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ABSTRACT

Computational systems for decision support are typically stand-alone tools.  These are often designed to provide 
assistance with respect to a single aspect of the decision making.  In a design process, where decision making is 
integral to the activity, designers use such computational tools to generate alternative solutions, to model and 
simulate the behavior of the artifact being designed, and to produce design documents.  Stand-alone tools 
provide design assistance, but not without pitfalls:

• Each tool requires designers to commit to a schema of representation.
In order to examine various aspects of a design, the same artifact would be represented differently 
according to the schema of the tool employed.

• Interdependency among the various design aspects is rarely examined.
A lack of a unified representation leaves such examination to the judgement of the designer.

• Designers are often required to provide vast amounts of information even for the smallest task. 
• Designers seldom have access to the mechanism by means of which a tool internally decomposes a 

design problem. Designers are, thus, deprived of opportunities to make decisions that may, 
incrementally, impact on the evaluation process.

In an attempt to improve the efficiency of these tools, research groups undertook the task of developing models 
for comprehensive design environments where multiple design tools share the same representation schema.  
Designers use modeling and generative tools to produce a model of the artifact being designed, where other tools 
simulate, according to some domain expertise, the behavior of the model within the same shared representation.  
Such design environments are often described as multi-agent decision making environments.  Agents are the 
designer(s) and/or the computational applications each of which encompasses a specific domain expertise.  
Agents interact and execute tasks to manipulate the design objects until the collective state of these objects are 
deemed acceptable by the designer(s).

In this thesis I introduce an enhancement to the design of computational assistant tools, mainly geared toward 
multi-agent design environments that use shared representation schemes.  I propose an expansion of the notion of 
agency to include design objects in which agents may interact with other agents in the execution of design tasks 
related to the objects.  I call this the objects as agents approach, where objects are selectively activated to 
participate in design decision making sessions to execute tasks regarding their immediate design states.  In this 
sense, an object-agent is a design object that is activated to perform tasks.  I provide a framework for an object-
agent-based design environment, in which domain applications are global problem solving nodes, object-agents 
are local coordination and management nodes, and, collectively, the designer(s) act as coordinator and final 
judge.  In this sense, the designer orchestrates this fine grained agent environment through incremental 
interactions until the model arrives at an acceptable design state.  Within this framework, I address various issues 
pertaining to the notion of agency in design such as autonomy, planning and interaction.  Vital to the success of 
such an object-agent-based design environment is the ability of an object-agent to manage assigned or self-
initiated tasks. Managing tasks relies on the ability to decompose and delegate such tasks.   I provide a 
decomposition/aggregation mechanism to enable object-agents to manage their tasks.  Such a mechanism 
provides the designer with access to a wealth of local decision making information.
iii
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1 Problem Statement
1.1  Belief

The context of this dissertation is architectural design.  Within this context, I 
view the process of design as being characterized by the following distinguishing 
features:

• Design is an intelligent activity involving complex forms of decision 
making.  

• Design problems, in general, can be decomposed to smaller problems that 
are easier to handle.  

• Designing is a collaborative effort of many individuals or agents all of 
whom may act independently in a self-regulating manner, with the proviso 
that all work towards an agreed eventual goal state.  

• Agents work cooperatively to change the current design state.  

• The flow of relevant information with respect to any design state is always 
considered as significant to the designer.

• Certain design values are best decided by judgement of the designer(s).  

Design problems are multi-faceted, involving many aspects that contribute, in 
varying degrees, to the final solution.  In architecture (and, also, engineering), the 
complexity of a design problem is a product of the number of its aspects.  In most 
cases, design tasks are sufficiently complex that the scope of a problem and its 
solution is beyond the capability of a single contributor.  Such problems can be 
solved in a reasonable time only by decomposing them into more manageable 
sub-tasks.  This requires a team effort, in which the sub-tasks are delegated to 
members.  Team members have pluralistic backgrounds, interests and agendas, 
yet, they typically agree on a common design solution [Schon 88].  The success 
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of the collective team effort depends on the organization of team members and 
resources.

1.2 Computational design environments

Computational design environments are computer systems that are meant to 
provide designers with assistance in a wide range of design activities which 
includes, but is not limited to, formulating design specifications and architectural 
programing, generation of preliminary design alternatives, configuration of 
details, simulation analysis of performance in respect to various design criteria, 
and modeling of complete artifact for presentation and, possibly, production.  

The development of computational design tools has been mostly oriented along a 
single tool approach.  Each tool simulates the intelligence, knowledge and 
expertise of a single member of the design team, such as lighting or structural 
experts in an architectural design team.  This notion of stand-alone tools has 
proven insufficient due to the inevitable need for interaction between the many 
members of the design team in real world situations.  Members plan their 
activities while keeping in mind the actions of other members.  This suggests that 
the development of a computational design environment should be concerned 
with the representation of a community of agents that interact by cooperation, 
coexistence and/or competition.

