): Each BFloor-OA provides its structural analysis results to the
DA with.

20. Conditional (if step 19 is executed): DA validates the BFloor-OAs structural
analysis results if satisfactory, or:
provides alternative attribute values for task reassignment.

21. Conditional (if alternative values are provided in step 20): Any BFloor-OA
may reassign the task to the structure-EA to examine the alternative values.
In such case steps 16-21 are repeated.

22. Each BFloor-OA provides its structural analysis results to its block-OA.
Each block-OA uses it protocols to aggregate the results collected from its
BFloor-OAs.
Note: The nature of aggregation of the BFloor-OA structural sub-results is
different from the aggregation of the cost or daylighting evaluation sub-
results (as in Chart 4 & 5). The aggregation can be a classification of loads
Ph.D. Thesis, Spring 2000 85

86
according to the structural elements (e.g., column, barring walls, cores) where
the loads are transferred from the higher BFloor-OAs to the lower ones.
Each block-OA stores its results until validated.

23. Conditional (if aggregation is performed in step 22): Each block-OA requests
the structural-EA to evaluate its aggregated results.

24. Conditional (if step is 23 executed): Task execution interactions (see Chart 2
steps 23-31)

25. Conditional (if step 24 is executed): The structural-EA provides its
aggregation evaluation results to each block-OA.
Each block-OA stores the results until validated.

26. Interface option (to allow the DA to validate task results not assigned directly
by him/her): Each block-OA provides its structural analysis results to the DA.

27. Conditional (if step 26 is executed): The DA validates the block-OA results or
provide alternative attribute values for task reassignment.

28. Conditional (if alternative values are provided in step 27): A block-OA
reassigns the task to the structure-EA to examine the alternative values. In
such case steps 14-28 are repeated or runs another aggregation evaluation
session In such case steps 23-28 are repeated.

29. Each block-OA provides its structural analysis results to the Building-OA.
The Building-OA uses it protocols to aggregate the results collected from its
block-OAs.
Note: As in step 22, the nature of aggregation of the Building-OA sub-results
is different from that of the cost or daylighting evaluation sub-results (as in
Chart 4 & 5). It is also different from the aggregation of the BFloor-OA
results by their block-OA. More structural analysis may be required.

30. Conditional (if aggregation is performed in step 29): The Building-OA
requests the structural-EA to evaluate its aggregated results.

31. Conditional (if step is 30 executed): Task execution interactions (see Chart 2
steps 23-31)

32. Conditional (if step 31 is executed): The structural-EA provides its
aggregation evaluation results to the Building-OA.
The Building-OA stores the results until validated.

33. The Building-OA provides its evaluation results to the DA.
Conditional (if more than one Building-OA provided structural analysis
results): The DA aggregates the results of the Building-OAs.
From Scenarios to Interaction Algorithms

34. Conditional (if aggregation is performed in step 33): The DA requests the
structural-EA to evaluate its aggregated results.

35. Conditional (if step is 34 executed): Task execution interactions (see Chart 2
steps 23-31)

36. Conditional (if step 35 is executed): The structural-EA provides its
aggregation evaluation results to the DA.

37. Conditional (if the results provided in step or 36 are not satisfactory): The DA
either reassigns the initial task to the Building-OA with modified values or
requirements, in which case steps 4-37 are repeated, or runs another
aggregation evaluation session, in which case steps 34-37 are repeated.

38. The DA validates the results (of step 33) of the Building-OA, or:
provides alternative attribute values for task reassignment.

39. Conditional (if alternative values are provided in step 38): The Building-OA
reassigns the task to the structure-EA to examine the alternative values. In
such case steps 9-38 are repeated, or runs another aggregation evaluation
session In such case steps 30-38 are repeated.

40. The Building-OA validates the results (of step 29) of each of its block-OAs.

41. Each block-OA validates the results (of step 22) of each of its BFloor-OAs.

42. Conditional (if attribute values of related DOs are to be modified): Each BFloor-OA
updates the information of its sub-DOs (e.g., beams, columns).

43. Each BFloor-OA (of step 12) updates its DO information.

44. Conditional (if no other task is to be executed): Termination interactions (see Chart 1
steps 26 & 27).
Each BFloor-OA terminates itself

45. Each block-OA (of step 7) updates its DO information.

46. Conditional (if no other task is to be executed): Termination interactions (see Chart 1
steps 26 & 27).
Each block-OA terminates itself

47. The Building-OA updates its DO information.

48. Conditional (if no other task is to be executed): Termination interactions (see Chart 1
steps 26 & 27).

49. Conditional (if step 48 is executed): The Building-OA terminates itself.
Ph.D. Thesis, Spring 2000 87

88

The main players

The assigned task

The major events
4.8 Chart 7. Handling Conflict Over Window Glazing Area

This possible conflict situation arises when the DA is interested in evaluating the
cost of a Room-DO. The cost evaluation which includes a cost classification
according to the room sub-DOs within Room-OA1 hierarchy (e.g., windows,
doors, walls). The cost evaluation results returns the total cost of the Room-DO
and an itemized cost of its activated sub-DOs. The DA may find the cost of the
Room-OA is above the prototypical value, and elects examine the reduction of
the glazing area to cut the total cost of the Room-OA. The interestlist of the
glazing area attribute of the Window-DO includes the daylighting-EA. The DA
activates another OA of the same Room-DO (namely Room-OA2) to conduct a
daylighting evaluation task in respect to the reduced glazing area. The DA runs
multiple evaluation sessions between Room-OA1 and Room-OA2 until cost and
daylighting evaluation results are validated. The event-trace chart is shown in
Figure 4.8.

The scenario of this chart involves six main players; a DA, two Room-OAs of the
same Room-DO, a Window-OA, a cost-EA and a daylighting-EA.

The DA is interested in evaluating the cost of a Room-DO. The evaluation
should include a cost classification according to the room sub-DOs within the
Room-OA hierarchy (e.g., windows, doors, walls). This includes the total cost of
the Room-DO and an itemized cost of its activated sub-DOs. It should also
include the total cost of each DO type of the Room-DO such as the total cost of
all Wall-DOs, all Window-DOs etc.

• The DA activates the Room-DO and assigns it a classified cost evaluation
task, which, in turn, triggers a chain of activation by Room-OA1 down the
hierarchy to its Window-DOs, Wall-DOs and all other leaf-DOs of the
hierarchy.

• Interacting with the cost-EA, each activated OA runs a cost evaluation
session regarding its own state. The sequence of evaluation sessions starts
from the leaf OAs where the results are provided to Room-OA1. Room-
OA1 aggregates the results provided by its sub-OAs, and provides it to the
DA. The cost of the Room-DO is found to be above the prototypical
value. Reviewing the cost of each sub-DO (as provided by Room-OA1)
the DA decides to reduce the window size to reduce the total room cost.
From Scenarios to Interaction Algorithms

The expected results

Details of
the interactions
• The DA triggers a conflict handling session about the Window-OA1 to
check for conflicts over the new window size. Accordingly, the Window-
OA provides the DA with a list of interested DOs and EAs, the list
includes the daylighting-EA. The DA activates another Room-OA
(Room-OA2) of the same Room-DO to evaluate the daylighting levels in
respect to the new window size. The DA examines various window sizes
until both Room-OA1 and Room-OA2 provide satisfactory cost and
daylighting evaluation results. If the results are not satisfactory the DA
may run other conflict handling sessions over suggested attribute values of
other sub-DOs of the Room-DO (such sub-DOs may need to be activated
first).

• The OAs update the information of its DOs and terminates itself.

Additionally the DA may request

• The implementation of new attribute values of the Window-DO (or the
any other attribute values of any sub-DO of the Room-DO).

1. For each evaluation session the assigned Room-OA1 provides the DA with
information that may contain at least one of the following:

• cost of the Room-DO, and the classified cost as assigned (see the assigned
task);

• prototypical cost of each of the DOs above;

• a warning for each DO that exceeds the specified prototypical cost.

2. The DA examines either new DO attribute values for DOs in the task
dependent hierarchy or new cost constraints.

3. (Optional) The DA examines new DO attribute values for DOs interested in
the attribute values of the DOs in the task dependent hierarchy. This may
occur as a result of conflict handling sessions (if executed).

4. (Optional) Implementation of examined DO attribute values and updating of
the DO relations.

The main steps are 25-50.

1. A DA assigns a cost evaluation task to a Room-OA (namely Room-OA1 in this chart).

2. Conditional (if the appropriate protocols are not loaded): Room-OA1 loads the cost
evaluation protocols.
Room-OA uses it protocols to decompose the cost evaluation task among the qualified
sub-DOs (e.g., walls, doors, windows, floors, ceilings).
Ph.D. Thesis, Spring 2000 89

90

Window OA
(sub-OA)

Window DO
Instance

OA

assign task

validate results

update

assign task

Room OA1

check for conflict

provide check results

validate conflict sess..

update

ta
sk

 a
ss

ig
nm

en
t l

oo
p

(super-OA)

load protocols

load protocols

co
nf

lic
t d

et
ec

tio
n/

ha
nd

lin
g

va
lid

at
e/

up
da

te
ta

sk
 e

xe
cu

tio
n

request service

DA
(an agent)

request service

provide potential conflict list
activate

activation interaction

provide results

validate results or provide alternative values

request data
provide dataac

tiv
at

io
n

lo
op

terminate

terminate

termination interactions

termination interactions

01
02

03
04
05

06
07

08
09

10
11
12
13
14
15
16

17

18
19
20

21
22
23
24
25
26
27
28

30
31

32
33

34

provide results

provide results

create OA

Room OA2

Class

provide results

validate results...

request service

provide results

provide results

provide results

check for interested...

35

36
37
38
39

40
41
42
43
44

29

validate results or provide alternative values

provide results

request service

provide results

45
46
47
48
49
50
51

Daylight
Agent

Cost
Agent

Query
Agent

conditional message
message

aggregate
browse
store

decompose

internal action

conditional loop

load protocols

activation interactions

activate
create OA

52

53

54
55

assign task

56

service interactions

service interactions

service interactions

ta
sk

 a
ss

ig
nm

en
t l

oo
p

service interactions

service interactions

se
rv

ic
e

re
qu

es
t l

oo
p

OA
Class

Room DO

Room OA1
3. Conditional (if the targeted Window-DO is not activated): Room-OA1 sends an
activation message all its qualified sub-DOs, however, in this Chart the Window-DO
will be the only mentioned DO since it is the focus of the conflict handling session
described.
FIGURE 4.8.

Event-trace of a conflict handling
session over a Window-OA
glazing area attribute.
From Scenarios to Interaction Algorithms

4. Conditional (if step 3 is executed): The Window-DO class instantiates a Window-OA.
A Window-OA is created.

5. Conditional (if step 4 is executed): Activation interactions (see Chart 1 steps 3-6).

6. Room-OA1 assigns a cost evaluation sub-task to the Window-OA (a sub-OA in this
chart).

7. Conditional (if the appropriate protocols are not loaded): The Window-OA loads the
cost evaluation protocols.
Note: No further decomposition is carried, the Window-DO is a leaf on the task
dependent hierarchy.

8. Interacting with the cost-EA the Window-OA initiates a task execution session.

9. Task execution interactions (see Chart 2 steps 7-19).

10. The cost-EA provides its task execution results to the Window-OA.
The Window-OA stores the results until validated.

11. Interface option (to allow the DA to validate task results not assigned directly by him/
her): The Window-OA provides the DA with the task execution results.

12. Conditional (if step 11 is executed): The DA validates the results of the Window-OA,
or:
 provides an alternative set of attribute values for task reassignment.

13. Conditional (if alternative values are provided in step 12): The Window-OA reassigns
the task to the cost-EA to examine the alternative values. In such case steps 8-13 are
repeated.

14. The Window-OA provides its task execution results to Room-OA1.
Conditional (if aggregation is needed): Room-OA1 aggregates the results of its sub-
OAs (windows, doors, walls etc.).

15. Conditional (if aggregation is performed in step 14): Room-OA1 requests the cost-EA
to evaluate the aggregated results.

16. Conditional (if step 15 is executed): Evaluation interactions (see Chart 2 steps 23-31)
to examine the aggregated results provided in step 14.

17. Conditional (if step 16 is executed): The cost-EA provides its evaluation of the
aggregated results to Room-OA1.
Room-OA1 stores the results until validated.

18. Room-OA1 provides the DA with its task execution results for validation.
Conditional (if more than one Room-OA provided results): The DA aggregates the
provided results.

19. Conditional (if aggregation is performed in step 18): The DA requests the cost-EA to
evaluate the aggregated results.

20. Conditional (if step 19 is executed): Evaluation interactions (see Chart 2 steps 23-31)
to evaluate the aggregated results provided in step 18.
Ph.D. Thesis, Spring 2000 91

92
21. Conditional (if step 20 is executed): The cost-EA provides its evaluation of the
aggregated results to the DA.
The DA stores the results until validated.

22. Conditional (if the results provided in either step 18 or step 21 are not satisfactory):
The DA runs either a task execution session in which case steps 1-22 are repeated, or
an aggregation session in which case steps 19-22 are repeated.

23. The DA validates the results (of step 18), or:
provides Room-OA1 with alternative attribute values for either task reassignment or
aggregation reevaluation of the sub-results provided in step 14.
For this scenario the DA selects to reduce the window size to reduce the window cost
and room cost in turn.

24. Conditional (if alternative values are provided by the DA in step 23): The Room-OA
runs either a task execution session to examine the alternative values, in which case
steps 15-24 are repeated, or an aggregation session, in which case steps 6-24 are
repeated.
The new changes in the window dimensions satisfies Room-OA1 cost requirements.
This attribute value change requires a conflict check with other DOs and EAs
interested in the window dimension.

25. Interface option (to allow for conflict check): The DA requests a conflict
check (with other interested DOs or EAs) before the attribute values of the
Window-OA are modified.

26. The Window-OA checks with its Window-DO for a list of DOs and OAs with
interest in the targeted attribute values (i.e., which is subject to modification
by the DA in respect to the cost evaluation task results). The interested DOs
or EAs are potential candidates for conflict over the recommended attributes
values. The interested DOs may have attributes values that are linked to the
Window-OA dimensions. The Window-OA may also have EAs (e.g.,
daylighting) that are interested in the dimensions subject to modification. In
this scenario, the DA request from the Window-OA a list of all DOs and EAs
interested in its dimensions attribute value.

27. The Window-DO provides a list of DOs and EAs interested in the targeted
attribute values.

28. The Window-OA provides the DA with the list of interested DOs and EAs.

29. Conditional (if the list contains one or more DO or OA): The DA selects a set
of DOs and EAs from the list (according to the DA’s criteria for most critical
conflicts) to activate for conflict check.
Conditional (if the targeted DO is not activated): The DA sends an activation
message to the first DO on the selected set. For an interested EA, such as the
From Scenarios to Interaction Algorithms

daylighting-EA, the DA may reassign the new daylighting evaluation task to
the same Room-OA1 or to a new Room-OA (namely Room-OA2 in this
scenario).

30. Conditional (if step 29 is executed): The DO instantiates another Room-OA
(of the same Room-DO) from the OA class.
Room-OA2 is created.

31. Conditional (if step 30 is executed): Activation interactions (see Chart 1 steps
3-6).

32. The DA assigns a daylighting evaluation task to Room-OA2 to examine the
suggested window dimensions of step 21 (which is the focus of the conflict
handling session).

33. Conditional (if the appropriate protocols are not loaded): Room-OA2 loads
the daylighting protocols.

34. Interacting with the appropriate daylighting-EA Room-OA2 initiates a
daylighting evaluation session.

35. Task execution interactions (see Chart 2 steps 7-19).

36. The daylighting-EA provides its evaluation results to Room-OA2.
Room-OA2 stores the results until validated.

37. Room-OA2 provides its evaluation results to the DA.
Conditional (if aggregation is needed): The DA aggregates the sub-results
provided in step 36.

38. Conditional (if aggregation is performed in step 37): The DA requests the
daylighting-EA to evaluate the aggregated results.

39. Conditional (if step 38 is executed): Evaluation interactions to evaluate the
aggregation results provided in step 37 (see Chart 2 steps 23-31).

40. Conditional (if step 39 is executed): The daylighting-EA provides its
evaluation of the aggregated results to the DA.
The DA stores the results until validated.

41. Conditional (if the results provided in either step 37 or step 40 are not
satisfactory): The DA runs either a task execution session in which case steps
32-41 are repeated, or an aggregation session in which case steps 38-41 are
repeated, or:

42. The DA validates the results (of step 37), or:
provides alternative attribute values for task reassignment.
Ph.D. Thesis, Spring 2000 93

94
43. Conditional (if alternative values are provided by the DA in step 42): Room-
OA2 runs another session to examine the alternative values. In such case
steps 34-43 are repeated.

44. Conditional (if the results provided in step 37 are not satisfactory): The DA
sends a query request to obtain information from the query agent(s) to help in
reassigning the task to examine alternative attribute values to either Room-
OA1 or Room-OA2.

45. Conditional (if step 44 is executed): The query-agent provides the DA with
the applicable information (as available).

46. Conditional (if the information provided in step 45 is not sufficient): The DA
sends a modified query request to the query-agent. In such case steps 44-46
are repeated.

47. Conditional (if the results of step 37 are not satisfactory): The DA reassigns
another evaluation task to either Room-OA1 in which case steps 1-47 are
repeated, or to Room-OA2 in which case steps 32-47 are repeated.

48. The DA validates the conflict handling session results (started in step 25).

49. Room-OA1 validates the results of Window-OA1 (provided in step 14).

50. Conditional (if there are more than one DO or EA in the set selected in step
29): The DA either activates the next DO in the set, in which case steps 29-49
are repeated, or assigns another evaluation task to Room-OA1 in relation to
the next EA in the set, in which case steps 1-49 are repeated.

51. Room-OA2 updates its DO information (after the implementation of the task results,
see Chart 2 steps 39-41). In this scenario the Room-DO still represented by Room-
OA1, therefore, any update is managed by Room-OA1.

52. Conditional (if no other task is to be executed): Termination interactions (see Chart 1
steps 26 & 27).

53. Conditional (if step 52 is executed): Room-OA2 terminates itself.

54. The Window-OA updates its DO information (after the implementation of the task
results, see Chart 2 steps 39-41).

55. Conditional (if no other task is to be executed): Termination interactions (see Chart 1.
steps 26 & 27).

56. Conditional (if step 55 is executed): The Window-OA terminates itself.
From Scenarios to Interaction Algorithms

5 Task Handling Algorithms
5.1 Which Tasks?

In a decision making session the success of an OA depends on its ability to
manage and utilize the environment resources to execute self-initiated or
assigned tasks. Self-initiated tasks require the OAs to have reasoning capabilities
in order to justify the initiation of the task, a property that can be considered for
an advanced version of an OA-based Environment. Such a property requires an
OA to be:

• Permanent in the environment, or in an active status even when not
assigned tasks (i.e., have the capabilities to observe the environment
activities);

• Able to interpret changes in the environment (whether these changes are
observed by the OA or received through an update mechanism);

• Able to execute tasks that are related either to its own state or to the states
of other DOs or OAs in the environment.1

Within the scope of this thesis, an OA may either execute tasks that are directly
assigned by other agents or tasks that are executed within the scope of another
assigned task. The latter are a limited form of self-initiated tasks. An OA in this
sense is merely initiating tasks as a reaction to the originally assigned task.2
Therefore, within the scope of this work, OAs are considered as:

• Temporal and only existing during the execution of an assigned tasks;

1. Sub or super-DOs or OAs in a hierarchy, or even hierarchy non-related DOs and OAs.
2. See reactive planning in Chapter 3.
Ph.D. Thesis, Spring 2000 95

96
• Not observing the environment and thus, cannot interpret more than a
finite set of tasks that are directly assigned to each;

• Only able to execute tasks pertaining to their own state.

The expansibility of the OA capability to include self-initiated tasks requires
further research and experimentation. OAs with such capabilities are considered
autonomous. In Chapter 3, I argued against fully autonomous agents in design
environments, and therefore, only consider semi-autonomous OAs. The
fundamental ability of an OA to execute assigned tasks is the core of an OA-
based environment. This chapter is concerned with the development of
algorithms needed by the OAs to carry on the execution of assigned tasks. An
OA algorithm, in this sense, is a dynamic short term plan (or reactive plan)
designed to enable an OA to handle a family of tasks. Within an algorithm
multiple OA protocols (namely object-type, task-type and domain protocols) are
utilized.

Event-trace charts presented in Chapter 4 provide the basis for developing the set
of task handling algorithms developed in this chapter. Two main interaction
algorithms are developed following the charts of Chapter 4; the first is for
executing evaluation tasks; the second is for conflict handling (which is a DA
controlled iteration of local evaluation tasks involving more than one OA).

Evaluation tasks are dependent on the notion of decomposition among applicable
candidates of the DOs of the environment. This chapter presents decomposition
mechanism that are crucial to the execution of evaluation tasks.

Executing generation tasks, on the other hand, are not dependent on the notion of
task decomposition. An OA would interact directly with a generative EA to
produce alterative solutions. The generation mechanism is domain specific and
is applied by the EA, the OA may interact only to provide information about its
own state when requested. It is, therefore, not necessary to develop interaction
algorithms for generation tasks. Executing implementation tasks is environment
dependent3 and is also not significant to this framework.

3. For instance, implementing a recommended modification of a wall-OA thickness
attribute depends on the applications utilized on the environment. Most CAD system
has a set of function calls (or a language, etc.) to execute attribute modifications (e.g.,
AutoLisp in AutoCAD). An implementation task may be complex and require a
sequence of actions by the CAD system to geometrically modify an attribute value.
Task Handling Algorithms

5.2 OA Task Execution Algorithms

Once an OA is activated (i.e., a class instance is created and registered with its
super-agent, see details in Chapter 6) the super-agent assigns a task to the OA.
The super-agent provides the task-type, task-domain, and task-focus (e.g., a value
of an attribute to be examined. This sets the context which the task revolve
around. The assigned task is classified by the OA and handled by the appropriate
algorithm (Evaluate, Implement etc.).

5.2.1 Evaluation

An OA handles an evaluation task according to the task-domain and task-focus.
The OA uses the domain decomposition protocol to delegate the task to the sub-
DOs in its own OA-hierarchy. The position of the OA in the domain-hierarchy
implies whether further decomposition is applicable. For instance, if an OA is
representing a leaf-DO in a task hierarchy (e.g., Plumbing-DO in Figure 5.1), no
further top-down decomposition would be applicable regardless of the nature of
the task being executed. In such cases, the leaf OA needs to execute the
evaluation task interacting with the EA of the task-domain. Figure 5.1 shows a
decomposition of a Block-DO for a cost evaluation task. The decomposition is
centered around construction categories (such as framing, roofing, etc.) instead
of the Block-DO spatial elements (i.e., floors, zones, rooms, etc.). This is a flat/
simple decomposition which corresponds to the example in Figure 3.3A. The
activated DOs (e.g., Foundation-DO) uses (and activate) related DOs (e.g., Slab-
DOs, Footing-DOs) during the course of evaluating its own cost.

Algorithm: ClassifyTask (task)

start
1 if task-type == ?
2 case 1. ? == evaluate => Evaluate (Task-Domain, Task-Focus)
3 case 2. ? == generate => Generate
4 case 3. ? == check-conflict=> ConflictChecking&Handling
5 case 4. ? == implement => Implement (attribute, new-value)
6 else
7 error message
8 end if
end
Ph.D. Thesis, Spring 2000 97

98

LandScEl-DO

StructEl-DO

Door-DO

Building-DO

Block-DO

VZone-DO

BFloor-DO

HZone-DO

Room-DO

Wall-DO

Opening-DO

Window-DO

Ceiling-DO Floor-DO

Column-DO Layer-DO

Paint-DO

Site-DO

Arch-DO
Frame-DO

Beam-DO
Slab-DO

Insulat-DO

Fixture-DO

Furniture-DO

Elec-DO

Plum-DO
HAVC-DO

class of an OA assigned a task

class of a DO to be involved in the task decomposition

class of a DO not to be involved in the task decomposition

hierarchy “has a” relationship

hierarchy “is a” relationship
m

ax
-d

om
ai

n-
hi

er
ar

ch
y

O
A

-h
ie

ra
rc

hy

m
in

-d
om

ai
n-

hi
er

ar
ch

y

an
 D

O
-h

ie
ra

rc
hy

Roofing-DOPlumbing-DO Framing-DOElectrical-DO

Tile-DOGutter-DO

Footing-DO

Foundation-D
The task-focus affects the decomposition in a different manner. If the task-focus
implies a classification (i.e., the context of the task is a classified evaluation, such
as cost of a Block-DO per BFloor-DO) the DO of classification (the Block-DO in
this case) must be included in the decomposition.

The following examples show various task-focus cases which affect either the
decomposition or the aggregation when a DO is executing an assigned cost
evaluation task such as:

• Block-DO total cost classified per BFloor-DO:

As illustrated in Figure 5.2, all leaf-DOs of the construction categories are
included in the decomposition since the cost of the Block-DO is the
aggregation of its construction categories leaf-DOs’ cost. The BFloor-DO
FIGURE 5.1.

Decomposition of a Block-DO
cost evaluation task.
Task Handling Algorithms

LandScEl-DO

StructEl-DO

Door-DO

Building-DO

Block-DO

VZone-DO

BFloor-DO

HZone-DO

Room-DO

Wall-DO

Opening-DO

Window-DO

Ceiling-DO Floor-DO

Column-DO Layer-DO

Paint-DO

Site-DO

Arch-DO
Frame-DO

Beam-DO
Slab-DO

Insulat-DO

Fixture-DO

Furniture-DO

Elec-DO

Plum-DO
HAVC-DO

class of an OA assigned a task

class of a DO to be involved in the task decomposition

class of a DO not to be involved in the task decomposition

hierarchy “has a” relationship

hierarchy “is a” relationship

m
ax

-d
om

ai
n-

hi
er

ar
ch

y

O
A

-h
ie

ra
rc

hy

m
in

-d
om

ai
n-

hi
er

ar
ch

y

an
 D

O
-h

ie
ra

rc
hy

Roofing-DOPlumbing-DO Framing-DOElectrical-DO

Tile-DOGutter-DO

Footing-DO

Foundation-D
is also included in the decomposition as the DO of classification
(DOclassification hereafter). In the aggregation process, the cost is

aggregated according to each BFloor-DO. The BFloor-DOs costs are then
aggregated to provide the total cost of the Block-DO.

• Total cost of the StructElement-DOs classified per VZone-DO:

Figure 5.3 shows a decomposition of a Block-DO cost evaluation task of
StructElement-DOs’ (classified per VZone-DO). The VZone-DO class as
the DOclassification presents a different decomposition case.

• Total cost of a Block-DO that includes shared DOs:

When a Wall-DO is shared among Block-DOs, another layer of
computation is needed for decomposition and aggregations. Geometric
FIGURE 5.2.

Decomposition of a Block-DO
cost evaluation task (classified
per BFloor-DO).
Ph.D. Thesis, Spring 2000 99

100

LandScEl-DO

StructEl-DO

Door-DO

Building-DO

Block-DO

VZone-DO

BFloor-DO

HZone-DO

Room-DO

Wall-DO

Opening-DO

Window-DO

Ceiling-DO Floor-DO

Column-DO Layer-DO

Paint-DO

Site-DO

Arch-DO
Frame-DO

Beam-DO
Slab-DO

Insulat-DO

Fixture-DO

Furniture-DO

Elec-DO

Plum-DO
HAVC-DO

class of an OA assigned a task

class of a DO to be involved in the task decomposition

class of a DO not to be involved in the task decomposition

hierarchy “has a” relationship

hierarchy “is a” relationship

m
ax

-d
om

ai
n-

hi
er

ar
ch

y

O
A

-h
ie

ra
rc

hy

m
in

-d
om

ai
n-

hi
er

ar
ch

y

an
 D

O
-h

ie
ra

rc
hy

Roofing-DOPlumbing-DO Framing-DOElectrical-DO

Tile-DOGutter-DO

Footing-DO

Foundation-D
computations may be needed to determine the portion of each shared DO
(e.g., Wall-DO in each Block-DO). This implies that special DOs (e.g.,
shared DOs) may require another layer of computation for task
decomposition and sub-results aggregation.

• Total cost of a Block-DOs when DO of classification is not a super-DO to
the leaf-DOs:

DO classes of the same level but in different branches of the OA hierarchy
may act as super-OAs to each other. For instance, in Figure 5.2, if the
DOclassification is the VZone-DO instead of the BFloor-DO, the construction

DOs (e.g. Framing-DO, Foundation-DO, Painting-DO) would be in the
same level of the hierarchy as the VZone-DO. That is, both VZone-DO and
construction DOs are direct sub-DOs of the Block-DO class. The flow of
FIGURE 5.3.

Decomposition of a Block-DO
cost evaluation task of
StructElement-DOs’ (classified
per VZone-DO).
Task Handling Algorithms

LandScEl-DO

StructEl-DO

Door-DO

Building-DO

Block-DO

VZone-DO

BFloor-DO

HZone-DO

Room-DO

Wall-DO

Opening-DO

Window-DO

Ceiling-DO Floor-DO

Column-DO Layer-DO

Paint-DO

Site-DO

Arch-DO
Frame-DO

Beam-DO
Slab-DO

Insulat-DO

Fixture-DO

Furniture-DO

Elec-DO

Plum-DO
HAVC-DO

class of an OA assigned a task

class of a DO to be involved in the task decomposition

class of a DO not to be involved in the task decomposition

hierarchy “has a” relationship

hierarchy “is a” relationship

m
ax

-d
om

ai
n-

hi
er

ar
ch

y

O
A

-h
ie

ra
rc

hy

m
in

-d
om

ai
n-

hi
er

ar
ch

y

an
 D

O
-h

ie
ra

rc
hy

Roofing-DOPlumbing-DO Framing-DOElectrical-DO

Tile-DOGutter-DO

Footing-DO

Foundation-D
the cost task decomposition assigned by the Block-OA to the construction
OAs goes through the VZone-OA. The VZone-OA acts as super-OA to the
construction OAs even though they share the same level in the hierarchy.
The Framing-OA interacts directly with the cost-EA to find its own cost.
The VZone-OA, as the super-OA to the construction OAs within the
context of this task, aggregates the cost results of each construction OA. In
other words, task decomposition does not necessarily follow a top down
order in the hierarchy.

• Total painting cost:

If paint is not represented explicitly as a DO class (i.e., Painting-DO or
Paint-DO classes) in the OA-hierarchy each DO pertaining to the “paint”
attribute, of a Wall-DOs or Ceiling-DOs, would be used by the other OA
while interacting with the appropriate EA in order to compute the paint area
FIGURE 5.4.

Decomposition of a Block-DO
structural analysis task.
Ph.D. Thesis, Spring 2000 101

102

LandScEl-DO

StructEl-DO

Door-DO

Building-DO

Block-DO

VZone-DO

BFloor-DO

HZone-DO

Room-DO

Wall-DO

Opening-DO

Window-DO

Ceiling-DO Floor-DO

Column-DO Layer-DO

Paint-DO

Site-DO

Arch-DO
Frame-DO

Beam-DO
Slab-DO

Insulat-DO

Fixture-DO

Furniture-DO

Elec-DO

Plum-DO
HAVC-DO

class of an OA assigned a task

class of a DO to be involved in the task decomposition

class of a DO not to be involved in the task decomposition

hierarchy “has a” relationship

hierarchy “is a” relationship

m
ax

-d
om

ai
n-

hi
er

ar
ch

y

O
A

-h
ie

ra
rc

hy

m
in

-d
om

ai
n-

hi
er

ar
ch

y

an
 D

O
-h

ie
ra

rc
hy

Roofing-DOPlumbing-DO Framing-DOElectrical-DO

Tile-DOGutter-DO

Footing-DO

Foundation-D
and its cost. This implies that, computation on a DO attribute may
substitute for further decomposition.

Accordingly evaluation tasks fall into one of the following cases:

If no task decomposition is not required (e.g., the task is assigned to a leaf-OA in
the DO-hierarchy or to an OA that hold attributes which substitute for leaf-OAs):

• case A: (task requires no decomposition)
evaluate OA(e.g., Wall-OA cost) or;
evaluate OA attribute (e.g., Wall-OA paint cost)

===>

1. OA interacts with domain EA (e.g., Wall-OA interacts with Cost-EA)
FIGURE 5.5.

Decomposition of a BFloor-DO
daylighting evaluation task.
Task Handling Algorithms

If task decomposition is required (e.g., the task is assigned to an OA that is
neither a leaf-OA nor holds any attributes which substitute for leaf-OAs):

• case B (task requires decomposition)
evaluate OA (e.g. BFloor-OA cost) or;
evaluate OA attribute (e.g., BFloor-OA painting cost)

===>

1. decompose task among applicable leaf sub-DOs of the hierarchy
(use the P_Domain decomposition protocol of this task-domain to
identify applicable sub-DOs, then activate and assign sub-tasks to the
activated sub-OAs. To evaluate an attribute, only the sub-DOs which
holds such attribute should be activated;

2. repeat case A step 1 for each assigned sub-OA;

3. aggregate results (use the OA P_Domain aggregation protocol).

•case C: (task requires decomposition and classification of sub-results)
evaluate OA classified by a sub-DO type (e.g., cost of a Block-OA

classified per BFloor-DO) or;
evaluate OA attribute classified by a sub-DO type (e.g., cost of a

Building-OA paint classified per Block-DO)
===>

1. decompose task among DOs of classification (e.g., Block-DOs);

2. repeat case B step 1-3 for each activated DO (e.g., BLock-OA);

3. aggregate results (use the OA P_Domain aggregation protocol).
Ph.D. Thesis, Spring 2000 103

104
Algorithm: Evaluate (Task-Domain, Task-Focus)

start
1 get P_Domain protocols (decomposition, sorting, aggregation)
2 makeactivationlist using the P_Domain decomposition protocol,

object-type, and task-focus => return sortedActivationlist
3 if sortedActivationlist is not empty
4 get P_ObjectType protocols
5 Activate (DOs) first DO class instances in the sortedActivationlist

=> return sub-OAs
6 Assign evaluation sub-task(s) to sub-OAs => return sub-result(s)
7 Validate (sub-results)
8 Aggregate (sub-results) (use P-Domain aggregation protocol)
9 Validate (aggregation-result)
10 else (no decomposition is applicable, execute task by the OA itself)
11 InteractForService (domain-EA) => return result
12 if shared-DO
13 InteractForService (domain-EA)4 to distribute results
14 else (not a shared-DO)
15 end if
16 Validate (result) => return validation
17 end if
18 if this is not a conflict handling session
19 ConflictChecking&Handling
20 else (a conflict handling session)
21 get validated conflict session results
22 end if
23 return results
24 Update (results)
25 Implement (results)
end

4. The domain-EA, in turn, may interact with the geometric-EA to determine the portion
of the shared-OA located on each of its super-OAs (e.g., to find the portion of a Wall-
OA on two adjacent Room-OAs).
Task Handling Algorithms

line 2: Making the activation list

In a hierarchy of an OA (OA-hierarchy hereafter, i.e., all constituent DOs and all
their hierarchies) which is executing an assigned task, it is not necessary to
decompose the task amongst all DOs that are members of the hierarchy. In
respect to the task being executed by an OA, a DO that is a member of an OA-
hierarchy is either:

1. related to the task and crucial to the execution of the task.

2. related to the task but not crucial to the execution of the task.

3. not related to the task.

Therefore, an activation list (referred to as activationlist hereafter) of the sub-
DOs to participate in the task decomposition must be compiled. This list is
compiled using the parameters provided by the P_Domain decomposition
protocol (which is used by the OA to execute a task). The decomposition
protocol provides the DOs which belongs to the first category, those DOs are the
“min-domain-hierarchy”. The DA may participate in compiling the
activationlist by providing members of the second category.

An activation order may also be required for execution of certain tasks. The
default activation of DOs follows a top-down order through the OA-hierarchy. If
the context of the task implies an activation order which differs from the default
order, the activationlist must be sorted accordingly. For instance, in the classified
cost evaluation task of Figure 5.3, if the initial DO-hierarchy is structured so that
both VZone-DO class and BFloor-DO class are direct sub-DOs of the Block-DO
class a VZone-OA must activate the BFloor-DOs though both may co-exist in the
same level within the hierarchy. In such a case, the activation follows a
horizontal order in the hierarchy instead of the top-down order (see discussion in
page 100). Another example is the day-lighting task of Figure 5.5, the day-
lighting of a Room-DO with interior Wall-DOs would depend on the daylighting
of an adjacent Room-DO with exterior Wall-DOs. In such a case, the
dependency among Room-DOs also requires horizontal decomposition order
within the OA-hierarchy. Other cases may require a decomposition that goes up
in the hierarchy before it follows the default top-bottom order.

The context of a task is passed from a super-OA to a sub-OA throughout the
decomposition. In this sense, the activationlist is global within the realm of the
task hierarchy, and is used by each sub-OA in the hierarchy to activate the next
Ph.D. Thesis, Spring 2000 105

106
set of DOs. Accordingly, to compile the activationlist the following procedures
are needed:

1. The set of all DO classes (of the existing hierarchy) which are eligible for
activation according to the task domain must be defined (see Figure 5.1-
5.5). This set is the “max-domain-hierarchy” and is bounded by two
variables “domain-hierarchytop” and “domain-hierarchybottom, which

are the top and bottom classes (or bottom class level, which is a set of
classes sharing similar positions in the hierarchy, e.g., the set of all leaf-
DOs specifies a class level and may act as domain-hierarchybottom).

These two variables differ from domain to another and, therefore, must be
provided by the P_Domain decomposition protocol of the task in hand.
For instance, in the hierarchy of Figure 5.4, if a structural analysis task is
to be performed the Block-DO class may act as the domain-hierarchytop

and the StructElement-DO class should be the domain-hierarchybottom.

The max-domain-hierarchy is then compiled as a list of all DO classes
that is located between the domain-hierarchytop and

domain-hierarchybottom classes (in addition to the domain-hierarchybottom

class itself).

2. The DO classes that should not to be activated are compiled in a
“skiplist.” The making of the skip list follows the logic explained in the

sequel.

3. The “activationlist” is then compiled as the difference between the max-

domain-hierarchylist and skiplist. The DA may elect to insert additional

DO classes from the max-domain-hierarchylist to the activation list. Any

class added by the DA must conform with the constraints of making the
skiplist (see “Making the skiplist” on page110).

4. The activationlist is sorted using the P_Domain sorting protocol to

determine the order of activating the DOs included in the activationlist.

The following definitions and properties can be deduced from the preceding
discussion and are necessary for the remaining algorithms5:

5. DO- and OA-hierarchies are defined in Appendix A.
Task Handling Algorithms

max-domain-hierarchy: the set of all eligible classes for task decomposition in
respect to this particular domain. This set is defined by the P_Domain
decomposition protocol of the task in hand. The max-domain-hierarchy is
necessarily a subset of a DO-hierarchy.

min-domain-hierarchy: the minimum set of DO-classes necessary to execute an
assigned task. This set is defined by the P_Domain decomposition protocol of
the task in hand. The min-domain-hierarchy is also necessarily a subset of a DO-
hierarchy and of the max-domain-hierarchy.

domain-hierarchybottom: a class or a set of classes which represent the lower
boundary of a max-domain-hierarchy .

domain-hierarchytop: a DO class, which represent the top boundary of the max-
domain-hierarchy.

leaf-DOs: a set of DO-classes that contains all DOs at the lower end of each
branch of a hierarchy

DOclassification: a DO class used for classifying the results of executing an
assigned task (e.g., evaluate cost of a BFloor-DO per Room-DO. The Room-DO
class is the DOclassification of such task).

activationlist: a set of DO classes of which instances are to be activated to
execute sub-tasks during the executing of a task. It is necessarily a subset of the
max-domain-hierarchylist.

skiplist: a list of DO classes to be skipped during the activation of sub-DOs of an
OA-hierarchy. It is a subset of the max-domain-hierarchy.

interest context: the reasons for which an agent or a DO attribute is interested in
another DO attribute (e.g., Wall-DO width for Room-DO acoustics).

activation order: the order of activating DOs in an OA-hierarchy during the
execution of a task.
Ph.D. Thesis, Spring 2000 107

108

DO-hierarchy

max-domain-hierarchy

OA-hierarchy

min-domain-hierarchy minimum set of DOs needed by an EA to execute a task

all sub-DOs of an OA assigned a task

all eligible DOs for task decomposition in respect to the domain

a current hierarchy of DOs accepted by the DA
Making the skiplist (as a requirement for making the activationlist)

The skiplist is used by the “MakeActivationList” algorithm to compile the
activationlist. If no DO classes are explicitly specified by the P_Domain
decomposition protocol or by the DA, the skiplist is compiled so as to minimize
the number of DOs to be activated, that is, the skiplist is maximized. The
“MakeActivationList” algorithm uses the following logic to compile the skiplist.

1. P_Domain specified: The P_Domain protocol must provide a min-
domain-hierarchy and may provide a P_Domain_Skiplist. If the

P_Domain protocol provided a P_Domain_Skiplist all DO classes

included must be in the final skiplist. For instance, in Figure 5.4 all DO

classes between the BFloor-DO class and the StructElement-DO class and
all leaf-DO classes other than StructElement-DO class must be included
in the skiplist.

2. DA specified: If the DA provided a DA_Skiplist all DO classes included

must be in the final skiplist (provided that none of the members of the

DA_Skiplist is a member of the min-domain-hierarchy) For instance, in

Figure 5.4, the DA may elect to include the VZone-DO class in the
skiplist. On the other hand, the DA may chose to activate all the sub-DOs

of the OA-hierarchy. In such cases, all sub-DOs in the OA-hierarchy are
activated excluding any members of the P_Domain_Skiplist (if

applicable). No DA_Skiplist is provided in such case.
FIGURE 5.6.