The notion of multi-agent design environments is an attractive proposition for the 
following three main reasons.  These environments:

• accommodate the diversity of design activities and knowledge, based on 
geographic or functional criteria.  

• provide rich environments based on contributions from multiple agents, 
where the designer can seek better opportunities of handling the design 
tasks.  

• provide opportunities for reducing complexity by breaking the knowledge 
down into different cooperative entities.

A number of design environments have been investigated by various research 
labs.  Some have reached closure, e.g., IBDE [Fenves 89], ICADS [Pohl 92 and 
Myers 93] and EDM [Eastman 92]; others are still under development, e.g., 
SEED [Flemming 95], ICODES [Pohl 97], SEMPER [Mahdavi 96], and FDCA 

[Khedro 93]1.  At present, there is still no design environment as such that is 
Problem Statement



available for commercial use for a variety of reasons, chief of these are the 
following two:

• For commercial purposes, design environments require vast investments 
for development.  Moreover, they pose difficult marketing issues.  

• For technical reasons, design environments are difficult to develop owing 
to the diversity of the bodies of knowledge involved and the complexity of 
integration.  Additionally, the lack of unified representations makes the 
use of off-the-shelf stand alone applications inefficient.  

There are stand alone architectural design applications that are widely available 
commercially, e.g., DOE2, CALPAS (energy simulation); Premavera, Quicknet 
(scheduling and cost analysis); LightScape, LumenMicro, Radius (daylighting 
simulation), BOSE (acoustic simulation), AutoCAD, MicroStation, ARRIS, 
FormZ, ProEngineer (geometric modeling).  However, designers using such tools 
have to recreate a model of the building according to the representational needs 
of each tool.

A computational representation of a design environment relies on individual 
domain applications (which in this dissertation are considered as agents), domain 
objects of artifacts being designed, and the flow of information amongst these 
applications and objects.  Typically, domain applications represent domain 
expertise.  These exist in the form of procedural programs, expert systems, or at 
the very least, as sets of macros.  Domain objects encapsulate information about 
the real world objects they represent.  Domain objects exist in the form of sets, 
libraries or prototypical databases.  In general, a computational design 
environment is a collection of domain expert applications and libraries of 
prototypical objects.  The infrastructure of communication (i.e, local and global 
massage passing system), translators between representations (such as mapping 
and language bindings), interfaces (for designer/applications/domain objects/
databases), process and configuration management mechanisms (for resource 
allocation and synchronization) all facilitate the coexistence of the environment 
players and the interactions amongst them.

1. “Federation of Collaborative Design Agent”, a system that facilitates communication 
among designers in A/E/C.  Although this is not a comprehensive design environment I 
elect to list it here because it is an effort to provide a structure for a comprehensive 
design environment and it addresses some of the issues investigated in this thesis.
Ph.D. Thesis, Spring 2000 3
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1.3 Problem and Proposal

The problem addressed in this dissertation is focused on the representation of 
design objects and how applications can be modified to take advantage of the 
proposed representation in a design environment.  The key to the solution of this 
problem is, I believe and one which I propose and describe in this dissertation, 
lies in the augmentation of the representation of design objects through agency 
behavior.  It may seem, at first glance, that the development of computational 
design environments is still at a stage where further enhancement of design 
object representations is inappropriate or ahead of the game.  However, I believe 
that such augmented representation of design objects opens new needed 
directions in the development of design environments and, therefore, this 
research has been focused on the representation of design objects.  

Typically, an expert application which represents domain knowledge of a real 
world expert is an active player, while a design object which represents a real 
world object is a passive player.  Active players possess pertinent knowledge to 
manipulate the passive players.  In other words, agents manipulate objects.  
Decision making is thus a characteristic of agents.  

However, design environments made up of active and passive players typically 
suffer from some of the following problems though headway has been claimed 
towards their resolution, e.g., in the IMMACCS system [Pohl 99].

• elimination of rich sources of design information from local nodes2;

• difficulties to identify problem sources in their immediate settings; 

• loss of capability to handle problems at the local level; 

2. The IMMACCS (A Multi-Agent Decision-Support System), among other features in 
the system, relies on an extensive shared representation of objects and their relations, 
agents with reasoning capabilities, an object browser, and UI with customized views. 
Modifications to this shared representation is continually updated and accordingly can 
be viewed across the entire environment through the browser or in the customized 
views.  The browser and views, in this sense, provide direct access to the information 
of local nodes (objects with their current attribute values and relations).  However, 
when an object own/related information changes, the object is not able to manage the 
evaluation of its new state in respect to a single or multiple domains.  It is the agents 
(of each domain) who receive/gather the information (using the shared representation 
and the extensive viewing mechanism) and then evaluate the new state of the object 
and may accordingly initiate or recommend certain actions.
Problem Statement



• inability to handle design problems with a high level of abstraction, or the 
need for relatively excessive information (which is mostly irrelevant) 
while dealing with relatively smaller design problems.

In this dissertation, I propose to expand, in a specific way, the notion of 
representing design knowledge to include the design object level.  Passive 
players (design objects) can be given active roles through agency.  This does not 
necessarily imply fragmentation of domain knowledge, but rather the 
proportional distribution of knowledge among all members of a decision making 
environment.  In this sense, design objects can acquire agent behavior and, 
therefore, can manage initiated and assigned tasks during a decision making 
session.  Mainly, these would interact with other environment agents to assess 
their current situation and continually (or upon request) provide valuable 
information to other agents of the environment.  To make use of this stream of 
local information, the main concern then becomes the coordination of the acts of 
potentially large number of distributed decision makers.  

As a short hand, I call a design object which is capable of performing such 
activities an object-agent.  What object-agents can do and when these can 
participate in the decision making process are questions that are explored through 
out this dissertation.  

In a computational design environment, design objects represent the artifact 
being designed at various levels of abstraction.  To act as agents, these should be 
endowed with task management and problem solving knowledge.  A potential 
benefit of this design object agentification approach is the enrichment of the 
design environment with adequate information about the state of each design 
object in respect to its performance requirements (see Chapter 5).  In addition, 
design tasks can be broken down into smaller self-regulating sub-tasks that are 
easier to understand and manage.  Such sub-tasks are distributed to the applicable 
object-agents.  

To illustrate the basic premise of the object-agent approach, in an architectural 
design setting, consider a room, a domain object, that can find its required or 
prototypical daylighting level from the architectural program (or a prototypical 
database), and then, can interact with a daylighting application to evaluate its 
current daylighting level.  During the course of executing this daylighting 
evaluation task the room decomposes the task to its openings (e.g., to determine 
Ph.D. Thesis, Spring 2000 5
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A conceptual architecture of a 
multi-agent environment and issues 
of focus in this dissertation.
the amount of daylighting coming through each opening) and room surfaces 
(e.g., for reflection).  A window may be found to admit less daylighting than 
anticipated due to its glazing type.  Such detailed information can be 
communicated to the designer to modify the glazing area or take another action 
to increase the daylighting level of the room (e.g., resizing an existing window or 
adding another).  This type of domain object representation draws in a number of 
related issues which must be addressed, for instance, the degree of agent 
autonomy granted to an object-agent in such an environment.  In the previous 
example, one would have to address how, with reference to the room, is a 
daylighting evaluation task initiated.  By the room itself (as an object-agent)? or 
be assigned to the room by another environment agent?  Other issues such as the 
planning of agent acts, the handling of agent conflicts, dealing with domain 
object constraints, are each addressed in this dissertation.

1.4 Objectives and Method

The objective of this dissertation is to explore the potential benefits and 
disadvantages, from a designer stand point, of adopting an object-agent approach 
in a computational design environment.  A consideration of this objective is to 
develop a model for an object-agent design environment; another is to explore 
the implications of engineering such a design environment.  

Figure 1.1 illustrates a conceptual architecture for a multi-agent design 
environment without further consideration to the specifics of each component. 

application application application

database application server

client client client

Representation

Control

Communication

Conflict

Interface

Collaboration

Decomposition

(objects) (object-agents)

(designers)

(experts)
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The database stores objects, designers use client applications/interface to handle 
objects and other applications.  The application server deals with both objects as 
passive players and object-agents as active players in dealing with client and 
expert application requests.

The model has to accommodate an initial set of domain-objects and applications 
and is, at the same time, expansive to new entities within the same framework.  
This is achieved through multiple layers of development.  To develop such model 
for an object-agent based environment I use the following method:

• Developing a framework for a design object-agent based environment.  
The framework is comprised of interaction categories.  Each category is 
identified by a set of members (e.g., domain expert agents, tools, 
databases etc.) which interacts in a context.  The players and the context of 
interaction within each category is identified and discussed in Chapter 3.

• Identifying the patterns of interactions among the modules of the 
framework.  This is achieved through the development of a series of 
general and domain specific scenarios of the object-agent interactions with 
other environment agents (including the designer).  In Chapter 4 scenarios 
of interaction are captured in event-trace charts [Rumbaugh 91].  The use 
of charts is enhanced to ease the process of algorithm development for the 
reusable patterns of interaction.  

• Developing a set of task handling algorithms that enable an object-agent 
to manage the execution of its tasks in respect to the developed scenarios.  
Algorithms for general object-agent tasks are described in Chapter 5.

• Engineering a detailed implementation design of such an environment 
using object models and state diagrams following a rigorous object 
oriented software methodology [Pree 95] and [Gamma 95].  