Relation between Hierarchies
(general case): min-domain-
hierarchy < OA-hierarchy < max-
domain-hierarchy.
Task Handling Algorithms

DO-hierarchy

max-domain-hierarchy

minimum set of DOs needed by an EA to execute a task

all sub-DOs of an OA assigned a task

all eligible DOs for task decomposition in respect to the domain

a current hierarchy of DOs accepted by the DA

OA-hierarchy

min-domain-hierarchy

DO-hierarchy

OA-hierarchy all sub-DOs of an OA assigned a task

all eligible DOs for task decomposition in respect to the domain

a current hierarchy of DOs accepted by the DA

max-domain-hierarchy

min-domain-hierarchy minimum set of DOs needed by an EA to execute a task

B

A

3. Default: A Default_Skiplist is compiled if no skiplist is provided by either

the P_Domain protocol or by the DA. The Default_Skiplist includes all

the classes of the OA-hierarchy and excludes the classes of the min-
domain-hierarchy. For instance, in Figure 5.1, in addition to the
Building-DO class all classes below the Block-DO and leaf-DOs (in the
spatial branch not in the construction categories branch) would be
included in the skiplist.
FIGURE 5.7.

Special Case Relation Between
Hierarchies:
A) Case 1: min-domain-hierarchy
< max-domain-hierarchy < OA-
hierarchy.
B) Case 2: OA-hierarchy < min-
domain-hierarchy < max-
domain-hierarchy
Ph.D. Thesis, Spring 2000 109

110

DO-hierarchy

max-domain-hierarchy

skiplist

OA-hierarchy

min-domain-hierarchy

activationlist
From the previous discussion we can deduce that:

• An OA-hierarchy is a subset of a provided DO-hierarchy (see Figure 5.6);

• An OA-hierarchy is typically a subset of the max-domain-hierarchy (see
Figure 5.6). It is possible that a max-domain-hierarchy be a subset of a
OA-hierarchy (see Figure 5.7A). In such cases, all classes between the
OA and the domain-hierarchytop should be included in the skiplist;

• An OA-hierarchy may be a subset of the min-domain-hierarchy (see
Figure 5.7B). In such case the activationlist may include DOs that are
higher in the hierarchy then the OA assigned the task. This presents a case
of task decomposition which includes DOs outside the OA-hierarchy.

• The min-domain-hierarchy is a subset of the max-domain-hierarchy;

• The min-domain-hierarchy must exist as a subset in the activationlist;

• The activationlist is a subset of the max-domain-hierarchy;

• The skiplist is a subset of the OA-hierarchy, and in most cases is also a
subset of the max-domain-hierarchy. In both cases its disjoint from the
min-domain-hierarchy (see Figure 5.8);

• If a min-domain-hierarchy = activationlist => skiplist is maximum;

• If max-domain-hierarchy = activationlist => skiplist is minimum (may be
empty).
FIGURE 5.8.

Relation Between a Skiplist and
an Activationlist (general case).
Task Handling Algorithms

Algorithm: MakeSkipList

start
check that DA_Skiplist does not include min-domain-hierarchy DOs

1 if Intersection (DA_Skiplist, min-domain-hierarchy) ≠ null
2 get DA validation to mod_DA_Skiplist
3 return mod_DA_Skiplist

else
4 end if
5 mod_DA_Skiplist ← Difference (DA_Skiplist, min-domain-hierarchy)
6 if P_Domain_Skiplist ≠ null
7 skiplist ← Union (P_Domain_Skiplist, mod_DA_Skiplist)
8 else (default: no skiplist is provided by the P_Domain protocol)
9 skiplist ← Difference (OA-hierarchy, min-domain-hierarchy)
10 end if
end

Algorithm: MakeActivationList

start
1 if DOclassification is in max-domain-hierarchy
2 activationlist ← Union (Difference (max-domain-hierarchy, skiplist),

DOclassification)
3 SortActivationList (activationlist) using activation order provided by

the domain decomposition protocol => return sortedActivationlist
4 else
5 error message
6 end if
end
Ph.D. Thesis, Spring 2000 111

112
Algorithm: SortActivationList (activationlist)

start
1 get P_Domain sorting protocol
2 oldSortedlist ← null
3 newSortlist ← null
4 for each DO in the activationlist
5 InsertDOInSortedList (DO, oldSortedlist, newSortedlist)
6 end for
7 sortedActivationlist ← Append (oldSortedlist, newSortedlist)
8 return sortedActivationlist
end

Algorithm: InsertDOInSortedList (DO, oldSortedList, newSortedList)

start
1 if oldSortedlist == null
2 Insert (DO, oldSortedlist)
3 else
4 if first DO of oldSortedlist is lower in the activation order

(as provided by the P_Domain sorting protocol)
5 Insert (DO, oldSortedlist)
6 else
7 newSortedlist ← Append (first DO of oldSortedlist, newSortedlist)
8 oldSortedlist ← Remove (first DO, oldSortedlist)
9 InsertDOInSortedlist (DO, oldSortedlist, newSortedlist)

=> return (oldSortlist, newSortlist)
10 end if
11 end if
end
Task Handling Algorithms

Line 8: Aggregation

Any decomposition of a task to sub-tasks is counter balanced with an aggregation
of the sub-results of the execution of the sub-tasks. Similar to decomposition,
aggregation is a domain dependent activity that is necessary to the execution of a
task by an OA. For instance, the cost of an OA is the aggregation of the cost of
the leaf-DOs of the OA-hierarchy (provided that all components of the cost are
represented as leaf-DOs in the OA-hierarchy). In addition to the leaf-DOs, the
cost of an OA may include the cost of attributes of its sub-DOs (typically, such
attributes substitute for sub-DOs that are not explicitly represented as leaf-DOs in
the OA-hierarchy). For instance, in Figure 5.1, the cost of the Painting-DO is the
aggregation of all Paint-DOs’ cost (represented in the hierarchy as a member of
the Layer-DO class). If paint is represented as an attribute of other DOs such as
Wall-DOs, Ceiling-DOs and not explicitly represented in the hierarchy as Paint-
DOs, then the cost of the Painting-DO is the aggregation of the cost of all paint
attributes in all DOs. A third possibility is that paint is not even represented as an
attribute, in such case, paint may be calculated based on selected DOs total area
(such as Wall-DOs and Ceiling-DOs).

Aggregation is not necessarily an addition of sub-results, it may require further
computation by the domain-EA of the task in hand. For instance, the aggregation
of structural loads of intersecting StructElement-DOs (e.g., sloped beam resting
on a column) requires computation beyond mere addition of loads. Therefore, to
aggregate sub-results additional interactions between the OA aggregating
the sub-results and the domain-EA are typically required after the sub-OAs
return their sub-results to the OA. Such interactions are guided by the
P_Domain aggregation protocol of the that task-domain.

 Algorithm: Aggregate (sub-results)

start
1 check sub-DO IDs for repeated sub-results, or check results IDs
2 sub-resultslist ← sub-resultslist with repeated results removed
3 get P_Domain aggregation protocol
4 InteractForService (domain-EA) to evaluate sub-resultslist

=> return aggregation results
5 return aggregation results
end
Ph.D. Thesis, Spring 2000 113

114
Line 7: Validating results

Any task execution or aggregation result must be validated before it is returned to
the super-agent which assigned the task. The validation can occur according to
various preset validation modes. The validation mode can either be set by the
designer or by the domain protocol. Four modes are identified; DA validation,
super-OA, self validation and no validation.

 Algorithm: Validate (result, validation mode)

start
1 if validation mode == ?
2 case 1. ? == DA validation requested => DAValidation (result)
3 case 2. ? == super-OA validation requested

=> SuperOAValidation (result)
4 case 3. ? == self validation => SelfValidation (result)
5 case 4. ? == no validation requested => NoValidation (result)
6 else
7 error message
8 end if
end

Algorithm: DAValidation (result)

start
1 get DA validation
2 if results are not validated
3 get DA’s new values for re-evaluation (or for task re-assignment)
4 if no new values are provided by the DA
5 error message
6 else (DA provided new values)
7 InteractForSerivce (domain-EA)

to re-evaluate aggregation results or
8 re-Assign (evaluation task) to sub-OA
9 end if
10 else (results are validated)
11 return validation
12 end if
end
Task Handling Algorithms

Algorithm: SuperOAValidation (result)

start
1 get super-agent validation
2 if results are not validated
3 error message
4 else (results are validated)
5 return validation
6 end if
end

Algorithm: SelfValidation (result)

start
1 InteractForSerivce (domain-EA) to evaluate results => return results
2 if results are not validated
3 error message
4 else (results are validated)
5 return validation
6 end if
end

Algorithm: NoValidation (result)

start
1 return validation
end
Ph.D. Thesis, Spring 2000 115

116
5.2.2 Conflict Handling

As explained in section 3.1 of Chapter 3 and illustrated in Chart 7 of Chapter 4,
the conflict handling process is mainly composed of two steps; conflict detection
and conflict resolution (ignoring conflict prevention).

Within the framework of this thesis, conflict detection is dependent on the OAs
informing the DA of potential agents or DO attributes which are interested in the
OA attribute value being modified. In an advanced mode of conflict detection,
the OA should be permitted to independently activate interested DOs and assign
to these evaluation tasks to examine the new attribute value being modified. In
such cases, the DA should only be notified upon the recognition of an actual
conflict. The conflict resolution is heavily dependent on the interaction among
the DA and the OAs involved in the conflict.

Within the framework of this thesis conflict resolution is a series of DA
controlled local evaluations conducted by the OAs to examine alternative
attribute values. Accordingly, resolving conflict is done through iterations of
local evaluation not through direct negotiations among OAs (as argued in
Chapter 3).

The conflict detection uses attribute lists of interested agents and attributes from
other DOs and within the same DO (see details of compiling an interest list
below). For instance, an interest-list (interestlist hereafter) of a glazing area
attribute for a Window-DO may include

• Agents such as daylighting-EA, cost-EA, thermal-EA and elevation-EA;

• Attributes of DO classes such as coordinates of StructElement-DO, Wall-
DO width and height;

• Attributes of the same DO class such as Window-DO glazing-type,
window-type and shading device types.

If the Window-DO glazing is modified each of the agents or DO attributes above
may be affected in various capacities. A Window-OA provides the interestlist to
the DA, the DA chooses the more critical members of the list to examine in
order. Accordingly, the DA activates the necessary DOs and assigns evaluation
tasks to examine the new glazing area. If the evaluations are satisfactory, the DA
validates the conflict handling session and accordingly validates the modified
glazing area.
Task Handling Algorithms

How is the interestlist compiled?

Each attribute of a DO has an interestlist associated with it upon creation. The
selection of the members of each list is done when a DO class is defined6. The
list includes possible interested DOs and agents from those provided in the
environment upon the initiation of a session.7 A DO attribute or agent may exist
in the list even if it is not present in the environment in the current session.

It is possible to dynamically add more members in an interestlist during a
session. The addition of new members can be automated or left to be solely a
property of the DA. For instance, a constraint between two attributes provides a
reasonable basis for the automation of interestlist registration. That is, the
constraint parties must be registered on each others interestlists. For
instance, if a constraint links the glazing area attribute to the width attribute of a
Window-DO, the glazing area attribute must be registered as a member of the
width attribute interestlist and vice versa. On the other hand agents or DO
attributes that are not linked to an attribute by constraints should be
explicitly added by the DA (if needed).

When an attribute value is being modified and checked for potential conflict each
member of the interestlist is a candidate for conflict check. Which members are
selected for conflict checking is left to the DA preferences. Two types of
members may register in the interestlist; domain-EAs and DO attributes. A DO
attribute can either be of the same DO or of another DO. This constitutes three
cases as demonstrated by the following examples:

1. a daylighting-EA should be in the interestlist of any Window-DO glazing

attribute;

2. a Wall-DO thermal mass attribute should be in the interestlist of its own

Wall-DO thickness attribute;

6. The dependency of a DO attribute on the existence of other attributes, DO classes or
agents may seem to violate a fundamental principle of object oriented design, however,
the interestlist is merely used to inform the DA of the potential members of the
environment that may have conflict with the attribute value being modified. This
cannot be considered as an explicit dependency among objects. An interestlist has no
implications on any external object.

7. No new classes may be admitted at run time. This may seem to contradict the earlier
notion (discussed in Chapter 3) of the Composite-DO which is compiled out of a
collection of DO classes. A Composite-DO can be created during a session but cannot
be recognized during a session.
Ph.D. Thesis, Spring 2000 117

118
3. a Door-DO thickness attribute should be in the interestlist of the Wall-DO

thickness (where the Door-DO is located).

The first example represents the general case and can be applied to any instances
of a Window-DO (i.e., daylighting-EA can be included by default in any
Window-DO glazing area attribute). Therefore, an interestlist registration of this
type can be made as a part of the DO class definition upon creation of the class.
In the second example interest is among two attributes of the same DO, this is a
specialization of first case. The interestlist registration can also be made in the
DO class definition upon creation of the class. The third example represents a
more restricted specialization case since the Door-DO is registered in a specific
Wall-DO instance and cannot be generalized (i.e., only in the Wall-DO where the
Door-DO is geometrically located). In this case, the registration in the interestlist
may also be in the class definition but attached with a constraint to limit it to a
certain Wall-DO. The interestlist registration in this case can also be done in run
time by the DA.

To avoid redundancy in representation of attribute relations, attribute1 should not
be in the interestlist of attribute2 within a context if there is a constraint linking
attribute1 to attribute2 within the same context.

A domain-EA registered in the interestlist of an attribute1 of OA1 may participate
in a conflict handling session about a new value for attribute1 if the domain-EA:

• is currently providing service to OA2 using the same attribute1. OA2 can
either be another OA of the same DO performing a different task
simultaneously, or an OA of another DO performing a task that require the
use of attribute1. In such case, OA2 must run another evaluation session
interacting with the domain-EA to examine the new value of attribute1.

• previously provided service to an OA2 regarding the attribute1. This case
may only be considered if the domain-EAs are capable of keeping the
history of services provided to OAs during a session (or previous
sessions). If OA2 is no longer activated then the domain-EA must first
request the activation of OA2 DO.

Each member in the interestlist is coupled with an “interest context”. The
context conveys the reason(s) for which this member is interested in this
attribute. A member of an attribute interestlist is activated to examine the
suggested attribute value in respect to the interest context of that member)
Task Handling Algorithms

.

In Table 1 an interestlist of a Wall-DO thickness attribute may include members
such as: member “1” is a Domain-DO, member “2” is an attribute of the same
DO, and member “3” is an attribute of another DO. Each member has its own
interest context and recommended party to interact with in connection with this
context. The interest context may evolve around a third party (i.e., DO). In such
cases, activation of this party may also be required (as in member “1” and “2”).

How is the interestlist sorted with respect to the degree of importance of

conflicts?

The order of an interestlist should be subject to change according to the task in
hand. To do so, the question to be addressed would be; how important is a
potential conflict with respect to the task in hand? To establish a scale to measure
the importance of a DO attribute or an agent in respect to the attribute value
being modified a weight mechanism is needed. An OA-based environment can
certainly benefit from such a mechanism and can easily adopted it. There may be
various ways of establishing such a mechanism, but these are all beyond the
scope of this framework. Therefore, in this framework, the DA is the only
reference to sorting the interestlist.

Controlling the conflict handling dependencies

The recursive effect of changing a single attribute value of a DO on other DOs
may reach deeply nested levels causing dependences and infinite loops of
evaluations and conflict handling sessions. However, such dependencies should
be prevented in any evaluation session (see Section 3.1). As an interface aid to
the DA it may be of great advantage to display a graph of the possible
dependencies (as a warning) before confirming a modification of an attribute
value. It is also possible to design an automated mechanism to allow the

TABLE 5.1. An example of an Interestlist of a DO Attribute

an interestlist of Wall-DO1 thickness attribute

DO-inst/Agent interested attribute interest context interact/activate

1 Acoustic-EA N/A Room-DO1 noise level Room-DO1

2 Wall-DO1 thermal time lag (hr) Room-DO1 thermal comfort Thermal-EA

3 Door-DO1 thickness (in) Wall-DO1 assembly (cont.) Geometry-EA
Ph.D. Thesis, Spring 2000 119

120
designer to control the depth of nested conflict checking and to reduce the
number of participants in a conflict. Developing such a mechanism is a research
topic on its own right. Within the framework of this thesis, to reduce conflict
checking dependencies, a DO that is activated during a conflict handling
session may not trigger other conflict handling sessions.

Constraint Satisfaction and the interestlist mechanism

The notion of an attribute interestlist may project a conflict with the notion of a
constraint network which may link multiple attribute values of DOs. If a
Window-DO height is linked to the width by a proportion constraints, say, for
aesthetic purposes, then changing the glazing area for a daylighting would effect
such constraint. A constraint satisfaction mechanism would attempt to modify
the height and width to maintain the specified proportions under the new glazing
area. Doing so, the width and height attributes of the Window-OA would trigger
a series of conflict checks that are independent from the initial conflict checks
triggered by the change in the glazing area. A constraint satisfaction mechanism
may work as a drive for modifying attribute values which, in turn, triggers a
series of conflict checking sessions using the interestlist mechanism. Therefore,
the two mechanisms may work separately or conjointly and there is no conflict
among these.
Task Handling Algorithms

Algorithm: ConflictChecking&Handling

start
1 provide the interestlist of attribute1 (being modified) of OA1 to the DA8

2 prompt the DA to SortInterestlist (interestlist) add or remove members
 => return sortedInterestlist

3 for each member of the sortedInterestlist
4 if member == ?
5 case 1. ? == domain-EA &
5 domain-EA is performing task2 for OA2 about attribute1

=> DomainEAConflictSession (OA1, OA2)
6 case 2. ? == domain-EA & domain is in active mode9

=> ActiveDomainEAConflictSession (OA1)
7 case 3. ? == DO4 => AttributeConflictSession (DO4, OA1)
8 case 4. ? == attribute2=> AttributeConflictSession (DO1, OA1)
9 else
10 error message
11 end if
12 end for
end

8. To deal with the conflict cycle effect (as explained in section 3.1), the algorithm should
include steps to mark the visited attribute (but only if its value changes as a result of the
conflict session). In this way, conflict cycles can be detected; however, the marking of
a visited attribute may not be straightforward and requires further investigation that is
not covered in this dissertation.

9. A Domain-EA can be in passive or active mode. If in active mode and it is a member
of the interestlist of an attribute it would automatically evaluate any new attribute value
for this attribute upon modification.
Ph.D. Thesis, Spring 2000 121

122
Algorithm: DomainEAConflictSession (OA1, OA2)

start
1 Assign OA2 an evaluation task to examine the new value of attribute1

in respect to the current task of OA2 => return result
2 if results are validated
3 return conflict session validated results
4 else (at least one of the results is not validated)
5 EvaluateConflictAlternatives (OA1, OA2)
6 end if
end

Algorithm: ActiveDomainEAConflictSession (OA1)

start
1 Activate (DO)10 (a duplicate of OA1 to conduct the new evaluation
session)

=> return OA2
2 Assign OA2 an evaluation task to examine the new value of attribute1

in respect to the context of the domain-EA interest
=> return results

3 if results are validated
4 return conflict session validated results
5 else (at least one of the results is not validated)
6 EvaluateConflictAlternatives (OA1, OA2)
7 end if
end

10.If the OA is allowed to execute more than one task simultaneously this step would be
skipped and OA2 should be replaced by OA1in the next step. This corresponds to
Chart 3 of Chapter 4.
Task Handling Algorithms

Algorithm: AttributeConflictSession(DO, OA1)

start
1 if DO ≠ DO1
2 Activate (DO) => return OA2 (an OA of a different DO)
3 else (DO == DO1, local attribute)
4 Activate (a clone of DO1) => return OA2 (a duplicate of OA1)
5 end if
6 Assign OA2 an evaluation task to examine the new value of attribute1

in respect to the context11 of attribute2 interest (as in the interestlist)
=> return results

7 if results are validated
8 return conflict session validated results
9 else (at least one of the results is not validated)
10 EvaluateConflictAlternatives (OA1, OA2)
11 end if
end

11.This task assignment may, in turn, require OA2 to activate other DOs to perform sub-
tasks (according to the interest context). During such process DO1 itself may need to
be activated more than once. However, if the task needed (according to the interest
context) is of the same task-type of the original task of OA1 then OA1 can be
reassigned the same task instead of activating a duplicate OA.
Ph.D. Thesis, Spring 2000 123

124
Algorithm: EvaluateConflictAlternatives (OA1, OA2)

start
1 get alternative attribute values from DA
2 if alternative attribute values are provided
3 Assign OA1 its current evaluation task with new value

=> return results
4 Assign OA2 its current evaluation task with new value

=> return results
5 if both results validated
6 return conflict session validated results
7 else (at least one of the results is not validated)
8 EvaluateConflictAlternatives (OA1, OA2)
9 end if
10 else (no alternative values are provided)
11 error message
12 terminate conflict handling session
13 end if
end
Task Handling Algorithms

Line 24: Updating

After the results of both task execution and conflict handling are validated, the
OA has to update its original DO information. Since conflict handling process is
intended to insure the integrity of the information of the DO being modified in
respect to the interested DO attributes and agents, updating attribute values is
preceded by two other checks to insure integrity of the DO information in respect
to constraints and DO clones.

• Firstly, checking the constraints network. The DO attributes being
updated may be linked with other DO attributes by constraints. Each
constraint may be associated with other constraints of DO attributes
through a propagation. Hence, any attribute value update requires a series
of constraint satisfaction checks to insure that no other constraints are
violated by the current update. If a constraint is violated the DA must be
notified and validates the update. As the case with the conflict handling,
the DA involvement is necessary to control dependencies.

• Secondly, to update the information of any clones of the DO which are
used simultaneously by other OAs. In particular, those OAs which are
performing tasks on the same DO attribute being modified.
Ph.D. Thesis, Spring 2000 125

126
Algorithm: Update (new-values)

start
check for constraints satisfaction with other DOs

1 for each constraint of the attribute being updated
2 ApplyConstraint (new-value)
3 for each propagated constraint repeat check
4 Activate DOs involved in the constraint

(to evaluate the new values12) => return OAs
5 for each activated OA
6 ApplyConstraint (new-value)
7 for end
8 end for
9 end for
10 get DA validation for update

check for OAs that are currently using the DO being updated#
11 if there is more than an OA for the same DO
12 for each OA of the same DO
13 send an update message of the new values
14 end for
15 else
16 end if
end

Algorithm: CheckConstraint (constraint, new attribute value)

start
1 ApplyConstraint (new-value)
2 if new value does not satisfy constraint
3 error message
4 else
5 return constraint application result
6 end if
end

12.Conflicts and updates for the activated DOs must be controlled by the DA to avoid
dependencies & nested checks.
Task Handling Algorithms

5.3 Examples of P_Domain protocols.

As demonstrated by the algorithms of this chapter, the OA protocols are mainly
domain dependent. This section provides an examples of domain depend OA
protocols such as decomposition, sorting and aggregation. The P_Domains
provided present variables that are required by the P_TaskType algorithms (e.g.,
P_TT_Evaluation, P_TT_Recommendation, see Figure 6.1 of Chapter 6) to
execute an assigned task (see also lines 2 and 8 in the task evaluation algorithm).

5.3.1 Cost Evaluation Protocols

Cost evaluation decomposition protocol

• skiplist: N/A

• min-domain-hierarchy: all leaf-DO classes (of the construction branch);

• max-domain-hierarchy: [domain-hierarchytop -- domain-hierarchybottom];

• domain-hierarchytop: Site-DO;

• domain-hierarchybottom: leaf-DO level (of the construction branch).

Cost evaluation sorting protocol

• decomposition order: [Site-DO, Building-DO & LandScElement, Block-
DO, and Leaf-DOs (of the construction branch)];

• typical evaluation order: top-down;

• special evaluation order: DOclassification is first in level.

Cost evaluation aggregation protocol

• aggregation-type:
Site-DO (and below) => Request service from cost-EA

5.3.2 Structural Analysis Protocols

Structural analysis decomposition protocol

• skiplist: Site-DO, all leaf-DO classes excluding the StructElement-DO
class;

• min-domain-hierarchy: [BFloor-DO, StructElement-DO];

• max-domain-hierarchy: [domain-hierarchytop -- domain-hierarchybottom];

• domain-hierarchytop: Building-DO;

• domain-hierarchybottom: StructElement-DO.
Ph.D. Thesis, Spring 2000 127

128
Note: In a Structural recommendation protocol min-domain-hierarchy does not
include StructElement-DO (only the BFloor-DO is necessary).

Structural analysis sorting protocol

• decomposition order: [Building-DO, Block-DO, VZone-DO BFloor-DO,
HZone-DO, StructElement-DO];

• typical analysis order: carried loads (top-down order, higher loads are
added to the lower ones, e.g., higher BFloor-DOs must be analyzed first);

• special analysis order: suspended loads (bottom-up order, lower loads are
added to the higher ones, e.g., lower loads of a suspended bridge must be
analyzed first).

Structural analysis aggregation protocol

• aggregation-type:
Site-DO => listing (e.g., table)
Building (and below) => Request service from structural-EA

5.3.3 Daylighting evaluation protocols

Daylighting evaluation decomposition protocol

• skiplist: LandScElement-DO, all leaf-DO classes excluding the Opening-
DO class and the Layer-DO class;

• min-domain-hierarchy: [Room-DO, Wall-DO, Ceiling-DO, Floor-DO,
Opening-DO];

• max-domain-hierarchy: [domain-hierarchytop -- domain-hierarchybottom]

• domain-hierarchytop: Building-DO;

• domain-hierarchybottom: Opening-DO.

Daylighting evaluation sorting protocol

• decomposition order: [Building-DO, Block-DO, VZone-DO BFloor-DO,
HZone-DO, Room-DO, Opening-DOs];

• typical evaluation order: top-down;

• special evaluation order: must exhaust all Room-DOs with shared
Opening-DOs.

Daylighting aggregation protocol

• aggregation-type:
BFloor-DO (and above) => listing (e.g., table)
Room-DO (and below) => Request service from daylighting-EA
Task Handling Algorithms

6 Implementation Design
6.1 Object Oriented Implementation

Originally, the implementation of the OA model started within a rule-based
development environment, namely CLIPS 4.3. The entire activation mechanism
was developed on top of the ICADS project [Pohl 92] and [Myers 93]. DO
attributes were implemented as set of facts. DO facts were asserted in the global
CLIPS fact list when needed. The protection of such DO data required an
additional implementation considerations. An OA was implemented as a
collection of its DO facts in addition to a set of related protocols, implemented as
rules, all were copied into an OA file. The file was created and configured in the
environment at run time. New facts about any newly created OA were asserted
into the fact list so that all agents of the environment might interact with it.
Though it was possible to create and configure new OAs at run time, OA
protocols had to be loaded during the initiation of a session. Therefore, the local
protocols of an OA (a set of CLIPS rules) were mere reference to a subset of the
globally protocols loaded during initiation. To overcome such shortcoming it
was necessary to be able to initiate a new CLIPS session for each created OA. In
turn, this requires a message passing system to link distributed CLIPS sessions
each containing independent fact list. Using such a message handling system,
facts were asserted simultaneously across distributed fact lists to facilitate
interaction between distributed agents. OA protocols were loaded on run time
and were not necessarily global. An OA executes its protocols locally within its
own CLIPS session and only communicates selected execution results to the
appropriate fact lists. Certainly, distributed CLIPS sessions each with a smaller
number of facts and rules, made the control of the execution flow an easier
implementation task. However, such distribution required another layer of rules
Ph.D. Thesis, Spring 2000 129

130
for update and truth maintenance of distributed data that was continually being
modified.

A later version of CLIPS (namely CLIPS6.0) provided a rule-based object-
oriented test bed for the OA model. An OA prototype of the activation
mechanism was developed using object attributes and message-handlers as the
object methods. The problem of OA protocols was now handled in a different
fashion. With classes and inheritance an OA could be an instance of one or a set
multiple OA classes and may inherit all its protocols from its super-classes. A
DO attributes is no longer public in the fact list, it is rather protected or private.
Objects and their attributes could be used for pattern matching to execute rules.
An addition that allowed a more sophisticated yet better controlled OA model to
be implemented. However, fact lists which could grow exponentially large
drastically slowed the execution of tasks when hundreds (or even thousands) of
objects were involved in a single CLIPS session. In addition, parts of the OA
model were more appropriately implemented in a procedural language. Though,
CLIPS provided alternative ways of either implementing procedural code or
integrating exported code, it was more efficient to implement the model in a
uniform development environment.

A later decision to design the implementation of the OA model using a complete
object oriented development environment (OODE), namely C++, was made to
take advantage of various aspects. In addition to execution speed, uniformity of
code, complete data encapsulation and protection, the separation of local object
methods from the message handling system, the ease of controlling the execution
flow, the ability to establish more complex object compositions, the ability to use
graphical object modeling tools (such as OMTool) to conceptually represent the
OA model (which can then be translated into C++ code), the availability of more
object libraries such ET++ all contributed to such implementation design shift.

The reminder of this chapter focuses on the development of the general object
model for an OA-based design environment and an exemplary domain specific
object model. The objects, of the general model, and their relation are defined
and detailed. In addition, the implementation of the activation process of a DO is
detailed to illustrate what an OA would look like (the collection of objects that
constitutes an OA) once it is realized in the environment. This detailed
activation process is based on Chart 1 of Chapter 5, and can directly be
transformed into a DO activation algorithm. Therefore, the activation algorithm
is omitted from this to avoid redundancy.
Implementation Design

Protocol A_S_Expert A_DM_Secon.A_DM_Princep.A_S_Utility

P_Domain

Session Environment Scenario

TaskAgent

A_SystemA_Object A_DecisionMaker

P_ObjectType

DataObjectConstraint

ConstraintArc

protocols
EA

type

task

master

clones

DOs
OAs

session
environments

agents
environment

protocols
OA

tasksagent

scenarios
environment

agency-type

DOs

arcs
constraints

arcs
DOs

DOs

constraints

DOs
environment

P_TT_Recommendation

P_TT_ConflictHandling

P_TT_Implementation

P_TT_Evaluation

P_TaskType

P_TT_Generation

Goal Result

task

resultsgoals

task

task

domain
6.2 The Object Models

Using an OODE, object models are necessary to represent the architecture of any
OA-based environment. In this chapter I describe object models that are
developed using the Object Modeling Tool OMTool [Rumbaugh, 91]. Two sets
of models are developed; the first set provides a general model that is designed to
accommodate different design domains with examples of domain specific objects
(a set of related DOs); the second set provides a domain specific model (an
alternative hierarchies and relations among related DOs).

6.2.1 The general object model

The general object model, shown in, Figure 6.1, is structured around the
‘Environment’ class, which is the container of two major classes; ‘Agent’ and
‘DataObject’. The ‘Environment’ class is a constituent of the ‘Session’ class and
contain the ‘Scenario’ class. All three are created for the purpose of version
management.
FIGURE 6.1.

A general object model of an OA
environment
Ph.D. Thesis, Spring 2000 131

132
The ‘Agent’ class is the super-class of a classified hierarchy of different agent
classes including the OAs, which are represented by the ‘A_Object’ class (the
focus of this thesis). The notion of agency is represented through task related
classes such as ‘Goal’, ‘Result’ and ‘Task’. The latter class is linked to the
‘Agent’ class since, in this frame work, the ability to execute tasks constitutes
agency. On the other hand, the ‘A_Object’ class contains a classified hierarchy
of interaction and problem solving protocols that are necessary for an OA to
execute tasks. The relation between the ‘Task’ class and the ‘P_TaskType’ class
and the ‘P_Domain’ class are also crucial to the notion of agency. Tasks (not
OAs) manage the loaded domain and task-type protocols. This allows an OA to
execute more than one task simultaneously, another property of agency.

The ‘DataObject’ class is the super-class of any hierarchy of the domain DOs. It
holds links to ‘Constraint’ and ‘ConstraintArc’ classes. Both classes, along with
the DataObject class, are designed to accommodate constraints and constraint
propagation.

The relation between the ‘DataObject’ class and both ‘A_Object’ class and
‘P_ObjectType’ class in addition to the relation between the ‘A_S_Expert’ class
and the ‘P_Domain’ class are important to OAs. Parties of both relations are
paired. That is, each sub-class of these classes is associated with a sub-class in
the other side of the relation. Each DO, which is a sub-class of ‘DataObject’, is
paired with a set of object-type protocols, a sub-class of ‘P_ObjectType’. Each
domain-EA, which is an instance of ‘A_S_Expert’ is paired with domain
protocols, an instance ‘P_Domain’.

A brief explanation of the object relation is necessary before discussing the
unique relations of the general model.

Object Relations

The general object model, shown in Figure 6.1, comprises a collection of objects
with aggregation, association and generalization relationships. A relation is
graphically represented by a line connecting two labeled boxes (where each box
represents a class).1 The nature of the relationship may be explicitly represented

1. Four types of association relationships are provided in OMT; one → one, one → many,
many → one and many → many.
Implementation Design

using roles of a relation, or through the attributes and methods of the two classes
involved in the relation.2

Association

An association relationship is a link between two classes. There may exist more
than one association relationship between the same two classes, each of which
are identified by different roles. For example, in Figure 6.1, the ‘A_Object’ and
‘DataObject’ classes are linked with two association relationships. The first is a
‘one → many’ relation marked by two roles; ‘clones’ and ‘master’. An instance
of an ‘A_Object’ class (i.e., master) may have links to multiple clone instances of
the ‘DataObject’ class (i.e., clones).3 The second is a ‘many → many’
relationship marked by two roles; ‘DOs’ and ‘OAs’. An instance of the
‘DataObject’ class, may have links to multiple instances of the ‘A_Object’ class
(i.e., OAs) performing different tasks simultaneously. In addition, an instance of
the ‘A_Object’ class may have links to multiple instances of the ‘DataObject’
class, (i.e., DOs).4

Aggregation

An aggregation relationship is marked by a diamond shape attached to the class
box indicating the ‘whole’ side of the relation. Multiplicity is marked by a filled
circle attached to the class box indicating the ‘many’ side of the relation.5 For

2. OMTool does not generate specific code to represent the nature of the link, therefore, it
should be explicitly described in the attributes and methods of the objects involved in
the relation. This is applicable to association and aggregation relationships. When
generating C++ code OMT does not make a distinction between an association or an
aggregation relationship. For instance, in an aggregation relationship, if the super-
class, which is the ‘container’, is deleted the sub-class, which is the ‘constituent‘, are
not deleted (as it conceptually should). The deletion of the sub-classes should be
explicitly represented by a method in the super-class. On the other hand, a
generalization relationship is distinct from aggregation and association since
inheritance is represented in the OMTool generated C++ code.

3. For both roles ‘clone’ and ‘master’, when OMTool generate C++ code it creates an
attribute named ‘clones’ of the type SeqCollection in the ‘A_Object’ class, and an
attribute named ‘master’ in the ‘DataObject’ class. The methods needed to access such
attributes such as ‘addClone’, ‘getClones’ and ‘removeClone’ are not automatically
generated and must be explicitly developed.

4. The multiplicity here is intended to permit composite OAs. A composite OA
represents more than one DO at the same time.

5. Four types of the aggregation relations are provided in OMT some of which are
utilized in the general model; one part → one whole, one part → many whole’ many
parts → one whole, many parts → many whole.
Ph.D. Thesis, Spring 2000 133

134
example, in Figure 6.1, the two classes ‘Environment and ‘Agent’ are connected
by an aggregation relation of the type ‘many parts → one whole’, where the
‘Environment’ has many ‘Agents’ (or many ‘Agents’ are part of the
Environment).

Conceptually, an aggregation relationship is a specialization of an association
relationship. It represents the conventional relationship ‘part-of/has’ also known
as ‘constituent/container’.

Generalization

A generalization relationship represents the relation sub-class/super-class, and is
marked by an triangular shape on the line connecting the super-class and its sub-
classes. Hierarchies are defined through generalization. For example, in Figure
6.1, the ‘Agent’ class is the super-class of the ‘A_object’, ‘A_System’, and the
‘A_DecisionMaker’ classes. The ‘A_DM_Princepal’ and ‘A_DM_Secondary’
are sub-classes of the ‘A_DecisionMaker’ class and, therefore, they belong to the
same hierarchy of the ‘Agent’ class. Hierarchies constitute inheritance of object
attributes, methods and relations. Inheritance may be constrained locally within
each object in the hierarchy. Attributes and methods may be made public,
protected or private as explained below in this section.

The general object model comprises the following object classes. All object
classes are identified as either concrete or abstract.

Session

An instance of the ‘Session’ class would contain information needed to manage
the decision making session. Management of a session includes saving
retrieving, augmenting, freezing, deleting a session with all its current
environments. A DA may compile one or more environments for decision
making experimentation within the same session. ‘Session’ is a concrete class.

Environment

An instance of the ‘Environment’ class would contain the main players needed
for decision making during the current session, such as domain agents and
domain DOs. A DA initializes an environment and load the appropriate agents
and DOs and initiate a scenarios where tasks can be assigned. Many
environments can be compiled within the same session and many scenarios can
be managed for any single environment. ‘Environment’ is a concrete class.6
Implementation Design

Scenario

An instance of the ‘Scenario’ class holds the information of a sequence of
decision making events (the order of activating and deactivating agents and DOs,
task assignments and execution). ‘Scenario’ is a concrete class.

Agent

This class contains all possible agent classes within an environment. The
common behavior of an agent is represented in this class. An agent may have
multiple tasks to execute each with a goal to accomplish and a result for each
task. ’Agent’ is an abstract class.

Task

An instance of the ‘Task’ class holds information about an assigned task. Such
information as task-type, task-domain, task-focus, context and any related
variables needed for the execution of the task. It also holds links to; the super-
agent (who assigned the task), the sub-agents (if the task is decomposed and
delegated to other agents). The ‘Task’ class is linked to the domain protocol
‘P_Domain’ class and to the task-type protocol ‘P_TaskType’ class. ‘Task’ is a
concrete class.

Result

An instance of the ‘Result’ class holds information about the result of the
execution of the assigned task. ‘Result’ is a concrete class.

Goal

An instance of the ‘Goal’ class holds information about what need to be
accomplished as a result of the execution of a task. Such information can be used
as an evaluation criteria against the execution results. An additional set of
classes such as specifications or functional requirement classes can expand the
notion of the ‘Goal’ class. However, within the scope of this work the functions
of such classes would be incorporated as methods and attributes within the ‘Goal’
class. In other words, the ‘Goal’ class holds the context of the assigned task.
‘Goal’ is a concrete class.

A_DecisionMaker

This class contains all possible DM classes within an environment. A DM

6. Instantiation is permitted only in concrete classes.
Ph.D. Thesis, Spring 2000 135

136
initiate sessions, compile environments, manage agent interactions, experiment
with various scenarios, assign tasks, and evaluate results. The common behavior
expected from a DM is represented in this class. ‘A_DecisionMaker’ is an
abstract class.

A_D_Principal

An instance of the ‘A_D_Principal’ class holds information about a principal DM
who is granted all possible authorities and capabilities as the main agent in the
environment. ‘A_D_Principal’ is a concrete class.

A_D_Secondary

An instance of the ‘A_D_Secondary’ class holds information about a DM who is
given limited authorities and capabilities as an agent in the environment.
‘A_D_Secondary’ is a concrete class.

A_System

This class contains all possible SA classes, namely all UAs that are essential to
the environment, and all EAs necessary for the execution of various tasks. The
common behavior expected from an SA is represented in this class. ‘A_System’
is an abstract class.

A_S_Utility

An instance of the ‘A_S_Utility’ class is a UA which is environment specific
agent such as a communication-UA, a configuration-UA, or a CAD-UA. Such
agents are provides the infrastructure of any design environment. Replacement
of such agents may effect the architecture of the entire system. However, it is
expected that different domains may require different behavior from some of
these agents. Therefore, a DM should be able to dynamically tune the behavior
of any of these agents for each session. ‘A_S_Utility’ is a concrete class.

A_S_Expert

An instance of the ‘A_S_Expert’ class is an EA which is a domain specific
application (an executable entity) such as a daylighting-EA, a cost-EA or a
geometry-EA. Such agents are loaded or unloaded in an environment (initially)
upon DA request. Each domain EA is coupled with a set of protocols to facilitate
the execution of task of this domain by the OAs. This is represented by an
explicit relationship between the ‘A_S_Expert’ class and the ‘P_domain’ class.
‘A_S_Expert’ is a concrete class.
Implementation Design

A_object

An instance of the ‘A_object’ class is an OA which is a temporal agent of DO
performing an assigned task (Figure 6.7). This class contains the ‘Protocol’
class. During the course of executing an assigned task, an OA loads the object-
type protocols ‘P_ObjectType’ of the same OA-type to interact with other agents
in the environment. ‘A_object’ is a concrete class.

Protocol

This is the super class of all the protocol classes. The sub-class of this class
contain the interaction and the problem solving protocols needed by an OA to
perform a task. ‘Protocol’ is an abstract class.

P_ObjectType

This is the super class of all the DO-coupled protocol classes. Each DO in the
environment must be coupled with a ‘P_ObjectType’ sub-class (of the same type)
within the same environment. A subclass of this class contains interaction
instructions for a specific DO-type (e.g., building-DO, room-DO). Such
interaction protocols carries what can be communicated with this DO-type. This,
in turn, constitutes the behavior expected from an OA amongst the environment
agents with this DO-type. An instance of the coupled P_ObjectType sub-class is
acquired upon creation of an OA. ‘P_ObjectType’ an abstract class.

P_TaskType

This is the super-class of all protocols related to the task-types that can be
performed in the environment. Types of tasks may vary according to the
environment. In a design environment task-types may be ‘evaluation’,
‘recommendation’, ‘generation’, ‘implementation’ and ‘conflict handling’. For
example, an evaluation protocol may be described as the general execution plan
to be used by an OA to perform an evaluation task (see Chart2, Chapter 5 and
Section 6.2.1). An instance of a sub-class of the ‘P_TaskType’ is loaded after the
OA is created and assigned a task by its super-agent. An evaluation protocol
should be independent from both task-domain and DO-type (of the OA
performing the task). However, the ‘P_Domain’ and ‘P_ObjectType’ should
feed into a ‘P_TaskType’ (as variables or functions) during the execution of a
task (see Section 6.2.1). There may exist various types of evaluation protocols in
the same environment, and ideally, the DM should be able save modified
versions of a ‘P_TaskType’ protocol as instances. ‘P_TaskType’ is an abstract
class.
Ph.D. Thesis, Spring 2000 137

138
P_Domain

An instance of the ‘P_Domain’ class holds information about the task-domain
(e.g., cost, structural). A ‘P_Domain’ object contains instructions that enables an
OA to interact with the appropriate EA. It also contains instructions of how an
OA can decompose a task or aggregate the results when needed (see Section
6.3). An instance of any sub-class of the ‘P_Domain’ is loaded by the ‘Task’
object after the OA is created and assigned a task by its super-agent. Each
domain-EA in the environment must be associated with a set of ‘P_Domain’
objects. ‘P_Domain’ is a concrete class.