1.5 Thesis Structure

The outline of the dissertation is as follow: 

• Chapter 2 provides additional motivation for adopting an object-agent 
approach in a computational decision making environment.  Chapter 2 
reviews the literature of agent environment developments and research 
efforts, in particular those which attempted to enhance the representation 
of objects to adopt more intelligent behavior.  It also touches upon a 
Ph.D. Thesis, Spring 2000 7
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related field namely distributed artificial intelligence (DAI) since the 
object-agent approach depends on the notion of distribution of activities 
and decomposition of tasks.  

• Chapter 3 outlines a framework of an object-agent based environment and 
discusses the traditional role of design objects vs. the agentification of 
design objects, which is a major focus of this proposal.  It also presents the 
theoretical view of the design problem solving activity that involves 
multiple agents with various capabilities.  

• Chapter 4 presents a series of general and domain specific scenarios of 
agent interactions in an elaborate event-trace form.  The event-trace charts 
are followed by a step by step explanation which provides the bases for the 
development of a set of interaction and task handling algorithms in the 
following Chapter.  

• Chapter 5 introduces a set of task handling algorithms that are 
fundamental to object-agents.  It also presents a dynamic mechanism for 
task decomposition that can be used by the object-agents.

• Chapter 6 presents an implementation design of an object-agent design 
environment using an object oriented software engineering methodology. 
However, a full scale implementation of a design environment with the 
object-agents requires team effort and is not part of the scope of this 
dissertation.

• Chapter 7 identifies the research contributions and the research issues 
raised by the object-agent approach that need further investigation.
Problem Statement



2 Review of Related Work
2.1 Background

The subject matter of this dissertation was proposed and presented in February 
1993.  At the time distributed artificial intelligence (DAI) and, in particular, the 
notion of computational agency were emerging research fields.  The proposal 
included a literature review that was geared toward the application of DAI in 
computer science and engineering design.  DAI research has since expanded and 
the notion of agency is widely adopted.  There are multiple applications in use 
for both research and commercial purposes.  Therefore, it is neither important to 
justify (or validate) the notion of agency in computational decision making 
environments, nor it is necessary in this dissertation to review and enumerate 
multi-agent research and application.  Instead, design objects with agency 
behavior are the main focus of this thesis.  Accordingly, I provide, in this chapter, 
a review of agency properties as defined in the literature, as these relate to objects 
acquiring agency behavior.  In addition, I provide a review of related research 
that is concerned with the enhancement of object behavior, and how such object 
roles relate and differ from other agents in multi-agent environments.

2.2 Agent and Agency

The Latin word ‘agans’ means ‘to act’.  Accordingly, the word ‘agent’ is defined 
as the producer of an effect, an active substance, a person or thing that performs 
an action, or a representative.  Tokoro [Tokoro 94] considers the later two 
meanings of the word to best describe the word use in multi-agent research, 
where an agent is “an individual that performs an action” and a multi-agent 
system is “a system composed of multiple individuals which perform actions.”  
Tokoro suggests that multi-agent research (with its two main fields, Distributed 
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Computational Agents
Problem Solving ‘DPS’ and Agent-Oriented Programming) mainly investigates 
whether higher level tasks can be achieved by cooperation between multiple sub-
systems, each of which has lower ability.

There are no rigorous principles about what constitutes an agent or how an agent 
should behave.  Most dictionary definitions embody three senses of agency: as an 
actor with the power to act, as an assistant with the power to represent, or as an 
instrument with the power to effect.  Most computational agent definitions 
require an agent to be ‘situated’ in an environment from which it receives 
perceptual input and which it affects by acting autonomously to achieve goals.  
To cause an effect, agents takes action.  Wobcke makes this clear:

Actions are distinguished from mere random behavior in that action is 
goal directed whereas not all behavior need be.  The clearest cases of 
action involve deliberation, choice intention, and subsequent execution 
of an intention, but not all agents have intentions [Wobcke 97].

Daniel Rasmus suggests that, in a network of agents, an agent must include 
reasoning capability, embracing beliefs, goals and commitments [Rasmus 95].  
The main characteristic of agency (and one which is emphasized throughout this 
dissertation) is the ability to accomplish self-initiated or assigned tasks.  Such 
assigned tasks are often the result of a decomposition of a larger task and 
distributed among agents:

Within its limited domain, an agent will try to accomplish a task.  It may 
be a sub-task of a larger task that a knowledge broker distributed among 
its brethren, or it may be a simple task like scheduling a meeting [Rasmus 
95].