DataObject

This is the super class of all DO classes within an environment. Various domain
specific DO classes (architectural, structural, mechanical, etc.) may be added as a
sub-class of the ‘DataObject’ class. Each DO is a representation of a real world
object (e.g., a wall or a window in architectural domain). As mentioned earlier,
each DO class in the environment is associated with an OA class of the same
type. This association is represented by a relation between the ‘DataObject’ class
and the ‘A_Object’ class. The behavior expected from an activated DO (i.e., an
OA) is reflected by the execution of the its protocols. Therefore, there is an
explicit relation between the ‘DataObject’ class and the ‘P_ObjectType’ class,
which indicates that each DO in the environment is coupled with a set of
protocols that is specific for such DO-type. ‘DataObject’ is an abstract class.

Constraint

An instance of the ‘Constraint’ class represents a constraint on a single attribute
value of a DO. A ‘Constraint’ object mainly has two attributes; an upper and a
lower bounds of the attribute value. For instance, a Door-DO width attribute DW
may be represented using a ‘Constraint’ object Const1 with lower bound attribute
LB = 2 ft. and with upper bound attribute UB = 6 ft., or:

‘Constraint’ is a concrete class.

ConstraintArc

An instance of ‘ConstraintArc’ class represents a constraint relation between;

• Two attribute values, which may belong to the same DO or to two
different DOs;

2ft DW 6ft≥≥
Implementation Design

• An attribute value and another constraint arc;

• Two ‘Constraint’ objects;

• Two ‘ConstraintArc’ objects.

A ‘ConstraintArc’ object has one or more logical expressions or mathematical
equations that represent the constraint between the two ends of the arc. For
instance, a proportion between a Wall-DO width attribute WW and a Door-DO
width attribute DW may be represented using a ‘ConstraintArc’ object
ConstArc1 which holds an expression such as:

Using ConstraintArc objects allow for constraint propagation among DO
attributes. An attribute value may depend on the evaluation of another
ConstraintArc. For instance, the Wall-DO width WW may depends on the
Door-DO width. In such case ConstArc1 would link the Wall-DO width attribute
WW with constraint object Const1 of DW (and not to the attribute DW itself).
‘ConstraintArc’ is a concrete class.

WW DWŠ
Ph.D. Thesis, Spring 2000 139

140

DO_E_LandsElemDO_E_Door

DO_E_Window DO_E_Topography P_OT_Facad

P_OT_Activity

P_OT_Window

P_OT_Door

P_OT_Arch

P_OT_Openning P_OT_StructElem

P_OT_Composite

P_OT_LandsElem

P_OT_Topography

P_OT_Occupent

P_OT_FacadElem

P_OT_FurnitureP_OT_Fixure

Protocol A_S_Expert A_DM_Secon.A_DM_Princep.A_S_Utility

P_OT_Room

P_OT_Zone

P_OT_BFloor

P_OT_Block

P_OT_Layer

P_OT_Floor

P_OT_Wall

P_OT_Roof

P_OT_Ceiling

P_OT_Attachment

P_OT_Site

P_OT_Building

DO_E_Composite

DO_E_Site

DO_E_Facad

DO_E_Openning

DO_E_Arch

DO_E_FacadElem

DO_E_StructElem

DO_E_Fixure

DO_E_Attachment

DO_E_Furniture

DO_E_Layer

DO_E_Floor

DO_E_Wall

DO_E_Ceiling

DO_E_Roof

DO_E_Room

DO_E_Zone

DO_E_BFloor

DO_E_Block

DO_E_Building

P_Domain

DO_ActivityDO_OccupentDO_Element

Session Environment Scenario

TaskAgent

A_SystemA_Object A_DecisionMaker

P_ObjectType

DataObjectConstraint

ConstraintArc

protocols
EA

master

clones

DOs
OAs

session
environments

agents
environment

protocols
OA

tasksagent

scenarios
environment

agency-type

DOs

arcs

constraints
arcs

DOs

DOs

constraints

DOs
environment

P_TT_Recommendation

P_TT_ConflictHandling

P_TT_Implementation

P_TT_Evaluation

P_TaskType

P_TT_Generation

Goal Result

task

resultsgoals

task

type

task

task

domain
6.2.2 A domain specific object model

Two domain specific object models are presented in this section. The first is for
architectural design as shown in Figure 6.2, while the second is for structural
engineering as shown in Figure 6.3. In each model, two sets of concrete classes
are added to the general object model of Figure 6.1. The first set is a collection
of domain specific DOs added as sub-classes of the ‘DataObject’ class, while the
second set is a collection of related interaction protocols added as a sub-classes to
FIGURE 6.2.

An object model of an
architectural environment.
Implementation Design

DO_E_Building

DO_E_Block

DO_E_BFloor

DO_E_Zone

DO_E_Room

DO_E_Roof

DO_E_Column

DO_E_Wall

DO_E_Floor

DO_E_Layer

DO_E_Dome

DO_E_Foundation

DO_E_Footing

DO_E_Valut

DO_E_Cantilever

DO_E_Truss

DO_E_Arch

DO_E_Member

DO_E_Slab

DO_E_Beam

DO_E_Site

DO_E_Composite

P_OT_Building

P_OT_Pile

P_OT_Slab

P_OT_Foundation

P_OT_Material

P_OT_Beam

P_OT_Arch

P_OT_Column

P_OT_Roof

P_OT_Wall

P_OT_Floor

P_OT_Layer

P_OT_Footing

P_OT_Member

P_OT_Block

P_OT_BFloor

P_OT_Zone

P_OT_Room

P_OT_Dome

P_OT_Vault

P_OT_Composite

P_OT_Truss

P_OT_ConstructTech

P_OT_Cantilever

Protocol A_S_Expert A_DM_Secon.A_DM_Princep.A_S_Utility

P_Domain

DO_ActivityDO_OccupentDO_Element

Session Environment Scenario

TaskAgent

A_SystemA_Object A_DecisionMaker

P_ObjectType

DataObjectConstraint

ConstraintArc

protocols
EA

master

clones

DOs
OAs

session
environments

agents
environment

protocols
OA

tasksagent

scenarios
environment

agency-type

DOs

arcs
constraints

arcs
DOs

DOs

constraints

DOs
environment

P_TT_Recommendation

P_TT_ConflictHandling

P_TT_Implementation

P_TT_Evaluation

P_TaskType

P_TT_Generation

Goal Result

task

resultsgoals

task

task

domain
the ‘P_ObjectType’ class. Each sub-class of the ‘P_ObjectType’ is coupled with
a sub-class of the ‘DataObject’ class (or one of its classified sub classes).

In the first model, the first added set is a set of architectural DOs classified as
sub-classes of the ‘DO_Element’ class which is a classification of the
‘DataObject’ class. The DO_Element set comprises of design elements needed
by the architectural domain including site and landscape elements. An
architectural design element may include site, building, floor, and wall etc. An
instance of a site element would hold information about a site such as location,
FIGURE 6.3.

An object model of a structural
environment.
Ph.D. Thesis, Spring 2000 141

142
area, coordinates, orientation, topography and links to existing landscape
objects. On the other hand, ‘DO_Activity’ class, which is a holder of any
activity objects is intend to accommodate additional architectural EAs [El_Attar
97], same applies to the ‘DO_Occupant’ class, which is a holder of any occupant
objects.

This classification is exemplary and can be collapsed or expanded to
accommodate other related DOs. A DM may remove some of these DO classes
during a session. However, any newly defined DO classes need to be introduced
before any session (unless the implementation environment permits that).

The second set is a group of sub-classes of the ‘P_ObjectType’ class. It provides
the associated object-type protocol classes which is a partial set of the necessary
protocols needed by a DO to act as an OA. Each sub-class of ‘P_ObjectType’ is
coupled with one of the classified sub-classes of the ‘DataObject’ class. Those
are used after the activation of a DO. When a DO is activated to an OA an
instance of the coupled sub-class is created and loaded into the OA (for details
see Section Heading2).

Figure 6.3 provides a second example of domain specific model for structural
engineering. As in, Figure 6.2 a set of structural ‘DataObject’ sub-classes and
coupled ‘P_ObjectType’ sub-classes are added to the general model of Figure
6.1.

6.3 DO-Hierarchies

DO-hierarchies are used for task decompositions (see Sections 4.3.4 and 6.2.1).
The DM may either:

1. Establish a new hierarchy of the DOs of the environment.

2. Use existing hierarchy which may either be provided by the environment
or saved from a previous session. The DM may use an entire hierarchy or
a subset of it. The DM may modify an existing hierarchy by adding DOs
or changing the nature of relations between DOs.

Agents of the environment uses the current DO-hierarchies (as established by the
DM) and may not modify or establish new hierarchies. Figure 6.4 shows an
exemplary object model of an architectural hierarchy which may be provided in
the environment. The model covers a variety of possible relations between
Implementation Design

DO_E_Facad

DO_E_Ceiling

DO_Structure

DO_E_LandsElem

DO_E_Floor

DO_E_Wall

DO_E_FacadElem

DO_E_Room

DO_E_Zone

DO_E_Building

DO_E_Site

DO_E_Furniture
DO_E_Fixure

DO_E_BFloor

DO_E_Block

DO_E_StructElem

DO_E_Door

DO_E_Topography

DO_ActivityDO_Occupent

DO_E_Window DO_E_Arch

DO_E_Layer

DO_E_Attachment

DO_E_Openning

DO_E_Roof
architectural objects. A DM may use the entire model as the current DO-
hierarchy or may compile a DO-hierarchy as a subset of this model. A DM
should be able to graphically compile a subset of any DO-hierarchy. Certain
relations and constraints may have to be maintained in any subset hierarchy,
therefore, it may be required to develop a warning mechanism if such relations or
constraints are violated.

The model also includes few non-design objects such as Occupant, Activity,
Landscape, and Topography. The earlier two objects may be expanded to include
hierarchies about the different occupants and different activities that may occur
in an architectural space [El_Attar, 97]. Landscape and Topography objects may
be expanded to include a wide range of natural site objects.
FIGURE 6.4.

An architectural object hierarchy.
Ph.D. Thesis, Spring 2000 143

144

Plane Point
Edge

Volume

Enclosure

DO_DesignObject

maximal

segments
subplanes

maximal

planes
edges

pointsplanes points edges

volumes

edges

enclosure

volumes

volumes

points

volumes

planes

enclosure

designobject
Except Occupant and Activity objects, each object in Figure 6.4 typically has an
enclosure with volume that has regular geometry. Figure 6.5 provides an object
model for objects with enclosure. The model is intend to accommodate various
geometrical configurations. Such hierarchy may operates under solid or two
dimensional representations of objects. The existence of such hierarchy within
the environment is essential and permits EAs with geometric interpretation
capabilities to participate in a design session and produce vital information to the
execution of tasks by other agents in the environment.

6.4 Implementation Design of the Activation Process

The following scenario is provided to illustrate how an OA is created according
to the architectural object model provided in Figure 6.2.

• An agent (e.g., DM) requests the activation of a DO_E_Room to perform
a daylighting evaluation task.
FIGURE 6.5.

Object model for geometrical
representation.
Implementation Design

• The request is received by the ‘A_Object’ class which, in turn, creates a
Room-OA instance (an A_O_Room according to the naming convention
used in this model as described in Section 6.5.1).

• The A_O_Room requests a clone of the DO_E_Room (a copy of the exact
DO_E_Room being activated).

• Provided the clone, the A_O_Room would load the interaction protocols
related to its DO-type (makes an instance of the ‘P_OT_Room’ class).

• The DM assigns the task to the created A_O_Room, which, in turn, loads
the task-type protocols (makes an instance of the ‘P_TT_Evaluation’
class). This enables the A_O_Room to proceed with the execution of the
evaluation task.

• The A_O_Room also loads the domain specific daylighting protocols
(makes an instance of the ‘P_D_Daylighting’ class) which provide the
daylighting parameters needed by the A_O_Room for the decomposition,
aggregation and sorting of the daylighting task (all are subclasses of the
‘P_D_Daylighting’ class).

• The A_O_Room is now ready to interact with the environment agents to
complete the execution of the assigned task (for more details on the
execution of a daylighting evaluation task see Chart 5 of Chapter 5).

This Scenario is generalized in the activation diagram provided in Figure 6.6.
The implementation of the activation process starting from the activation request
till the completion of the OA with all its necessary objects is shown in this
figure. The steps are marked sequentially to illustrate the activation process in
detail if implemented in an object-oriented development environment. Each gray
rectangle indicates an object with its sequential lists that are necessary for the
creation of an OA and the assignment of a task. Each arrow represent a specific
event as explained below. These elaborated 28 steps are derived from the first
eight steps of activation event-trace chart (Chart 1 of Chapter 5).

Detailed steps of the activation process shown in Figure 6.6:

1. activate: a DM (or any agent) send an activation message to a DO;

2. new OA: the DO instantiates an OA object;

3. register: the OA registers itself in the OAs list of the DO;

4. register: the DO registers itself in the DOs list of the OA;
Ph.D. Thesis, Spring 2000 145

146

tasks-out

DM sub-agents

DO

OAs

OA

protocols

clones

DOs

tasks-in

P_ObjectTyp.OAs

P_Domain

tasks

Result

Goal

agents

Task

goals

DO-Clone

results

1 4

2 3

5

6

7

8

9

10
12

13

clones

14

15

19

17

18

16

23

24

22

14

P_TaskTypetasks

21

20

protocols

sub-tasks

11
5. clone: the OA requests a clone of the DO;

6. new clone: the DO duplicates itself. In addition, the DO registers itself with
the DO-Clone);

7. register: clone registers itself in the clones list of the DO;

8. register: DO-Clone registers itself in the clones list of the OA;

9. register: OA registers itself with the DO-Clone;

10. new P_ObjectType: the OA instantiates a new object-type protocol object of
the same DO-type (e.g., Wall-DO, Room-DO). In addition, the OA registers
itself in the OAs list of the P_ObjectType;

11. register: the P_ObjectType registers itself in the Protocols list of the OA;
FIGURE 6.6.

The implementation design of the
activation process.
Implementation Design

Agent

DO

OA

P_ObjectTyp.

P_Domain

Result

Goal

Task

DO-Clone

P_TaskType
12. register: the OA registers itself in the sub-agents list of the DM;

13. assign: the DM assigns a task to the OA;

14. new task: the OA instantiates a new Task object. In addition, the OA
registers itself in the OAs list of the Task;

15. new goal: the Task instantiates a new Goal object. In addition, the Task
registers itself with the Goal;

16. register: the Goal registers itself in the goals list of the Task;

17. new result: the OA instantiates a new Result object. In addition, the Task
registers itself with the Result;

18. register: the Result registers itself in the results list of the Task;
FIGURE 6.7.

Object model of an OA.
.

Ph.D. Thesis, Spring 2000 147

148

Naming convention
19. new P_TaskType: the Task instantiates a task-type protocol object of the same
task-type (e.g., evaluation, conflict handling etc.). In addition, the Task
registers itself in the tasks list of the P_TaskType;

20. register: the P_TaskType registers itself in the Protocols list of the Task;

21. new P_Domain: the Task instantiates a domain protocol object of the same
task-domain and task-focus (e.g., cost, structure). In addition, the Task
registers itself in the tasks list of the P_Domain;

22. register: the P_Domain registers itself in the Protocols list of the Task;

23. register: the Task registers itself in the tasks-in list of the OA;

24. register: the OA registers itself in the tasks-out list of the DM;

25. execute task: OA starts executing the assigned task (this step is not included
in Figure 6.5).

Figure 6.7 shows an object model of an OA after it is instantiated, assigned a task
and loaded the appropriate protocols. The objects in the shaded area belong to
the OA. Objects outside of the shaded area have immediate relations to the OA
but are not part of the OA (e.g., the super-agent which activated the DO and
assigned the task to its OA).

6.5 The Objects Implementation Design

This section presents the design of objects of the model shown in Figure 6.1 to be
developed in an OODE. The objects are defined earlier in Section 6.2.1 and are
detailed in this section.

6.5.1 The object structure

As in any OODE, each object has three main components; a name, a set of
attributes and a set of methods to execute operations that are mostly related to the
attribute values of the object. Graphically, each object is represented by a box
which is divided into three parts that corresponds with each of the three
components. The upper part contains the object name; the middle part contains
the object attributes; and the lower part contains the object methods (see Figures
6.8-6.12).

The object names follow a convention that is specific to this framework. Names
of objects in the same hierarchy starts with the same letter. The sub-class name is
appended to the initials of its super-classes.7 The initials of a class is either one
Implementation Design

Attributes
or more letter, for instance the initials of the class named ‘DataObject’ are ‘DO’.
Therefore, any ‘DataObject’ subclass name starts with ‘DO_’. All types of
agents starts with the letter ‘A_’ since the super-class is named ‘Agent’.
‘A_System’ is an SA and it is a sub-class of the ‘Agent’ class. A_S_Expert is a
domain EA which is a sub-class of the ‘A_System’ class.

Object attributes are holders to the necessary information of the object. Each
attribute is declared with its type whether it is factual or relational data. Data
types such as; ‘bool’ a boolean value, ‘char *’ a pointer to an array of characters,
‘string’ a string, ‘int’ an integer, ‘float’ a float; ‘SeqCollection *’ a pointer to a
sequential collection (a list) or ‘OrdCollection *’ a pointer to an ordered
collection (an ordered list), ‘<object-name> *’ a pointer to an object, ‘<_object-
name_>’ a specific object type, or exceptional types such as ‘void’ which may
act as wild card for any type provided within the implementation environment.

The attributes are also relation holders. For instance, an attribute of the type
‘<object-name> *’ constitutes a relation to a single object, while an attribute of
the type ‘SeqCollection *’ constitutes a set of relations to a set of objects. In the
object models created using OMTool, such as the model shown in Figure 6.1,
relations between objects are identified through roles (for more details about
roles see Section 6.2.1). Attribute values and relations may also represent
constraints. For instance, an attribute may hold a lower and upper values, or may
be broken into two attributes each of which holds a value limit. However, the
issue of constraint representation, propagation and management for the OAs
require further work that is beyond the scope of this thesis.

The objects illustrated on this chapter are produced in OMTool and, therefore,
they follow the OMTool symbology. When an attribute name is preceded with a
‘+’ symbol this indicates a public attribute, any object can access such
information. A ‘#’ symbol indicates a protected attribute, only the sub-classes
can access such information. A ‘-’ symbol indicates a private attribute, no other
object can access such information.8

In this implementation design most of the attributes are protected. Therefore,
accessing the information stored in any object attribute is a function of the object
methods associated with such attribute. For example, in Figure 6.10, the ‘Agent’

7. In this model no class is a sub-class of two super-classes, there can be only one
hierarchy of super-classes for each sub-class.
Ph.D. Thesis, Spring 2000 149

150

Methods
class has a ‘sub-agent’ attribute which is a list of all current agents that are
currently assigned tasks by the agent. The methods associated with the ‘sub-
agent’ attribute are the typical add, get and remove; ‘addSubAgent’ to add a new
agent on the sub-agent list, ‘removeSubAgent’ to remove an agent from the list,
‘getSubAgents’ to obtain the list.

An attribute may be set to a specified default value upon creation of the object
instance. For example, in Figure 6.8, the ‘Data_Object’ class has an
‘activationstatus’ attribute that is set to ‘FALSE’ upon creation of an instance,
and the ‘numofclones’ attribute is set to ‘0’. Other attributes are set upon
creation or later using its associated ‘set’ method.

As in any OODE, the object methods serves primarily as the interface to its own
attributes. External objects may use the object methods to access or manipulate
(if permitted) the information stored in the object attributes. Internally, an object
may use its methods to manipulate its own attributes, such as setting values or
adding external object to its lists when necessary.

Typically, common attributes of the types ‘char *’, ‘bool’, ‘int’, ‘float’ and
‘<object-name> *’are associated with ‘set’ and ‘get’ methods, while attributes of
the type ‘SeqCollection’ are associated with ‘add’, ‘remove’ (or ‘delete’ in some
cases), and ‘get’ methods. Each class in this model has a ‘name’ attribute of the
type ‘char *’, ‘ID’ attribute of the type ‘int’ and in many cases ‘type’ attribute of
the type ‘char *’. Both ‘ID’ and ‘name’ attribute has its related ‘get’ and ‘set’
methods. A sub-class of any generalization inherit such attributes and methods
from its super-class, therefore, such attributes and methods are not repeated in
any sub-class. For any concrete sub-class the value of such attributes (such as
ID) are assigned upon creation.

In each object there is a ‘Constructor’ method and a ‘Destructors’ method. A
constructor method uses the same object name, and destructor method uses the
same object name preceded by a ‘~’. A constructor method main purpose is to
create an instance of such class. The initial attribute settings are performed

8. Some of the attributes in the object figures are shown for clarity of object design
though they are not needed during the generation of the C++ code by OMTool. Such
attributes are necessary and each of them are represented on the object models of
Figure 6.1 as a ‘role’. During the generation of the C++ code OMTool translate each
role into an attribute automatically, therefore, they should not be represented explicitly
in the object attributes during implementation to avoid redundancy.
Implementation Design

during the execution of the constructor method. A destructor method is used to
eliminate an instance with all its pointers.9

Other methods are designed to achieve environment specific functions such as
the ‘activate’ and ‘deactivate’ methods of the ‘DataObject’ class, or for
manipulating external objects such as the ‘assignTask’ method of the ‘Agent’
class. Certainly all methods of agency such as task, goal, result or any protocol
objects are environment specific.

6.5.2 Characterized attributes of objects in the OA model

The following section describes few characterized attributes of selected objects
from those shown in Figures 7.8-7.12. Each object is represented by a figure
which shows the attributes and methods that are necessary to the functionality of
that object within the OA model. Other attributes and methods that are not
directly related to the functionality of the OA model are not listed neither in the
figures nor on the attribute descriptions.

Attributes of the ‘Session’ class (of Figure 6.8):

• environments: a list of all saved environments

Attributes of the ‘Environment’ class (of Figure 6.8):

• session: a link to the Session where this Environment is created

• scenarios: a list of all saved Scenarios of this Environment

• agents: a list of Agents currently active in this Environment

• DOs: a list of DOs currently instantiated in this Environment

Attributes of the ‘Scenario’ class (of Figure 6.8):

• environment: a link to the Environment where this Scenario is recorded

9. In some cases such a destructor method deals with the lower level necessities of object
elimination such as memory management. This depends on the OODE. In most C++
environments such allocation and freeing of memory spaces is required, while in JAVA
and Eifel [Meyer, 88] this is unnecessary. ET++ provides means to reduce the need for
memory management and pointer deletion upon elimination of an object.
Ph.D. Thesis, Spring 2000 151

152

Session
#name:char *
#ID:int
#type:char *
#environments:SeqCollection *

+Session
+~Session
+setName(sessname:char *):bool
+getName():char *
+setID(sessid:int):bool
+getID():int
+setType(sesstype:char *):bool
+getType():char *
#newSession():bool
+openSession(sessname:char *):bool
+saveSession(sess:Session *):bool
+deleteSession(sess:Session *):bool
+newEnvironment(playlist:SeqCollection *):bool
+getEnvironments():SeqCollection *
+addEnvironment(env:Environment *):bool
#removeEnvironment(env:Environment *):bool
+cloneEnvironment(env:Environment *):Environment *
#deleteEnvironment(env:Environment *):bool
+loadEnvironment(env:Environment *):bool
+unloadEnvironment(env:Environment *):bool
+freezeEnvironment(env:Environment *):bool
+unfreezeEnvironment(env:Environment *):bool

Environment
#name:char *
#ID:int
#type:char *
#scenarios:SeqCollection *
#agents:SeqCollection *
#DOs:SeqCollection *
#session:Session *

+Environment
+~Environment
+setName(envname:char *):bool
+getName():char *
+setID(envid:int):bool
+getID():int
+setType(envtype:char *):bool
+getType():char *
+setSession(sess:Session *):bool
+getSession():Session *
+saveEnvironment(env:Environment *):bool
#newScenario():bool
+addScenario(scen:Scenario *):bool
+getScenarios():SeqCollection *
+appendScenarios(scens:SeqCollection *):SeqCollection *
#removeScenario(scen:Scenario *):bool
#newDO(typename:char *):DataObject *
+addDO(do:DataObject *)
#removeDO(do:DataObject *)
#deleteDO(do:DataObject *):bool
+getDOs():SeqCollection *
+getDOsOfType(doclass:Class *):SeqCollection *
+findDOs(discrip:char *):SeqCollection *
+findDO(doname:char *):DataObject *
+makeNewDOType(typename:char *):bool
+deleteDOType(typename:char *):bool
#addAgent(a:Agent *):bool
#removeAgent(a:Agent *):bool
+loadAgent(aname:char *):bool
+unloadAgent(a:Agent *):bool
+getAgents():SeqCollection *
+getAgentsOfType(atype:Class *):SeqCollection *
+findAgents(discrip:char *):SeqCollection *
+findAgent(aname:char *):Agent *
+sendMessage(obj:Object *):bool
+sendMessage(anything:void *):bool
+sendMessage(agents:SeqCollection *):bool

Scenario
#name:char *
#ID:int
#environment:Environment *

+Scenario
+~Scenario
+setName(scenname:char *):bool
+getName():char *
+setID(scenid:int):bool
+getID():int
+setEnvironment(env:Environment *):bool
+getEnvironment():Environment *
+recordScenario():bool
+saveScenario(scen:Scenario *):bool
Attributes of the ‘DataObject’ class (DO) (of Figure 6.9):

• activationstatus: a boolean to indicate whether an OA for this DO is
currently active

• clones: a list of all clones of this DO currently used by OAs

• numofclones: number of clones on the previous list

• interestlist: a list of interested DOs and EAs for each attribute of the DO

• shared: a boolean to indicate whether the DO is a shared one

• OAs: a list of OAs that are currently representing the DO

• clonesof: the DO of which this clone is a duplicate of (only when the DO
is a cloned instance)

• master: the first OA that is currently representing the DO

• environment: the current environment where the DO exists

• constraints: a list of all constraints on the DO attributes
FIGURE 6.8.

Session, Environment and
Scenario Objects.
Implementation Design

e.g., sessname and aname

DataObject
#name:char *
#ID:int
#type:char
#activationstatus:bool=FALSE
#clones:SeqCollection *
#numofclones:int=0
#interestlist:SeqCollection *
#shared:SeqCollection *
#OAs:SeqCollection *
#cloneof:DataObject *
#master:Agent *
#environment:Environment *
#constraints:SeqCollection *
#arcs:SeqCollection *

+DataObject
+~DataObject
+setName(doname:char *):bool
+getName():char *=0
+setID(doid:int):bool
+getID():int
+setType(dotype:char *):bool
+activate(superagent:Agent *):A_Object *
+deactivate(oa:A_Object *):bool
#setActivationStatus(activationstatus:bool)
+getActivationStatus():bool
+newClone(do:DataObject *):DataObject*
#deleteClone(doclone:DataObject *)
#addClone(doclone:DataObject *):bool
#removeClone(oa:Agent *):bool
+getClones():SeqCollection *
#setNumOfClones(num:int):bool
+getNumOfClones():int
+addOA(oa:A_Object *):bool
#removeOA(oa:A_Object *):bool
+getOAs():SeqCollection *
+update(attrib:void *):bool
#addShared(geodo:DataObject *):bool
+removeShared(geodo:DataObject *):bool
+getShared():SeqCollection *
+addInterestedDO(do:DataObject *):bool
#removeInterestedDO(do:DataObject *):bool
+getInterestList():SeqCollection *
+setCloneOf(do:DataObject *):bool
+getCloneOf():DataObject *
+setEnvironment(env:Environment *):bool
+getEnvironment():Environment *
+setMaster(Agent *):bool
+getMaster():Agent *
+addConstraint(const:Constrint *):bool
+getConstraints():SeqCollection *
#removeConstriants(const:Constriant *):bool
+deleteConstraint(const:Constraint *):bool
+addArc(arc:ConstraintArc *):bool
+getArcs():SeqCollection *
#removeArc(arc:ConstraintArc *):bool
#deleteArc(arc:ConstraintArc *):bool
+addModifier(modif:Modifier *):bool
+getModifiers():SeqCollections *
+removeModifier(modif:Modifier *):bool

ConstraintArc
#name:char *
#ID:int
#type:char
#DOs:SeqCollection *
#arcends:SeqCollection *
#value:float
#expression:Equation

+ConstraintArc
+~ConstraintArc
+setName(arcname:char *):bool
+getName():char *
+setID(arcid:int):bool
+getID():int
+setType(arctype:char *):bool
+getType():char *
#setDO(do:DataObject *):bool
+getDOs():SeqCollection *
+setArcEnds(const/attrib:Constraint *, Attributes):bool
+getArcEnds():SeqCollection *
+setArcValue(value: float):bool
+getArcValue():float
+setExpression(express: Equation):bool
+getExpression():Expression *

Constraint
#name:char *
#ID:int
#type:char
#DO:DataObject *
#arcs:SeqCollection *
#attribute:char *
#min:float
#max:float

+Constraint
+~Constraint
+setName(constname:char *):bool
+getName():char *
+setID(constid:int):bool
+getID():int
+getType():char *
+setType(consttype:char *):bool
#setDO(do:DataObject *):bool
+getDOs():SeqCollection *
+setMax(value:float):bool
+getMax():float
+setMin(value:float):bool
+getMin():float *
+setAttribute(attrib:char *):bool
+getAattribute():char *
+addArc(arc:ConstraintArc *):bool
+getArcs():SeqCollection *
#removeArc(arc:ConstraintArc *):bool
• arcs: a list of all constraint arcs linking the DO attributes with other
attributes, constraints or constraint arcs.

Attributes of the ‘Constraint’ class (of Figure 6.9):

• DO: the DO of the constrained attribute

• arcs: a list of all constraint arcs linking this constraint with other attributes,
constraints or constraint arcs
FIGURE 6.9.

DataObject (DO), Constraint and
ConstraintArc objects.
Ph.D. Thesis, Spring 2000 153

154

A_Object
#protocols:SeqCollection *
#DOs:SeqCollection *
#clones:SeqCollection *

+A_Object
+~A_Object
#newOTProtocol():Protocol *
+addOTProtocol(otprot: P_ObjectType *):bool
+getOTProtocols():SeqCollection *
#removeOTProtocol(otproto: P_ObjectType *):bool
+addDO(do:DataObject *):bool
#removeDO(do:DataObject *):bool
+getDOs():SeqCollection *
+addClone(clone:DataObject *):bool
#removeClone(clone:DataObject *):bool
+getClones():Seqcollection *

Agent
#name:char *
#ID:int
#type:char *
#superagents:SeqCollection *
#subagents:SeqCollection *
#tasksout:SeqCollection *
#tasksin:SeqCollection *
#environment:Environment *

+Agent
+~Agent
+setName(aname:char *):bool
+getName():char *=0
+setType(atype:char *):bool
+getType():char *
+setID(aid:int):bool
+getID():int
+setEnvironment(env:Environment *):bool
+getEnvironment():Environment *
#newTask():Task *
#assignTask(a:Agent *,context:char *,goaldis:char *):Task *
+executeTask(task:Task *):Result *
+validateResult(result:Result *):void *
#addSuperAgent(a:Agent *):bool
#removeSuperAgent(a:Agent *):bool
+getSuperAgent():SeqCollection *
+addSubAgent(a:Agent *):bool
#removeSubAgent(a:Agent *):bool
+getSubAgent():SeqCollection *
#deleteTask(task:Task *):bool
+addTaskIn(task:Task *):bool
#removeTaskIn(task:Task *):bool
+getTasksIn():SeqCollection *
+addTaskOut(task:Task *):bool
#removeTaskOut(task:task *):bool
+getTasksOut():SeqCollection *
• attribute: the attribute name

• min: the lower bond of the constraint acceptable range

• max: the upper bond of the constraint acceptable range

Attributes of the ‘ConstraintArc’ class (of Figure 6.9):

• DOs: a list of DO using this constraint arc

• arcends: a list of attributes, constraints, and constraint arcs linked by this
constraint arc

• expression: an expression that represents the link between the arc-ends.

• value: the current evaluation of the constraint arc expression (e.g.,
mathematical equation)

Attributes of the ‘Agent’ class (of Figure 6.10):

• superagents: a list of all agents that are currently assigning a task to this
agent

• subagents: a list of all agents that are currently assigned tasks by this agent

• tasksout: a list of all assigned tasks by this agent
FIGURE 6.10.

Agent and A_Object (OA)
Objects.
Implementation Design

Goal
#ID:int
#maxvalue:void *
#minvalue:void *
#unit:char *
#task:Task *

+Goal
+~Goal
+getID():int *
+setID(taskid:int *):bool
+getMaxValue():void *
+setMaxValue(void *):bool
+getMinValue():void *
+setMinValue(void *):bool
+getUnit():char *
+setUnit(char *):bool
+getTask():Task *
+setTask(Task *):bool

Task
#ID:int
#domain:char *
#type:char *
#focus:char *
#assignedby:Agent *
#assignedto:OrdCollection *
#subtasks:OrdCollection *
#satisfied:bool=FALSE
#results:SeqCollection *
#goals:SeqCollection *

+Task
+~Task
+getID():int *
+setID(taskid:int *):bool
+setDomain(domname:char *):bool
+getDomain():char *
+setType(tasktype:char *):bool
+getType():char *
+setFocus(foc:char *):bool
+getFocus():char *
+setAssignedBy(a:Agent *):bool
+getAssignedBy():Agent *
+addAssignedTo(a:agent *):bool
+getAssignedTo():OrdCollection *

+addSubTask(task:Task *):bool
#RemoveSubTask(Task *):bool
+getSubTasks():OrdCollection *
#newResult(task:Task *):Result *
+addResult(Result *):bool
#removeResult(Result *):bool
#deleteResult(result:Result *):bool
+getResults():SeqCollection *
+getGoals():SeqCollection *
#newGoal(task:Task *):Goal *
+addGoal(Goal *):bool
#removeGoal(Goal *):bool
+getSatisfied():bool
+setSatisfied(satisf:bool):bool

Result
#ID:int
#value:void *
#task:Task *

+Result
+~Result
+setID(resid:int *):bool
+getID():int *
+setTask(task:Task *):bool
+getTask():Task *
+setValue(void *):bool
+getValue():void *

#protocols: SeqCollection *

#newTTProtocol(ttype:char *):P_TaskType *

+addProtocol(prot:Protocol *):bool
+getProtocols():SeqCollection *
#removeProtocol(prot:Protocol *):bool
#deleteProtocol(prot:Protocol *):bool

#newDProtocol(tdomain:char *):P_Domain *

#activationlist: OrdCollection *

+addToActivationList(classname:Char *):bool
+getActivationList():OrdCollection *
#removeFromActivationList(classname:Char *):bool

#removeAssignedTo(a:agent *):bool
• taskin: a list of all tasks assigned to this agent

• environment: the environment where this agent currently exists

Attributes of the ‘A_Object’ class (of Figure 6.10):

• DOs: a list of all DOs that are currently represented by this OA

• clones: a list of all clones that are currently used by this OA

Attributes of the ‘Task’ class (of Figure 6.11):

• assignedby: the agent that assigned this task

• focus: the main attribute to be modified or the alternative attribute value to
be examined
FIGURE 6.11.

Task, Goal, and Result Objects.
Ph.D. Thesis, Spring 2000 155

156

P_D_Decomposition
#skiplist:SeqCollection *
#mindomainhierachy:SeqCollection *
#maxdomainhierarchy:SeqCollection *

+P_D_Decomposition
+~P_D_Decomposition
+addSkipClass(doclassname:Char *):bool
+getSkipList():SeqCollection *
#removeSkipClass(doclassname:Char *):bool
+addToMinDomain(doclassname:Char *):bool
#removeFromMinDomain(doclassname:Char *):bool
+getMinDomain():SeqCollection *

#domainhierarchytop:DataObject *
#domainhierarchybottom:SeqCollection *

+addToMaxDomain(doclassname:Char *):bool
#removeFromMaxDomain(doclassname:Char *):bool
+getMaxDomain():SeqCollection *
+addToMinDomain(doclassname:Char *):bool
#setHierTop(doclassname:Char *):bool
+getHierTop():SeqCollection *
+addToHierBottom(doclassname:Char *):bool
#removeFromHierBottom(doclassname:Char *):bool
+getHierBottom():SeqCollection *

P_D_Sorting
#decompositionorder:OrdCollection *
#evaluationorder:Char *
#classificationorder:Char *

+P_D_Sorting
+~P_D_Sorting
+appendToDecompOrder(doclassname:Char *):bool
+getDecompOrder():OrdCollection *
#removeFromDecompOrder(doclassname:Char *):bool

#specialcaseorder:Char *

#setSpecialCaseOrder(doclassname:Char *):bool
+getSpecialCaseOrder():Char *

#setEvaluationOrder(doclassname:Char *):bool
+getEvaluationOrder():Char *
#setDOClassification(doclassname:Char *):bool
+getDOClassification():Char *

Protocol
#name:char *
#ID:int
#type:char *
#OA:A_Object *

+Protocol
+~Protocol
+setName(protoname:char *):bool
+getName():char *
+setID(proid:int *):bool
+getID():int *
+setOA(oa:A_Object *):bool
+getOA():A_Object *
• subtasks: a list of all sub-tasks assigned to other agents as a results of
executing this task (e.g., decomposition of this task)

• assignedto: a list of all sub-agents that are currently assigned sub-tasks by
this task

• satisfied: a boolean to indicate whether this task is executed successfully

• results: a list of all results generated as a result of executing this task

• goals: a list of all goals to be accomplished by the execution of this task

• protocols: a list of all protocols that are currently loaded for the execution
of this task

Attributes of the ‘Goal’ class (of Figure 6.11):

• maxvalue: upper bond of the acceptable value range

• minvalue: lower bond for the acceptable value range

• unit: units of measurement (of the values)

• task: the task of which this goal is related

Attributes of the ‘Result’ class (of Figure 6.11):

• value: the current result value

• task: the task of which this result is related
FIGURE 6.12.

Protocol, P_D_Decomposition
and P_D_Sorting objects.
Implementation Design

Attributes of the ‘Protocol’ class (of Figure 6.12):

• OA: a list of all OAs that are currently using this protocol

The following two objects are exemplary damian protocols. These are not
included in the object model of Figure 6.1:

Attributes of the ‘P_D_Decomposition’ class (of Figure 6.12):

• skiplist: a list of all DOs to be skipped during the decomposition of a task

• mindomainhierarchy: a set of the minimum DO classes needed for the
execution of tasks of this domain

• maxdomainhierarchy: a set of the maximum DO classes that can be
included for the execution of tasks of this domain

• domainhierarchytop: a DO class that marks the upper bond of the domain-
hierarchy

• domainhierarchybottom: a set of DO classes that mark the lower bond of
the domain-hierarchy

Attributes of the ‘P_D_Sorting’ class (of Figure 6.12):

• evaluationorder: the general orientation of task decomposition

• decompositionorder: an ordered list of DO classes used as a specific guide
for task decomposition, activation, and hence, task execution.

• doclassification: a DO class where the task result is classified about (e.g.,
cost of a BFloor-DO per Room_DO, the Room-DO is a doclassifiction in
this case)

• specialcaseorder: an additional variable to accommodate special cases of
task decomposition.
Ph.D. Thesis, Spring 2000 157

158
 Implementation Design

7 Conclusions
7.1 Contributions

During the past two decades, several design support tools have been developed
for both research and commercial purposes. Most are stand-alone tools, few are
comprehensive or collaborative design environments. Such tools encompass a
wide range of design activities from simulation and evaluation to generation and
recommendation to production and documentation. Most are intended for the
early stages of design and for rapid prototyping, few for the later stages of design
and for detailed modeling of the artifact being designed. Some tools have
adopted the notion of computational agency. In such cases, the domain
applications encapsulate the domain expertise and act as expert agents with a
degree of autonomy. Nevertheless, none of the tools – that I have surveyed
during the course of developing this thesis – employ any kind of representation
where agency behavior can be considered as a property of design objects as well.
This dissertation, thoroughly investigates the notion of design objects endowed
with agency behavior. The engineering of an object-agent based framework for
computational design environments, as a decision making environment, is the
main contribution of this work.

7.1.1 Specific contributions

This thesis is structured around the development of a framework for an a object-
agent-based decision making environment. During the course of developing this
framework (Chapters 3-6) the following results were accomplished:
Ph.D. Thesis, Spring 2000 159

160
• A general architecture of an object-agent-based environment as a
demonstration of how a design tool or a comprehensive design
environment can be conceptually structured around such notions was
developed (Chapter 3).

• A computational framework for task1 execution, decomposition,
delegation, and management for global and local decision making nodes
was developed (Chapter 3, 4, and 5).

• A set of general and domain specific reusable patterns of interaction
needed to allow a designer to orchestrate and finally benefit from such a
fine grain multi-agent decision making environment was developed
(Chapter 4). The developed patterns focused on evaluation tasks and on
conflict handling. These patterns can be reused for generation,
recommendation and implementation tasks. Each pattern of interaction is
graphically represented by an enhanced event-trace chart. Each step in a
pattern in the event-trace chart maps to an object method in an object
oriented implementation of an OA-based environment (Chapter 4, 5, and
6).

• A set of interaction algorithms (mainly for activation, decomposition and
conflict handling) to be used by the object-agents during the course of
handling tasks was developed. With minimal modifications this set of
algorithms can also be adopted for non-design decision making
environments (Chapter 5).

• A mechanism for compiling an activation list to contain the design objects
which can (or must) participate in the execution of a task was developed.
Such activation lists reflect the valid task decomposition of a design object
in a defined hierarchy (Chapter 5).

• A general object oriented implementation design for an object-agent-
based environment was engineered (Chapter 6).

7.2 Research Topics and Agenda for Future Work

This dissertation addresses a number of fundamental issues around the notion of
agency in design. The main outstanding task is a computer implementation of an
object-agent-based design environment built upon the framework presented in
this thesis. This effort requires the participation of distinct groups of researchers,

1. This is based on the notion of agency tied primarily to the ability to execute tasks.
Conclusions

and substantial funding. However, the issues listed below are open research
topics that can be tackled by individual researchers. Advancements in any one of
these issues can contribute to the approach advocated in this dissertation.

7.2.1 Object-agents knowledge

Access to and interpretation of external knowledge beyond the immediate
coordination knowledge of an agent affects their role in the environment. This
can be enhanced through:

1. A global communication mechanism; where agents can participate in
communication systems where they are able to continually monitor and
interpret messages of interest which may not be communicated directly to
them (see Section 5.3.1).

2. Planning long term activities; where agents can dynamically plan
activities considering other agents plans and capabilities (see Section
3.4.2).

7.2.2 Conflict handling mechanism

In conflict handling situations, enabling agents (in general) to conduct direct
negotiations with other agents to resolve design conflicts is an area of interest to
enhance the abilities of OAs (See sections 3.1 and 5.2.2).

Another area of work that is specific to the OA, is the enhancement of the
conflict detection mechanism through the use of the interestlists:

1. Sorting the interest list; establishing a weight mechanism to enable
object-agents to sort any of their attribute interestlist in respect to the
degree of relevance to the task in hand (see Section 5.2.2).

2. Controlling conflict dependencies; establishing a mechanism to control
the number of conflict handling sessions triggered by the task in hand and
to eliminate possible cyclic dependencies among members and non-
members of an attribute interest list (see conflict handling in Section 3.1).

7.2.3 Object-agent autonomy in design

Agent autonomy and the ability to self-initiate tasks, plan activities, handle
expanded goals can be enhanced through:

1. Self-initiated tasks; in addition to executing assigned tasks object-agents
should have the ability to initiate a task when it sees fit (see Section 5.1).
Ph.D. Thesis, Spring 2000 161

162
2. Expanding the notion of goals for object-agents; an object-agent
executing a task may then encapsulate an entire structure which
represents design requirements, functional specification of that task. To
consider a goal as accomplished, all requirements of such structure
(which are sub-components of the goal) need to be satisfied (see Section
6.2.1).

7.2.4 Interface of an object-agent-based environment

An object-agent-based environment is a highly interactive system. Therefore,
interface design plays a major role in its success. In fact, in such environments, it
is difficult to draw the line between the interface and the main system
functionality. One may consider some of the interface issues listed here out of
context. It is my judgement that these issues are more related to designer/agents
interactions and accordingly related to interface design. I list four main aspects
of interfaces that require further research; building, providing and manipulating
task dependent hierarchies, controlling the flow of task executions, managing
conflict handling sessions, and facilitating communications among agents.

1. Providing and manipulating task dependent hierarchies; an interface
should provide functionality related to whole or sub-parts of hierarchies
such as create, save, import, freeze or related to relations among objects
such as new, duplicate, add, remove (see Section 3.3.3). Such
functionality should be provided to the designer in various forms
especially graphical. Established hierarchies and relations should be
validated and should generate errors, warnings and notes as necessary. In
addition, the ability to reuse and modify hierarchies should be supported.
The interface should provide libraries of previously established or
typically used domain hierarchies.

2. Controlling the flow of task executions; through the interface the designer
should be aware (upon request) of each task being executed and who is
executing such task. The interface should provide textual and graphical
representation of the tasks execution and delegation among the agents at
any point in time. The designer should be able to interact by assigning,
eliminating, replicating, freezing tasks, providing alternative values for
re-evaluation, validating and implementing task execution results
through any provided form of interface representation.
Conclusions

3. Managing conflict handling sessions; the interface should provide the
designer with the means to access and re-sort interestlists of any design

object (see Section 5.2.2). Any cross dependencies among interestlist

members should be graphically displayed as a warning mechanism. The
interface should provide the designer with a mechanism to control the
number of participants in a conflict handling session and the depth
conflict checking to be generated from a task.

4. Facilitating communications among agents; to control the interactions
among agents of the environment the interface should provide the
designer with the ability to suspend and establish communication among
single and groups of agents. A message classification mechanism
provided by the interface (or agents of the interface) may also help agents
of the environment to participate more efficiently in a global messaging
system.
Ph.D. Thesis, Spring 2000 163

164
 Conclusions

Bibliography
[Aarhus 95]

[Abiteboul 91]

[Acharya 92]

[Agha 86]

[Agre 95]

[Ahmed 91]

[Akin 89]

[Akin 88a]

[Akin 88b]
Denmark Aarhus (1995). "Object and Agents Love at first Sight or Shotgun Wedding?".
ECOOP 95, Workshops, Copenhagen, Denmark.

Abiteboul, Serge and Bonner, Anthony (1991). "Objects and Views". In Proc. of the ACM
SIGMOD International Conference on Management of Data. Denver, Colorado, May,
1991.

Acharya, A. Tambe, M. and Gupta, A. (1992). "Implementation of Production Systems on
Message-Passing Computers". In IEEE Transactions on Parallel and Distributed Systems,
3(4), July, pp. 477-488.

Agha, G. A. (1986). "Actors: A Model of Concurrent Computation in Distributed Systems",
The MIT Press, Cambridge, Massachusetts.

Philip E. Agre (1995). "Computational Research on Interacbion and Agency", Artificial
Intelligence 72(1-2), 1995, Pages 1-52.

Ahmed, S., Wong, A., Sriram, D. and Logcher R. A (1991). "Comparison of Object-
Oriented Database Management Systems for Engineering Applications", Intelligent
Engineering Systems Lab, Research Report R91-12, Department of Civil Engineering,
M.I.T., May 1991.

Akin, Ö., Dave, B. and Pithavadian, S. (1989). "A Paradigm for Problem Restructuring in
Design". In Proc. of the NSF Engineering Design Research Conf., University of
Massachusetts, Amherst, MA.

Akin, Ö. (1988). "Architectural Design as Task for Complex Problem Solving Systems",
Department of Architecture, Carnegie Mellon University, Pittsburgh, PA.

Akin, Ö. (1988). "Expertise of the Architect", Department of Architecture, Carnegie
Mellon University, Pittsburgh, PA.
Ph.D. Thesis, Spring 2000 165

166

[Alberts 92]

[Assal 94]

[Augenbroe 92]

[Aygen 99]

[Bahler 92]

[Banerjee 87]

[Basye 95]

[Bates 92]

[Batory 85]

[Batory 84]

[Baykan 92]

[Barsalou 91]

[Beer 95]
Alberts, L., Mars, N. and Wognwm, P. (1992). "Structuring Design Knowledge on the
Basis of Generic Components". In Artificial Intelligence in Design '92, Gero, J. S. (Ed.),
Kluwer Academic Publishers, Dordrecht, The Netherlands.

 Assal, H. and Eastman, C. (1994). "An Object-based Information Model for Design
Supporting partial Integrity", University of California at Los Angeles.

 Augenbroe, G. (1992). "Integrated building performance evaluation in the early design
stages". In Building and Environment 27 (2), pp. 149 - 161.

 Z. Aygen (1999). "A Hybrid Model for Case Indexing and Retrieval in Building Design",
School of Architecture, Canegie Mellon University, Pittsburgh, PA.

Bahler, D. and Bowen, J. (1992). "Supporting Multiple Perspectives: A Constraint-Based
Approach to Concurrent Engineering". In Artificial Intelligence in Design '92, Gero, J. S.
(Ed.), Kluwer Academic Publishers, Dordrecht, The Netherlands.

Banerjee, Jay; Kim, Won; Kim, H.J.; and Korth, Henry F. (1987). "Semantic and
Implementation of Schema Evolution in Object-Oriented Databases". In Proc., ACM
SIGMOD Annual Conference, 16:3, pp. 311-322.

Basye, K., Dean, T. and L. P. Kaelbling (1995). "Learning Dynamics: System Identification
for Perceptually Challenged Agents", Artificial Intelligence 72(1-2), Pages 139-171.

Bates, J., Loyall, A. B. and Reilly, W. S. (1992). "An Architecture for Action, Emotion and
Social Behaviour". In Lecture Notes in Artificial Intelligence 830: Artificial Social
Systems. Castelfranchi, C. and Werner, E. (Eds.), Selected Papers of 4th European
Workshop on Modeling Autonomous Agents in a Multi-Agent World, MAAMAW ’92, S.
Martino al Cimino, Italy, July 1992, Springer-Verlag, Berlin, Germany.

Batory, D.S. and Kim, Won. (1985). "Modeling Concepts for VLSI CAD Objects", ACM
Transactions on Database Systems, Vol. 10, No. 3, pp.322-346, September 1985.

Batory, D.S. and Buchmann, Alejandro P. Molecular (1984). "Objects, Abstract Data
Types and Data Models: A Framework". In Proc. of the 10th International Conference on
Very Large Data Bases. Singapore, August, 1984.

Baykan C. and Flemming U. (1992). "Constraint Generation vs. Generate and Test", EDRC
Tech Report 92, Carnegie Mellon University, Pittsburgh, PA.

Barsalou, Thierry, Keller, Arthur M., Siambela, Niki and Wiederhold Gio.
(1991). "Updating Relational Databases Through Object-Based Views". In Proc. of the
ACM SIGMOD International Conference on Management of Data. Denver, Colorado,
May, 1991.

Randall D. Beer (1995). "A Dynamical Systems Perspective on Agent-Enviroment
Interaction", Artificial Intelligence 72(1-2), Pages 173-215.
Bibliography

[Berker 95]

[Bertino 91]

[Biliris 89a]

[Biliris 89b]

[Birmingham 95]

[Boden 96]

[Bond 89]

[Booch 94]

[Brafman 96]

[Brooks 86]

[Brown 89]

[Buchmann 91]

[Burkhard 95]
Berker, I., and D.C.Brown (1995). "Conflicts and Negotiations in Single Function Agent
Based Design Systems", Submitted to Concurrent Engineering: Research and Applications.

Bertino, Elisa and Martino, Lorenzo. (1991). "Object-Oriented Database Management
Systems: Concepts and Issues", IEEE Journal of Computer, April 1991.

Biliris, Alexandros (1989) . “A Data Model for Engineering Design Objects", IEEE,
August, 1989.

Biliris, Alexandros (1989) . "Management of Objects in Engineering Design Applications",
Technical Report, BU-CS TR 89-005. Computer Science Department, Boston University.

Birmingham, W. P., E. H. Durfee, T. Mullen, and M.P. Wellman (1995). "The Distributed
Agent Architecture of the University of Michigan Digital Library" (extended abstract),
AAAI Spring Symposium on Information Gathering in Distributed, Heterogeneous
Environments.

Boden, Margaret A. (Ed.) 1996. "Artificial Intelligence: Handbook of Perception and
Cognition", 2nd Edition, Academic Press, INC.

Bond, A. H. (1989). "The Cooperation of Experts in Engineering Design". In Distributed
Artificial Intelligence, Gasser, L. and Huhns, M. (Eds.), Vol. II, pp. 463-484, Pitman
Publishing, Los Altos, CA.

Grady Booch (1994). "Object-Oriented Analysis and Design with Applications", Booch,
G., Jacobson, I.and Rumbaugh, J., (Eds.) Addison-Wesley, Reading, MA.

Brafman, R. I., Tennenholtz, M. (1996). "On Partially Controlled Multi-Agent Systems".
In Journal of Artificial Intelligence Research 4, AI Access Foundation and Morgan
Kaufmann Publishers.

Brooks, R. A. (1986). "Asynchronous Distributed Control System for a Mobile Robot". In
Proc. SPIE's Cambridge, MA, Oct 86.

Brown, D. and Chandrasekaran, B. (1989). "Design Problem Solving: Knowledge
Structures and Control Strategies", Pitman Publishing/Morgan Kaufmann Publishers, Inc.,
San Mateo, CA.

Buchmann, A.P., R.S. Carrera, M.A. Vasquez-Galindo (1991). "Handling constraints and
their exceptions: an attached constraint handler for object-oriented CAD databases". In On
Object-Oriented Database Systems, K. Dittrich, U. Dayal, and A. Buchmann (Eds.),
Springer-Verlag, New York, pp. 65-83.

Burkhard, H. (1995). "How to Define Agent Properties - Or: What is a Fair Agent?". In
Lecture Notes in Artificial Intelligence 957: From Reaction to Cognition. Castelfranchi, C.
and Muller, J. (Eds.), Selected Papers of 5th European Workshop on Modeling
Autonomous Agents in a Multi-Agent World, MAAMAW ’93, Neuchatel, Switzerland,
August 1993, Springer-Verlag, Berlin, Germany.
Ph.D. Thesis, Spring 2000 167

168

[Burmeister 95]

[Cardelli 85]

[Castelfranchi 97]

[Cavedon 97]

[Chaib-Draa 96]

[Chaib-Draa 94]

[Chaib-Draa 92]

[Christen 95]

[Cohen 94]

[Conrey 88]

[Correa 95]
Burmeister, B., Haddadi, A. and Sundermeyer, K. (1995). "Generic, Configurable,
Cooperation Protocols for Multi-Agent Systems". In Lecture Notes in Artificial
Intelligence 957: From Reaction to Cognition. Castelfranchi, C. and Muller, J. (Eds.),
Selected Papers of 5th European Workshop on Modeling Autonomous Agents in a Multi-
Agent World, MAAMAW ’93, Neuchatel, Switzerland, August 1993, Springer-Verlag,
Berlin, Germany.

Cardelli, Luca and Wegner, Peter. On Understanding (1985). "Types, Data Abstraction,
and Polymorphism", Computing Surveys, Vol. 17, No. 4, December.

Castelfranchi, C. and Falcone, R. (1997). "Delegation Conflicts". In Lecture Notes in
Artificial Intelligence 1237: Multi-Agent Rationality, Boman, M. and Van de Velde,
W.(Eds.), Proc. of 8th European Workshop on Modeling Autonomous Agents in a Multi-
Agent World, MAAMAW’97, Ronneby, Sweden, May 1997, Springer, NY.

Cavedon, Lawrence, Rao, Anand & Wobcke, Wayne (EDS) (1997). "Intelligent Agent
Systems: Theoretical and Practical Issues". In Lecture Notes in Artificial Intelligence 1209,
Based on workshop held at PRICAI ’96, Cairns, Australia, August 1996, Springer

Chaib-draa, B. (1996). "Interaction Between Agents in Routine, Familiar and Unfamiliar
Situations", International Journal of Intelligent & Cooperative Information Systems (issue
unkown).

Chaib-draa, B. and Levesque, P. (1994). "Hierarchical Model and Communication by
Signs, Signals and Symbols in Multi-Agent Enviroments". In Lecture Notes in Artificial
Intelligence 1069: Distributed Software Agents and Applications, Perram, J. W. and
Muller, J. P. (Eds.), Proc. of 6th European Workshop on Modeling Autonomous Agents in
a Multi- Agent World, MAAMAW ’94, Odense, Denmark, August 1994, Springer, NY.

Chaib-draa, B., Mandiau, R. and Millot, P. (1992). "Distributed Artificial Intelligence: An
Annotated Bibliography", Sigart Bulletin, ACM Press, Vol. 3, 3, August.

Christen Krogh (1995). "The Rights of Agents" [IJCAI'95 Workshop on Agent Theories,
Architectures, and Languages, Montreal - Quebec, August 19-20 1995].

Cohen, P., M. Wang, and SC Baeg (1994). "OAA: An Open Agent Architecture" [AAAI
Spring Symposium, 1994].

Conrey, S., Meyer, R and Lesser (1988). "Multistage Negotiation in Distributed Planning".
In Readings in Distributed Artificial Intelligence, Bond, A. and Gasser, L. (Eds.), pp.
367-386, Morgan Kaufmann Publishers, Los Altos, CA.

Correa, M. and Coelho, h. (1995). "Around the Architectural Agent Approach to model
Conversations". In Lecture Notes in Artificial Intelligence 957: From Reaction to
Cognition. Castelfranchi, C. and Muller, J. (Eds.), Selected Papers of 5th European
Workshop on Modeling Autonomous Agents in a Multi-Agent World, MAAMAW ’93,
Neuchatel, Switzerland, August 1993, Springer-Verlag, Berlin, Germany.
Bibliography

[Coull 93]

[Craig 94]

[Danforth 88]

[Dave 95]

[David 95]

[Davis 78]

[Davis 83]

[Decker 95a]

[Decker 90]

[Deitel 94]

[D’Inverno 96]

[Dittrich 91]

[Dodhiawala 86]
Coull, T. and Rothman P. (1993). "Virtual Reality for Decision Support Systems". In AI
Expert, August 93.

Craig, I.D. (1994). "A Perspective on Multi-Agent Systems" [CS-RR-273], Coventry, UK.

Danforth, Scott, and Tomlinson, Chris (1988). "Type Theories and Object-Oriented
Programming. ACM Computing Surveys, Vol. 20, No. 1, March 1988.

Dave, B. (1995). "Towards Distributed Computer-Aided Design Environments", CAAD,
Futures '95, Singapore, Sept. 24-26 1995.

Kurmann David (1995). "Sculptor - A Tool for Intuitive Architectural Design", CAAD
Futures '95, Singapore, Vol 1, 6/32, Univ. of Singapore.

Davis, C. T. Jr. (1978). "Data Processing Spheres of Control". IBM Systems Journal 17(2)
pp.179-198.

Davis, R. and Smith, R. (1983). "Negotiation as Metaphor for Distributed Problem
Solving". In Artificial Intelligence, Vol. 20, pp. 63-109, Jan.

Decker, K., and Lesser, V. (1995). "Coordination Assistance for Mixed Human and
Computational Agents", UMASS Computer Science Technical Report 95-31. Submitted to
the Second International Conference on Concurrent Engineering Research and
Applications. Mclean,VA.

Decker, K. and Lesser, V. (1990). "A Cooperative Distributed Problem Solving". In Proc.
10th International Workshop on Distributed Artificial Intelligence, Huhns, M. N., (Ed.)
Bandera, TX.

Deitel, H.M. and Deitel, P.J. (1994). "C++ How to Program", Prentice-Hall, Inc.,
Englewood, NJ.

D’Inverno, M. and Luck, M. (1996). "Formalising the Contract Net as a Goal-Directed
System". In Lecture Notes in Artificial Intelligence 1038: Agents Breaking Away, Van de
Velde, W. and Perram, J.W. (Eds.), Proc. of 7th European Workshop on Modeling
Autonomous Agents in a Multi-Agent World, MAAMAW’96, Eindhoven, The
Netherlands, January 1996, Springer, NY.

Dittrich, Klaus R. (1991). "Object-Oriented Database Systems: The Notion and the Issues".
In Dittrich, Dayal and Buchmann (Eds.) On Object-Oriented Database Systems. Springer
Verlag, Berlin.

Dodhiawala, R., Jagannathan, V. and Baum, L. (1986). "Integrating Architecture for
Complex System Design". In Proc. of ROBEXS, Houston, TX.
Ph.D. Thesis, Spring 2000 169

170

[Durfee 94]

[Durfee 92]

[Durfee 90]

[Durfee 88]

[Durfee 87]

[Eastman 94]

[Eastman 92]

[El-Attar 97]

[Engeli 95]

[Engeli 96]

[Ephrati 95]
Durfee, E. H., and Rosenschein, J. S. (1994). "Distributed Problem Solving and Multi-
Agent Systems: Comparisons and Examples". In Proc. of the Thirteenth International
Distributed Artificial Intelligence Workshop, July 1994.], pp. 94-104.

Durfee, E. H., Damouth, D., Huber, M., Montgomery, T. A., and Sen, S. (1992). "The
Search for Coordination: knowledge-Guided Abstraction and Search in a Hierarchical
Behavior Space". In Lecture Notes in Artificial Intelligence 830: Artificial Social Systems,
Castelfranchi, C. and Werner, E. (Eds.), Proc. of 4th European Workshop on Modeling
Autonomous Agents in a Multi-Agent World, MAAMAW’92, S.Martino al Cimino, Italy,
July 1992, Springer, NY.

Durfee, E. H. and Motogomery, T. A. (1990). "A Hierarchical Protocol for Coordination of
Multiagent Behavior". In Proc. of 8th National Conf. on Artificial Intelligence, pp. 86-93,
Boston, MA.

Durfee, Edmund H. (1988). "Coordination of Distributed Problem Solvers", Kluwer
Academic Publishers, Boston, MA.

Durfee, E., Lesser, V. and Corkill, D. (1987). "Cooperation Through Communication in a
Distributed Problem Solving Network". In Distributed Artificial Intelligence, Huhns, M. N.
(Ed.), pp. 29-58, Pitman Publishing/Morgan Kaufmann Publishers, Inc., San Mateo, CA.

Eastman, Charles (1994). "Survey of Object Oriented Models". Informal, Design and
Computation Research Report, G.S.A.U.P., University of California at Los Angeles, CA.

Eastman, C. M., Chase S. C. and Assal, H. H. (1992). "System Architecture for Computer
Integration of Design and Construction Knowledge", Graduate School of Architecture and
Urban Planning, University of California, Los Angeles.

Mohammad Sherif El-Attar (1997). "Application of Artificial Intelligence in Architectural
Design", Ph.D. dissertation, School of Architecture, Al-Azhar University, Cairo, Egypt.

Engeli, M., Kurmann, D., Schmitt, G. (1995). "A New Design Studio - Intelligent Objects
and Personal Agents in a Virtual Environment".In Proc. of ACADIA '95, Seattle, USA,
October 1995, pp. 155-170.

Engeli, M., Kurmann, D. (1996). "A Virtual Reality Design Environment with Intelligent
Objects and Autonomous Agents". In Proc. of Design and Decision Support Systems
Conference, Spa Belgium, 1996.

Ephrati, E. and Rosenschein, J. S. (1995). "A Framework for the Interleaving of Execution
and Planning for Dynamic Tasks by Multiple Agents". In Lecture Notes in Artificial
Intelligence 957: From Reaction to Cognition. Castelfranchi, C. and Muller, J. (Eds.),
Selected Papers of 5th European Workshop on Modeling Autonomous Agents in a Multi-
Agent World, MAAMAW ’93, Neuchatel, Switzerland, August 1993, Springer-Verlag,
Berlin, Germany.
Bibliography

[Ephrati 94]

[Falcone 94]

[Fenves 89]

[Ferber 90]

[Fischer 92]

[Finger 88]

[Flanagan 91]

[Flemming 93]

[Flemming 95]

[Foner 93]

[Gary 93]
Ephrati, E. and Rosenschein, J. S. (1994). "Multi-Agent Planning as Search for a Consensus
that Maximizes Social Welfare". In Lecture Notes in Artificial Intelligence 830: Artificial
Social Systems. Castelfranchi, C. and Werner, E. (Eds.), Selected Papers of 4th European
Workshop on Modeling Autonomous Agents in a Multi-Agent World, MAAMAW ’92, S.
Martino al Cimino, Italy, July 1992, Springer-Verlag, Berlin, Germany.

Falcone, R. and Castelfranchi, C. (1994). "Plan Recognition: From Single-Agent to Multi-
Agent Plans". In Lecture Notes in Artificial Intelligence 1069: Distributed Software Agents
and Applications, Perram, J. W. and Muller, J. P. (Eds.), Proc. of 6th European Workshop
on Modeling Autonomous Agents in a Multi- Agent World, MAAMAW ’94, Odense,
Denmark, August 1994, Springer, NY.

Fenves, S., Flemming, U., Hendrickson, C., Maher, M.L., and Shmitt, G. (1989). "A
Prototype Environment for Integrated Design and Construction Planning of Buildings". In
Proc. CIFE Symposium, Stanford University, CA.

Ferber, J. and Carle, p. (1990). "Actors and Agents Reflective Concurrent Objects: A
MERING IV Perspective". In Proc. 10th International Workshop on Distributed Artificial
Intelligence, Huhns (Ed.), M. N., Bandera, TX.

Fischer, G. and Nakakoji, K. (1992). "Making Design Objects Relevant to the Task at
Hand", Department of COmputer Science and Institue of Cognitive Science, University of
Colorado, Boulder, CO.

Finger, S., Fox, M., Navinchandra, D., Printz, F., and Rinderle, J. (1988). "The Design
Fusion Project: A Product Life-Cycle View for Engineering Designs", Tech. Report,
Carnegie Mellon University, PA.

Flanagan, Owen (1991). "The Science of The Mind", The MIT press, Massachusetts
Institute of Technology, Cambridge, Massachusetts.

Flemming, Ulrich (1993). "Artificial Intelligence and Design: A Mid-Term Review",
Department of Architecture and Engineering Design Research Center, Carnegie Mellon
University, Pittsburgh, PA.

Flemming, U. and Woodbury, R. (1995). "Software Environment to Support Early Phases
in Building Design (SEED): Overview". In Journal of Architectural Engineering, Dec. 95,
Vol.1 No. 4.

Foner, Leonard N. (1993). "Whats an Agent Anyway: A Sociological Case Study", Agents
Memo 93-01. The agents Group, MIT Media Lab, Boston, MA. May 93.

Gary, J. and Reuter, A. (1993). "Transaction Processing: Concepts and Techniques".
Morgan Kaufmann.
Ph.D. Thesis, Spring 2000 171

172

[Gaines 93a]

[Gaines 93b]

[Gamma 95]

[Gauchel 92]

[Ghedira 94]

[Gmytrasiewicz 93]

[Gmytrasiewicz 92]

[Goodwin 93]

[Gruber 92]

[Gu 96]

[Guessoum 96]
Gaines, Brian R, and Mildred L G Shaw (1993). "Eliciting Knowledge and Transferring it
Effectively to a Knowledge-Based System", IEEE Transactions on Knowledge and Data
Engineering, 5(1), pp. 4-14.

Gaines, Brian R, and Mildred L G Shaw (1993). "Knowledge Acquisition Tools based on
Personal Construct Psychology", Knowledge Engineering Review, 8(1), pp. 49-85.

Gamma, E., Helm, R., Johnson, R. and J. Vlissides (1995). "Design Patterns: Elements of
Reusable Object-Oriented Software", Addison-Wesley, Menlo Park, CA.

Gauchel, J., Van Wyk, S., Baht, R., and Hovestadt, L., (1992). "Building Modeling Based
on Concepts of Autonomy". In Artificial Intelligence in Design '92, Gero, J. S. (Ed.),
Kluwer Academic Publishers, Dordrecht, The Netherlands.

Ghedira, K. (1994). "A Distributed Approach to Partial Constraint Satisfaction Problems".
In Lecture Notes in Artificial Intelligence 1069: Distributed Software Agents and
Applications, Perram, J. W. and Muller, J. P. (Eds.), Proc. of 6th European Workshop on
Modeling Autonomous Agents in a Multi- Agent World, MAAMAW ’94, Odense,
Denmark, August 1994, Springer, NY.

Gmytrasiewicz, Piotr J., and Edmund H. Durfee (1993). "Reasoning about Other Agents:
Philosophy, Theory, and Implementation". In Proc. of The Twelfth International Workshop
on Distributed Artificial Intelligence, May 1993.

Gmytrasiewicz, P., Durfee, E., and Wehe, D. (1992). "The Utility of Communication in
Coordinating Intelligent Agents", Department of Nuclear Engineering and Department of
Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI.

Goodwin, R. (1993). "Formalizing Properties of Agents". Technical Report CMU-CS-93-
159, Carnegie-Mellon University.

Gruber, T., Tenenbaum, J. and Weber, J. (1992). "Toward a Knowledge Medium for
Collaborative Product Development". In Artificial Intelligence in Design '92, Gero, J. S.
(Ed.), Kluwer Academic Publishers, Dordrecht, The Netherlands.

Gu, C. and Ishida, T. (1996). "Analyzing the Social Behavior of Contract Net Protocol". In
Lecture Notes in Artificial Intelligence 1038: Agents Breaking Away, Van de Velde, W.
and Perram, J.W. (Eds.), Proc. of 7th European Workshop on Modeling Autonomous
Agents in a Multi-Agent World, MAAMAW’96, Eindhoven, The Netherlands, January
1996, Springer, NY.

Guessoum, Z. and Dojat, M. (1996). "A real-Time Agent Model in an Asynchronous-
Object Enviroment". In Lecture Notes in Artificial Intelligence 1038: Agents Breaking
Away, Van de Velde, W. and Perram, J.W. (Eds.), Proc of 7th European Workshop on
Modeling Autonomous Agents in a Multi-Agent World, MAAMAW’96, Eindhoven, The
Netherlands, January 1996, Springer, NY.
Bibliography

[Hall 92]

[Hayes-Roth 95a]

[Hayes-Roth 95b]

[Hayes-Roth 95c]

[Heiler 90]

[Hewitt 80]

[Hewitt 77]

[Holland 89]

[Horswill 95]

[Jennings 98]

[Jennings 95a]

[Jennings 95b]

[Jennings 93]

[Jonker 97]
Hall, L. E., Macaulay, L. and O’Hare, G. (1992). "User Role in Problem Solving with
Distributed Artificial Intelligent Systems". In Lecture Notes in Artificial Intelligence 830:
Artificial Social Systems. Castelfranchi, C. and Werner, E. (Eds.), Proc. of 4th European
Workshop on Modeling Autonomous Agents in a Multi-Agent World, MAAMAW ’92, S.
Martino al Cimino, Italy, July 1992, Springer-Verlag, Berlin, Germany.

Hayes-Roth, B., L. Brownston, and R. v. Gent (1995). "Multiagent Collaboration in
Directed Improvisation. " [First International Conference on Multi-Agent Systems, San
Francisco CA], Knowledge Systems Laboratory.

Hayes-Roth, B. (1995). "Agents on Stage: Advancing the State of the Art of AI.
Knowledge", [Systems Laboratory, KSL-95-50].

Hayes-Roth, B., K. Pfleger, P. Morignot, and P. Lalanda (1995). "Plans and Behavior in
Intelligent Agents" [Knowledge Systems Laboratory, KSL-95-35].

Heiler, Sandra and Zdonik, Stanley (1990). "Object Views: Extending the Vision". In Proc.
of the sixth International Conference on Data Engineering. Los Angeles, CA.

Hewitt, C. and Kornfeld, B. (1980). "Message Passing Semantics", SIGART Newsletter, p.
48, Oct.

Hewitt, C. and Yonezawa, A. (1977). "Modeling Distributed Systems". In Proc. 5th
international Joint Conf. on Artificial Intelligence, Cambridge, MA.

Holland, J. H., Holyoak, K. J., Nisbett, R. E. and P. R. Thagard (1989). "Induction:
Processes of Inference, Learning and Discovery", The MIT press, Cambridge, MA.

Ian Horswill (1995). "Analysis of Adaptation and Enviroment". Artificial Intelligence
73(1-2), Pages 1-30.

Jennings, N. R., Sycara, K. and Wooldridge, M. (1998). "A Roadmap of Agent Research
and Development", Autonomous Agents and Multi-Agent Systems 1, pp. 7-38. Kluwer
Academic Publishers, Boston.

Jennings, N. R. (1995). "Controlling Cooperative Problem Solving in Industrial Multi-
Agent Systems using Joint Intentions", Artificial Intelligence, 75(2), pp. 195-240.

Jennings, N.R., and M. Wooldridge (1995) "Applying Agent Technology". Applied
Artificial Intelligence: An International Journal (issue number unkown).?

Jennings, N. R. (1993). "Commitments and Conventions: The Foundation of Coordination
in Multi-Agent Systems", The Knowledge Engineering Review, 8 (3), pp. 223-250.

Jonker, C. M. and Treur, J. (1997). "Modeling an Agent’s Mind and Matter". In Lecture
Notes in Artificial Intelligence 1237: Multi-Agent Rationality, Boman, M. and Van de
Ph.D. Thesis, Spring 2000 173

174

[Jossen 97]

[Kalay 89]

[Katz 91]

[Kautz 94]

[Kearney 92]

[Khoshafian 86]

[Khedro 93]

[Kinny 92]

[Kirsh 95]

[Klein 90]

[Kraus 90]
Velde, W.(Eds.), Proc. of 8th European Workshop on Modeling Autonomous Agents in a
Multi-Agent World, MAAMAW’97, Ronneby, Sweden, May 1997, Springer, NY.

Joosen, W., Bijnens, S., Matthijs, F., Robben, B., Van Oeyen, J. and P. Verbaeten (1997).
"Building Multi-Agent Systems with CORRELATE". In Lecture Notes in Artificial
Intelligence 1237: Multi-Agent Rationality, Boman, M. and Van de Velde, W.(Eds.), Proc.
of 8th European Workshop on Modeling Autonomous Agents in a Multi-Agent World,
MAAMAW’97, Ronneby, Sweden, May 1997, Springer, NY.

Kalay, Y. E., (1989). "Principles of Computer-Aided Design: Modeling Objects and
Environments", John Wiley & Sons, Inc. New York, NY.

Katz, Randy H. and Chang, Ellis E-Li (1991)."Inheritance Issues in Computer-Aided
Design Databases". In Dittrich, Dayal and Buchmann (Eds.) On Object-Oriented Database
Systems. Springer Verlag, Berlin.

Kautz, Henry, Selman, Bart, Coen, Michael, Ketchpel, Stevenl, and Chris Ramming
(1994). "An Experiment in the Design of Software Agents" [Proc. AAAI94].

Kearney, P. J. (1992). "Experiments in Multi-Agent System Dynamics". In Lecture Notes
in Artificial Intelligence 830: Artificial Social Systems. Castelfranchi, C. and Werner, E.
(Eds.), Selected Papers of 4th European Workshop on Modeling Autonomous Agents in a
Multi-Agent World, MAAMAW ’92, S. Martino al Cimino, Italy, July 1992, Springer-
Verlag, Berlin, Germany.

Khoshafian, S. And Copeland, G. (1986). "Object Identity". In OOPSLA Proc., 1986.

Khedro, T., Genesereth, M., and Teicholz, P (1993). "Federation of Collaborative Design
Agents", CIFE projects, Stanford University, CA.

Kinny, D., Ljungberg, M., Rao, A., Sonenberg, E., Tidhar, G. and Werner, E. (1992).
"Planned Team Activity". In Lecture Notes in Artificial Intelligence 830: Artificial Social
Systems. Castelfranchi, C. and Werner, E. (Eds.), Proc. of 4th European Workshop on
Modeling Autonomous Agents in a Multi-Agent World, MAAMAW ’92, S. Martino al
Cimino, Italy, July 1992, Springer-Verlag, Berlin, Germany.

David Kirsh (1995). "The Intelligent Use of Space". Artificial Intelligence 73(1-2),Pages
31-68.

Klein, M. (1990). "Mechanisms for Cooperative Problem Solving and Multi-Agent
Learning in Distributed Artificial Intelligence Systems". In Proc. 10th International
Workshop on Distributed Artificial Intelligence, Huhns, M. N. (Ed.), Bandera, TX.

Kraus, S. and Wilkenfeld, J. (1990). "The Function of Time in Cooperative Negotiations".
In Proc. 10th International Workshop on Distributed Artificial Intelligence, Huhns, M. N.,
(Ed.) Bandera, TX.
Bibliography

[Krishnamurti 92]

[Krishnamurti 86]

[Kuhn 70]

[Kurihara 97]

[Larsi 90]

[Lee 93]

[Lesser 92]

[Lesser 91]

[Lesser 88]

[Levine 88]

[Liu 95]

[Lyons 95]
Krishnamurti, R. and Earl, C. (1992). "Shape Recognition in Three Dimensions",
Environment and Planning B: Planning and Design, Vol. 19. pp. 585-603.

R. Krishnamurti (1986). "The Mole Picture Book: On a Logic for Design". In Design
Computing, Vol. 1, pp. 171-188., John Wiley & Sons, Inc.

Thomas S. Kuhn (1970). "The Structure of Scientific Revolutions", University of Chicago,
Chicago.

Kurihara, S., Aoyagi, S. and R. Onai (1997). "Adaptive Selection of Reactive/Deliberate
Planning for the Dynamic Enviroment". In Lecture Notes in Artificial Intelligence 1237:
Multi-Agent Rationality, Boman, M. and Van de Velde, W. (Eds.), Proc. of 8th European
Workshop on Modeling Autonomous Agents in a Multi-Agent World, MAAMAW’97,
Ronneby, Sweden, May 1997, Springer, NY.

Larsi, B. Larsi, H. and Lesser, V. (1990). "Negotiation and its Role in a Cooperative
Distributed Problem Solving". In Proc. 10th International Workshop on Distributed
Artificial Intelligence, Huhns, M. N. (Ed.), Bandera, TX.

Lee, K., Mansfiels Jr., W. and Bellcore, A. (1993). "A Framework for Controlling
Cooperative Agents". In IEEE, Computer 93.

Lesser, V., Durfee, E., and Corkill, D. (1992). "Cooperative Distributed Problem Solving".
In The Handbook of Artificial Intelligence Vol. IV., Barr, A., Cohen, P. and Feigenbaum,
E. (Eds.), Addison-Wesley Publishing Company, Inc. NY.

Lesser, V., Carven, N., and Cuetanovic, Z. (1991). "Sophisticated Cooperation in FA/C
Distributed Problem Solving". In Proc. 9th National Conf. on Artificial Intelligence,
Anaheim, CA, pp. 191-197.

Lesser, V. and Erman, L. (1988). "Distributed Interpretation: A Model and Experiment". In
Readings in Distributed Artificial Intelligence, Bond, A. and Gasser, L. (Ed.), pp. 120-139,
Morgan Kaufmann Publishers, San Matio, CA.

Marvin Levine (1988). "Effective Problem Solving", Prentice Hall, Englewood Cliffs, NJ.

Liu, J. and Sycara, K. (1995). "Emergent Constraint Satisfaction Through Multi-Agent
Coordinated Interaction". In Lecture Notes in Artificial Intelligence 957: From Reaction to
Cognition. Castelfranchi, C. and Muller, J. (Eds.), Selected Papers of 5th European
Workshop on Modeling Autonomous Agents in a Multi-Agent World, MAAMAW ’93,
Neuchatel, Switzerland, August 1993, Springer-Verlag, Berlin, Germany.

Lyons, d. and Hendriks, A.J.(1995). " Exploiting Patterns of Interaction to Achieve
Reactive Behavior", Artifical Intelligence 73(1-2), pp 117-148.
Ph.D. Thesis, Spring 2000 175

176

[Maes 91]

[Mahdavi 97]

[Mahdavi 96]

[Mamou 91]

[Minsky 86]

[Mitchel 89]

[Monk 94]

[Monk 93]

[Muller 97]

[Myers 93]

[Nagao 95]

[Neumann 83]

[Noh 97]
Maes, P. (1991). "Situated Agents Can Have Goals". In Designing Autonomous Agents:
Theory and Practice from Biology to Engineering and Back, Maes, P. (Ed.), pages 49-70,
MIT press, Cambridge, MA.

 Mahdavi, A., G. Suter (1997). " On implementing a computational facade design support
tool". In Environment and Planning B 24 pp. 493 - 508.

A. Mahdavi. (1996). " SEMPER: a new computational environment for simulation-based
building design assistance". In Proc. of the 1996 International Symposium of CIB W67
Energy and Mass Flows in the life Cycle of Buildings), Vienna, Austria.

Mamou, Jean-Claude and Medeiros, Claudia Bauzer (1991) . "Interactive Manipulation of
Object-Oriented Views". In Proc. of the International Conference on Data Engineering.

M. Minsky (1986) . "The Society of Mind", Simon and Schuster, New York.

W. J. Mitchell (1989) . "A Computational View of Design Creativity", Preprints: Modeling
Creativity and Knowledge-Based Creative Design, J.S. Gero and M.L Maher, (Eds.),
University of Sydney, Australia.

Monk, Simon (1994). "View Definition in an Object-Oriented Database", Information and
Software Technology, Vol. 36, No. 9, pp. 549-554, September, 1994.

Monk, Simon and Sommerville, Ian (1993). "Schema Evolution in OODBs Using Class
Versioning", SIGMOD Record Vol. 22, No. 3, September 1993.

Muller, Jorg P., Wooldridge, Michael J. & Jennings, Nicholas R. (EDS) 1997. "Intelligent
Agents III: agent theories, architectures, and languages". In Lecture Notes in Artificial
Intelligence 1193, Proc. of ECAI ’96 workshop (ATAL), Budapest, Hungary, August 1996,
Springer.

Myers, L., Pohl, J., Aly, S., Chien, S., Cotton, J., Pohl, K., Rodriguez, T. and Snyder, J.
(1993). "Object Representation and the ICADS-Kernel Design", Design Institute Report,
CADRC-08-93, California Polytechnic State University, San Luis Obispo, CA.

Nagao, K., Hasida, K. and Miyata, T. (1995). "Emergent Planning: A Computational
Architecture for Situated Behaviour". In Lecture Notes in Artificial Intelligence 957: From
Reaction to Cognition. Castelfranchi, C. and Muller, J. (Eds.), Selected Papers of 5th
European Workshop on Modeling Autonomous Agents in a Multi-Agent World,
MAAMAW ’93, Neuchatel, Switzerland, August 1993, Springer-Verlag, Berlin, Germany.

Neumann, Thomas (1983). "On Representing the Design Information in a Common
Database". In SIGMOD Conf. on Engineering DB, IEEE, pp.81-87.

Noh, S., Gmytrasiewicz, P. (1997). "Multiagent Coordination in Antiair Defense: A Case
Study". In Lecture Notes in Artificial Intelligence 1237: Multi-Agent Rationality, Boman,
M. and Van de Velde, W. (Eds.), Proc. of 8th European Workshop on Modeling
Bibliography

[Osborn 91]

[Pan 91]

[Papamichael 96]

[Pernici 90]

[Pohl 99]

[Pohl 97a]

[Pohl 96a]

[Pohl 96b]

[Pohl 96c]

[Pohl 94]
Autonomous Agents in a Multi-Agent World, MAAMAW’97, Ronneby, Sweden, May
1997, Springer, NY.

Osborn, S.L. Design (1991). "Issues for Object-Oriented Database Systems". In Dittrich,
Dayal and Buchmann (Eds.) On Object-Oriented Database Systems. Springer Verlag,
Berlin.