Agent environments should be so designed that the collective efforts of agents 
toward executing their tasks lead to achieving higher goals.  Again, Rasmus 
makes this clear by the following paragraphs:

Agents don’t do very much as individuals.  They know how to schedule 
a meeting, buy a ticket, or cut a deal for a conference room.  They may 
be the part of some larger conceptual system, eventually aggregating into 
a material requirements planing system or electronic data exchange 
system, but as individual bits of knowledge, agents live restricted 
existences.
Agents need more than an operating system for survival.  They require 
cooperating partners, information sources, and end users.  A given set of 
agents performing a given set of tasks in a given company, end up 
working in a digital biome [Rasmus 95]. 
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Steiner et al.[Steiner 93] discuss the definition of agent in IMAGINE (an 
Integrated Multi-AGent INteractive Environment), where an agent may represent 
software, human or a combination of both.  Their definition relies on three 
characteristics: rationality, cooperation and reactivity:

Rational Agent: An agent should structure its behavior in a way that, as 
it reasons, will optimally satisfy its goals.  The exact definition of 
optimality is dependent upon the type of goals of the agent and its ability 
to reason about achieving them.
Generic Cooperation: When several agents cooperate, they should do so 
in ways that are, in important respects, independent of particular domain.
Reactivity: The architecture of an agent should be such that it can react 
in timely fashion to changes in the environment [Steiner 93].

Steiner et al. further draw a distinction between agent tasks and goals, and 
assumes that an agent will carry out a task, only if it thinks it leads towards a goal 
(defined as a description of a future state of the world).  In fact the authors tie the 
existence of an agent to the existence of a goal:

In the simplest model an agent comes into existence with one goal; it 
derives a course of action, that is a plan, to achieve that goal; it executes 
the plan; it terminates [Steiner 93]. 

For an agent to carry out more than one goal Steiner suggest that a more complex 
taxonomy is needed.1  According to the rational agent characteristic, the agent 
may have various ways to select how to reach to a goal.  In a multi-agent 
environment goal decomposition and task delegation may be the only way an 
agent may reach a goal:

Agents in multi-agent systems may find that optimal means (from their 
point of view) to reach their goal is to get other agents to carry out certain 
actions.  The process of several agents working out a future course of 
action together and carrying it out is how we define cooperation [Steiner 
93].

Goals are activated either internally, when an agent react to events in the 
environment, or externally, when an agent responds to requests.  The Steiner et 
al. model uses goals to direct the firing of actions in a more deliberative planning 

1. Since such goals can be conjunctive (when goals conflict with each other), negative 
(when goals depend on properties that is no longer valid), temporal (when goals 
depends on agents ability to reason about time), sub-goals (when goals describe a 
subset of another goal), or predecessor (when goals represent an intermediate state to 
the ultimate goal).
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Agent models
process.  Accordingly, the agents must be provided with planning capabilities to 
allow them to build plans for given goals.  Such planning capabilities vary in its 
degree of sophistication where “reactive agents may have predefined plans 
linking their goals immediately to the corresponding tasks.”  Such predefined 
plans are based on certain key events in the world and an appropriate reaction to 
them.

Agency can be defined by linking the notion of goals to the ability to perform 
actions.  Wobcke proposes that:

Agency is best understood as self-controlled goal-directed activity, 
where the notion of action being under the control of an agent is 
intimately tied to the agent’s ability to perform that action successfully 
under normal conditions [Wobcke 97].

The ‘normal’ conditions referred to in Wobcke’s proposal is determined by the 
context of the action taken (or the situatedness).  Wobcke does not subscribe 
entirely to the view that agent ability rests on the repeatability and reliability of 
the agent to perform an action, nor that the action and its outcome must be 
completely under the agent’s control.  Instead, Wobcke requires that the action: 

• normally succeeds when it is attempted by the agent;

• is only under the control of the agent if the agent can influence the 
outcome of the attempt; 

• be within the control of the agent in the sense that it is within the agent’s 
power not to do the action (or at least it is possible that the agent cannot do 
the action).

Wagner proposes a model of an agent based on agent actions.  He lists five basic 
transitions of what he calls ‘vivid agent system’, namely, perception, reaction, 
planning, action and replanning:

A vivid agent is a software-controlled entity whose state is represented 
by a knowledge-base and whose behavior is represented by means of 
action and reaction rules [Wagner 96].

Wagner further emphasizes the difference between action and reaction where 
agent actions are deliberatively planned in order to solve a task or to achieve a 
goal, while agent reactions are triggered by perception and communication 
events.  An agent needs to react when environmental circumstances demand 
action.  Werner argues that traditional planning approaches are not suitable for 
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agents since planning needs time, instead reactive strategies are more appropriate 
to enable an agent to deal with given circumstances [Werner 94].  The 
complexity of such strategies should correspond to the complexity of the 
problems that the environment agents are required to deal with.  In other words, 
the complexity of the environment mirrors the complexity of its agent reactions 
(which in turn represents a higher level reasoning).

In an elaborate research effort to identify the characteristics of an agent, Foner 
reviews the behavior of a prototypical ‘Mud’ agent (a multi-person text-based 
virtual reality agent) known as ‘Julia’2 [Foner 93].  Julia was found to satisfy 
most of the agency properties identified by Foner.  I summarize these properties 
here: 

• Autonomy: where periodic action, spontaneous execution and initiative 
enable an agent to independently pursue an agenda of tasks.

• Personality: where learning and memory enable an agent to improve its 
ability to handle tasks across time.