Pan, J. and Tenenbaum, J. (1991). "An Intelligent Agent Framework for Enterprise
Integration". In IEEE Transactions on Systems, Man, and Cybernetics, Special Issue on
Distributed Artificial Intelligence.

Papamichael, K., J. La Porta, H. Chauvet, D. Collins, T. Trzcinski, J. Thorpe, S. Selkowitz
(1996). "The building design advisor". In Proc. of the 1996 ACADIA conference, Tucson,
Arizona, pp. 85 - 97.

Pernici, Barbara (1990). "Objects with Roles". Dipartimento di Elettronica, Politecnico di
Milano, Italy.

Pohl, J.; Porczak, M.; Pohl, K.J.; Leighton, R.; Assal, H.; Davis, A.; Vempati, L.; Wood,
A.; and McVittie, T. (1999). "IMMACCS: A Multi-Agent Decision Support System",
Design Institute Report, CADRU-12-99, CAD Research Center, Cal Poly State University,
San Luis Obispo, California.

Pohl J., A, Chapman, K. Pohl, J. Primrose and A. Wozniak (1997). "Decision Support
Systems: Notions, Prototypes, and In-Use Applications". In Technical Report, CADRU 11-
94, CAD Research Center, Design and Construction Institute, College of Architecture and
Environmental Design, Cal Poly, San Luis Obispo, California, September.

Pohl, J. (1996). "Agents and their Role in Computer-Based Decision Support Systems", In
Advances in Cooperative Environmental Design Systems, Pohl, J. (Ed.), focus symposium:
International Conference on Systems Research, Informatics and Cybernetics, Baden-
Baden, Germany, August 14-18 (pp. 41-54)

Pohl, K. (1996). "Koala: An Object-Agent Architectural Design System", Master Thesis,
College of Architecture; Cal Poly, San Luis Obispo, California.

Pohl, K. (1996). "Koala: An Object-Agent Architectural Design System". In Advances in
Cooperative Environmental Design Systems Pohl, J. (Ed.), focus symposium: International
Conference on Systems Research, Informatics and Cybernetics, Baden-Baden, Germany,
August 14-18 (pp. 81-92).

Pohl J., L. Myers and A, Chapman (1994). "Thoughts on the evolution of Computer-
Assisted Design". In Technical Report, CADRU-09-94, CAD Research Center, Design and
Construction Institute, College of Architecture and Environmental Design, Cal Poly, San
Luis Obispo, California, September.
Ph.D. Thesis, Spring 2000 177

178

[Pohl 93a]

[Pohl 93b]

[Pohl 92]

[Polat 92]

[Pree 95]

[Pressman 87]

[Quadrel 91]

[Rasmus 95]

[Rasmussen 86]

[Ramani 92]

[Rowe 87]

[Rumbaugh 91]

[Russel 95]
Pohl, J. and Myers, L. (1993). "A Distributed Cooperative Model for Architectural
Design". CAD Research Center, California Polytechnic State University, San Luis Obispo,
CA.

Pohl, K. J. (1993). "MERCURY, A Real-Time Message Management Facility for
Distributed Cooperative Computing Environments". In Proc. of the 4th International
Symposium on Systems Research, Informatics and Cybernetics Pohl, J. (Ed.), Focus
Symposium, Advances in Computer-Assisted Building Design Systems, August 2-5,
Baden-Baden, Germany, pp. 155-164.

Pohl, J., Myers, L., Cotton, J., Chapman, A., Pohl, K., Chauvet, H., Snyder, J. and La Porta,
J. (1992). "A Computer-Based Design Environment", Design Institute Report,
CADRU-06-92, California Polytechnic State University, San Luis Obispo, CA.

Polat, F. and Guvenir, H. A. (1992). "A Conflict Resolution-Based Decentralized Multi-
Agent Problem Solving Model". In Lecture Notes in Artificial Intelligence 830: Artificial
Social Systems. Castelfranchi, C. and Werner, E. (Eds.), Selected Papers of 4th European
Workshop on Modeling Autonomous Agents in a Multi-Agent World, MAAMAW ’92, S.
Martino al Cimino, Italy, July 1992, Springer-Verlag, Berlin, Germany.

Pree, Wolfgang (1995). "Design Patterns for Object-Oriented Software Development".
Addison-Wesley, Menlo Park, CA.

Pressman, Roger S. (1987). "Software Engineering: A Practitioner’s Approach". McGraw-
Hill Book Company, New York, NY.

Quadrel, R. W. (1991). "Asynchronous Design Environments: Architecture and Behavior",
Ph.D. Thesis, Department of Architecture, Carnegie Mellon University, Pittsburgh, PA.

Rasmus, Daniel W. (1995). "What’s the Deal with Agents". In Object Magazine, May, pp.
71-76.

Rasmussen, J. (1986). "Information Processing and Human-Machine Interaction: An
Approach to Cognitive Engineering", North Holland.

Ramani, A., Chande, P. and Sharama (1992). "A General Model for Performance
Investigations of Priority Based Multiprocessor Systems". In IEEE Transactions on
Computers, 41(6), June, pp. 747-755.

Rowe, P. G. (1987). "Design Thinking", The MIT Press, Cambridge, MA.

Rumbaugh, J., Blaha, M., Premerlani,W., Eddy, F. and Lorenson, W. (1991). "Object-
Oriented Modeling and Design". Prentice Hall, Englewood Cliffs, NJ.

Russel, S. J. and Norvig, P. (1995). "Artificial Intelligence: A Modern Approach".
Prentice-Hall Inc., Upper Saddle River, NJ.
Bibliography

[Schmitt 94]

[Schon 88]

[Schon 83]

[Seghrouchni 96]

[Show 89]

[Shriver 87]

[Sierra 97]

[Simon 69]

[Singh 98]

[Singh 97]

[Shoham 93]

[Smith 96]
G. Schmitt (1994). "Scene Animation using Intelligent Objects in a Virtual Design
Environment". Speedup Journal, Volume 8, Nr. 1, June 1994, pp. 14-20, CSCS, Manno,
Schweiz.

Schon, D. (1988). "Designing: Rules, Types and Worlds", Design Studies, 9(3), July, pp.
181-190.

Schon, D. (1983). "The Reflective Practitioner: How Professionals Think in Action", Basic
Books.

Seghrouchni, A. E. and Haddad, s. (1996). "A Coodination Algorithm for Multi-Agent
Planning". In Lecture Notes in Artificial Intelligence 1038: Agents Breaking Away, Van de
Velde, W. and Perram, J.W. (Eds.), Proc. of 7th European Workshop on Modeling
Autonomous Agents in a Multi-Agent World, MAAMAW’96, Eindhoven, The
Netherlands, January 1996, Springer, NY.

Show, M., and Whinston, A., (1989). "Learning and Adaptation in Distributed Artificial
Intelligence Systems",In Distributed Artificial Intelligence, Gasser, L. and Huhns, M.
(Eds.), Vol. II, pp. 413-429, Pitman Publishing, Los Altos, CA.

Shriver, Bruce and Wegner, Peter (Eds.) (1987). "Research Directions in Object-Oriented
Programming", Cambridge, Massachusetts: The MIT Press.

Sierra, C., Faratin, P. and N. r. Jennings (1997). "A Service-Oriented Negotiation Model
between Autonomous Agents". In Lecture Notes in Artificial Intelligence 1237: Multi-
Agent Rationality, Boman, M. and Van de Velde, W. (Eds.), Proc. of 8th European
Workshop on Modeling Autonomous Agents in a Multi-Agent World, MAAMAW’97,
Ronneby, Sweden, May 1997, Springer, NY.

Simon, H. (1969). "The Science of Artificial", MIT Press, Boston, MA.

Singh, Munindar P., Rao, Anand & Wooldridge, Michael J. (EDS.) 1998. "Intelligent
Agents IV: Agent Theories, Architectures, and Languages". In Lecture Notes in Artificial
Intelligence 1365, Proc. of the 4th International Workshop, ATAL’ 97, Providence, Rhode
Island, USA, July 1997, Springer.

Singh, Munindar P. (1997). "Commitments Among Autonomous Agents in Information-
Rich Enviroments". In Lecture Notes in Artificial Intelligence 1237: Multi-Agent
Rationality, Boman, M. and Van de Velde, W. (Eds.), Proc. of 8th European Workshop on
Modeling Autonomous Agents in a Multi-Agent World, MAAMAW’97, Ronneby,
Sweden, May 1997, Springer, NY.

Shoham, Y. (1993). "Agent_Oriented Programming", Artificial Intelligence 60, pp. 51-92.

Smith, Ian F. C., Kurmann, D. and Schmitt, G. (1996). "Case Combination and Adaptation
of Building Spaces". Federal Institute of Technology (ETH), CAAD, Zurich, Switzerland.
Ph.D. Thesis, Spring 2000 179

180

[Smith 94]

[Smith 77]

[Steels 90]

[Steiner 93]

[Stirling 92]

[Stroustrup 97]

[Sunderam 90]

[Sycara 89]

[Talukdar 90]

[Tecuci 98]

[Timothy 97]
Smith, Faltings B.(1994). "Spatial Design of Artifacts using Cases". In Proc. of the 10th
International Conference on Artificial Intelligence for Applications, IEEE, San Antonio,
1994, pp. 70-76.

Smith, John Miles and Smith, Diane C.P. (1977). "Database Abstractions: Aggregations
and Generalizations", ACM Transactions on Database Systems. Vol. 2, No. 2, June 1977,
pp. 105-133.

Steels, L., (1990). "Cooperation Between Distributed agents Through Self-Organization".
In Proc. 1st. European Workshop on Modeling Autonomous Agents. In Multiagent World,
pp. 175-196., London, England.

Steiner, D., Alastair, B., Kolb, M. and Leri, c. (1993). "The conceptual Framework of
MAI2L". In Lecture Notes in Artificial Intelligence 957: From Reaction to Cognition.
Castelfranchi, C. and Muller, J. (Eds.), Selected Papers of 5th European Workshop on
Modeling Autonomous Agents in a Multi-Agent World, MAAMAW ’93, Neuchatel,
Switzerland, August 1993, Springer-Verlag, Berlin, Germany.

Stirling, W. (1992). "Multi-Agent Coordinated Decision-Making using Epistemic Utility
Theory". In Lecture Notes in Artificial Intelligence 830: Artificial Social Systems.
Castelfranchi, C. and Werner, E. (Eds.), Selected Papers of 4th European Workshop on
Modeling Autonomous Agents in a Multi-Agent World, MAAMAW ’92, S. Martino al
Cimino, Italy, July 1992, Springer-Verlag, Berlin, Germany.

Bjarne Stroustrup (1997). "The C++ Programming Language". Third Edition, Bjarne
Stroustrup, Addison Wesley, Reading, MA.

Sunderam, V. (1990). "PVM: A Framework for Parallel Distributed Computing".
Concurrency: Practice & Experience, 2(4) Dec.

Sycara, K. (1989). "Multi agent Compromise via Negotiation". In Distributed Artificial
Intelligence, Gasser, L. and Huhns, M. (Eds.), Vol. II, pp. 119-138. Pitman Publishing, Los
Altos, CA.

Talukdar, S., and deSouza, P. (1990). "Asynchronous Teams". In Proc. Second SAIM
Conf. on Linear Algebra: Signals, Systems and Control, San Francisco, CA, Nov.

Tecuci, G. (1998). "Building Intelligent Agents: An Apprenticeship Multistrategy Learning
Theory, Methodology, Tool and Case Studies". Academic Press, San Diego, CA.

Timothy, J. N. and Jennings, R. N. (1997). "Generating States of Joint Commitment
between Autonomous Agents". In Lecture Notes in Artificial Intelligence 1441: Agents and
Multi-agent System: Formalizations, Methodologies, and Applications, Wobcke, W.,
Pagnucco, M. and Zhang C. (Eds.). Based on the AI’97 Workshop on Commonsense
Reasoning, Intelligent Agents, and Distributed Artificial Intelligence. Perth, Australia,
December 1997, Springer NY.
Bibliography

[Tokoro 94]

[Urzeli 92]

[Wade 77]

[Wagner 96]

[Watson 90]

[Webster 94]

[Werkman 92]

[Werner 94]

[Wiederhold 86]

[Wileden 90]

[Wobcke 97]
Tokoro, Mario (1994). "Agents: Towards a Society in Which Humans and Computers
Cohabitate". In Lecture Notes in Artificial Intelligence 1069: Distributed Software Agents
and Applications, Perram, J. W. and Muller, J. P. (Eds.), Proc. of 6th European Workshop
on Modeling Autonomous Agents in a Multi-Agent World, MAAMAW ’94, Odense,
Denmark, August 1994, Springer, NY.

Urzelai, K. and Garijo, F. J. (1992). "MAKILA: A Tool for the Development of
Cooperative Societies". In Lecture Notes in Artificial Intelligence 830: Artificial Social
Systems. Castelfranchi, C. and Werner, E. (Eds.), Selected Papers of 4th European
Workshop on Modeling Autonomous Agents in a Multi-Agent World, MAAMAW ’92, S.
Martino al Cimino, Italy, July 1992, Springer-Verlag, Berlin, Germany.

Wade, J. W. (1977). "Architecture, Problems and Process: Architectural design as Basic
Problem-Solving Process", John Wiley & Sons, Inc., New York, NY.

Wagner, Gerd (1996). "A Logical and Operational Model of Scalable Knowledge- and
Perception-Based Agents". In Lecture Notes in Artificial Intelligence 1038: Agents
Breaking Away, Van de Velde, W. and Perram, J.W. (Eds.), Proc. of 7th European
Workshop on Modeling Autonomous Agents in a Multi-Agent World, MAAMAW’96,
Eindhoven, The Netherlands, January 1996, Springer, NY.

Watson, A.S. (1990). "CAD Data Exchange in Construction". In Proc. of the Institution of
Civil Engineers Part 1 - Design and Construction, Vol. 88, pp. 955-969, Dec. 1990.

Webster, S. (1994). "An Annotated Bibliography for Object-Oriented Analysis and
Design". Information and Software Technology, Vol. 36, No. 9, pp. 569-582, September,
1994.

Werkman, K. J. (1992). "Multiple Agent Cooperative Design Evaluation Using
Negotiation". In Artificial Intelligence in Design '92, Gero, J. S. (Ed.), Kluwer Academic
Publishers, Dordrecht, The Netherlands.

Werner, Eric (1994). "What Ants Cannot Do". In Lecture Notes in Artificial Intelligence
1069: Distributed Software Agents and Applications, Perram, J. W. and Muller, J. P. (Eds.),
Proc. of 6th European Workshop on Modeling Autonomous Agents in a Multi- Agent
World, MAAMAW ’94, Odense, Denmark, August 1994, Springer, NY.

Wiederhold, G. (1986). "Views, Objects and Databases", IEEE Computer, December 1986.

Wileden, Jack C., Clarke, Lori A., and Wolf, Alexander L. A Comparative (1990).
"Evaluation of Object Definition Techniques for Large Prototype Systems". ACM
Transactions on Programming Languages and Systems, Vol. 12, No. 4, October, 1990.

Wobcke, Wayne (1997). "Agency and Logic of Ability". In Lecture Notes in Artificial
Intelligence 1441: Agents and Multi-agent System: Formalizations, Methodologies, and
Applications, Wobcke, W., Pagnucco, M. and Zhang C. (Eds.). Based on the AI’97
Ph.D. Thesis, Spring 2000 181

182

[Woodbury 89]

[Wooldridge 97]

[Wooldridge 96]

[Wooldridge 95]

[Wooldridge 95b]

[Ygge 97]

[Yoko 90]

[Yokoyama 91]

[Zhang 96]

[Zucker 92]
Workshop on Commonsense Reasoning, Intelligent Agents, and Distributed Artificial
Intelligence. Perth, Australia, December 1997, Springer NY.

Woodbury, R. F. (1989). "Searching for Designs: Paradigm and Practice", Department of
Architecture, Carnegie Mellon University, Pittsburgh, PA.

Wooldridge, M. and Haddadi, A. (1997). "Making it up as they Go Along: A Theory of
Reactive Cooperation". In Lecture Notes in Artificial Intelligence 1441: Agents and Multi-
agent System: Formalizations, Methodologies, and Applications, Wobcke, W., Pagnucco,
M. and Zhang C. (Eds.). Based on the AI’97 Workshop on Commonsense Reasoning,
Intelligent Agents, and Distributed Artificial Intelligence. Perth, Australia, December
1997, Springer NY.

Wooldridge, Michael, Muller, Jorg p. & Tambe, milind (EDS) 1996. "Intelligent Agents II:
agent theories, architectures, and languages". In Lecture Notes in Artificial Intelligence
1037, Proc. of IJCAI ’95 workshop (ATAL), Montreal, Canada, August 1995, Springer

Wooldridge, Michael J., Jennings, Nicholas R. (EDS.) 1995. " Intelligent Agents". In
Lecture Notes in Artificial Intelligence 890, Proc. of ECAI-94 workshop on Agent
Theories, Architectures, and Languges, Amsterdam, The Netherlands, August 1994,
Springer.

Wooldridge, M. and Jennings, N. (1995). "Towards a Theory of Cooperative Problem
Solving". In Lecture Notes in Artificial Intelligence 1069: Distributed Software Agents and
Applications, Perram, J. W. and Muller, J. P. (Eds.), Proc. of 6th European Workshop on
Modeling Autonomous Agents in a Multi- Agent World, MAAMAW ’94, Odense,
Denmark, August 1994, Springer, NY.

Ygge, Fredrik and Akkermans, Hans (1997). "Making a Case for Multi-Agent Systems". In
Lecture Notes in Artificial Intelligence 1237: Multi-Agent Rationality, Boman, M. and Van
de Velde, W. (Eds.), Proc. of 8th European Workshop on Modeling Autonomous Agents in
a Multi-Agent World, MAAMAW’97, Ronneby, Sweden, May 1997, Springer, NY.

Yoko, M. Ishida, T. and Kuwabara, K. (1990). "Distributed Constraint Satisfaction for DAI
Problem Problems". In Proc. 10th International Workshop on Distributed Artificial
Intelligence, Huhns, M. N. (Ed.), Bandera, TX.

Yokoyama, T. (1991). "A Parallel Cooperative Problem-Solving System with Intelligent
Blackboard". Tech. Report, Institute for New Generation Computer Technology, Tokyo.

Zhang, Chengqi, Lukose, Dickson (EDS.) 1996. "Distributed Artificial Intelligence:
Architecture and Modeling". In Lecture Notes in Artificial Intelligence 1087, Proc. of the
first Australian workshop on DAI, Canberra, ACT, Australia, November 1995, Springer.

Zucker, J. and Demaid, A. (1992). "Modeling Heterogeneous Engineering Knowledge as
Transactions Between Delegating Objects". In Artificial Intelligence in Design '92, Gero,
J. S., (Ed.) Kluwer Academic Publishers, Dordrecht, The Netherlands.
Bibliography

A Appendix: Terms and Definitions
For ease of reference, I have collected, into this appendix, the definitions that are
pertinent to a computational decision making environment based on an object-
agent model. The validity of these definitions are limited to the scope of this
thesis. Other definitions local to the context in which they arise are given in the
appropriate sections of this dissertation.

The following terms are general and are used in all chapters.

A.1 Decision Makers, Designers and Artifacts.

Def. A.1.1 Decision Maker

Is a principal agent1 in an environment.

The decision maker manipulates representations of a problem state and
guides the other agents efforts to incrementally changing a current problem
state toward the goal state.

The distinction between a decision maker and other agents lies in the fact that
the decision maker possesses both intention and ability to exercise judgement
beyond heuristics.

Def. A.1.2 Designer

Is a decision maker who manipulates representations of an artifact being
designed to reach an acceptable design state.

1. In any definition through Appendix A., the first appearance of a term that refers to a
successor definition is in bold.
Ph.D. Thesis, Spring 2000 183

184
Def. A.1.3 Artifact

A real world product.

Example. In an architectural context, a building is an artifact.

The following terms are used in Chapters 3 through 7.

A.2 Data-Objects.

Def. A.2.1 Data-object

A data-object is a representation of an artifact or some part of it.

A data-object generally contains geometric and non-geometric information
about the artifact. The information contained in a data-object is accessible by
any agent, but data-objects cannot access external information.

Def. A.2.2 Data-Object Type

A collection of data-objects that identify a relationship.

Example. In an architectural context, a wall type is a data-object type.

Def. A.2.3 Sub-Data-Object

A data-object that is a constituent of another data-object in a data-object
hierarchy. It is a sub-data-object of this particular data-object.

Def. A.2.4 Super-Data-Object

A data-object that is a container of a another data-object in a data-object
hierarchy. It is a super-data-object of this particular data-object.

Def. A.2.5 Joint Data-Object

A data-object that is a sub-data-object of more than one data-object in the
data-object hierarchy.

Example. A shared wall between two spaces can be a joint data-object.

Def. A.2.6 Active and Passive Data-Object

A data-object is active if there is an object-agent for it; and passive
otherwise.
Terms and Definitions

Def. A.2.7 Data-Object State

The values, at a any given time, of the attributes and relationships (to other
data-objects) of a data-object.

Only agents can alter the data-object state.

Def. A.2.8 Data-Object Goal State

A final data-object state.

Def. A.2.9 Design State

The collective state of all data-objects in an environment.

This is distinct from the ‘state’ of the environment in that it reflects the data
values as can be seen by the agents at any given time. Note that the
environment may have object-agents that may be in the process of changing
data values. These changing data values are not part of the design state.

Def. A.2.10 Goal State

A final design state.

A.3 Agents

Def. A.3.1 Agent

An entity with the ability to initiate actions, perform tasks, and interact with
other agents in the environment.

Agents are executable. Any agent executing a task is bound to return
execution results or error messages. Therefore, agency incorporates a degree
of liability. The object-agent model distinguishes three types of agents:
decision maker, system-agent and object-agent.

Def. A.3.2 Object-Agent

An object-agent is an agent that represents a data-object.

An object-agent is a temporal version of its data-object; it contains
prototypical and domain specific knowledge of its data-object type.

Note that the distinction between object agency and methods is that the
object-agent has the ability to alter the state of any data-object, whereas
methods may only alter the state of their associated data-objects.
Ph.D. Thesis, Spring 2000 185

186
Def. A.3.3 Object-Agent Type

A collection of object-agents of the same data-object type.

Example. In an architectural context, a wall object-agent type is an object-
agent type.

Def. A.3.4 Sub-Agent

An agent that is assigned a task by another agent.2 The agent is a sub-agent
within the context of the assigned task.3

Def. A.3.5 Super-Agent

An agent that has assigned a task to another agent. The agent is a super-agent
within the context of the assigned task.4

Def. A.3.6 Composite-Agent

A composite-agent is an object-agent that is created from more than one data-
object. It has information that belongs to more than one data-object.5

Def. A.3.7 Joint-Agent

A joint-agent is an object-agent of a joint data-object.

Def. A.3.8 System-Agent

A system-agent is an agent that performs a set of related domain specific tasks
for other agents. A system-agent has local coordination knowledge, and
internal procedures.6

2. Notice that being a sub-agent is task dependent while being a sub-data-object is
representation dependent (based on the data-object hierarchy). This, as well, applies
for super-agent and super-data-object.

3. Note that an agent can simultaneously be a sub-agent of more than one agent, that is, it
may concurrently perform different tasks assigned to it by different agents.

4. Note that an agent can simultaneously be a super-agent to more than one agent, that is,
an agent may have sub-agents that are concurrently performing different tasks.

5. The initial set of data-object types that a decision maker uses may not be sufficient for
each situation. Composite-agents represent an important concept in this regard. New
data-objects or new features of existing data-objects may emerge during the decision
making process. Combining information from multiple data-objects (or from the
decision maker) might allow the decision maker to progressively realize new data-
objects that are more suitable to the current stage. This suggests that it might be
possible to create new data-object types based on the information collected in a
composite-agent.
Terms and Definitions

Def. A.3.9 System-Agent Type

A set of domain related system-agents.7

Def. A.3.10 Activation

Activation is a task assigned by an agent to bring an entity to participate in a
current session.

To activate a system-agent is to load the system-agent into the current
session. To activate a data-object, when passive, is to create an object-
agent.8

Def. A.3.11 Deactivation

Deactivation is a task assigned by an agent to remove an agent from the
current decision making session.

To deactivate a system-agent is to unload the system-agent from the session.
To deactivate an object-agent is to destroy the object-agent.9

6. A an expert-agent can be an expert system or a procedural program, etc. The internal
knowledge in an expert system, for instance, is its inference engine and knowledge-
base which contains an initial set of facts and rules. Though the facts in working
memory may change (to a different set of facts), the inference engine, and the initial set
of facts and rules typically do not change after the termination of the execution state.
Some expert systems are designed to generate new rules using different techniques
such as machine leaning. An object-agent-based model does not impose any
restrictions on the possible use of these types of expert systems as system-agents. In a
procedural program, the internal knowledge is the algorithms and information
structures; these do not change after the termination of the execution state. In the
object-agent-based model, system-agents do not change their internal procedures.

7. A system-agent is typically an expert-agent or a utility-agent. An expert-agent, for
instance, evaluates, generates, synthesizes, analyzes, recognizes, criticizes,
recommends, explains, modifies, and optimizes. A utility-agent for instance, searches
for requested information; provides interface facilities between the user, data-objects
and agents.

8. A system-agent can be loaded into a session even if it is not necessarily engaged in the
current activity by the other agents. The system-agent in this case is considered
activated. In other words, for a system-agent, it is activated whenever it is loaded . For
an object-agent if it is activated it is engaged in performing tasks, otherwise it should
not exist. The data-object can have the capability to observe the environment,
therefore, there is no need for an idle object-agent. Activation of a data-object is,
therefore, only associated with task assignment (self assignment or by other agents).

9. A data-object state must be updated before the deactivation of its object-agent.
Ph.D. Thesis, Spring 2000 187

188
A.4 Task Execution

Def. A.4.1 Action

Acts executed by an agent.

Def. A.4.2 Action Type

A set of related actions. An action type is simple whenever an agent executes
a single act, and complex, otherwise.

Def. A.4.3 Task

An assignment of service to be performed by an agent. A task can be simple
or complex depending upon its action type.

Note that tasks are assigned, actions are not.

Def. A.4.4 Task Type

A set of related tasks.

Typically, task are related by context. Examples of context include
evaluation, generation and implementation.

Def. A.4.5 Direct Task

A task performed by an assigned agent (i.e., without the need to decompose
and distribute the task to sub-agents).

Def. A.4.6 Indirect Task

A task that is performed by a sub-agent as a result of decomposition or
distributing a another task.

Def. A.4.7 Plan

An ordered sequence of actions10 towards a state.

Def. A.4.8 Task Handling Protocol

A plan executed by one or more agents to perform a task.

Task handling protocols may be general or specific. General protocols are
independent of both object-agent types and the task domain. Specific

10.The execution of a plan may be sequential or concurrent, and may involve one or more
agents. Typically, the plan of an object-agent is to attain a desired data-object state.
Terms and Definitions

protocols are, typically, sets of parameters to be used by the task type
protocols during the execution of a task (and mainly represents the domain
effect on the task in hand (see Chapter 5 for details).

Performing tasks

An object-agent employs a set of general task handling protocols for each task
type. Its object-agent type and the task domain add an additional layer of
specificity to the sequence of actions. General and specific protocols
represent short term planning capabilities of an object-agent. Using such
protocols an object-agent can obtain services from other agents, distribute
tasks to other object-agents, manage other agents,11 and run conflict handling
sessions, about its data-object state, that involve multiple agents.

Def. A.4.9 Interaction protocol

Is a set of data-object type-specific instructions that enables an object-agent
(of this data-object-type) to interact with other agents of the environment in
during the execution of a task.

A.5 Task Decomposition

Def. A.5.1 Data-Object-Hierarchy

The global data-object class hierarchy used by the designer at any point in
time.

The data-object-hierarchy may be compiled by the designer or provided as an
exemplar hierarchy in the environment data-base, and possibly modified by
the designer and saved for later use.

Def. A.5.2 Object-Agent-Hierarchy

A set of data-object classes each of which is a constituent of the object-agent
or a constituent of a sub-data-object of the object-agent.

11.Within the context of a task assigned by one agent to another, some hierarchies may
require the object-agents executing a task to follow certain order of execution. This
hierarchy is task dependent and not class dependent. The task hierarchy is established
when an object-agent is assigned a task (see Chapter 5.2, Making the Activation List).
An object-agent may be involved in more than one task hierarchy at any given time.
That occurs when an object-agent is involved in performing multiple tasks
concurrently.
Ph.D. Thesis, Spring 2000 189

190
Def. A.5.3 Max-Domain-Hierarchy

The set of all eligible classes for task decomposition with respect to this
particular domain. This set is defined by the P_Domain decomposition
protocol (see Chapter 5 for details and Section 5.2 for specific examples) of
the task in hand.

Def. A.5.4 Min-Domain-Hierarchy

The minimum set of data-object-classes necessary to execute an assigned
task. This set is defined by the P_Domain decomposition protocol of the task
in hand.

Def. A.5.5 Domain-Hierarchybottom

A class or a set of classes which represent the lower boundary of a

max-domain-hierarchy .

Def. A.5.6 Domain-Hierarchytop

A data-object class which represent the top boundary of the

max-domain-hierarchy.

Def. A.5.7 Leaf-Data-Object

A data-object class at the lower end of each branch of a data-object-hierarchy

Def. A.5.8 Data-Objectclassification

A data-object class used for classifying the results of executing an assigned
task.

Example. In evaluating the cost of a BFloor-data-object per

Room-data-object (see the example in chapter 4), the Room-data-object class
is the data-objectclassification of this task.

Def. A.5.9 Activationlist

A set of data-object classes were their instances are to be activated to execute
sub-tasks during the executing of a task. The activationlist is always a subset
of the max-domain-hierarchylist.
Terms and Definitions

Def. A.5.10 Skiplist

A list of data-object classes to be skipped during the activation of sub-data-
objects of an object-agent-hierarchy. This too is a subset of the max-domain-
hierarchy.

Def. A.5.11 Activation Order

The order of activating data-objects in an object-agent-hierarchy during the
execution of a task.

Def. A.5.12 Task Dependent Hierarchy

The hierarchy of the data-objects in the activationlist.

This is the hierarchy of data-objects that participate in the decomposition with
respect to the task in hand.

A.6 Conflict Handling

Def. A.6.1 Conflict

An attribute value that is being modified to a new value causing an interested
data-object or expert-agent not to be satisfied.

Def. A.6.2 Conflict handling

The process by which a conflict is detected and resolved.

Def. A.6.3 Conflict detection

The process by which the decision maker becomes aware of a conflict.

Def. A.6.4 Conflict Resolution

The process by which a decision maker is able to arrive at a set of acceptable
values for all interested parties as well as for the attribute being modified.

In a sense, conflict resolution is a series of local bilateral evaluation sessions
involving the interested data-objects and expert-agents where the decision
maker examines various data-object attribute values to either resolve the
conflict or reach an acceptable state of all the parties involved. Each
evaluation session involves the decision maker and one of the interested
parties. Evaluation results are communicated to the decision maker, no direct
communication amongst the interested parties regarding the conflict is
Ph.D. Thesis, Spring 2000 191

192
permitted. Validating the conflict resolution results is the sole responsibility
of the decision maker.

Def. A.6.5 Conflict Prevention/Control

The process by which a decision maker is able to avoid or reduce the number
of conflict handling sessions about an attribute value that is being modified.

Def. A.6.6 Attribute Interestlist

A list of data-object attributes and expert-agents that are interested in this
attribute value. Each member of the list is paired with an Interest Context.

Def. A.6.7 Interest Context

The reasons of which an agent, or a data-object attribute is interested in
another data-object attribute (e.g., Wall-data-object width for Room-data-
object acoustics). The context may also include the recommended expert-
agent to interact with in respect to the focus of this context.

Def. A.6.8 Interested Attribute

An data-object attribute that is registered in the interestlist of another data-
object attribute.

Def. A.6.9 Interested Data-Object

A data-object with at least one attribute registered in the interestlist of an
another data-object attribute.

Note that, within the same data-object, an attribute may be registered in the
interestlist of another attribute.

Def. A.6.10 Interested Expert-Agent

An expert-agent that is registered in the interestlist of data-object attribute.

Def. A.6.11 Conflict Focus

An object-agent that is currently providing an interestlist for a conflict check.

Def. A.6.12 Conflict Zone

The two object-agents involved in a conflict handling session.
Terms and Definitions

Def. A.6.13 Direct Conflict Handling

A conflict handling session involving two object-agents one of which is the
conflict focus.

Def. A.6.14 Indirect Conflict Handling

A conflict handling session involving two object-agents none of which is the
conflict focus.

Accordingly, the conflict zone does not necessarily include the conflict focus.

A.7 Abbreviations

In this dissertation, the following abbreviations are employed:

Data-Object → DO

Object-Agent → OA

System-Agent→ SA

Expert-Agent→ EA (a specialization of a System-Agent)

Utility-Agent→ UA (a specialization of a System-Agent)
Ph.D. Thesis, Spring 2000 193

194
 Terms and Definitions

B Appendix: Actions, Tasks and Interactions
 Action Types
Agents interact whenever one communicates to another. They trigger others to
take actions. The DA may trigger a chain of actions to perform certain task. The
following action types are applicable to the various agent types:

Actions are either simple or complex;

Simple actions require the execution of a single act by sending a message (or
simply use an object method of another DO). Simple actions may include but not
limited to:

‘Activate’, ‘assign’, ‘query’ and ‘request’ are examples of simple actions
initiated by an agent. ‘Provide’ is an action taken by an agent in response to an
action by another agent. In other words, it is a simple reaction.

Complex actions require the execution of a sequence of simple or complex
actions. Such actions can be initiated by the agent when needed or can be a
reaction to one or more actions by other agents (a complex reaction). An agent

TABLE B.1. Simple Actions

Action Description

activate a DO or load an agent (i.e., EA or UA)

assign a task, or request service from an agent

query information, or request data.

provide results (evaluation, query results, etc.), alternative values for
task reassignment, an interestlist, a DO clone, a confirmation
or validation.
Ph.D. Thesis, Spring 2000 195

196

 OA Task Types
executes an action using its problem solving protocols (see Chapter 6). Complex
actions may include but not limited to:

An OA can be assigned one of five task types (all of which are complex actions
since they require the implementation of a sequence of simple and complex
actions):

• evaluation
• recommendation
• generation
• conflict handling
• implementation

TABLE B.2. Complex Actions

Action Description

generate geometric/non-geometric information (layouts, recommenda-
tions etc.)

search for requested information;

recognize geometric and non-geometric patterns or configura-
tions.

detect inadequacy of an attribute value;

conflicted or interfered attribute values.

modify attribute values of an existing DO, or add/delete DOs;

evaluation criteria used by an EA.

plan activities conduct by the agent itself;

activities conduct by the other agents (as the case in task
decomposition scenario.)

validate results of tasks executed by other agents.

update attribute values and relations of DOs in respect to validated
task results.
Actions, Tasks, and Interactions

The OA performs a set of actions to accomplish an assigned task:

For an evaluation task, an OA may take actions of any of the following kind.1

For a recommendation or generation, an OA may take one of the following
actions.

TABLE B.3. Evaluation Task Actions

Action Description

assign a task to a query-agent to search for certain values;

a task to an EA to evaluate the current DO state.

detect inadequacy of a current attribute value.

candidates of conflict about an attribute value being modified.

provide a requester with evaluation results;

a requester with query results;

a DA with a warning about a detected inadequacy (of DO
attribute values or relations) or a list of candidates of conflict.

plan a sequence of task assignments (e.g., in a task that requires
decomposition).

1. These actions are not listed in order, the order by which these actions are executed is
specified in the problem solving protocols of each DO type. These sequence of actions
may be changed or repeated according to the task being performed.

TABLE B.4. Recommendation and Generation Task Actions

Action Description

assign a task to an EAs to evaluate or provide alternatives.

query information from other DOs.

generate proposals for alternative attribute values, relations, DOs or
arrangement of DOs (including new DOs).

provide a requester of recommendation generated;
a requester with query results.
Ph.D. Thesis, Spring 2000 197

198

 Agent Interaction Types
For a conflict handling, an OA may take one of the following actions.

For an implementation, an OA may take actions of the following kind.

The OA-based environment has three types of agents; DAs, SAs (which includes
EAs and UAs), and OAs. An agent may interact with any type of agents. The
types of agents involved in an interaction define the type of interaction.
Interaction types constitute the action types that can be taken by the agents
involved in an interaction (directly or via an interface-agent).

Five interaction types among agents are identified in Figure B.1. The arrow
indicates the sense of the interaction where the first agent type takes action in
interacting with the second agent type. The interaction types are listed below.

• OA-OA interactions
• OA-SA interactions
• SA-SA interactions
• DA-OA interactions.

TABLE B.5. Conflict Handling Task Actions

Action Description

provide a DA with an interestlist (DOs and EAs);
a DA with a warning about a detected conflict.

plan a conflict handling session regarding its own attributes (which
may be initiated as a result of the new values generated during
the current conflict handling session).

detect a conflict between a recommended and a current DO attribute
values (or relation).

TABLE B.6. Implementation Task Actions

Action Description

assign a task to an EA (e.g. CAD-agent) to modify the OA current

state according to the recommendation validated by the DA;
a

a. The modifications may include, adding/removing DOs or changing attribute
values of existing ones, and updating the necessary relations of such attributes.

request validation from the DA before the implementation.

provide a confirmation of implementation.
Actions, Tasks, and Interactions

FIGURE B.1.

The Interaction Types.
• DA-SA interactions

The following table illustrate the possible agent interaction types.

TABLE B.7. Types of Agent Interaction

Interaction Action Description

OA → OA assign query requests, evaluation, recommendation,
generation, conflict handling or
implementation tasks

provide query results

validate results of directly assigned tasks

OA → SA assign query requests, evaluation, generation,
recommendation, implementation or
activation/deactivation tasks

provide query results

SA → OA assign query requests

provide query, evaluation, recommendation,
generation, and implementation results

SA

OA

DA
Ph.D. Thesis, Spring 2000 199

200
SA → SA assign query requests, or activation/deactivation tasks

provide query results

DA → OA assign query requests, an evaluation, generation,
recommendation, conflict handling,
implementation and activation/deactivation
tasks

provide requested information (not available in the
environment)

validate results of directly or indirectly assigned tasks

modify attribute values, performance criteria and OA
authorizations

plan activities (synchronize, freeze, resume)

OA → DA assign query requests

provide query and task results and interestlists

request validation of task results

DA → SA assign query requests, evaluation, generation,
recommendation, implementation, or
activation/deactivation tasks

provide query results,

validate assigned task results

modify evaluation criteria (used by an EA), and acti-
vation status

plan activities (synchronize, freeze, resume)

SA → DA assign query requests

request validation of task results

provide query, task results

TABLE B.7. Types of Agent Interaction

Interaction Action Description
Actions, Tasks, and Interactions

	A Framework for Interaction and Task Decomposition for Objects Emulating Agency Behavior
	Safwan Aly
	Dissertation
	Submitted to the School of Architecture of
	Carnegie Mellon University in fulfillment of the requirements
	for the degree of Doctor of Philosophy
	School of Architecture
	Carnegie Mellon University
	Advisory Committee
	Ramesh Krishnamurti [Chair]
	Professor
	School of Architecture
	Carnegie Mellon University
	Ömer Akin
	Professor
	School of Architecture
	Carnegie Mellon University
	Jens Pohl
	Professor
	College of Architecture
	California Polytechnic State University (San Luis Obispo)
	Len Myers
	Professor
	School of Computer Science
	California Polytechnic State University (San Luis Obispo)
	I hereby declare that I am the author of this dissertation.
	I authorize Carnegie Mellon University to lend this dissertation to other institutions or individ...
	I further authorize Carnegie Mellon University to reproduce this dissertation by photocopying or ...
	Safwan Aly
	Copyright C 2000 by Safwan Aly
	All rights reserved

	ThesisTOC.pdf
	Table of Contents
	Abstract iii
	Acknowledgment v
	Table of Contents vii
	List of Figures xi
	List of Tables xv
	Chapter 1 Problem Statement 1

	1.1 Belief 1
	1.2 Computational design environments 2
	1.3 Problem and Proposal 4
	1.4 Objectives and Method 6
	1.5 Thesis Structure 7
	Chapter 2 Review of Related Work. 9

	2.1 Background� 9
	2.2 Agent and Agency� 9
	2.3 Objects vs. Agents� 20
	Chapter 3 Framework of an OA-Based Environment 23

	3.1 Functions of an OA-Based Design Environment� 23
	3.2 Agent Interactions� 28
	3.2.1 Activation� 29
	3.2.2 Decision support� 31
	3.2.3 Communication� 31
	3.3 The modeling process� 33
	3.4 Decision making with OAs� 37
	3.5 Advancing a design state with multiple OAs� 47
	3.5.1 Agent autonomy� 48
	3.5.2 Short term planning vs. long term planning in design 49
	Chapter 4 From Scenarios to Interaction Algorithms 53

	4.1 Event-trace Charts� 53
	4.2 Chart 1. Activation of a DOs/Deactivation of an OA� 55
	4.3 Chart 2. Task Execution� 58
	4.4 Chart 3. Conflict Handling� 63
	4.5 Chart 4. Cost Evaluation Task (Classified per Room-DO)� 70
	4.6 Chart 5. Daylight Evaluation Task� 77
	4.7 Chart 6. Structural Analysis Task� 82
	4.8 Chart 7. Handling Conflict Over Window Glazing Area� 88
	Chapter 5 Task Handling Algorithms 95

	5.1 Which Tasks?� 95
	5.2 OA Task Execution Algorithms� 97
	5.2.1 Evaluation� 97
	5.2.2 Conflict Handling� 116
	5.3 Examples of P_Domain protocols.� 127
	5.3.1 Cost Evaluation Protocols� 127
	5.3.2 Structural Analysis Protocols� 127
	5.3.3 Daylighting evaluation protocols� 128
	Chapter 6 Implementation Design 129

	6.1 Object Oriented Implementation� 129
	6.2 The Object Models� 131
	6.2.1 The general object model� 131
	6.2.2 A domain specific object model� 140
	6.3 DO-Hierarchies� 142
	6.4 Implementation Design of the Activation Process� 144
	6.5 The Objects Implementation Design� 148
	6.5.1 The object structure 148
	6.5.2 Characterized attributes of objects in the OA model 151
	Chapter 7 Conclusions 159

	7.1 Contributions� 159
	7.1.1 Specific contributions� 159
	7.2 Research Topics and Agenda for Future Work� 160
	7.2.1 Object-agents knowledge� 161
	7.2.2 Conflict handling mechanism� 161
	7.2.3 Object-agent autonomy in design� 161
	7.2.4 Interface of an object-agent-based environment� 162
	Bibliography 165
	Appendix A: Terms and Definitions 183

	A.1 Decision Makers, Designers and Artifacts � 183
	A.2 Data-Objects.� 184
	A.3 Agents� 185
	A.4 Task Execution� 188
	A.5 Task Decomposition� 189
	A.6 Conflict Handling� 191
	A.7 Abbreviations� 193
	Appendix B: Actions, Tasks and Interactions 195

	AbstractF.pdf
	Abstract
	Computational systems for decision support are typically stand-alone tools.� These are often desi...
	• Each tool requires designers to commit to a schema of representation.� In order to examine vari...
	• Interdependency among the various design aspects is rarely examined. A lack of a unified repres...
	• Designers are often required to provide vast amounts of information even for the smallest task.
	• Designers seldom have access to the mechanism by means of which a tool internally decomposes a ...
	In an attempt to improve the efficiency of these tools, research groups undertook the task of dev...
	In this thesis I introduce an enhancement to the design of computational assistant tools, mainly ...