• Discourse: where an agent shares the user’s agenda about what and how a 
task should be executed (resembling a contract about what is to be done).

• Cooperation: where an agent collaborates with the user rather than 
receiving commands.

• Risk and trust: where a balance between trust and risk is necessary since 
the notion of task delegation implies both believing that an agent can 
perform a job but in the same time involves relinguishing control where 
mistakes can be costly.

• Domain: where the seriousness of the delegated task requires a relative 
degree of trust (risky domains require more robust agency behavior).

• Graceful degradation: where an agent should strive to execute a task or a 
subset of the task in case of communication or domain mismatch.

• Expectations: where user expectations from an agent should not exceed 
agent ability to perform especially in dynamic domains where goals, 
means and tasks are constantly changing (and therefore the balance 
between risk and trust is harder to achieve).

2. Developed by Michael Mauldin at the Center for Machine Translation at Carnegie 
Mellon University, Pittsburgh PA.
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Commitment
• Anthropomorphism: where an agent depicts human behavior.  Though 
agency does not imply a need for anthropomorphism and not all entities 
that claims such behavior are considered agents.

It should be noted that not of all of these properties are pertinent to agent-based 
decision making environments.  In this dissertation, I consider autonomy, 
cooperation, domain and expectation.

The notions of discourse, risk and trust, domain, graceful degradation and 
expectations overlap with a widely accepted notion in the multi-agent world 
known as ‘commitment’ from an agent to another and is held with respect to 
some goal.  Wooldridge and Jenning [Wooldridge 95b] draw distinction between 
two commitment related concepts, ‘commitment’ and ‘convention’.  They define 
commitment as a pledge or promise, while convention is a means of monitoring a 
commitments.  A convention specifies both the conditions under which a 
commitment can be abandoned.  This is identified as an important property of 
commitment called ‘commitments persist’, that is:

Having adopted a commitment, we do not expect an agent to drop it until, 
for some reason, it becomes redundant.  The conditions under which a 
commitment can become redundant are specified in the associated 
convention- examples include the motivation for goal no longer present, 
the goal being achieved, and the realization that the goal will never be 
achieved [Wooldridge 95b].

Durfee et al. [Durfee 92] add another dimension to the notion of commitment, 
that is, an agent should not only be concerned of how it models other agents but 
also should consider how it is modeled by other agents.  It is of interest to an 
agent to influence how other agents model it (since an agent takes actions based 
on its models of the others).  During agent interactions, if other agents have a 
better model of an agent (closer belief about its capabilities and interest) the 
expected commitment of that agent (or the type of assigned tasks) is more likely 
to be fulfilled.  Models that survive for longer periods of time are typically more 
abstract:

By propagating more abstract models of itself, an agent commits itself to 
fewer specifics, and thus retains more flexibility in the face of its 
dynamic environment. 
Of course, being overly abstract will sometimes make coordination 
inefficient. 
The degree to which the models provide enough information to lead to 
Review of Related Work



effective collective interactions determines the coordination 
performance [Durfee 92].

Durfee et al. suggest that an agent can dynamically influence how it is modeled 
by other agents through control of its communications and observable actions.  
By engaging in a ‘flurry of communication/observation,’ agents may modify 
their models of each other.  The rate by which such modifications take place is 
variable.  Durfee et al. describe four different rates of dynamic modification; 
reactive planning, rescheduling, replanning, and legislation.  The four 
modification rates represent a common hierarchical space of agent behaviors.  In 
reactive planning, agents formulate new action to take based on constant 
observations; in rescheduling, agents react to a change in schedule; and in 
replanning agents develop new joint plans in response to unexpected states.  
Legislation requires new rules of interaction.  Durfee et al. conclude that an agent 
must be able to commit to a range of interactions without necessarily specifying 
details.  Accordingly, an important goal in modeling agents is to allow them to 
decide dynamically how to best coordinate their actions.

In a later research effort, Singh discusses the notion of commitment in 
information-rich environments and shows that commitment is acquired by agents 
as a consequence of adopting a role [Singh 97].  His research is focused on 
developing abstractions for building flexible cooperative information systems 
(CISs) to the standard robustness of traditional systems.  He presents the pros and 
cons of using interacting agents in open information systems vs. traditional 
database transactions and extended (or open) database transactions.  The problem 
of structuring computations in open information systems leads Singh to argue 
that commitment is essential to help coordinate and structure multi-agent systems 
achieve coherence in their actions.  

The main problem is to structure activities in a manner that can respect 
the autonomy of the information resources.  The database approach are 
restrictive.  The agent approaches are flexible, but there is need for tools 
and formal approaches for designing them.  In particular, there is need 
for a notion of commitment that flexibility reflects the organizational 
structure of how agents interact [Singh 97].