	AcknowledgeF.pdf
	Acknowledgment
	I believe that developing a Ph.D. thesis is a small part of a larger experience, during which I i...
	Without an open minded and a sharp principal advisor and a friend such as Ramesh Krishnamurti I w...
	Friends, colleagues, teammates and roommates such as Magd Donia and Georg Suter makes a Ph.D. wor...
	During the Ph.D. I lost my two parents one after the other.� A wonderful father, dean, professor,...
	After my mother I could not resist having another Zeinab in my life, my daughter is currently car...
	Before and after, thanks and praises be all to Allah, most knowledgeable most compassionate and m...
	Safwan Aly

	ThesisLOF.pdf
	List of Figures
	FIGURE 1.1 6
	A concepual architecture of a multi-agent environment and issues of focus in this dissertation.
	FIGURE 3.1. � 29
	Categories of interaction of an OA-based design environment.
	FIGURE 3.2. � 38
	Decomposition types.
	FIGURE 3.3. 39
	Task and decomposition.
	FIGURE 3.4. � 42
	Hierarchy and decomposition 1.
	FIGURE 3.5. � 43
	Hierarchy and decomposition 2.
	FIGURE 4.1. � 55
	Event-trace of the activation of a DO and the deactivation of an OA.
	FIGURE 4.2. � 58
	Event-trace of task execution by a leaf-OA (where no further task decomposition is applicable).
	FIGURE 4.3. � 64
	Event-trace of conflict handling among two leaf-OAs.
	FIGURE 4.4. � 66
	Conflict handling cases.
	FIGURE 4.5. � 70
	Event trace of a cost evaluation task executed by a BFloor-OA (classified per Room-DO).
	FIGURE 4.6. � 78
	Event-trace of a daylighting evaluation task for a BFloor-OA.
	FIGURE 4.7. � 82
	Event-trace of a structural analysis task executed by a Building-OA.
	FIGURE 4.8. � 90
	Event-trace of a conflict handling session over a Window-OA glazing area attribute.
	FIGURE 5.1. � 98
	Decomposition of a Block-DO cost evaluation task.
	FIGURE 5.2. � 99
	Decomposition of a Block-DO cost evaluation task (classified per BFloor-DO).
	FIGURE 5.3. � 100
	Decomposition of a Block-DO cost evaluation task of StructElement-DOs’ (classified per VZone-DO).
	FIGURE 5.4. � 101
	Decomposition of a Block-DO structural analysis task.
	FIGURE 5.5. � 102
	Decomposition of a BFloor-DO daylighting evaluation task.
	FIGURE 5.6. � 108
	Relation between hierarchies (general case): min-domain-hierarchy < OA- hierarchy < max-domain-hi...
	FIGURE 5.7. � 109
	Special case relation between hierarchies:
	A) Case 1: min-domain-hierarchy < max-domain-hierarchy < OA-hierarchy.
	B) Case 2: OA-hierarchy < min-domain-hierarchy < max-domain-hierarchy.
	FIGURE 5.8. � 110
	Relation between a Skiplist and an Activationlist (general case).
	FIGURE 6.1. � 131
	A general object model of an OA environment.
	FIGURE 6.2. � 140
	An object model of an architectural environment.
	FIGURE 6.3. � 141
	An object model of a structural environment.
	FIGURE 6.4. � 143
	An architectural object hierarchy.
	FIGURE 6.5. � 144
	Object model for geometrical representation.
	FIGURE 6.6. � 146
	The implementation design of the activation process.
	FIGURE 6.7. � 147
	Object model of an OA.
	FIGURE 6.8. � 152
	Session, Environment and Scenario objects.
	FIGURE 6.9. � 153
	DataObject (DO), Constraint and ConstraintArc objects.
	FIGURE 6.10. � 154
	Agent and A_Object (OA) objects.
	FIGURE 6.11. � 155
	Task, Goal, and Result objects.
	FIGURE 6.12. � 156
	Protocol, P_D_Decomposition and P_D_Sorting objects.
	FIGURE B.1. � 199
	The interaction types.

	ThesisLOT.pdf
	List of Tables
	TABLE 5.1.
	An example of an Interestlist of a DO Attribute 119
	TABLE B.1.
	Simple Actions 195
	TABLE B.2.
	Complex Actions� 196
	TABLE B.3.
	Evaluation Task Actions� 197
	TABLE B.4.
	Recommendation and Generation Task Actions� 197
	TABLE B.5.
	Conflict Handling Task Actions� 198
	TABLE B.6.
	Implementation Task Actions� 198
	TABLE B.7.
	Types of Agent Interaction� 199

	Chapter1F.pdf
	1 Problem Statement
	1.1 Belief

	The context of this dissertation is architectural design.� Within this context, I view the proces...
	• Design is an intelligent activity involving complex forms of decision making.�
	• Design problems, in general, can be decomposed to smaller problems that are easier to handle.�
	• Designing is a collaborative effort of many individuals or agents all of whom may act independe...
	• Agents work cooperatively to change the current design state.�
	• The flow of relevant information with respect to any design state is always considered as signi...
	• Certain design values are best decided by judgement of the designer(s).�
	Design problems are multi-faceted, involving many aspects that contribute, in varying degrees, to...
	1.2 Computational design environments

	Computational design environments are computer systems that are meant to provide designers with a...
	The development of computational design tools has been mostly oriented along a single tool approa...
	The notion of multi-agent design environments is an attractive proposition for the following thre...
	• accommodate the diversity of design activities and knowledge, based on geographic or functional...
	• provide rich environments based on contributions from multiple agents, where the designer can s...
	• provide opportunities for reducing complexity by breaking the knowledge down into different coo...
	A number of design environments have been investigated by various research labs.� Some have reach...
	• For commercial purposes, design environments require vast investments for development.� Moreove...
	• For technical reasons, design environments are difficult to develop owing to the diversity of t...
	There are stand alone architectural design applications that are widely available commercially, e...
	A computational representation of a design environment relies on individual domain applications (...
	1.3 Problem and Proposal

	The problem addressed in this dissertation is focused on the representation of design objects and...
	Typically, an expert application which represents domain knowledge of a real world expert is an a...
	However, design environments made up of active and passive players typically suffer from some of ...
	• elimination of rich sources of design information from local nodes;
	• difficulties to identify problem sources in their immediate settings;
	• loss of capability to handle problems at the local level;
	• inability to handle design problems with a high level of abstraction, or the need for relativel...
	In this dissertation, I propose to expand, in a specific way, the notion of representing design k...
	As a short hand, I call a design object which is capable of performing such activities an object-...
	In a computational design environment, design objects represent the artifact being designed at va...
	To illustrate the basic premise of the object-agent approach, in an architectural design setting,...
	1.4 Objectives and Method

	The objective of this dissertation is to explore the potential benefits and disadvantages, from a...
	Figure 1.1 illustrates a conceptual architecture for a multi-agent design environment without fur...
	The model has to accommodate an initial set of domain-objects and applications and is, at the sam...
	• Developing a framework for a design object-agent based environment.� The framework is comprised...
	• Identifying the patterns of interactions among the modules of the framework.� This is achieved ...
	• Developing a set of task handling algorithms that enable an object-agent to manage the executio...
	• Engineering a detailed implementation design of such an environment using object models and sta...
	1.5 Thesis Structure

	The outline of the dissertation is as follow:
	• Chapter 2 provides additional motivation for adopting an object-agent approach in a computation...
	• Chapter 3 outlines a framework of an object-agent based environment and discusses the tradition...
	• Chapter 4 presents a series of general and domain specific scenarios of agent interactions in a...
	• Chapter 5 introduces a set of task handling algorithms that are fundamental to object-agents.� ...
	• Chapter 6 presents an implementation design of an object-agent design environment using an obje...
	• Chapter 7 identifies the research contributions and the research issues raised by the object-ag...
	FIGURE 1.1

	A conceptual architecture of a multi-agent environment and issues of focus in this dissertation.

	Chapter2F.pdf
	2 Review of Related Work
	2.1 Background

	The subject matter of this dissertation was proposed and presented in February 1993.� At the time...
	2.2 Agent and Agency

	The Latin word ‘agans’ means ‘to act’.� Accordingly, the word ‘agent’ is defined as the producer ...
	There are no rigorous principles about what constitutes an agent or how an agent should behave.� ...
	Actions are distinguished from mere random behavior in that action is goal directed whereas not a...
	Daniel Rasmus suggests that, in a network of agents, an agent must include reasoning capability, ...
	Computational Agents
	Within its limited domain, an agent will try to accomplish a task.� It may be a sub-task of a lar...
	Agent environments should be so designed that the collective efforts of agents toward executing t...
	Agents don’t do very much as individuals.� They know how to schedule a meeting, buy a ticket, or ...
	Agents need more than an operating system for survival.� They require cooperating partners, infor...
	Steiner et al.[Steiner 93] discuss the definition of agent in IMAGINE (an Integrated Multi-AGent ...
	Rational Agent: An agent should structure its behavior in a way that, as it reasons, will optimal...
	Generic Cooperation: When several agents cooperate, they should do so in ways that are, in import...
	Reactivity: The architecture of an agent should be such that it can react in timely fashion to ch...
	Steiner et al. further draw a distinction between agent tasks and goals, and assumes that an agen...
	In the simplest model an agent comes into existence with one goal; it derives a course of action,...
	For an agent to carry out more than one goal Steiner suggest that a more complex taxonomy is need...
	Agents in multi-agent systems may find that optimal means (from their point of view) to reach the...
	Goals are activated either internally, when an agent react to events in the environment, or exter...
	Agency can be defined by linking the notion of goals to the ability to perform actions.� Wobcke p...
	Agent models
	Agency is best understood as self-controlled goal-directed activity, where the notion of action b...
	The ‘normal’ conditions referred to in Wobcke’s proposal is determined by the context of the acti...
	• normally succeeds when it is attempted by the agent;
	• is only under the control of the agent if the agent can influence the outcome of the attempt;
	• be within the control of the agent in the sense that it is within the agent’s power not to do t...
	Wagner proposes a model of an agent based on agent actions.� He lists five basic transitions of w...
	A vivid agent is a software-controlled entity whose state is represented by a knowledge-base and ...
	Wagner further emphasizes the difference between action and reaction where agent actions are deli...
	In an elaborate research effort to identify the characteristics of an agent, Foner reviews the be...
	• Autonomy: where periodic action, spontaneous execution and initiative enable an agent to indepe...
	• Personality: where learning and memory enable an agent to improve its ability to handle tasks a...
	• Discourse: where an agent shares the user’s agenda about what and how a task should be executed...
	• Cooperation: where an agent collaborates with the user rather than receiving commands.
	• Risk and trust: where a balance between trust and risk is necessary since the notion of task de...
	• Domain: where the seriousness of the delegated task requires a relative degree of trust (risky ...
	• Graceful degradation: where an agent should strive to execute a task or a subset of the task in...
	• Expectations: where user expectations from an agent should not exceed agent ability to perform ...
	• Anthropomorphism: where an agent depicts human behavior.� Though agency does not imply a need f...
	It should be noted that not of all of these properties are pertinent to agent-based decision maki...
	The notions of discourse, risk and trust, domain, graceful degradation and expectations overlap w...
	Commitment
	Having adopted a commitment, we do not expect an agent to drop it until, for some reason, it beco...
	Durfee et al. [Durfee 92] add another dimension to the notion of commitment, that is, an agent sh...
	By propagating more abstract models of itself, an agent commits itself to fewer specifics, and th...
	Of course, being overly abstract will sometimes make coordination inefficient.
	The degree to which the models provide enough information to lead to effective collective interac...
	Durfee et al. suggest that an agent can dynamically influence how it is modeled by other agents t...
	In a later research effort, Singh discusses the notion of commitment in information-rich environm...
	The main problem is to structure activities in a manner that can respect the autonomy of the info...
	Singh presents an approach called ‘Spheres of Commitment’ (SoCom).� In SoCom, agents interact by ...
	The above views of commitment as a property of agency lead to the belief that a representation of...
	Planning is another property of agency that depends on agent ability to reason about other agents...
	Planning and reactiveness
	In effect, we want the model of the mental objects that are in someone’s head (or knowledgebase) ...
	Russel and Norvig then discuss alternative representations of mental objects.� They introduce the...
	The purpose of such models is to make an agent useful by helping an agent to do some actions it c...
	Chaib-Draa and Levesque categorize the types of interaction among agents based on the situation; ...
	Agents should prefer low levels (i.e., routine and familiar situations) than high level (i.e., un...
	In multi-agent environments autonomy leads to uncoordinated activities due to the uncertainty (or...
	Wooldridge and Jennings support the notion that agents as ‘intelligent reactive systems’ need to ...
	A computer system, situated in some environment, that is capable of flexible autonomous action in...
	According to them, ‘Situatedness’ means that the agent receives sensory input from an environment...
	An object-agent, as proposed in this thesis, should exhibit a wide range of social and responsive...
	Jennings distinguishes multi-agent systems from other software paradigms (such as object-oriented...
	Patterns of interaction
	Multi-agent systems are ideally suited to representing problems that have multiple problem solvin...
	Lyons and Hendriks [Lyons 95] discuss the importance of extracting the inherent patterns of inter...
	2.3 Objects vs. Agents

	Luck and d’Inverno presented a three-tiered hierarchy of entities comprising objects, agents and ...
	Jennings, Sycara and Wooldridge [Jennings 98] describe objects (in object- oriented programming) ...
	The second argument is drawn around the agency notion of being ‘flexible’ with its three elements...
	Rasmus describes agents as a form of objects with the ability to utilize the resources of environ...
	Agents turn out to be specialized objects running in a common information environment.� Because t...
	Accordingly, Rasmus draws similarities between the concept of agent environments and bacteria, wh...
	As a second distinction from objects Rasmus suggests that not all agents are necessarily fully fo...
	The last example I review is taken from an agent related project from a School of Architecture.� ...
	An intelligent object is a part of real case which can be interpreted for each new design task us...
	The development of IDIOM depends on a prototype for an interactive multi- agent interface named ‘...
	In principal, Sculptor objects did enjoy little of the agency behavior discussed in the earlier s...

	Chapter3F.pdf
	3 Framework of an OA-Based Environment
	3.1 Functions of an OA-Based Design Environment

	In a computer-based design environment, design objects are treated as information entities withou...
	The proposed approach based on object-agents (OAs) supports design through interactions among des...
	The single most important question that must be addressed is: what can be achieved in such an OA-...
	“a CAD tool, AI-based or not, should always be seen as a complement to human designers that assis...
	Flemming [93]
	The proposed OA-based design environment is not intended to automate the design process, instead ...
	The continuous change of the state of the design objects is required until the current state is c...
	Changing states vs. producing solutions
	The OA representation is intended to provide the DOs with properties of agency to allow them (whe...
	The DOs can be activated to provide various evaluations of their current state upon DA request.� ...
	Evaluation
	Upon DA request, the OA may extend the evaluation session to obtain recommendations from the EAs ...
	Recommendation
	If there are generative agents, the DA may interact with such generative-EAs to generate new alte...
	Generation
	Recommended modifications of attribute values should be checked for potential conflicts before th...
	Conflict handling
	After the potential conflicts are identified, upon DA request, a conflict resolution session is r...
	The DA may reduce the potential conflicts through the control of tasks being executed, DO relatio...
	• evaluation domains (e.g. daylighting, cost) involved in each session;
	• involved DOs (or OAs);
	• the depth of layers of interested DOs in respect to the conflict in hand (i.e., how many layers...
	In fact, successful bilateral resolution sessions are not always sufficient for resolving conflic...
	Conflict detection does not necessarily require the agents to be aware of the tasks and capabilit...
	Upon DA validation of any recommendation or the successful termination of a conflict handling ses...
	Implementation
	3.2 Agent Interactions

	The creation of OAs to perform various task types depends to a large degree on the ability of the...
	FIGURE 3.1.

	Categories of interaction of an OA-Based Design Environment
	• �Two-way relations between agents, where an agent may ‘inform’ or ‘request’ information or ‘ass...
	• One-way relations between an agent and an entity (e.g., DO, database), where an agent may ‘requ...
	• Secondary relations which represent the relation ‘has access’ to information.� These are referr...
	It is instructive to note that not all agents are involved in all categories of interaction.� For...
	I look at two categories: activation and decision support; and one aspect of the interface catego...
	3.2.1 Activation

	Activation is essential to any OA-based environment.� There are four main functions: activating a...
	The activation of a DO is the creation of an OA which represents the DO in any interaction that r...
	Activation
	The deactivation of an OA is the termination of the OA upon the completion of all assigned tasks....
	Deactivation
	Loading an EA is to invoke the EA in the current session.� In an architectural design session the...
	Loading
	Unloading is then revoking an EA from the current session.� An EA cannot be unloaded if it is inv...
	Unloading
	Activation operates in two modes:�
	• In the DA mode, the DA requests the activation or the deactivation of an OA or EA.� The request...
	• In the OA mode, an OA requests the activation of another DO.� This request is sent directly to ...
	3.2.2 Decision support

	Decision support is the core of an OA-based environment.� In this dissertation, this function is ...
	Upon DA request, the agents provide information (continually or temporally) about the individual ...
	Decision support involves a variety of task types (see Appendix B): evaluation, recommendation, g...
	3.2.3 Communication

	How agents communicate�? and what is being communicated�? are two fundamental questions that need...
	Interface agents provide the elements of communication;� a message system to pass information amo...
	Interface-agents may use local and global message passing that is most appropriate to the nature ...
	The process by which the agents know about the existence of other agents in the environment is im...
	• The global communication approach assumes that an OA does not necessarily know about the other ...
	• The direct communication approach assumes that the agents are knowledgeable of the other agents...
	3.3 The modeling process

	Computer-based design environments offer various approaches to modeling a design state.� Environm...
	With the absence of a generative mechanism, the DA takes a more involved role in modeling the geo...
	In other environments, such as SEMPER, the evaluation process does not take place until the model...
	In order to utilize the OA the DA must incrementally interact with OAs to develop an acceptable m...
	The DA may use a bottom-up approach to develop a building model from an aggregation of rooms, zon...
	To better understand the modeling process by which a DA may interact with a an OA-based environme...
	The DA selects rooms from a pool of predefined Room-DO types (or defines a new Room-DO type).�The...
	DO Relations and Hierarchies
	• no-relation (the default status).�
	• constituent-of/contains;
	• associated-with;
	The relation “constituent-of/contains” has two parties involved; a sub-DO and a super-DO (as defi...
	A DO can be a sub-DO of more than one DO simultaneously.� For instance, a Window-DO can be a sub-...
	The relation “associated-with” involves two DOs where a non-hierarchal functional or semantic lin...
	A relation between two DOs is task dependent.� For instance, an interior Wall- DO that is perpend...
	The DOs should not have a hierarchy as they reside in the database (i.e., the database should con...
	The questions are then: how does the DA assign relations between DOs�? and whether it is necessar...
	It can be argued that if the DA is to assign each single relation among DOs, modeling a large bui...
	The environment may provide support to the DA in assigning relations amongst DOs in various ways:
	• Through interface-agents which should provide the DA with multiple techniques of assigning rela...
	• Predefined hierarchies of DOs may only be used to provide the DA with an experimental test beds...
	• The environment should provide domain specific agents that are geared toward establishing hiera...
	To summarize the discussion about the DO relations and hierarchies:
	• DOs have no relations to other DOs unless specified by the DA or other supporting agents accord...
	• relations between DOs are temporal;�
	• hierarchies established between DOs are task dependent.
	3.4 Decision making with OAs

	The OA-based approach suggests that a DO is activated (as an OA) to perform a task regarding its ...
	When performing a task two types of decompositions can be identified as illustrated in Figure 3.2
	Decomposition
	FIGURE 3.2.

	Decomposition types.
	• Flat/Simple decomposition.
	• Complex decomposition.
	A flat decomposition is performed whenever
	• the result of the task assigned to the OA is the aggregation of all the results of the sub-task...
	• each DOs can only be a constituent of one DO (no joint-DO in the hierarchy).
	A cost estimate task for a building block materials is an example of a flat hierarchy (Figure 3.3...
	FIGURE 3.3.

	Task and decomposition.
	A cost estimate task may require an aggregation of multiple levels of flat decompositions.� Such ...
	A complex decomposition is performed whenever
	• the result of the task assigned to the OA is not necessarily the aggregation of all the results...
	• at least one DO is a constituent of more than one DO (a joint-DO).
	Performing a framing cost estimate for a building classified per building blocks requires a compl...
	Tasks which do not depend entirely on aggregation of sub-results may require complex decompositio...
	The hierarchy (or hierarchies) established for a structural analysis task is completely dependent...
	Comparing alternative structural systems the DA may need to find the total cost of a structural s...
	FIGURE 3.4.

	Hierarchy and decomposition 1.
	There are many ways by which a building can be decomposed, according to its spatial components su...
	FIGURE 3.5.

	Hierarchy and decomposition 2.
	It is, therefore, more appropriate to allow the DA to establish the hierarchies according to the ...
	How do the OAs decompose a task?
	An OAs knowledge of how to handle any task in hand is embedded within its problem solving protoco...
	If a building bfloor-OA is not linked in a hierarchy with its structural elements, the OA would (...
	Each problem solving protocol is primarily intended to enable the OA to locate and interact with ...
	When a new DO-types is added to the environment a set of protocols applicable to such type must b...
	When a DA adds a new DO to the environment, the DO remains in passive status until the DA links i...
	Evaluating the model
	The problem solving protocols of the Room-DO type which is loaded into the room-OA during its cre...
	The room-OA then assigns an evaluation task to the domain EA (i.e., the agent most related to the...
	The OA should be able to provide information about itself, whether this information is geometric ...
	If the lighting levels are found to be below the required values (which is obtained from the prot...
	The information provided to the EA by the OA should be relative to the degree of abstraction of t...
	The Level of Abstraction
	How does an EA deal with various levels of abstraction of the information provided by an OA�?
	Two main factors contribute to answering this question; the design of the EAs and the role of the...
	An EA should not be designed to expect a complete set of information before it provides a respons...
	The design of an EA
	Typically an EA requests all the information it needs to provide a detailed response to the assig...
	An alternative to changing the design of the EAs is to make the interface-agents (which is facili...
	The role of the interface agents
	When assigned a task, an EA might be working on a prior task from another agent.� In this case, t...
	Executing tasks in parallel
	3.5 Advancing a design state with multiple OAs

	A decision making environment that comprises multiple agents relies, to a large degree, on the co...
	3.5.1 Agent autonomy

	The term autonomy describes the degree to which an agent controls its own activation, execution a...
	EAs, such as query agents, are primarily non�autonomous since they can only act upon request for ...
	Quadrel describes a system comprising an asynchronous team of autonomous agents (only system-agen...
	Agency behavior implies that an OA, as agent, should have the abilities to self- activate itself ...
	Within the scope of this thesis OAs are semi�autonomous agents.� That is, they should be activate...
	3.5.2 Short term planning vs. long term planning in design

	Any type of planning aims at a set of DA goals to be achieved and a set of requirements to be met...
	In long term planning, a set of global goals are to be accomplished.� Local and sub-goals are set...
	It is important to emphasize that global design goals do exist at any point during the design, bu...
	Since changing goals are a property of design, especially creative design, it is appropriate to e...
	Accordingly, I suggest that the DA should be responsible for the long term planning and for the c...
	Goals for short term planning of immediate tasks with fewer facets can be defined and evaluated i...
	According to the approach proposed, OAs are to deal with small and immediate tasks, which are mor...
	The change of an OA status also depends on the support and response of other agents in the enviro...
	The DA's role is to evaluate the current state (independently or with the support of other agents...

	Chapter4F.pdf
	4 From Scenarios to Interaction Algorithms
	4.1 Event-trace Charts�

	An OA-based environment is a highly interactive system.� Dynamic models show the time-dependent b...
	Event-traces are best described through charts that reflect two-dimensional relationships over ti...
	In this chapter, I describe charts that illustrate a variety of scenarios for an architectural de...
	The scenario of events represented by a chart is described after the chart.� Each event (or inter...
	Event-trace charts (1-3) are developed for:
	General events charts
	1. Activation of a DO and the deactivation of its OA after the execution of an assigned task.
	2. Task execution by a leaf OA (the last node in a decomposed task).
	3. Conflict handling among two leaf OAs of the same DO over shared attribute.

	Event-trace charts (4-7) are developed for four distinct applications.
	Domain specific events charts
	1. Execution of a material cost evaluation task by BFloor-OA (building floor), classified accordi...
	2. Execution of daylighting evaluation task by a BFloor-DO.
	3. Execution of a structural analysis task executed by Building-DO.
	4. Execution of a conflict handling session among two Room-OAs over a recommended reduction of a ...
	4.2 Chart 1. Activation of a DO/Deactivation of an OA

	See Definitions A.3.10 and A.3.11.� The event-trace is shown in Figure 4.1�The main steps are 1-6...
	1. An Agent sends an activation message to a DO.
	2. The DO instantiates an OA of its DO type from the OA class. An OA of the same DO type is created.
	3. The created OA registers itself as an OA of the DO.
	4. The created OA requests a clone (a complete copy) of the DO.
	5. The DO provides a clone of itself to the sub-OA.
	6. The OA registers itself as sub-OA of the super-agent (of step 1).
	7. The super-agent assigns the created sub-OA a task.
	8. The sub-OA loads the appropriate protocols for the task.
	9. Interacting with the appropriate agents in the environment the sub-OA initiates a task executi...
	10. Task execution interactions (see Chart 2 steps 7-19).
	11. The environment agent (of step 9) provides it task execution result to the sub-OA. The OA sto...
	12. The sub-OA provides its super-agent (of step 1) with the task execution results. Conditional ...
	13. Conditional (if aggregation is performed in step 12): The super-agent requests an environment...
	14. Conditional (if step 13 is executed): Evaluation interactions to check the aggregation result...
	15. Conditional (if step 13 is executed): The environment agent (of step 13) provides its evaluat...
	16. Conditional (if the results of step 12 or 15 are not satisfactory): The super-OA remanages ei...
	17. The super-agent validates the results of the task execution, or: provides an alternative set ...
	18. Conditional (if alternative values are provided in step 17): The OA reassigns the task to the...
	19. Interface option (to allow for conflict check): The super-agent requests a conflict check (wi...
	20. Conditional (if step 19 is executed): Conflict handling interactions, the super-agent manages...
	21. Conditional (if the results provided in step 20 is not satisfactory): The super-agent reassig...
	22. Conditional (if step 20 is executed): The super-agent validates the results (of step 20), and...
	23. Conditional (if requested in step 22): The sub-OA interacts with the appropriate agents in th...
	24. Conditional (if step 23 is executed): The environment agent which carried the implementation ...

	25. The sub-OA updates its DO information (provided that no other OA of the same DO is performing...
	26. The sub-OA de-registers itself as a sub-agent of the super-agent.
	27. The OA de-registers itself as an OA of the DO.
	28. The OA terminates itself.
	4.3 Chart 2. Task Execution

	See Section A.4 for relevant definitions.� The event-trace is shown in Figure 4.2.� The main step...
	1. Conditional (if the targeted DO is not activated): An agent sends an activation message to a D...
	2. Conditional (if step 1 is executed): The DO instantiates an OA of its DO type from the OA clas...
	3. Conditional (if step 2 is executed): Activation interactions (see Chart 1, steps 3-6).
	4. The super-agent assigns a task to the created OA (a sub-OA in the task dependent hierarchy).
	5. Conditional (if the appropriate protocols are not loaded): The sub-OA loads the appropriate pr...
	6. Interacting with the appropriate agent in the environment (e.g., an EA) the sub-OA manages a t...
	7. The EA requests information from the sub-OA (e.g., geometric and non- geometric information of...
	8. Conditional (when information of a sub-DO is needed and the DO is not activated and the activa...
	9. Conditional (if step 8 is executed): The sub-DOs provide the information requested to the sub-...
	10. Conditional (if the information provided in step 9 is not sufficient): The sub- OA requests a...
	11. The sub-OA provides the applicable information to the EA.
	12. Conditional (if the information provided in step 11 is not sufficient): The EA requests addit...
	13. Conditional (if additional information is needed to execute the task): The EA requests inform...
	14. Conditional (if the query-agent was not able to locate the requested information of step 13)....
	15. Conditional (if step 14 is executed): The super-agent provides the EA with the requested info...
	16. Conditional (if the information provided in step 15 is not sufficient): The query-agent reque...
	17. Conditional (if step is 13 executed): The query-agent provides the EA with the applicable inf...
	18. Conditional (if the information provided in step 17 is not sufficient): The EA requests addit...
	19. Conditional (if the targeted DO is not activated): The EA sends an activation message to anot...
	20. The EA provides the sub-OA with the task execution results. The sub-OA stores the task execut...
	21. The sub-OA provides the super-agent (of step 1) with the task execution results. Conditional ...
	22. Conditional (if aggregation is performed in step 21): The super-agent requests an environment...
	23. The EA requests information from the super-agent.
	24. The super-agent provides the applicable information to the EA.
	25. Conditional (if the information provided in step 24 is not sufficient): The EA requests addit...
	26. Conditional (if the results of step 24 are not satisfactory or if prototypical information is...
	27. Conditional (if the information requested in step 26 is not found in the environment): The qu...
	28. Conditional (if step 27 is executed): The super-agent or the DA provides the query-agent with...
	29. Conditional (if the information provided in step 28 is not sufficient): The query-agent reque...
	30. Conditional (if step 26 is executed): The query-agent provides the EA with applicable informa...
	31. Conditional (if the information provided in step 30 is not sufficient): The EA sends another ...
	32. Conditional (if step 24 is executed): The EA provides its evaluation of the aggregation resul...
	33. Conditional (if the results provided in either step 21 or 32 are not satisfactory): The super...
	34. The super-agent validates the results (of step 21 or 32), or: provides the sub-OA with altern...
	35. Conditional (if alternative values are provided by the super-agent in step 34): The sub-OA re...
	36. Interface option (to allow for conflict check): The super-agent requests a conflict check (wi...
	37. Conditional (if step 36 is executed): Conflict handling interactions, the super-agent manages...
	38. Conditional (if the results of the conflict handling session provided in step 37 are not sati...
	39. Conditional (if step 36 is executed): The super-agent validates the results (of step 37), and...
	40. Conditional (if requested in step 39): The sub-OA interacts with the appropriate agents in th...
	41. Conditional (if step 40 is executed): The environment agent which carried the implementation ...
	42. The sub-OA updates the information of its sub-DOs effected by the implementation.
	43. The sub-OA updates its DO information (if the DO is activated the update must be conducted th...
	44. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 steps...
	45. Conditional (if step 44 is executed): The OA terminates itself.

	4.4 Chart 3. Conflict Handling

	See Section A.6 for relevant definitions.� The event-trace is shown in Figure 4.3.�The important ...
	• an OA should be created for each DO (or attribute of the same DO) in the set.�For instance, if ...
	• an OA of the same DO should be created for each selected EA in the set.� For instance, if a day...
	The OA approach can accommodate a variety of mechanisms and guide lines for conflict handling.�Ho...
	A task dependent hierarchy consists of multiple levels of DOs from the DA down to the leaf DOs.�A...
	Conflict handling types
	1. A super-OA assigns a task to a sub-OA (sub-OA1 in this chart).

	Details of the interactions
	2. Conditional (if the appropriate protocols are not loaded): Sub-OA1 loads the appropriate proto...
	3. Interacting with the appropriate agent in the environment (e.g., an EA) sub-OA1 initiates a ta...
	4. Task execution interactions (see Chart 2 steps 7-19).
	5. The environment agent provides its task execution results to sub-OA1.� Sub-OA1 stores the resu...
	6. Interface option (to allow the DA to validate task results not assigned directly by him/ her):...
	7. Conditional (if step 6 is executed): The DA validates the results of sub-OA1, or: provides an ...
	8. Conditional (if alternative values are provided in step7): Sub-OA1 reassigns the task to the E...
	9. Sub-OA1 provides its task execution results to the super-OA. Conditional (if aggregation is ne...
	10. Conditional (if aggregation is performed in step 9): The super-agent requests an environment ...
	11. Conditional (if step 10 is executed): Evaluation interactions to check the aggregation result...
	12. Conditional (if step 11 is executed): The environment agent (of step 10) provides its evaluat...
	13. The super-OA provides the DA with results (of step 9 or 12) for validation. Conditional (if a...
	14. Conditional (if aggregation is performed in step 13): The DA requests an environment agent (e...
	15. Conditional (if step 14 is executed): Evaluation interactions to check the aggregation result...
	16. Conditional (if step 15 is executed): The environment agent (of step 14) provides its evaluat...
	17. Conditional (if the results provided in either step 13 or step 16 are not satisfactory): The ...
	18. The DA validates the results (of step 13), or: provides the super-OA with alternative attribu...
	19. Conditional (if alternative values are provided by the DA in step 18): The super-OA remanages...
	20. Interface option (to allow for conflict check): The DA requests a conflict check (with other ...
	21. Sub-OA1 checks with its DO for a list of DOs and OAs with interest in the targeted attribute ...
	22. The DO provides a list of DOs and EAs interested in the targeted attribute values.
	23. Sub-OA1 provides the DA with the list of interested DOs and EAs.
	24. Conditional (if the list contains one or more DO or OA): The DA selects a set of DOs and EAs ...
	25. Conditional (if step 24 is executed): The DO instantiates an OA of its DO type from the OA cl...
	26. Conditional (if step 25 is executed): Activation interactions (see Chart 1 steps 3-6).
	27. The DA assigns an evaluation task to examine the recommended attribute values (which is the f...
	28. Conditional (if the appropriate protocols are not loaded): sub-OA2 loads the appropriate prot...
	29. Interacting with the appropriate agent in the environment (e.g., an EA) sub- OA2 initiates a ...
	30. Task execution interactions (see Chart 2 steps 7-19).
	31. The EA (of step 29) provides sub-OA2 with the task execution results.� Sub-OA2 stores the res...
	32. Sub-OA2 provides its task execution results to the DA. Conditional (if aggregation is needed)...
	33. Conditional (if aggregation is performed in step 32): The DA requests an environment agent (e...
	34. Conditional (if step 33 is executed): Evaluation interactions to check the aggregation result...
	35. Conditional (if step 34 is executed): The environment agent (of step 33) provides its evaluat...
	36. Conditional (if the results provided in either step 32 or step 35 are not satisfactory): The ...
	37. The DA validates the results (of step 32), or: provides alternative attribute values for task...
	38. Conditional (if alternative values are provided by the DA in step 37): Sub- OA2 runs another ...
	39. Conditional (if the results provided in step 32 are not satisfactory): The DA sends a query r...
	40. Conditional (if step 39 is executed): The environment agents provide the DA with the applicab...
	41. Conditional (if the information provided in step 40 is not sufficient): The DA sends a modifi...
	42. Conditional (if the results of step 32 are not satisfactory): The DA reassigns another evalua...
	43. The DA validates the conflict handling session results (started in step 20).
	44. The super-OA validates the results of sub-OA1 (provided in step 9).
	45. Conditional (if there are more than one DO or EA in the set selected in step 24): The DA eith...
	46. Sub-OA2 updates its DO information (after the implementation of the task results, see Chart 2...
	47. Conditional (if no other task is to be executed): Termination interactions (see Chart 1. step...
	48. Conditional (if step 47 is executed): Sub-OA2 terminates itself.
	49. Sub-OA1 updates its DO information (after the implementation of the task results, see Chart 2...
	50. Conditional (if no other task is to be executed): Termination interactions (see Chart 1. step...
	51. Conditional (if step 50 is executed): Sub-OA1 terminates itself.

	4.5 Chart 4. Cost Evaluation Task (Classified per Room-DO)

	This is the first of four applications illustrating the OA-based design environment.� The event-t...
	The DA is interested in evaluating the cost of painting a BFloor-DO.� The evaluation should inclu...
	The assigned task
	There are three main players in the scenario for this task: a DA, a BFloor-OA and a cost-EA (and ...
	The main players
	There are three main events which are listed below.
	The major events
	• The DA activates the BFloor-DO and assigns it a classified cost evaluation task, which, in turn...
	• Interacting with the cost-EA, each activated OA runs a cost evaluation session regarding its ow...
	• The OAs update the information of its DOs and terminates itself.
	The following two are additional optional results.
	• The DA triggers a conflict handling session.
	• The DA requests the implementation of new attribute values.
	There are two results that can be expected from this task and two additional optional result.
	The expected results
	1. For each evaluation session the assigned BFloor-OA provides the DA with information that may c...

	• painting cost of the BFloor-DO, and the classified cost as assigned (see the assigned task);
	• prototypical cost of each of the DOs above;
	• a warning for each DO that exceeds the specified prototypical cost.
	2. The DA examines either new DO attribute values for DOs in the task dependent hierarchy or new ...
	3. (Optional) The DA examines new DO attribute values for DOs interested in the attribute values ...
	4. (Optional) Implementation of examined DO attribute values and updating of the DO relations.

	The main steps are 16-41.
	Details of the interactions
	1. Conditional (if the targeted BFloor-DO is not activated): A DA sends an activation message to ...
	2. Conditional (if step 1 is executed): The BFloor-DO instantiates a BFloor-OA. A BFloor-OA is cr...
	3. Conditional (if step 2 is executed): Activation interactions (see Chart 1 steps 3-6).
	4. The DA assigns the painting cost evaluation task to the created BFloor-OA.
	5. Conditional (if the appropriate protocols are not loaded): The BFloor-OA loads the cost evalua...
	6. Conditional (if the targeted sub-DOs are not activated): The BFloor-OA sends activation messag...
	7. Conditional (if step 6 is executed): The Room-DO class instantiates a Room-OA for each activat...
	8. Conditional (if step 7 is executed): Activation interactions (see Chart 1 steps 3-6).
	9. The BFloor-OA assigns painting cost evaluation sub-tasks to the created Room-OAs.
	10. Conditional (if the appropriate protocols are not loaded): Each Room-OA loads the cost evalua...
	11. Conditional (if the targeted DOs are not activated): Each Room-OA sends activation messages t...
	12. Conditional (if step 11 is executed): The Wall-DO/Ceiling-DO/Floor-DO classes (and any other ...
	13. Conditional (if step 12 is executed): Activation interactions (see Chart 1. steps 3-6).
	14. The Room-OA assigns painting cost evaluation sub-tasks to the created sub-OAs.
	15. Conditional (if the appropriate protocols are not loaded) Each sub-OA loads the cost evaluati...
	16. Interacting with the cost-EA each leaf OA initiates an evaluation task execution session.
	17. Task execution interactions (see Chart 2 steps 7-19). This may include interactions among a g...
	18. The cost-EA provides its cost evaluation results (as assigned; current cost, relation to prot...
	19. Interface option (to allow the DA to validate task results not assigned directly by him/her):...
	20. Conditional (if step 19 is executed): DA validates the sub-OAs cost evaluation results, or: p...
	21. Conditional (if alternative values are provided in step 20): The sub-OA reassigns the task to...
	22. Each sub-OA provides its cost evaluation results to its super-OA (Room-OA). Conditional (if m...
	23. Conditional (if aggregation is performed in step 22): The Room-OA interacts with the cost-EA ...
	24. Conditional (if step 23 is executed): Task execution interactions (see Chart 2 steps 23-31).
	25. Conditional (if step 24 is executed): The cost-EA provides its aggregation evaluation results...
	26. Interface option (to allow the DA to validate task results not assigned directly by him/her):...
	27. Conditional (if step 26 is executed): The DA validates the results of the cost evaluation of ...
	28. Conditional (if alternative values are provided by the DA in step 27): The Room-OA either rea...
	29. Each Room-OA provides its painting cost evaluation results to its super-OA (the BFloor-OA in ...
	30. Conditional (if aggregation is performed in step 29): The BFloor-OA interacts with the cost-E...
	31. Conditional (if step 30 is executed): Task execution interactions (see Chart 2 steps 23-31).
	32. Conditional (if step 31 is executed): The cost-EA provides its aggregation evaluation results...
	33. The BFloor-OA provides its task execution results to the DA. Conditional (if more than one BF...
	34. Conditional (if aggregation is performed in step 33): The DA interacts with the cost-EA to ev...
	35. Conditional (if step is 34 executed): Task execution interactions (see Chart 2 steps 23-31)
	36. Conditional (if step 35 is executed): The cost-EA provides the DA with its aggregation evalua...
	37. Conditional (if the results of steps 33 or 36 are not satisfactory): The DA either reassigns ...
	38. The DA validates the results of the BFloor-OA (of step 33), or: provides alternative attribut...
	39. Conditional (if alternative values are provided in step 38): The BFloor-OA either reassigns t...
	40. The BFloor-OA validates the results (of step 29) of each Room-OA.
	41. Each Room-OA validates the results (of step 22) of its sub-OAs.
	42. Each sub-OA (of step 12) updates its DO information.
	43. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 steps...
	44. Each Room-OA updates its DO information.
	45. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 steps...
	46. The BFloor-OA updates its DO information.
	47. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 steps...
	48. Conditional (if step 47 is executed): The BFloor-OA terminates itself.