Singh presents an approach called ‘Spheres of Commitment’ (SoCom)3.  In 
SoCom, agents interact by forming commitments toward one another.  
Commitments are formed in a context, which is given by the enclosing CIS.  A 
commitment comes with specification of how it may be satisfactorily discharged 
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Planning and
reactiveness
and a specification of how it may be canceled (i.e., concomitant commitments).  
The act of joining a CIS (by an agent) corresponds to creating commitments.  
Agents must make sure that they have the capabilities and resources required to 
take any additional role and its concomitant commitments.  

The above views of commitment as a property of agency lead to the belief that a 
representation of an agent must include, at its minimum, the notion of a ‘task’ as 
a form of agent commitment.  And, in turn, a representation of a task must 
include representations of both a ‘goal’ and a ‘result’ to provide the means to 
achieve commitment monitoring.  Such representation issues are considered in 
Chapter 6 which relates to implementation design.

Planning is another property of agency that depends on agent ability to reason 
about other agents.  Russel and Norvig [Russel 95] explain how an agent may 
reason using first-order logic.  They identify five capabilities which must exist in 
such an agent; reaction, abstraction of states, maintenance of internal models of 
relevant aspects of the world, sorting and relating actions to circumstances, and 
using goals in conjunction with knowledge about actions to construct plans.  
Russel and Norvig share the belief that in multi-agent domains, it becomes 
important for an agent to reason about the mental process of the other agents.

In effect, we want the model of the mental objects that are in someone’s
head (or knowledgebase) and of the mental processes that manipulate
those mental objects.  The model should be faithful but it does not have
to be detailed [Russel 95].  

Russel and Norvig then discuss alternative representations of mental objects.  
They introduce the term ‘propositional attitude’ that associates with agents 
behavior such as ‘believes’, ‘knows’, and ‘wants’ in relation to other agents.  
They present a model based on an approach called ‘syntactic theory’ where 
strings written in a representation language represent such mental objects.  The 
argument considers three different directions to enhance the representation of 

3. SoCom relies on an older notion used by the database community known as ‘Spheres 
of Control’ (SoC) presented in [Davies 78] and re-visited in [Gray 93].  SoC attempts 
to contain the effects of an action as long as there may be a necessity to undo them.  
The entire execution history is maintained and its rolled back to undo the effect of 
committed activities then rolled forward to redo the necessary computations.  Singh 
[Singh 97] argues that a draw back in SoC, as a data-centric approach, is that 
commitment depends solely on the computation that commits, not on the interplay 
between the two ends of the commitment, a drawback which favors the notion of 
multi-agent environments.  
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mental objects.  First, it is unrealistic to expect that there will be any real logical 
agents and accordingly define limited rational agents which make limited number 
of deductions in a limited time.  Second, axioms for other propositional attitudes 
(based on a common definition that ‘knowledge is justified true belief’), in which 
case a representation of ‘knows what’ would include an agent, a term and a 
predicate that must be true to answer.  Finally, propositional attitude changes 
over time and accordingly introduce a representation of time.  

The purpose of such models is to make an agent useful by helping an agent to do 
some actions it could not have done before or to chose better actions when 
executing tasks.  Actions have ‘knowledge preconditions’ and ‘knowledge 
effects’.  Russel and Norvig draw an important deduction, which supports an 
important notion presented in this thesis: each action has its own requirements on 
the form of the knowledge.  

Chaib-Draa and Levesque categorize the types of interaction among agents based 
on the situation; routine situations, familiar situations and unfamiliar situations 
[Chaib-Draa 94].  They argue that reasoning about other agents is mainly needed 
when agents face unfamiliar situations.  In such events, agents rely on intensive 
communications when they do not succeed in making decisions about what to do 
next with other agents.  Such arguments assume that coordination is more 
important in routine situations (where agent behavior is governed by ‘stored 
patterns of predefined procedures, that map directly from perception to an 
action’, known as skill-based level4), or in familiar situations (where agent 
behavior is governed by ‘a set of heuristics, that is a set of stacked rules’, known 
as rule-based level), while communication is more important in unfamiliar 
situation (where agent behavior is governed by ‘goal and utility and more 
generally by reasoning about others’, known as knowledge-based level).  
Accordingly, the authors suggest that: 

Agents should prefer low levels (i.e., routine and familiar situations) than 
high level (i.e., unfamiliar situations).  The reason is that low levels are 
fast, effortless and are propitious for coordinated activities between 
agents, whereas the high level is slow laborious and can lead to conflicts 
between agents [Chaib-Draa 94].

4. As described by Rasmussen [Rasmussen 86] in his skill-rule-knowledge levels which 
define the hierarchical models of human behavior and reasoning techniques.
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In multi-agent environments autonomy leads to uncoordinated activities due to 
the uncertainty (or ignorance) of each agent’s actions.  Therefore, to support 
harmless autonomy, the notion of ‘known about the others’ should be considered 
as an integral part of agency in multi-agent environments (since the ability of an 
agent to initiate actions can be hampered by not knowing about the other agents 
abilities and actions).  However, the Chiab-Draa and Levesque argument 
suggests that the importance of the notion of ‘knowing about others’ can be 
scaled down in environments where unfamiliar situations are minimized or 
designed not to be handled solely by the computational agents (e.g., in systems 
designed to allow human intervention in unfamiliar situations such as conflict).  