	4.6 Chart 5. Daylight Evaluation Task

	The event-trace chart is shown in Figure 4.6.� As before I describe the assigned task, identify t...
	The DA is interested in evaluating the daylighting of a BFloor-DO.� The evaluation should include...
	The assigned task
	The evaluation should also include the daylighting levels of each individual opening within each ...
	The scenario of this chart involves three main players; a DA, a BFloor-OA and a daylighting-EA.
	The main players
	• The DA activates the BFloor-DO and assigns it a daylighting evaluation task, which, in turn, tr...
	The major events
	• Interacting with the daylighting-EA, each activated OA runs a daylighting evaluation session re...
	• The OAs update the information of its DOs and terminates itself.
	The following two events are optional.
	• The DA triggers a conflict handling session.
	• The DA requests the implementation of new attribute values.
	1. For each evaluation session the assigned BFloor-OA provides the DA with information that may c...

	The expected results
	• daylighting levels of each Room-DO (see the assigned task);
	• prototypical daylighting levels of each of the Room-DO types (e.g., living room, bedroom);
	• a warning for each DO that is below the specified or prototypical daylighting levels.
	2. The DA examines either new DO attribute values for DOs in the task dependent hierarchy or new ...
	3. (Optional) The DA examines new DO attribute values for DOs interested in the attribute values ...
	4. (Optional) Implementation of examined DO attribute values and updating of the DO relations.

	The main steps are 11-28.
	Details of the interactions
	1. Conditional (if the BFloor-DO is not activated): A DA sends an activation message to a BFloor-DO.
	2. Conditional (if step 1 is executed): The BFloor-DO instantiates a BFloor-OA. A BFloor-OA is cr...
	3. Conditional (if step 2 is executed): Activation interactions (see Chart 1 steps 3-6).
	4. The DA assigns a daylighting evaluation task to the created BFloor-OA.
	5. Conditional (if the appropriate protocols are not loaded): The BFloor-OA loads the daylighting...
	6. Conditional (if the targeted DOs are not activated): The BFloor-OA sends an activation message...
	7. Conditional (if step 6 is executed): The Room-DO class instantiates Room-OAs for each Room-DO....
	8. Conditional (if step 7 is executed): Activation interactions (see Chart 1 steps 3-6).
	9. The BFloor-OA assigns daylighting evaluation sub-tasks to the created Room-OAs.
	10. Conditional (if the appropriate protocols are not loaded): Each Room-OA loads the daylighting...
	11. Interacting with the daylighting-EA each Room-OA initiates a daylighting evaluation task sess...
	12. Task execution interactions (see Chart 2 steps 7-19). Note: The daylighting-EA activates any ...
	13. The daylighting-EA provides its daylighting evaluation results (as assigned; daylighting leve...
	14. Interface option (to allow the DA to validate task results not assigned directly by him/her):...
	15. Conditional (if step 14 is executed): The DA validates the Room-OAs daylighting evaluation re...
	16. Conditional (if alternative values are provided in step 15): Any Room-OA may reassign the tas...
	17. Each Room-OA provides its daylighting evaluation results to the BFloor-OA. Conditional (if ag...
	18. Conditional (if aggregation is performed in step 21): The BFloor-OA requests the daylighting-...
	19. Conditional (if step is 18 executed): Task execution interactions (see Chart 2 steps 23-31)
	20. Conditional (if step 19 is executed): The daylighting-EA provides its aggregation evaluation ...
	21. The BFloor-OA provides its evaluation results to the DA. Conditional (if aggregation is neede...
	22. Conditional (if aggregation is performed in step 21): The DA requests the daylighting-EA to e...
	23. Conditional (if step is 22 executed): Task execution interactions (see Chart 2 steps 23-31)
	24. Conditional (if step 23 is executed): The daylighting-EA provides its aggregation evaluation ...
	25. Conditional (if the results provided in step 21 or 23 are not satisfactory): The DA either re...
	26. The DA validates the results (of step 25) of the BFloor-OA, or: provides alternative attribut...
	27. Conditional (if alternative values are provided in step 26): The BFloor-OA either reassigns t...
	28. The BFloor-OA validates the results (of step 17) of each Room-OA.
	29. Conditional (if attribute values of related DOs are to be modified): Each Room-OA updates the...
	30. Each Room-OA (of step 7) updates its DO information.
	31. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 steps...
	32. The BFloor-OA updates its DO information.
	33. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 steps...
	34. Conditional (if step 33 is executed): The BFloor-OA terminates itself.

	4.7 Chart 6. Structural Analysis Task

	In a structural analysis task, the DA is interested in analyzing the structural stability of a Bu...
	The scenario of this task involves three main players; a DA, a Building-OA and a structure-EA.
	The main players
	• The DA activates the Building-DO and assigns it a structural analysis task, which, in turn, tri...
	• Interacting with the structural-EA, each activated OA runs a structural analysis session regard...
	• The OAs update the information of its DOs and terminates itself.
	The following are optional events.
	• The DA triggers a conflict handling session.
	• The DA requests the implementation of new attribute values.
	1. For each analysis session the assigned Building-OA provides the DA with information that may c...

	• structural stability of each block -DO and BFloor-DO (see The task above);
	• a warning for each structural DO (or zone) where its current specification is not sufficient fo...
	2. The DA examines either new DO attribute values for DOs (or a collection of DOs in a zone).
	3. (Optional) The DA examines new DO attribute values for DOs interested in the attribute values ...
	4. (Optional) Implementation of examined DO attribute values and updating of the DO relations.

	The main steps are 16-41.
	Details of the interactions
	1. Conditional (if the targeted BFloor-DO is not activated): A DA sends an activation message to ...
	2. Conditional (if step 1 is executed): The Building-DO instantiates a Building-OA. A Building-OA...
	3. Conditional (if step 2 is executed): Activation interactions (see Chart 1 steps 3-6).
	4. The DA assigns a structural analysis task to the created Building-OA.
	5. Conditional (if the appropriate protocols are not loaded): The Building-OA loads the structura...
	6. Conditional (if the targeted block-DOs are not activated): The Building-OA sends activation me...
	7. Conditional (if step 6 is executed): The block-DO class instantiate block-OAs for each block-D...
	8. Conditional (if step 7 is executed): Activation interactions (see Chart 1 steps 3-6).
	9. The Building-OA assigns structural analysis sub-tasks to the created block-OAs.
	10. Conditional (if the appropriate protocols are not loaded): Each block-OA loads the structural...
	11. Conditional (if the targeted BFloor-DOs are not activated): Each block-OA sends an activation...
	12. Conditional (if step 11 is executed): The bfloor class instantiates BFloor-OAs for each BFloo...
	13. Conditional (if step 12 is executed): Activation interactions (see Chart 1 steps 3-6).
	14. The block-OA assigns structural analysis sub-tasks to the created BFloor-OAs.
	15. Conditional (if the appropriate protocols are not loaded): Each BFloor-OA loads the structura...
	16. Interacting with the structural-EA each BFloor-OA initiates a structural analysis task session.�
	17. Task execution interactions (see Chart 2 steps 7-19). In a multi story building, the analysis...
	18. The structure-EA provides each BFloor-OA with its structural analysis results (as assigned; l...
	19. Interface option (to allow the DA to validate task results not assigned directly by him/her):...
	20. Conditional (if step 19 is executed): DA validates the BFloor-OAs structural analysis results...
	21. Conditional (if alternative values are provided in step 20): Any BFloor-OA may reassign the t...
	22. Each BFloor-OA provides its structural analysis results to its block-OA. Each block-OA uses i...
	23. Conditional (if aggregation is performed in step 22): Each block-OA requests the structural-E...
	24. Conditional (if step is 23 executed): Task execution interactions (see Chart 2 steps 23-31)
	25. Conditional (if step 24 is executed): The structural-EA provides its aggregation evaluation r...
	26. Interface option (to allow the DA to validate task results not assigned directly by him/her):...
	27. Conditional (if step 26 is executed): The DA validates the block-OA results or provide altern...
	28. Conditional (if alternative values are provided in step 27): A block-OA reassigns the task to...
	29. Each block-OA provides its structural analysis results to the Building-OA. The Building-OA us...
	30. Conditional (if aggregation is performed in step 29): The Building-OA requests the structural...
	31. Conditional (if step is 30 executed): Task execution interactions (see Chart 2 steps 23-31)
	32. Conditional (if step 31 is executed): The structural-EA provides its aggregation evaluation r...
	33. The Building-OA provides its evaluation results to the DA. Conditional (if more than one Buil...
	34. Conditional (if aggregation is performed in step 33): The DA requests the structural-EA to ev...
	35. Conditional (if step is 34 executed): Task execution interactions (see Chart 2 steps 23-31)
	36. Conditional (if step 35 is executed): The structural-EA provides its aggregation evaluation r...
	37. Conditional (if the results provided in step or 36 are not satisfactory): The DA either reass...
	38. The DA validates the results (of step 33) of the Building-OA, or: provides alternative attrib...
	39. Conditional (if alternative values are provided in step 38): The Building-OA reassigns the ta...
	40. The Building-OA validates the results (of step 29) of each of its block-OAs.
	41. Each block-OA validates the results (of step 22) of each of its BFloor-OAs.
	42. Conditional (if attribute values of related DOs are to be modified): Each BFloor-OA updates t...
	43. Each BFloor-OA (of step 12) updates its DO information.
	44. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 steps...
	45. Each block-OA (of step 7) updates its DO information.
	46. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 steps...
	47. The Building-OA updates its DO information.
	48. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 steps...
	49. Conditional (if step 48 is executed): The Building-OA terminates itself.

	4.8 Chart 7. Handling Conflict Over Window Glazing Area

	This possible conflict situation arises when the DA is interested in evaluating the cost of a Roo...
	The scenario of this chart involves six main players; a DA, two Room-OAs of the same Room-DO, a W...
	The main players
	The DA is interested in evaluating the cost of a Room-DO.� The evaluation should include a cost c...
	The assigned task
	• The DA activates the Room-DO and assigns it a classified cost evaluation task, which, in turn, ...
	The major events
	• Interacting with the cost-EA, each activated OA runs a cost evaluation session regarding its ow...
	• The DA triggers a conflict handling session about the Window-OA1 to check for conflicts over th...
	• The OAs update the information of its DOs and terminates itself.
	Additionally the DA may request
	• The implementation of new attribute values of the Window-DO (or the any other attribute values ...
	1. For each evaluation session the assigned Room-OA1 provides the DA with information that may co...

	The expected results
	• cost of the Room-DO, and the classified cost as assigned (see the assigned task);
	• prototypical cost of each of the DOs above;
	• a warning for each DO that exceeds the specified prototypical cost.
	2. The DA examines either new DO attribute values for DOs in the task dependent hierarchy or new ...
	3. (Optional) The DA examines new DO attribute values for DOs interested in the attribute values ...
	4. (Optional) Implementation of examined DO attribute values and updating of the DO relations.

	The main steps are 25-50.
	Details of the interactions
	1. A DA assigns a cost evaluation task to a Room-OA (namely Room-OA1 in this chart).
	2. Conditional (if the appropriate protocols are not loaded): Room-OA1 loads the cost evaluation ...
	3. Conditional (if the targeted Window-DO is not activated): Room-OA1 sends an activation message...
	4. Conditional (if step 3 is executed): The Window-DO class instantiates a Window-OA. A Window-OA...
	5. Conditional (if step 4 is executed): Activation interactions (see Chart 1 steps 3-6).
	6. Room-OA1 assigns a cost evaluation sub-task to the Window-OA (a sub-OA in this chart).
	7. Conditional (if the appropriate protocols are not loaded): The Window-OA loads the cost evalua...
	8. Interacting with the cost-EA the Window-OA initiates a task execution session.
	9. Task execution interactions (see Chart 2 steps 7-19).
	10. The cost-EA provides its task execution results to the Window-OA.� The Window-OA stores the r...
	11. Interface option (to allow the DA to validate task results not assigned directly by him/ her)...
	12. Conditional (if step 11 is executed): The DA validates the results of the Window-OA, or: prov...
	13. Conditional (if alternative values are provided in step 12): The Window-OA reassigns the task...
	14. The Window-OA provides its task execution results to Room-OA1. Conditional (if aggregation is...
	15. Conditional (if aggregation is performed in step 14): Room-OA1 requests the cost-EA to evalua...
	16. Conditional (if step 15 is executed): Evaluation interactions (see Chart 2 steps 23-31) to ex...
	17. Conditional (if step 16 is executed): The cost-EA provides its evaluation of the aggregated r...
	18. Room-OA1 provides the DA with its task execution results for validation. Conditional (if more...
	19. Conditional (if aggregation is performed in step 18): The DA requests the cost-EA to evaluate...
	20. Conditional (if step 19 is executed): Evaluation interactions (see Chart 2 steps 23-31) to ev...
	21. Conditional (if step 20 is executed): The cost-EA provides its evaluation of the aggregated r...
	22. Conditional (if the results provided in either step 18 or step 21 are not satisfactory): The ...
	23. The DA validates the results (of step 18), or: provides Room-OA1 with alternative attribute v...
	24. Conditional (if alternative values are provided by the DA in step 23): The Room-OA runs eithe...
	25. Interface option (to allow for conflict check): The DA requests a conflict check (with other ...
	26. The Window-OA checks with its Window-DO for a list of DOs and OAs with interest in the target...
	27. The Window-DO provides a list of DOs and EAs interested in the targeted attribute values.�
	28. The Window-OA provides the DA with the list of interested DOs and EAs.
	29. Conditional (if the list contains one or more DO or OA): The DA selects a set of DOs and EAs ...
	30. Conditional (if step 29 is executed): The DO instantiates another Room-OA (of the same Room-D...
	31. Conditional (if step 30 is executed): Activation interactions (see Chart 1 steps 3-6).
	32. The DA assigns a daylighting evaluation task to Room-OA2 to examine the suggested window dime...
	33. Conditional (if the appropriate protocols are not loaded): Room-OA2 loads the daylighting pro...
	34. Interacting with the appropriate daylighting-EA Room-OA2 initiates a daylighting evaluation s...
	35. Task execution interactions (see Chart 2 steps 7-19).
	36. The daylighting-EA provides its evaluation results to Room-OA2.� Room-OA2 stores the results ...
	37. Room-OA2 provides its evaluation results to the DA. Conditional (if aggregation is needed): T...
	38. Conditional (if aggregation is performed in step 37): The DA requests the daylighting-EA to e...
	39. Conditional (if step 38 is executed): Evaluation interactions to evaluate the aggregation res...
	40. Conditional (if step 39 is executed): The daylighting-EA provides its evaluation of the aggre...
	41. Conditional (if the results provided in either step 37 or step 40 are not satisfactory): The ...
	42. The DA validates the results (of step 37), or: provides alternative attribute values for task...
	43. Conditional (if alternative values are provided by the DA in step 42): Room- OA2 runs another...
	44. Conditional (if the results provided in step 37 are not satisfactory): The DA sends a query r...
	45. Conditional (if step 44 is executed): The query-agent provides the DA with the applicable inf...
	46. Conditional (if the information provided in step 45 is not sufficient): The DA sends a modifi...
	47. Conditional (if the results of step 37 are not satisfactory): The DA reassigns another evalua...
	48. The DA validates the conflict handling session results (started in step 25).
	49. Room-OA1 validates the results of Window-OA1 (provided in step 14).
	50. Conditional (if there are more than one DO or EA in the set selected in step 29): The DA eith...
	51. Room-OA2 updates its DO information (after the implementation of the task results, see Chart ...
	52. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 steps...
	53. Conditional (if step 52 is executed): Room-OA2 terminates itself.
	54. The Window-OA updates its DO information (after the implementation of the task results, see C...
	55. Conditional (if no other task is to be executed): Termination interactions (see Chart 1. step...
	56. Conditional (if step 55 is executed): The Window-OA terminates itself.

	FIGURE 4.1.

	Event-trace of the activation of a DO and the deactivation of an OA.
	FIGURE 4.2.

	Event-trace of task execution by a leaf-OA (where no further task decomposition is applicable).
	FIGURE 4.3.

	Event-trace of conflict handling among two leaf-OAs.
	FIGURE 4.4.

	Conflict handling cases.
	FIGURE 4.5.

	Event trace of a painting cost evaluation task executed by a BFloor-OA (classified per Room- DO).
	FIGURE 4.6.

	Event-trace of a daylighting evaluation task for a BFloor-OA.
	FIGURE 4.7.

	Event-trace of a structural analysis task executed by a Building-OA.
	FIGURE 4.8.

	Event-trace of a conflict handling session over a Window-OA glazing area attribute.

	Chapter5F.pdf
	5 Task Handling Algorithms
	5.1 Which Tasks?

	In a decision making session the success of an OA depends on its ability to manage and utilize th...
	• Permanent in the environment, or in an active status even when not assigned tasks (i.e., have t...
	• Able to interpret changes in the environment (whether these changes are observed by the OA or r...
	• Able to execute tasks that are related either to its own state or to the states of other DOs or...
	Within the scope of this thesis, an OA may either execute tasks that are directly assigned by oth...
	• Temporal and only existing during the execution of an assigned tasks;
	• Not observing the environment and thus, cannot interpret more than a finite set of tasks that a...
	• Only able to execute tasks pertaining to their own state.�
	The expansibility of the OA capability to include self-initiated tasks requires further research ...
	Event-trace charts presented in Chapter 4 provide the basis for developing the set of task handli...
	Evaluation tasks are dependent on the notion of decomposition among applicable candidates of the ...
	Executing generation tasks, on the other hand, are not dependent on the notion of task decomposit...
	5.2 OA Task Execution Algorithms

	Once an OA is activated (i.e., a class instance is created and registered with its super-agent, s...
	Algorithm: ClassifyTask (task)

	start 1 if task-type == ? 2 case 1. ? == evaluate => Evaluate (Task-Domain, Task-Focus) 3 case 2....
	5.2.1 Evaluation

	An OA handles an evaluation task according to the task-domain and task-focus.� The OA uses the do...
	The task-focus affects the decomposition in a different manner.� If the task-focus implies a clas...
	The following examples show various task-focus cases which affect either the decomposition or the...
	• Block-DO total cost classified per BFloor-DO:
	As illustrated in Figure 5.2, all leaf-DOs of the construction categories are included in the dec...
	• Total cost of the StructElement-DOs classified per VZone-DO:
	Figure 5.3 shows a decomposition of a Block-DO cost evaluation task of StructElement-DOs’ (classi...
	• Total cost of a Block-DO that includes shared DOs:
	When a Wall-DO is shared among Block-DOs, another layer of computation is needed for decompositio...
	• Total cost of a Block-DOs when DO of classification is not a super-DO to the leaf-DOs:
	DO classes of the same level but in different branches of the OA hierarchy may act as super-OAs t...
	• Total painting cost:
	If paint is not represented explicitly as a DO class (i.e., Painting-DO or Paint-DO classes) in t...
	Accordingly evaluation tasks fall into one of the following cases:
	If no task decomposition is not required (e.g., the task is assigned to a leaf-OA in the DO-hiera...
	• case A: (task requires no decomposition) evaluate OA(e.g., Wall-OA cost) or; evaluate OA attrib...
	1. OA interacts with domain EA (e.g., Wall-OA interacts with Cost-EA)

	If task decomposition is required (e.g., the task is assigned to an OA that is neither a leaf-OA ...
	• case B (task requires decomposition) evaluate OA (e.g. BFloor-OA cost) or; evaluate OA attribut...
	1. decompose task among applicable leaf sub-DOs of the hierarchy (use the P_Domain decomposition ...
	2. repeat case A step 1 for each assigned sub-OA;
	3. aggregate results (use the OA P_Domain aggregation protocol).

	• case C: (task requires decomposition and classification of sub-results) evaluate OA classified ...
	1. decompose task among DOs of classification (e.g., Block-DOs);
	2. repeat case B step 1-3 for each activated DO (e.g., BLock-OA);
	3. aggregate results (use the OA P_Domain aggregation protocol).
	Algorithm: Evaluate (Task-Domain, Task-Focus)

	start 1 get P_Domain protocols (decomposition, sorting, aggregation) 2 MakeActivationList using t...
	line 2: Making the activation list
	In a hierarchy of an OA (OA-hierarchy hereafter, i.e., all constituent DOs and all their hierarch...
	1. related to the task and crucial to the execution of the task.
	2. related to the task but not crucial to the execution of the task.
	3. not related to the task.

	Therefore, an activation list (referred to as activationlist hereafter) of the sub- DOs to partic...
	An activation order may also be required for execution of certain tasks.� The default activation ...
	The context of a task is passed from a super-OA to a sub-OA throughout the decomposition.� In thi...
	1. The set of all DO classes (of the existing hierarchy) which are eligible for activation accord...
	2. The DO classes that should not to be activated are compiled in a “skiplist.”� The making of th...
	3. The “activationlist” is then compiled as the difference between the max- domain-hierarchylist ...
	4. The activationlist is sorted using the P_Domain sorting protocol to determine the order of act...

	The following definitions and properties can be deduced from the preceding discussion and are nec...
	max-domain-hierarchy: the set of all eligible classes for task decomposition in respect to this p...
	min-domain-hierarchy: the minimum set of DO-classes necessary to execute an assigned task.� This ...
	domain-hierarchybottom: a class or a set of classes which represent the lower boundary of a max-d...
	domain-hierarchytop: a DO class, which represent the top boundary of the max- domain-hierarchy.
	leaf-DOs: a set of DO-classes that contains all DOs at the lower end of each branch of a hierarchy
	DOclassification: a DO class used for classifying the results of executing an assigned task (e.g....
	activationlist: a set of DO classes of which instances are to be activated to execute sub-tasks d...
	skiplist: a list of DO classes to be skipped during the activation of sub-DOs of an OA-hierarchy....
	interest context: the reasons for which an agent or a DO attribute is interested in another DO at...
	activation order: the order of activating DOs in an OA-hierarchy during the execution of a task.
	Making the skiplist (as a requirement for making the activationlist)
	The skiplist is used by the “MakeActivationList” algorithm to compile the activationlist.� If no ...
	1. P_Domain specified: The P_Domain protocol must provide a min- domain-hierarchy and may provide...
	2. DA specified: If the DA provided a DA_Skiplist all DO classes included must be in the final sk...
	3. Default: A Default_Skiplist is compiled if no skiplist is provided by either the P_Domain prot...

	From the previous discussion we can deduce that:
	• An OA-hierarchy is a subset of a provided DO-hierarchy (see Figure 5.6);
	• An OA-hierarchy is typically a subset of the max-domain-hierarchy (see Figure 5.6).� It is poss...
	• An OA-hierarchy may be a subset of the min-domain-hierarchy (see Figure 5.7B).� In such case th...
	• The min-domain-hierarchy is a subset of the max-domain-hierarchy;
	• The min-domain-hierarchy must exist as a subset in the activationlist;
	• The activationlist is a subset of the max-domain-hierarchy;
	• The skiplist is a subset of the OA-hierarchy, and in most cases is also a subset of the max-dom...
	• If a min-domain-hierarchy = activationlist => skiplist is maximum;
	• If max-domain-hierarchy = activationlist => skiplist is minimum (may be empty).
	Algorithm: MakeSkipList

	start # check that DA_Skiplist does not include min-domain-hierarchy DOs # 1 if Intersection (DA_...
	Algorithm: MakeActivationList

	start 1 if DOclassification is in max-domain-hierarchy 2 activationlist ¨ Union (Difference (max-...
	Algorithm: SortActivationList (activationlist)

	start 1 get P_Domain sorting protocol 2 oldSortedlist ¨ null 3 newSortlist ¨ null 4 For each DO i...
	Algorithm: InsertDOInSortedList (DO, oldSortedList, newSortedList)
	start 1 if oldSortedlist == null 2 Insert (DO, oldSortedlist) 3 else 4 if first DO of oldSortedli...
	Line 8: Aggregation
	Any decomposition of a task to sub-tasks is counter balanced with an aggregation of the sub-resul...
	Aggregation is not necessarily an addition of sub-results, it may require further computation by ...
	Algorithm: Aggregate (sub-results)
	start 1 check sub-DO IDs for repeated sub-results, or check results IDs 2 sub-resultslist ¨ sub-r...
	Line 7: Validating results
	Any task execution or aggregation result must be validated before it is returned to the super-age...
	Algorithm: Validate (result, validation mode)
	start 1 if validation mode == ? 2 case 1. ? == DA validation requested => DAValidation (result) 3...
	Algorithm: DAValidation (result)
	start 1 get DA validation 2 if results are not validated 3 get DA’s new values for re-evaluation ...
	Algorithm: SuperOAValidation (result)

	start 1 get super-agent validation 2 if results are not validated 3 error message 4 else (results...
	Algorithm: SelfValidation (result)
	start 1 InteractForSerivce (domain-EA) to evaluate results => return results 2 if results are not...
	Algorithm: NoValidation (result)
	start 1 return validation end
	5.2.2 Conflict Handling

	As explained in section 3.1 of Chapter 3 and illustrated in Chart 7 of Chapter 4, the conflict ha...
	Within the framework of this thesis, conflict detection is dependent on the OAs informing the DA ...
	Within the framework of this thesis conflict resolution is a series of DA controlled local evalua...
	The conflict detection uses attribute lists of interested agents and attributes from other DOs an...
	• Agents such as daylighting-EA, cost-EA, thermal-EA and elevation-EA;
	• Attributes of DO classes such as coordinates of StructElement-DO, Wall- DO width and height;
	• Attributes of the same DO class such as Window-DO glazing-type, window-type and shading device ...
	If the Window-DO glazing is modified each of the agents or DO attributes above may be affected in...
	How is the interestlist compiled?
	Each attribute of a DO has an interestlist associated with it upon creation.� The selection of th...
	It is possible to dynamically add more members in an interestlist during a session.� The addition...
	When an attribute value is being modified and checked for potential conflict each member of the i...
	1. a daylighting-EA should be in the interestlist of any Window-DO glazing attribute;
	2. a Wall-DO thermal mass attribute should be in the interestlist of its own Wall-DO thickness at...
	3. a Door-DO thickness attribute should be in the interestlist of the Wall-DO thickness (where th...

	The first example represents the general case and can be applied to any instances of a Window-DO ...
	To avoid redundancy in representation of attribute relations, attribute1 should not be in the int...
	A domain-EA registered in the interestlist of an attribute1 of OA1 may participate in a conflict ...
	• is currently providing service to OA2 using the same attribute1.� OA2 can either be another OA ...
	• previously provided service to an OA2 regarding the attribute1.� This case may only be consider...
	Each member in the interestlist is coupled with an “interest context”.� The context conveys the r...
	.�
	TABLE 5.1. An example of an Interestlist of a DO Attribute

	an interestlist of Wall-DO1 thickness attribute
	#
	DO-inst/Agent
	interested attribute
	interest context
	interact/activate
	1
	Acoustic-EA
	N/A
	Room-DO1 noise level
	Room-DO1
	2
	Wall-DO1
	thermal time lag (hr)
	Room-DO1 thermal comfort
	Thermal-EA
	3
	Door-DO1
	thickness (in)
	Wall-DO1 assembly (cont.)
	Geometry-EA
	In Table 1 an interestlist of a Wall-DO thickness attribute may include members such as: member “...
	How is the interestlist sorted with respect to the degree of importance of conflicts?
	The order of an interestlist should be subject to change according to the task in hand.� To do so...
	Controlling the conflict handling dependencies
	The recursive effect of changing a single attribute value of a DO on other DOs may reach deeply n...
	Constraint Satisfaction and the interestlist mechanism
	The notion of an attribute interestlist may project a conflict with the notion of a constraint ne...
	Algorithm: ConflictChecking&Handling

	start 1 provide the interestlist of attribute1 (being modified) of OA1 to the DA 2 prompt the DA ...
	Algorithm: DomainEAConflictSession (OA1, OA2)

	start 1 Assign OA2 an evaluation task to examine the new value of attribute1 in respect to the cu...
	Algorithm: ActiveDomainEAConflictSession (OA1)

	start 1 Activate (DO) (a duplicate of OA1 to conduct the new evaluation session) => return OA2 2 ...
	Algorithm: AttributeConflictSession(DO, OA1)

	start 1 if DO ¹ DO1 2 Activate (DO) => return OA2 (an OA of a different DO) 3 else (DO == DO1, lo...
	Algorithm: EvaluateConflictAlternatives (OA1, OA2)

	start 1 get alternative attribute values from DA 2 if alternative attribute values are provided 3...
	Line 24: Updating
	After the results of both task execution and conflict handling are validated, the OA has to updat...
	• Firstly, checking the constraints network.� The DO attributes being updated may be linked with ...
	• Secondly, to update the information of any clones of the DO which are used simultaneously by ot...
	Algorithm: Update (new-values)

	start # check for constraints satisfaction with other DOs # 1 for each constraint of the attribut...
	Algorithm: CheckConstraint (constraint, new attribute value)
	start 1 ApplyConstraint (new-value) 2 if new value does not satisfy constraint 3 error message 4 ...
	5.3 Examples of P_Domain protocols.

	As demonstrated by the algorithms of this chapter, the OA protocols are mainly domain dependent.�...
	5.3.1 Cost Evaluation Protocols

	Cost evaluation decomposition protocol
	• skiplist: N/A
	• min-domain-hierarchy: all leaf-DO classes (of the construction branch);
	• max-domain-hierarchy: [domain-hierarchytop -- domain-hierarchybottom];
	• domain-hierarchytop: Site-DO;
	• domain-hierarchybottom: leaf-DO level (of the construction branch).
	Cost evaluation sorting protocol
	• decomposition order: [Site-DO, Building-DO & LandScElement, Block- DO, and Leaf-DOs (of the con...
	• typical evaluation order: top-down;
	• special evaluation order: DOclassification is first in level.
	Cost evaluation aggregation protocol
	• aggregation-type: Site-DO (and below) => Request service from cost-EA
	5.3.2 Structural Analysis Protocols

	Structural analysis decomposition protocol
	• skiplist: Site-DO, all leaf-DO classes excluding the StructElement-DO class;
	• min-domain-hierarchy: [BFloor-DO, StructElement-DO];
	• max-domain-hierarchy: [domain-hierarchytop -- domain-hierarchybottom];
	• domain-hierarchytop: Building-DO;
	• domain-hierarchybottom: StructElement-DO.
	Note: In a Structural recommendation protocol min-domain-hierarchy does not include StructElement...
	Structural analysis sorting protocol
	• decomposition order: [Building-DO, Block-DO, VZone-DO BFloor-DO, HZone-DO, StructElement-DO];
	• typical analysis order: carried loads (top-down order, higher loads are added to the lower ones...
	• special analysis order: suspended loads (bottom-up order, lower loads are added to the higher o...
	Structural analysis aggregation protocol
	• aggregation-type: Site-DO => listing (e.g., table) Building (and below) => Request service from...
	5.3.3 Daylighting evaluation protocols

	Daylighting evaluation decomposition protocol
	• skiplist: LandScElement-DO, all leaf-DO classes excluding the Opening- DO class and the Layer-D...
	• min-domain-hierarchy: [Room-DO, Wall-DO, Ceiling-DO, Floor-DO, Opening-DO];
	• max-domain-hierarchy: [domain-hierarchytop -- domain-hierarchybottom]
	• domain-hierarchytop: Building-DO;
	• domain-hierarchybottom: Opening-DO.
	Daylighting evaluation sorting protocol
	• decomposition order: [Building-DO, Block-DO, VZone-DO BFloor-DO, HZone-DO, Room-DO, Opening-DOs];
	• typical evaluation order: top-down;
	• special evaluation order: must exhaust all Room-DOs with shared Opening-DOs.
	Daylighting aggregation protocol
	• aggregation-type: BFloor-DO (and above) => listing (e.g., table) Room-DO (and below) => Request...
	FIGURE 5.1.

	Decomposition of a Block-DO cost evaluation task.
	FIGURE 5.2.

	Decomposition of a Block-DO cost evaluation task (classified per BFloor-DO).
	FIGURE 5.3.

	Decomposition of a Block-DO cost evaluation task of StructElement-DOs’ (classified per VZone-DO).
	FIGURE 5.4.

	Decomposition of a Block-DO structural analysis task.
	FIGURE 5.5.

	Decomposition of a BFloor-DO daylighting evaluation task.
	FIGURE 5.6.

	Relation between Hierarchies (general case): min-domain- hierarchy < OA-hierarchy < max- domain-h...
	FIGURE 5.7.

	Special Case Relation Between Hierarchies:
	A) Case 1: min-domain-hierarchy < max-domain-hierarchy < OA- hierarchy.
	B) Case 2: OA-hierarchy < min- domain-hierarchy < max- domain-hierarchy
	FIGURE 5.8.

	Relation Between a Skiplist and an Activationlist (general case).

	Chapter6F.pdf
	6 Implementation Design
	6.1 Object Oriented Implementation

	Originally, the implementation of the OA model started within a rule-based development environmen...
	A later version of CLIPS (namely CLIPS6.0) provided a rule-based object- oriented test bed for th...
	A later decision to design the implementation of the OA model using a complete object oriented de...
	The reminder of this chapter focuses on the development of the general object model for an OA-bas...
	6.2 The Object Models

	Using an OODE, object models are necessary to represent the architecture of any OA-based environm...
	6.2.1 The general object model

	The general object model, shown in, Figure 6.1, is structured around the ‘Environment’ class, whi...
	The ‘Agent’ class is the super-class of a classified hierarchy of different agent classes includi...
	The ‘DataObject’ class is the super-class of any hierarchy of the domain DOs.� It holds links to ...
	The relation between the ‘DataObject’ class and both ‘A_Object’ class and ‘P_ObjectType’ class in...
	A brief explanation of the object relation is necessary before discussing the unique relations of...
	Object Relations
	The general object model, shown in Figure 6.1, comprises a collection of objects with aggregation...
	Association
	An association relationship is a link between two classes.� There may exist more than one associa...
	Aggregation
	An aggregation relationship is marked by a diamond shape attached to the class box indicating the...
	Conceptually, an aggregation relationship is a specialization of an association relationship.� It...
	Generalization
	A generalization relationship represents the relation sub-class/super-class, and is marked by an ...
	The general object model comprises the following object classes.� All object classes are identifi...
	Session
	An instance of the ‘Session’ class would contain information needed to manage the decision making...
	Environment
	An instance of the ‘Environment’ class would contain the main players needed for decision making ...
	Scenario
	An instance of the ‘Scenario’ class holds the information of a sequence of decision making events...
	Agent
	This class contains all possible agent classes within an environment.� The common behavior of an ...
	Task
	An instance of the ‘Task’ class holds information about an assigned task.� Such information as ta...
	Result
	An instance of the ‘Result’ class holds information about the result of the execution of the assi...
	Goal
	An instance of the ‘Goal’ class holds information about what need to be accomplished as a result ...
	A_DecisionMaker
	This class contains all possible DM classes within an environment.� A DM initiate sessions, compi...
	A_D_Principal
	An instance of the ‘A_D_Principal’ class holds information about a principal DM who is granted al...
	A_D_Secondary
	An instance of the ‘A_D_Secondary’ class holds information about a DM who is given limited author...
	A_System
	This class contains all possible SA classes, namely all UAs that are essential to the environment...
	A_S_Utility
	An instance of the ‘A_S_Utility’ class is a UA which is environment specific agent such as a comm...
	A_S_Expert
	An instance of the ‘A_S_Expert’ class is an EA which is a domain specific application (an executa...
	A_object
	An instance of the ‘A_object’ class is an OA which is a temporal agent of DO performing an assign...
	Protocol
	This is the super class of all the protocol classes.� The sub-class of this class contain the int...
	P_ObjectType
	This is the super class of all the DO-coupled protocol classes.� Each DO in the environment must ...
	P_TaskType
	This is the super-class of all protocols related to the task-types that can be performed in the e...
	P_Domain
	An instance of the ‘P_Domain’ class holds information about the task-domain (e.g., cost, structur...
	DataObject
	This is the super class of all DO classes within an environment.� Various domain specific DO clas...
	Constraint
	An instance of the ‘Constraint’ class represents a constraint on a single attribute value of a DO...
	ConstraintArc
	An instance of ‘ConstraintArc’ class represents a constraint relation between;
	• Two attribute values, which may belong to the same DO or to two different DOs;
	• An attribute value and another constraint arc;
	• Two ‘Constraint’ objects;
	• Two ‘ConstraintArc’ objects.�
	A ‘ConstraintArc’ object has one or more logical expressions or mathematical equations that repre...
	6.2.2 A domain specific object model

	Two domain specific object models are presented in this section.� The first is for architectural ...
	In the first model, the first added set is a set of architectural DOs classified as sub-classes o...
	This classification is exemplary and can be collapsed or expanded to accommodate other related DO...
	The second set is a group of sub-classes of the ‘P_ObjectType’ class.� It provides the associated...
	Figure 6.3 provides a second example of domain specific model for structural engineering.� As in,...
	6.3 DO-Hierarchies

	DO-hierarchies are used for task decompositions (see Sections 4.3.4 and 6.2.1).� The DM may either:
	1. Establish a new hierarchy of the DOs of the environment.
	2. Use existing hierarchy which may either be provided by the environment or saved from a previou...

	Agents of the environment uses the current DO-hierarchies (as established by the DM) and may not ...
	The model also includes few non-design objects such as Occupant, Activity, Landscape, and Topogra...
	Except Occupant and Activity objects, each object in Figure 6.4 typically has an enclosure with v...
	6.4 Implementation Design of the Activation Process

	The following scenario is provided to illustrate how an OA is created according to the architectu...
	• An agent (e.g., DM) requests the activation of a DO_E_Room to perform a daylighting evaluation ...
	• The request is received by the ‘A_Object’ class which, in turn, creates a Room-OA instance (an ...
	• The A_O_Room requests a clone of the DO_E_Room (a copy of the exact DO_E_Room being activated).�
	• Provided the clone, the A_O_Room would load the interaction protocols related to its DO-type (m...
	• The DM assigns the task to the created A_O_Room, which, in turn, loads the task-type protocols ...
	• The A_O_Room also loads the domain specific daylighting protocols (makes an instance of the ‘P_...
	• The A_O_Room is now ready to interact with the environment agents to complete the execution of ...
	This Scenario is generalized in the activation diagram provided in Figure 6.6.� The implementatio...
	Detailed steps of the activation process shown in Figure 6.6:
	1. activate: a DM (or any agent) send an activation message to a DO;
	2. new OA: the DO instantiates an OA object;
	3. register: the OA registers itself in the OAs list of the DO;
	4. register: the DO registers itself in the DOs list of the OA;
	5. clone: the OA requests a clone of the DO;
	6. new clone: the DO duplicates itself.� In addition, the DO registers itself with the DO-Clone);
	7. register: clone registers itself in the clones list of the DO;
	8. register: DO-Clone registers itself in the clones list of the OA;
	9. register: OA registers itself with the DO-Clone;
	10. new P_ObjectType: the OA instantiates a new object-type protocol object of the same DO-type (...
	11. register: the P_ObjectType registers itself in the Protocols list of the OA;
	12. register: the OA registers itself in the sub-agents list of the DM;
	13. assign: the DM assigns a task to the OA;
	14. new task: the OA instantiates a new Task object.� In addition, the OA registers itself in the...
	15. new goal: the Task instantiates a new Goal object.� In addition, the Task registers itself wi...
	16. register: the Goal registers itself in the goals list of the Task;
	17. new result: the OA instantiates a new Result object.� In addition, the Task registers itself ...
	18. register: the Result registers itself in the results list of the Task;
	19. new P_TaskType: the Task instantiates a task-type protocol object of the same task-type (e.g....
	20. register: the P_TaskType registers itself in the Protocols list of the Task;
	21. new P_Domain: the Task instantiates a domain protocol object of the same task-domain and task...
	22. register: the P_Domain registers itself in the Protocols list of the Task;
	23. register: the Task registers itself in the tasks-in list of the OA;
	24. register: the OA registers itself in the tasks-out list of the DM;
	25. execute task: OA starts executing the assigned task (this step is not included in Figure 6.5).

	Figure 6.7 shows an object model of an OA after it is instantiated, assigned a task and loaded th...
	6.5 The Objects Implementation Design

	This section presents the design of objects of the model shown in Figure 6.1 to be developed in a...
	6.5.1 The object structure

	As in any OODE, each object has three main components; a name, a set of attributes and a set of m...
	The object names follow a convention that is specific to this framework.� Names of objects in the...
	Naming convention
	Object attributes are holders to the necessary information of the object.� Each attribute is decl...
	Attributes
	The attributes are also relation holders.� For instance, an attribute of the type ‘<object-name> ...
	The objects illustrated on this chapter are produced in OMTool and, therefore, they follow the OM...
	In this implementation design most of the attributes are protected.� Therefore, accessing the inf...
	An attribute may be set to a specified default value upon creation of the object instance.� For e...
	As in any OODE, the object methods serves primarily as the interface to its own attributes.� Exte...
	Methods
	Typically, common attributes of the types ‘char *’, ‘bool’, ‘int’, ‘float’ and ‘<object-name> *’a...
	In each object there is a ‘Constructor’ method and a ‘Destructors’ method.� A constructor method ...
	Other methods are designed to achieve environment specific functions such as the ‘activate’ and ‘...
	6.5.2 Characterized attributes of objects in the OA model

	The following section describes few characterized attributes of selected objects from those shown...
	Attributes of the ‘Session’ class (of Figure 6.8):
	• environments: a list of all saved environments
	Attributes of the ‘Environment’ class (of Figure 6.8):
	• session: a link to the Session where this Environment is created
	• scenarios: a list of all saved Scenarios of this Environment
	• agents: a list of Agents currently active in this Environment
	• DOs: a list of DOs currently instantiated in this Environment
	Attributes of the ‘Scenario’ class (of Figure 6.8):
	• environment: a link to the Environment where this Scenario is recorded
	Attributes of the ‘DataObject’ class (DO) (of Figure 6.9):
	• activationstatus: a boolean to indicate whether an OA for this DO is currently active
	• clones: a list of all clones of this DO currently used by OAs
	• numofclones: number of clones on the previous list
	• interestlist: a list of interested DOs and EAs for each attribute of the DO
	• shared: a boolean to indicate whether the DO is a shared one
	• OAs: a list of OAs that are currently representing the DO
	• clonesof: the DO of which this clone is a duplicate of (only when the DO is a cloned instance)
	• master: the first OA that is currently representing the DO
	• environment: the current environment where the DO exists
	• constraints: a list of all constraints on the DO attributes
	• arcs: a list of all constraint arcs linking the DO attributes with other attributes, constraint...
	Attributes of the ‘Constraint’ class (of Figure 6.9):
	• DO: the DO of the constrained attribute
	• arcs: a list of all constraint arcs linking this constraint with other attributes, constraints ...
	• attribute: the attribute name
	• min: the lower bond of the constraint acceptable range
	• max: the upper bond of the constraint acceptable range
	Attributes of the ‘ConstraintArc’ class (of Figure 6.9):
	• DOs: a list of DO using this constraint arc
	• arcends: a list of attributes, constraints, and constraint arcs linked by this constraint arc
	• expression: an expression that represents the link between the arc-ends.
	• value: the current evaluation of the constraint arc expression (e.g., mathematical equation)
	Attributes of the ‘Agent’ class (of Figure 6.10):
	• superagents: a list of all agents that are currently assigning a task to this agent
	• subagents: a list of all agents that are currently assigned tasks by this agent
	• tasksout: a list of all assigned tasks by this agent
	• taskin: a list of all tasks assigned to this agent
	• environment: the environment where this agent currently exists
	Attributes of the ‘A_Object’ class (of Figure 6.10):
	• DOs: a list of all DOs that are currently represented by this OA
	• clones: a list of all clones that are currently used by this OA
	Attributes of the ‘Task’ class (of Figure 6.11):
	• assignedby: the agent that assigned this task
	• focus: the main attribute to be modified or the alternative attribute value to be examined
	• subtasks: a list of all sub-tasks assigned to other agents as a results of executing this task ...
	• assignedto: a list of all sub-agents that are currently assigned sub-tasks by this task
	• satisfied: a boolean to indicate whether this task is executed successfully
	• results: a list of all results generated as a result of executing this task
	• goals: a list of all goals to be accomplished by the execution of this task
	• protocols: a list of all protocols that are currently loaded for the execution of this task
	Attributes of the ‘Goal’ class (of Figure 6.11):
	• maxvalue: upper bond of the acceptable value range
	• minvalue: lower bond for the acceptable value range
	• unit: units of measurement (of the values)
	• task: the task of which this goal is related
	Attributes of the ‘Result’ class (of Figure 6.11):
	• value: the current result value
	• task: the task of which this result is related
	Attributes of the ‘Protocol’ class (of Figure 6.12):
	• OA: a list of all OAs that are currently using this protocol
	The following two objects are exemplary damian protocols.� These are not included in the object m...
	Attributes of the ‘P_D_Decomposition’ class (of Figure 6.12):
	• skiplist: a list of all DOs to be skipped during the decomposition of a task
	• mindomainhierarchy: a set of the minimum DO classes needed for the execution of tasks of this d...
	• maxdomainhierarchy: a set of the maximum DO classes that can be included for the execution of t...
	• domainhierarchytop: a DO class that marks the upper bond of the domain- hierarchy
	• domainhierarchybottom: a set of DO classes that mark the lower bond of the domain-hierarchy
	Attributes of the ‘P_D_Sorting’ class (of Figure 6.12):
	• evaluationorder: the general orientation of task decomposition
	• decompositionorder: an ordered list of DO classes used as a specific guide for task decompositi...
	• doclassification: a DO class where the task result is classified about (e.g., cost of a BFloor-...
	• specialcaseorder: an additional variable to accommodate special cases of task decomposition.
	FIGURE 6.1.
	A general object model of an OA environment
	FIGURE 6.2.
	An object model of an architectural environment.
	FIGURE 6.3.
	An object model of a structural environment.
	FIGURE 6.4.
	An architectural object hierarchy.
	FIGURE 6.5.
	Object model for geometrical representation.
	FIGURE 6.6.
	The implementation design of the activation process.
	FIGURE 6.7.
	Object model of an OA.
	.
	FIGURE 6.8.
	Session, Environment and Scenario Objects.
	FIGURE 6.9.
	DataObject (DO), Constraint and ConstraintArc objects.
	FIGURE 6.10.
	Agent and A_Object (OA) Objects.
	FIGURE 6.11.
	Task, Goal, and Result Objects.
	FIGURE 6.12.
	Protocol, P_D_Decomposition and P_D_Sorting objects.

	Chapter7F.pdf
	7 Conclusions
	7.1 Contributions

	During the past two decades, several design support tools have been developed for both research a...
	7.1.1 Specific contributions

	This thesis is structured around the development of a framework for an a object- agent-based deci...
	• A general architecture of an object-agent-based environment as a demonstration of how a design ...
	• A computational framework for task execution, decomposition, delegation, and management for glo...
	• A set of general and domain specific reusable patterns of interaction needed to allow a designe...
	• A set of interaction algorithms (mainly for activation, decomposition and conflict handling) to...
	• A mechanism for compiling an activation list to contain the design objects which can (or must) ...
	• A general object oriented implementation design for an object-agent- based environment was engi...
	7.2 Research Topics and Agenda for Future Work

	This dissertation addresses a number of fundamental issues around the notion of agency in design....
	7.2.1 Object-agents knowledge

	Access to and interpretation of external knowledge beyond the immediate coordination knowledge of...
	1. A global communication mechanism;�where agents can participate in communication systems where ...
	2. Planning long term activities;�where agents can dynamically plan activities considering other ...
	7.2.2 Conflict handling mechanism

	In conflict handling situations, enabling agents (in general) to conduct direct negotiations with...
	Another area of work that is specific to the OA, is the enhancement of the conflict detection mec...
	1. Sorting the interest list;�establishing a weight mechanism to enable object-agents to sort any...
	2. Controlling conflict dependencies; establishing a mechanism to control the number of conflict ...
	7.2.3 Object-agent autonomy in design

	Agent autonomy and the ability to self-initiate tasks, plan activities, handle expanded goals can...
	1. Self-initiated tasks;�in addition to executing assigned tasks object-agents should have the ab...
	2. Expanding the notion of goals for object-agents;�an object-agent executing a task may then enc...
	7.2.4 Interface of an object-agent-based environment

	An object-agent-based environment is a highly interactive system.� Therefore, interface design pl...
	1. Providing and manipulating task dependent hierarchies;�an interface should provide functionali...
	2. Controlling the flow of task executions;�through the interface the designer should be aware (u...
	3. Managing conflict handling sessions; the interface should provide the designer with the means ...
	4. Facilitating communications among agents; to control the interactions among agents of the envi...

	BibliographyF.pdf
	Bibliography
	Denmark Aarhus (1995). "Object and Agents Love at first Sight or Shotgun Wedding?". ECOOP 95, Wor...
	Abiteboul, Serge and Bonner, Anthony (1991). "Objects and Views".�In Proc. of the ACM SIGMOD Inte...
	Acharya, A. Tambe, M. and Gupta, A. (1992). "Implementation of Production Systems on Message�Pass...
	Agha, G. A. (1986). "Actors: A Model of Concurrent Computation in Distributed Systems", The MIT P...
	Philip E. Agre (1995). "Computational Research on Interacbion and Agency", Artificial Intelligenc...
	Ahmed, S., Wong, A., Sriram, D. and Logcher R. A (1991). "Comparison of Object- Oriented Database...
	Akin, ö., Dave, B. and Pithavadian, S. (1989). "A Paradigm for Problem Restructuring in Design". ...
	Akin, ö. (1988). "Architectural Design as Task for Complex Problem Solving Systems", Department o...
	Akin, ö. (1988). "Expertise of the Architect", Department of Architecture, Carnegie Mellon Univer...
	Alberts, L., Mars, N. and Wognwm, P. (1992). "Structuring Design Knowledge on the Basis of Generi...
	Assal, H. and Eastman, C. (1994). "An Object-based Information Model for Design Supporting partia...
	Augenbroe, G. (1992). "Integrated building performance evaluation in the early design stages". In...
	Z. Aygen (1999). "A Hybrid Model for Case Indexing and Retrieval in Building Design", School of A...
	Bahler, D. and Bowen, J. (1992). "Supporting Multiple Perspectives: A Constraint�Based Approach t...
	Banerjee, Jay; Kim, Won; Kim, H.J.; and Korth, Henry F. (1987). "Semantic and Implementation of S...
	Basye, K., Dean, T. and L. P. Kaelbling (1995). "Learning Dynamics: System Identification for Per...
	Bates, J., Loyall, A. B. and Reilly, W. S. (1992). "An Architecture for Action, Emotion and Socia...
	Batory, D.S. and Kim, Won. (1985). "Modeling Concepts for VLSI CAD Objects", ACM Transactions on ...
	Batory, D.S. and Buchmann, Alejandro P. Molecular (1984). "Objects, Abstract Data Types and Data ...
	Baykan C. and Flemming U. (1992). "Constraint Generation vs. Generate and Test", EDRC Tech Report...
	Barsalou, Thierry, Keller, Arthur M., Siambela, Niki and Wiederhold Gio. (1991).�"Updating Relati...
	Randall D. Beer (1995). "A Dynamical Systems Perspective on Agent-Enviroment Interaction", Artifi...
	Berker, I., and D.C.Brown (1995). "Conflicts and Negotiations in Single Function Agent Based Desi...
	Bertino, Elisa and Martino, Lorenzo. (1991). "Object-Oriented Database Management Systems: Concep...
	Biliris, Alexandros (1989) . “A Data Model for Engineering Design Objects", IEEE, August, 1989.
	Biliris, Alexandros (1989) . "Management of Objects in Engineering Design Applications", Technica...
	Birmingham, W. P., E. H. Durfee, T. Mullen, and M.P. Wellman (1995). "The Distributed Agent Archi...
	Boden, Margaret A. (Ed.) 1996. "Artificial Intelligence: Handbook of Perception and Cognition", 2...
	Bond, A. H. (1989). "The Cooperation of Experts in Engineering Design". In Distributed Artificial...
	Grady Booch (1994). "Object-Oriented Analysis and Design with Applications", Booch, G., Jacobson,...
	Brafman, R. I., Tennenholtz, M. (1996). "On Partially Controlled Multi-Agent Systems".� In Journa...
	Brooks, R. A. (1986). "Asynchronous Distributed Control System for a Mobile Robot". In Proc. SPIE...
	Brown, D. and Chandrasekaran, B. (1989). "Design Problem Solving: Knowledge Structures and Contro...
	Buchmann, A.P., R.S. Carrera, M.A. Vasquez-Galindo (1991). "Handling constraints and their except...
	Burkhard, H. (1995). "How to Define Agent Properties - Or: What is a Fair Agent?".�In Lecture Not...
	Burmeister, B., Haddadi, A. and Sundermeyer, K. (1995). "Generic, Configurable, Cooperation Proto...
	Cardelli, Luca and Wegner, Peter. On Understanding (1985). "Types, Data Abstraction, and Polymorp...
	Castelfranchi, C. and Falcone, R. (1997). "Delegation Conflicts".�In Lecture Notes in Artificial ...
	Cavedon, Lawrence, Rao, Anand & Wobcke, Wayne (EDS) (1997). "Intelligent Agent Systems: Theoretic...
	Chaib-draa, B. (1996). "Interaction Between Agents in Routine, Familiar and Unfamiliar Situations...
	Chaib-draa, B. and Levesque, P. (1994). "Hierarchical Model and Communication by Signs, Signals a...
	Chaib�draa, B., Mandiau, R. and Millot, P. (1992). "Distributed Artificial Intelligence: An Annot...
	Christen Krogh (1995). "The Rights of Agents" [IJCAI'95 Workshop on Agent Theories, Architectures...
	Cohen, P., M. Wang, and SC Baeg (1994). "OAA: An Open Agent Architecture" [AAAI Spring Symposium,...
	Conrey, S., Meyer, R and Lesser (1988). "Multistage Negotiation in Distributed Planning". In Read...
	Correa, M. and Coelho, h. (1995). "Around the Architectural Agent Approach to model Conversations...
	Coull, T. and Rothman P. (1993). "Virtual Reality for Decision Support Systems". In AI Expert, Au...
	Craig, I.D. (1994). "A Perspective on Multi-Agent Systems" [CS-RR-273], Coventry, UK.
	Danforth, Scott, and Tomlinson, Chris (1988). "Type Theories and Object-Oriented Programming. ACM...
	Dave, B. (1995). "Towards Distributed Computer-Aided Design Environments", CAAD, Futures '95, Sin...
	Kurmann David (1995). "Sculptor - A Tool for Intuitive Architectural Design", CAAD Futures '95, S...
	Davis, C. T. Jr. (1978). "Data Processing Spheres of Control".�IBM Systems Journal 17(2) pp.179-198.
	Davis, R. and Smith, R. (1983). "Negotiation as Metaphor for Distributed Problem Solving". In Art...
	Decker, K., and Lesser, V. (1995). "Coordination Assistance for Mixed Human and Computational Age...
	Decker, K. and Lesser, V. (1990). "A Cooperative Distributed Problem Solving". In Proc. 10th Inte...
	Deitel, H.M. and Deitel, P.J. (1994). "C++ How to Program", Prentice-Hall, Inc., Englewood, NJ.
	D’Inverno, M. and Luck, M. (1996). "Formalising the Contract Net as a Goal-Directed System".�In L...
	Dittrich, Klaus R. (1991). "Object-Oriented Database Systems: The Notion and the Issues". In Ditt...
	Dodhiawala, R., Jagannathan, V. and Baum, L. (1986). "Integrating Architecture for Complex System...
	Durfee, E. H., and Rosenschein, J. S. (1994). "Distributed Problem Solving and Multi- Agent Syste...
	Durfee, E. H., Damouth, D., Huber, M., Montgomery, T. A., and Sen, S. (1992). "The Search for Coo...
	Durfee, E. H. and Motogomery, T. A. (1990). "A Hierarchical Protocol for Coordination of Multiage...
	Durfee, Edmund H. (1988). "Coordination of Distributed Problem Solvers", Kluwer Academic Publishe...
	Durfee, E., Lesser, V. and Corkill, D. (1987). "Cooperation Through Communication in a Distribute...
	Eastman, Charles (1994). "Survey of Object Oriented Models". Informal, Design and Computation Res...
	Eastman, C. M., Chase S. C. and Assal, H. H. (1992). "System Architecture for Computer Integratio...
	Mohammad Sherif El-Attar (1997). "Application of Artificial Intelligence in Architectural Design"...
	Engeli, M., Kurmann, D., Schmitt, G. (1995). "A New Design Studio - Intelligent Objects and Perso...
	Engeli, M., Kurmann, D. (1996). "A Virtual Reality Design Environment with Intelligent Objects an...
	Ephrati, E. and Rosenschein, J. S. (1995). "A Framework for the Interleaving of Execution and Pla...
	Ephrati, E. and Rosenschein, J. S. (1994). "Multi-Agent Planning as Search for a Consensus that M...
	Falcone, R. and Castelfranchi, C. (1994). "Plan Recognition: From Single-Agent to Multi- Agent Pl...
	Fenves, S., Flemming, U., Hendrickson, C., Maher, M.L., and Shmitt, G. (1989). "A Prototype Envir...
	Ferber, J. and Carle, p. (1990). "Actors and Agents Reflective Concurrent Objects: A MERING IV Pe...
	Fischer, G. and Nakakoji, K. (1992). "Making Design Objects Relevant to the Task at Hand", Depart...
	Finger, S., Fox, M., Navinchandra, D., Printz, F., and Rinderle, J. (1988). "The Design Fusion Pr...
	Flanagan, Owen (1991). "The Science of The Mind", The MIT press, Massachusetts Institute of Techn...
	Flemming, Ulrich (1993). "Artificial Intelligence and Design: A Mid-Term Review", Department of A...
	Flemming, U. and Woodbury, R. (1995). "Software Environment to Support Early Phases in Building D...
	Foner, Leonard N. (1993). "Whats an Agent Anyway: A Sociological Case Study", Agents Memo 93-01. ...
	Gary, J. and Reuter, A. (1993). "Transaction Processing: Concepts and Techniques". Morgan Kaufmann.
	Gaines, Brian R, and Mildred L G Shaw (1993). "Eliciting Knowledge and Transferring it Effectivel...
	Gaines, Brian R, and Mildred L G Shaw (1993). "Knowledge Acquisition Tools based on Personal Cons...
	Gamma, E., Helm, R., Johnson, R. and J. Vlissides (1995). "Design Patterns: Elements of Reusable ...
	Gauchel, J., Van Wyk, S., Baht, R., and Hovestadt, L., (1992). "Building Modeling Based on Concep...
	Ghedira, K. (1994). "A Distributed Approach to Partial Constraint Satisfaction Problems". In Lect...
	Gmytrasiewicz, Piotr J., and Edmund H. Durfee (1993). "Reasoning about Other Agents: Philosophy, ...
	Gmytrasiewicz, P., Durfee, E., and Wehe, D. (1992). "The Utility of Communication in Coordinating...
	Goodwin, R. (1993). "Formalizing Properties of Agents". Technical Report CMU-CS-93- 159, Carnegie...
	Gruber, T., Tenenbaum, J. and Weber, J. (1992). "Toward a Knowledge Medium for Collaborative Prod...
	Gu, C. and Ishida, T. (1996). "Analyzing the Social Behavior of Contract Net Protocol".�In Lectur...
	Guessoum, Z. and Dojat, M. (1996). "A real-Time Agent Model in an Asynchronous- Object Enviromen...
	Hall, L. E., Macaulay, L. and O’Hare, G. (1992). "User Role in Problem Solving with Distributed A...
	Hayes-Roth, B., L. Brownston, and R. v. Gent (1995). "Multiagent Collaboration in Directed Improv...
	Hayes-Roth, B. (1995). "Agents on Stage: Advancing the State of the Art of AI. Knowledge", [Syste...
	Hayes-Roth, B., K. Pfleger, P. Morignot, and P. Lalanda (1995). "Plans and Behavior in Intelligen...
	Heiler, Sandra and Zdonik, Stanley (1990). "Object Views: Extending the Vision".�In Proc. of the ...
	Hewitt, C. and Kornfeld, B. (1980). "Message Passing Semantics", SIGART Newsletter, p. 48, Oct.
	Hewitt, C. and Yonezawa, A. (1977). "Modeling Distributed Systems". In Proc. 5th international Jo...
	Holland, J. H., Holyoak, K. J., Nisbett, R. E. and P. R. Thagard (1989). "Induction: Processes of...
	Ian Horswill (1995). "Analysis of Adaptation and Enviroment".�Artificial Intelligence 73(1-2), Pa...
	Jennings, N. R., Sycara, K. and Wooldridge, M. (1998). "A Roadmap of Agent Research and Developme...
	Jennings, N. R. (1995). "Controlling Cooperative Problem Solving in Industrial Multi- Agent Syste...
	Jennings, N.R., and M. Wooldridge (1995) "Applying Agent Technology".�Applied Artificial Intellig...
	Jennings, N. R. (1993). "Commitments and Conventions: The Foundation of Coordination in Multi-Age...
	Jonker, C. M. and Treur, J. (1997). "Modeling an Agent’s Mind and Matter".�In Lecture Notes in Ar...
	Joosen, W., Bijnens, S., Matthijs, F., Robben, B., Van Oeyen, J. and P. Verbaeten (1997). "Buildi...
	Kalay, Y. E., (1989). "Principles of Computer�Aided Design: Modeling Objects and Environments", J...
	Katz, Randy H. and Chang, Ellis E-Li (1991)."Inheritance Issues in Computer-Aided Design Database...
	Kautz, Henry, Selman, Bart, Coen, Michael, Ketchpel, Stevenl, and Chris Ramming (1994). "An Exper...
	Kearney, P. J. (1992). "Experiments in Multi-Agent System Dynamics".�In Lecture Notes in Artifici...
	Khoshafian, S. And Copeland, G. (1986). "Object Identity". In OOPSLA Proc., 1986.
	Khedro, T., Genesereth, M., and Teicholz, P (1993). "Federation of Collaborative Design Agents", ...
	Kinny, D., Ljungberg, M., Rao, A., Sonenberg, E., Tidhar, G. and Werner, E. (1992). "Planned Team...
	David Kirsh (1995). "The Intelligent Use of Space".�Artificial Intelligence 73(1-2),Pages 31-68.
	Klein, M. (1990). "Mechanisms for Cooperative Problem Solving and Multi�Agent Learning in Distrib...
	Kraus, S. and Wilkenfeld, J. (1990). "The Function of Time in Cooperative Negotiations". In Proc....
	Krishnamurti, R. and Earl, C. (1992). "Shape Recognition in Three Dimensions", Environment and Pl...
	R. Krishnamurti (1986). "The Mole Picture Book: On a Logic for Design". In Design Computing, Vol....
	Thomas S. Kuhn (1970). "The Structure of Scientific Revolutions", University of Chicago, Chicago.
	Kurihara, S., Aoyagi, S. and R. Onai (1997). "Adaptive Selection of Reactive/Deliberate Planning ...
	Larsi, B. Larsi, H. and Lesser, V. (1990). "Negotiation and its Role in a Cooperative Distributed...
	Lee, K., Mansfiels Jr., W. and Bellcore, A. (1993). "A Framework for Controlling Cooperative Agen...
	Lesser, V., Durfee, E., and Corkill, D. (1992). "Cooperative Distributed Problem Solving". In The...
	Lesser, V., Carven, N., and Cuetanovic, Z. (1991). "Sophisticated Cooperation in FA/C Distributed...
	Lesser, V. and Erman, L. (1988). "Distributed Interpretation: A Model and Experiment". In Reading...
	Marvin Levine (1988). "Effective Problem Solving", Prentice Hall, Englewood Cliffs, NJ.
	Liu, J. and Sycara, K. (1995). "Emergent Constraint Satisfaction Through Multi-Agent Coordinated ...
	Lyons, d. and Hendriks, A.J.(1995). " Exploiting Patterns of Interaction to Achieve Reactive Beha...
	Maes, P. (1991). "Situated Agents Can Have Goals". In Designing Autonomous Agents: Theory and Pra...
	Mahdavi, A., G. Suter (1997). " On implementing a computational facade design support tool". In E...
	A. Mahdavi. (1996). " SEMPER: a new computational environment for simulation-based building desig...
	Mamou, Jean-Claude and Medeiros, Claudia Bauzer (1991) . "Interactive Manipulation of Object-Orie...
	M. Minsky (1986) . "The Society of Mind", Simon and Schuster, New York.
	W. J. Mitchell (1989) . "A Computational View of Design Creativity", Preprints: Modeling Creativi...
	Monk, Simon (1994). "View Definition in an Object-Oriented Database", Information and Software Te...
	Monk, Simon and Sommerville, Ian (1993). "Schema Evolution in OODBs Using Class Versioning", SIGM...
	Muller, Jorg P., Wooldridge, Michael J. & Jennings, Nicholas R. (EDS) 1997. "Intelligent Agents I...
	Myers, L., Pohl, J., Aly, S., Chien, S., Cotton, J., Pohl, K., Rodriguez, T. and Snyder, J. (1993...
	Nagao, K., Hasida, K. and Miyata, T. (1995). "Emergent Planning: A Computational Architecture for...
	Neumann, Thomas (1983). "On Representing the Design Information in a Common Database". In SIGMOD ...
	Noh, S., Gmytrasiewicz, P. (1997). "Multiagent Coordination in Antiair Defense: A Case Study".�In...
	Osborn, S.L. Design (1991). "Issues for Object-Oriented Database Systems".�In Dittrich, Dayal and...
	Pan, J. and Tenenbaum, J. (1991). "An Intelligent Agent Framework for Enterprise Integration".�In...
	Papamichael, K., J. La Porta, H. Chauvet, D. Collins, T. Trzcinski, J. Thorpe, S. Selkowitz (1996...
	Pernici, Barbara (1990). "Objects with Roles".�Dipartimento di Elettronica, Politecnico di Milano...

	Pohl, J.; Porczak, M.; Pohl, K.J.; Leighton, R.; Assal, H.; Davis, A.; Vempati, L.; Wood, A.; and...
	Pohl J., A, Chapman, K. Pohl, J. Primrose and A. Wozniak (1997). "Decision Support Systems: Notio...
	Pohl, J. (1996). "Agents and their Role in Computer-Based Decision Support Systems", In Advances ...
	Pohl, K. (1996). "Koala: An Object-Agent Architectural Design System", Master Thesis, College of ...
	Pohl, K. (1996). "Koala: An Object-Agent Architectural Design System".�In Advances in Cooperative...
	Pohl J., L. Myers and A, Chapman (1994).�"Thoughts on the evolution of Computer- Assisted Design"...
	Pohl, J. and Myers, L. (1993). "A Distributed Cooperative Model for Architectural Design".�CAD Re...
	Pohl, K. J. (1993). "MERCURY, A Real-Time Message Management Facility for Distributed Cooperative...
	Pohl, J., Myers, L., Cotton, J., Chapman, A., Pohl, K., Chauvet, H., Snyder, J. and La Porta, J. ...
	Polat, F. and Guvenir, H. A. (1992). "A Conflict Resolution-Based Decentralized Multi- Agent Prob...
	Pree, Wolfgang (1995). "Design Patterns for Object-Oriented Software Development". Addison-Wesley...
	Pressman, Roger S. (1987). "Software Engineering: A Practitioner’s Approach".�McGraw- Hill Book C...
	Quadrel, R. W. (1991). "Asynchronous Design Environments: Architecture and Behavior", Ph.D. Thesi...
	Rasmus, Daniel W. (1995). "What’s the Deal with Agents".�In Object Magazine, May, pp. 71�76.
	Rasmussen, J. (1986). "Information Processing and Human-Machine Interaction: An Approach to Cogni...
	Ramani, A., Chande, P. and Sharama (1992). "A General Model for Performance Investigations of Pri...
	Rowe, P. G. (1987). "Design Thinking", The MIT Press, Cambridge, MA.
	Rumbaugh, J., Blaha, M., Premerlani,W., Eddy, F. and Lorenson, W. (1991). "Object- Oriented Model...
	Russel, S. J. and Norvig, P. (1995). "Artificial Intelligence: A Modern Approach".� Prentice-Hall...
	G. Schmitt (1994). "Scene Animation using Intelligent Objects in a Virtual Design Environment".�S...
	Schon, D. (1988). "Designing: Rules, Types and Worlds", Design Studies, 9(3), July, pp. 181�190.
	Schon, D. (1983). "The Reflective Practitioner: How Professionals Think in Action", Basic Books.
	Seghrouchni, A. E. and Haddad, s. (1996). "A Coodination Algorithm for Multi-Agent Planning".�In ...
	Show, M., and Whinston, A., (1989). "Learning and Adaptation in Distributed Artificial Intelligen...
	Shriver, Bruce and Wegner, Peter (Eds.) (1987). "Research Directions in Object-Oriented Programmi...
	Sierra, C., Faratin, P. and N. r. Jennings (1997). "A Service-Oriented Negotiation Model between ...
	Simon, H. (1969). "The Science of Artificial", MIT Press, Boston, MA.
	Singh, Munindar P., Rao, Anand & Wooldridge, Michael J. (EDS.) 1998. "Intelligent Agents IV: Ag...
	Singh, Munindar P. (1997). "Commitments Among Autonomous Agents in Information- Rich Enviroments"...

	Shoham, Y. (1993). "Agent_Oriented Programming", Artificial Intelligence 60, pp. 51-92.
	Smith, Ian F. C., Kurmann, D. and Schmitt, G. (1996). "Case Combination and Adaptation of Buildin...
	Smith, Faltings B.(1994). "Spatial Design of Artifacts using Cases".�In Proc. of the 10th Interna...
	Smith, John Miles and Smith, Diane C.P. (1977). "Database Abstractions: Aggregations and Generali...
	Steels, L., (1990). "Cooperation Between Distributed agents Through Self�Organization". In Proc. ...
	Steiner, D., Alastair, B., Kolb, M. and Leri, c. (1993). "The conceptual Framework of MAI2L".�In ...
	Stirling, W. (1992). "Multi-Agent Coordinated Decision-Making using Epistemic Utility Theory".�In...
	Bjarne Stroustrup (1997). "The C++ Programming Language".�Third Edition, Bjarne Stroustrup, Addis...
	Sunderam, V. (1990). "PVM: A Framework for Parallel Distributed Computing". Concurrency: Practice...
	Sycara, K. (1989). "Multi agent Compromise via Negotiation".�In Distributed Artificial Intelligen...
	Talukdar, S., and deSouza, P. (1990). "Asynchronous Teams". In Proc. Second SAIM Conf. on Linear ...
	Tecuci, G. (1998). "Building Intelligent Agents: An Apprenticeship Multistrategy Learning Theory,...
	Timothy, J. N. and Jennings, R. N. (1997). "Generating States of Joint Commitment between Autonom...
	Tokoro, Mario (1994). "Agents: Towards a Society in Which Humans and Computers Cohabitate".�In Le...
	Urzelai, K. and Garijo, F. J. (1992). "MAKILA: A Tool for the Development of Cooperative Societie...
	Wade, J. W. (1977). "Architecture, Problems and Process: Architectural design as Basic Problem�So...
	Wagner, Gerd (1996). "A Logical and Operational Model of Scalable Knowledge- and Perception-Based...
	Watson, A.S. (1990). "CAD Data Exchange in Construction".�In Proc. of the Institution of Civil En...
	Webster, S. (1994). "An Annotated Bibliography for Object-Oriented Analysis and Design".�Informat...
	Werkman, K. J. (1992). "Multiple Agent Cooperative Design Evaluation Using Negotiation".�In Artif...
	Werner, Eric (1994). "What Ants Cannot Do".�In Lecture Notes in Artificial Intelligence 1069: Dis...
	Wiederhold, G. (1986). "Views, Objects and Databases", IEEE Computer, December 1986.
	Wileden, Jack C., Clarke, Lori A., and Wolf, Alexander L. A Comparative (1990). "Evaluation of Ob...
	Wobcke, Wayne (1997). "Agency and Logic of Ability". In Lecture Notes in Artificial Intelligence ...
	Woodbury, R. F. (1989). "Searching for Designs: Paradigm and Practice", Department of Architectur...
	Wooldridge, M. and Haddadi, A. (1997). "Making it up as they Go Along: A Theory of Reactive Coope...
	Wooldridge, Michael, Muller, Jorg p. & Tambe, milind (EDS) 1996. "Intelligent Agents II: agent th...
	Wooldridge, Michael J., Jennings, Nicholas R. (EDS.) 1995. " Intelligent Agents".�In Lecture Note...
	Wooldridge, M. and Jennings, N. (1995). "Towards a Theory of Cooperative Problem Solving".�In Lec...
	Ygge, Fredrik and Akkermans, Hans (1997). "Making a Case for Multi-Agent Systems". In Lecture Not...
	Yoko, M. Ishida, T. and Kuwabara, K. (1990). "Distributed Constraint Satisfaction for DAI Problem...
	Yokoyama, T. (1991). "A Parallel Cooperative Problem�Solving System with Intelligent Blackboard"....
	Zhang, Chengqi, Lukose, Dickson (EDS.) 1996. "Distributed Artificial Intelligence: Architecture a...
	Zucker, J. and Demaid, A. (1992). "Modeling Heterogeneous Engineering Knowledge as Transactions B...

	AppendixAF.pdf
	A Appendix: Terms and Definitions
	For ease of reference, I have collected, into this appendix, the definitions that are pertinent t...
	The following terms are general and are used in all chapters.
	A.1 Decision Makers, Designers and Artifacts.
	Def. A.1.1 Decision Maker

	Is a principal agent in an environment.�
	The decision maker manipulates representations of a problem state and guides the other agents eff...
	The distinction between a decision maker and other agents lies in the fact that the decision make...
	Def. A.1.2 Designer

	Is a decision maker who manipulates representations of an artifact being designed to reach an acc...
	Def. A.1.3 Artifact

	A real world product.�
	Example.� In an architectural context, a building is an artifact.
	The following terms are used in Chapters 3 through 7.
	A.2 Data-Objects.
	Def. A.2.1 Data-object

	A data-object is a representation of an artifact or some part of it.�
	A data-object generally contains geometric and non-geometric information about the artifact.� The...
	Def. A.2.2 Data-Object Type

	A collection of data-objects that identify a relationship.
	Example.� In an architectural context, a wall type is a data-object type.
	Def. A.2.3 Sub-Data-Object

	A data-object that is a constituent of another data-object in a data-object hierarchy.� It is a s...
	Def. A.2.4 Super-Data-Object

	A data-object that is a container of a another data-object in a data-object hierarchy.� It is a s...
	Def. A.2.5 Joint Data-Object

	A data-object that is a sub-data-object of more than one data-object in the data-object hierarchy.�
	Example.� A shared wall between two spaces can be a joint data-object.
	Def. A.2.6 Active and Passive Data-Object

	A data-object is active if there is an object-agent for it; and passive otherwise.�
	Def. A.2.7 Data-Object State

	The values, at a any given time, of the attributes and relationships (to other data-objects) of a...
	Only agents can alter the data-object state.
	Def. A.2.8 Data-Object Goal State

	A final data-object state.�
	Def. A.2.9 Design State

	The collective state of all data-objects in an environment.�
	This is distinct from the ‘state’ of the environment in that it reflects the data values as can b...
	Def. A.2.10 Goal State

	A final design state.
	A.3 Agents
	Def. A.3.1 Agent

	An entity with the ability to initiate actions, perform tasks, and interact with other agents in ...
	Agents are executable.� Any agent executing a task is bound to return execution results or error ...
	Def. A.3.2 Object-Agent

	An object-agent is an agent that represents a data-object.�
	An object-agent is a temporal version of its data-object; it contains prototypical and domain spe...
	Note that the distinction between object agency and methods is that the object-agent has the abil...
	Def. A.3.3 Object-Agent Type

	A collection of object-agents of the same data-object type.
	Example.� In an architectural context, a wall object-agent type is an object- agent type.
	Def. A.3.4 Sub-Agent

	An agent that is assigned a task by another agent.� The agent is a sub-agent within the context o...
	Def. A.3.5 Super-Agent

	An agent that has assigned a task to another agent.� The agent is a super-agent within the contex...
	Def. A.3.6 Composite-Agent

	A composite-agent is an object-agent that is created from more than one data- object.� It has inf...
	Def. A.3.7 Joint-Agent

	A joint-agent is an object-agent of a joint data-object.
	Def. A.3.8 System-Agent

	A system-agent is an agent that performs a set of related domain specific tasks for other agents....
	Def. A.3.9 System-Agent Type

	A set of domain related system-agents.�
	Def. A.3.10 Activation

	Activation is a task assigned by an agent to bring an entity to participate in a current session.�
	To activate a system-agent is to load the system-agent into the current session.� To activate a d...
	Def. A.3.11 Deactivation

	Deactivation is a task assigned by an agent to remove an agent from the current decision making s...
	To deactivate a system-agent is to unload the system-agent from the session.� To deactivate an ob...
	A.4 Task Execution
	Def. A.4.1 Action

	Acts executed by an agent.
	Def. A.4.2 Action Type

	A set of related actions.� An action type is simple whenever an agent executes a single act, and ...
	Def. A.4.3 Task

	An assignment of service to be performed by an agent.� A task can be simple or complex depending ...
	Note that tasks are assigned, actions are not.�
	Def. A.4.4 Task Type

	A set of related tasks.�
	Typically, task are related by context.� Examples of context include evaluation, generation and i...
	Def. A.4.5 Direct Task

	A task performed by an assigned agent (i.e., without the need to decompose and distribute the tas...
	Def. A.4.6 Indirect Task

	A task that is performed by a sub-agent as a result of decomposition or distributing a another task.
	Def. A.4.7 Plan

	An ordered sequence of actions towards a state.�
	Def. A.4.8 Task Handling Protocol

	A plan executed by one or more agents to perform a task.�
	Task handling protocols may be general or specific.� General protocols are independent of both ob...
	Performing tasks
	An object-agent employs a set of general task handling protocols for each task type.� Its object-...
	Def. A.4.9 Interaction protocol

	Is a set of data-object type-specific instructions that enables an object-agent (of this data-obj...
	A.5 Task Decomposition
	Def. A.5.1 Data-Object-Hierarchy

	The global data-object class hierarchy used by the designer at any point in time.�
	The data-object-hierarchy may be compiled by the designer or provided as an exemplar hierarchy in...
	Def. A.5.2 Object-Agent-Hierarchy

	A set of data-object classes each of which is a constituent of the object-agent or a constituent ...
	Def. A.5.3 Max-Domain-Hierarchy

	The set of all eligible classes for task decomposition with respect to this particular domain.� T...
	Def. A.5.4 Min-Domain-Hierarchy

	The minimum set of data-object-classes necessary to execute an assigned task.� This set is define...
	Def. A.5.5 Domain-Hierarchybottom

	A class or a set of classes which represent the lower boundary of a
	max-domain-hierarchy�.
	Def. A.5.6 Domain-Hierarchytop

	A data-object class which represent the top boundary of the
	max-domain-hierarchy.
	Def. A.5.7 Leaf-Data-Object

	A data-object class at the lower end of each branch of a data-object-hierarchy
	Def. A.5.8 Data-Objectclassification

	A data-object class used for classifying the results of executing an assigned task.
	Example.� In evaluating the cost of a BFloor-data-object per
	Room-data-object (see the example in chapter 4), the Room-data-object class is the data-objectcla...
	Def. A.5.9 Activationlist

	A set of data-object classes were their instances are to be activated to execute sub-tasks during...
	Def. A.5.10 Skiplist

	A list of data-object classes to be skipped during the activation of sub-data- objects of an obje...
	Def. A.5.11 Activation Order

	The order of activating data-objects in an object-agent-hierarchy during the execution of a task.
	Def. A.5.12 Task Dependent Hierarchy

	The hierarchy of the data-objects in the activationlist.�
	This is the hierarchy of data-objects that participate in the decomposition with respect to the t...
	A.6 Conflict Handling
	Def. A.6.1 Conflict

	An attribute value that is being modified to a new value causing an interested data-object or exp...
	Def. A.6.2 Conflict handling

	The process by which a conflict is detected and resolved.
	Def. A.6.3 Conflict detection

	The process by which the decision maker becomes aware of a conflict.
	Def. A.6.4 Conflict Resolution

	The process by which a decision maker is able to arrive at a set of acceptable values for all int...
	In a sense, conflict resolution is a series of local bilateral evaluation sessions involving the ...
	Def. A.6.5 Conflict Prevention/Control

	The process by which a decision maker is able to avoid or reduce the number of conflict handling ...
	Def. A.6.6 Attribute Interestlist

	A list of data-object attributes and expert-agents that are interested in this attribute value.� ...
	Def. A.6.7 Interest Context

	The reasons of which an agent, or a data-object attribute is interested in another data-object at...
	Def. A.6.8 Interested Attribute

	An data-object attribute that is registered in the interestlist of another data- object attribute.
	Def. A.6.9 Interested Data-Object

	A data-object with at least one attribute registered in the interestlist of an another data-objec...
	Note that, within the same data-object, an attribute may be registered in the interestlist of ano...
	Def. A.6.10 Interested Expert-Agent

	An expert-agent that is registered in the interestlist of data-object attribute.�
	Def. A.6.11 Conflict Focus

	An object-agent that is currently providing an interestlist for a conflict check.�
	Def. A.6.12 Conflict Zone

	The two object-agents involved in a conflict handling session.�
	Def. A.6.13 Direct Conflict Handling

	A conflict handling session involving two object-agents one of which is the conflict focus.�
	Def. A.6.14 Indirect Conflict Handling

	A conflict handling session involving two object-agents none of which is the conflict focus.�
	Accordingly, the conflict zone does not necessarily include the conflict focus.
	A.7 Abbreviations

	In this dissertation, the following abbreviations are employed:
	Data-Object Æ DO
	Object-Agent Æ OA
	System-Agent Æ SA
	Expert-Agent Æ EA (a specialization of a System-Agent)
	Utility-Agent Æ UA (a specialization of a System-Agent)

	AppendexBF.pdf
	B Appendix: Actions, Tasks and Interactions
	Agents interact whenever one communicates to another.� They trigger others to take actions.� The ...
	Actions are either simple or complex;
	Action Types
	Simple actions require the execution of a single act by sending a message (or simply use an objec...
	TABLE B.1. Simple Actions

	‘Activate’, ‘assign’, ‘query’ and ‘request’ are examples of simple actions initiated by an agent....
	Complex actions require the execution of a sequence of simple or complex actions.� Such actions c...
	TABLE B.2. Complex Actions

	An OA can be assigned one of five task types (all of which are complex actions since they require...
	OA Task Types
	• evaluation
	• recommendation
	• generation
	• conflict handling
	• implementation
	The OA performs a set of actions to accomplish an assigned task:
	For an evaluation task, an OA may take actions of any of the following kind.
	TABLE B.3. Evaluation Task Actions

	For a recommendation or generation, an OA may take one of the following actions.
	TABLE B.4. Recommendation and Generation Task Actions

	For a conflict handling, an OA may take one of the following actions.
	TABLE B.5. Conflict Handling Task Actions

	For an implementation, an OA may take actions of the following kind.
	TABLE B.6. Implementation Task Actions

	The OA-based environment has three types of agents; DAs, SAs (which includes EAs and UAs), and OA...
	Agent Interaction Types
	Five interaction types among agents are identified in Figure B.1.� The arrow indicates the sense ...
	• OA-OA interactions
	• OA-SA interactions
	• SA-SA interactions
	• DA-OA interactions.
	• DA-SA interactions
	FIGURE B.1.

	The Interaction Types.
	The following table illustrate the possible agent interaction types.
	TABLE B.7. Types of Agent Interaction