Wooldridge and Jennings support the notion that agents as ‘intelligent reactive 
systems’ need to know about the abilities, skills and interests of the other agents 
of the environment, especially when they have goals that depends on the existing 
of such community members [Wooldridge 95b].  In a later publication Jennings, 
Sycara and Wooldridge present an overview in agents and multi-agents systems 
in which they present an adopted definition of an agent [Jennings 98].  They 
consider three main concepts: situatedness, autonomy and flexibility; and, 
accordingly, define an agent as:

A computer system, situated in some environment, that is capable of 
flexible autonomous action in order to meet its design objectives 
[Jennings 98].

According to them, ‘Situatedness’ means that the agent receives sensory input 
from an environment that it is situated in (such as the internet) and that it can 
perform actions which change the environment in some way.  ‘Autonomy’ means 
that the agent should be able to act without direct intervention of humans (or 
other agents), and that it should have control over its own actions and internal 
state.  Learning from experience is a stronger sense of autonomy that is 
acknowledged by the authors but not considered necessary.  ‘Flexible’ means that 
an agent is first; responsive in a timely fashion to changes that occur in its 
environment, second; pro-active, meaning to be able exhibit opportunistic, goal 
directed behavior and take initiative where appropriate, third; social, meaning to 
be able to interact with other humans and agents to complete their own problem 
solving and help others with their activities.  The authors do acknowledge other 
aspects such as mobility and adaptability that are considered by other researchers 
as properties of agency, but believe that the essence of agency is captured by 
these three key concepts: situatedness, autonomy and flexibility.
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Patterns of
interaction
An object-agent, as proposed in this thesis, should exhibit a wide range of social 
and responsive behavior as described above, however, pro-activeness (or 
initiating actions on its own) depends to a large degree on the ability to interpret 
sensed information from its environment.  In a design environment, with 
thousands of design objects, many changes can be interpreted as closely related 
information which may require a large number of agents to initiate actions (such 
as re-evaluation of own state in respect to the environment changes).  Therefore, 
I consider that filtered or controlled agent pro-activeness are more appropriate in 
design environments.  Filtered or controlled pro-activeness, in turn, reduces the 
degree of autonomy an agent enjoy (see discussion on object-agent autonomy in 
design environment in Chapter 4).

Jennings distinguishes multi-agent systems from other software paradigms (such 
as object-oriented systems, distributed systems, and expert systems) by the 
complex patterns of interaction that may take place among agents of such 
characteristics: 

Multi-agent systems are ideally suited to representing problems that have 
multiple problem solving methods, multiple perspectives and/or multiple 
problem solving entities.  Such systems have the traditional advantage of 
distributed and concurrent problem solving, but have the additional 
advantage of sophisticated patterns of interactions.  Examples of 
common types of interactions include: cooperation (working together 
towards a common aim); coordination (organizing problem solving 
activity so that harmful interactions are avoided or beneficial interactions 
are exploited); negotiation (coming to an agreement which is acceptable 
to all parties involved).  It is the flexibility and high-level nature of these 
interactions which distinguishes multi-agent systems from other forms of 
software and which provides the underlying power of the paradigm 
[Jennings 98].

Lyons and Hendriks [Lyons 95] discuss the importance of extracting the inherent 
patterns of interaction among the environment agents for re-use by the agents to 
achieve their objectives.  They present an approach which allows an agent to 
dynamically ‘exploit’ such interaction patterns to achieve reactive behavior.  The 
notion of reusing interaction patterns is emphasized later in this thesis for the 
purpose of developing the interaction protocols to be used by objects acquiring 
agency behavior (see Chapter 5).  
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2.3 Objects vs. Agents 

Luck and d’Inverno presented a three-tiered hierarchy of entities comprising 
objects, agents and autonomous-agents [d’Inverno 96].  In this hierarchy, an 
‘action’ is a discrete event which changes the state of the environment; an 
attribute is a perceivable feature; a ‘goal’ is a set of attributes that describe the 
state of affairs in the world; a ‘motivation’ is any desire or preference that can 
lead to the generation of and adoption of goals and which affects the outcome of 
reasoning or behavioral task intended to satisfy those goals.  Accordingly, the 
three-tiered hierarchy defines an ‘object’ as an entity with a set of attributes and 
capabilities to take actions; an ‘agent’ as an object with a set of goals and finally 
an ‘autonomous agent’ as an agent with a set of motivations.  In particular, an 
autonomous agent is any agent which has its own set of motivations.  
Motivations are non-derivative and governed by internal inaccessible rules, while 
goals are derivative.  In this sense, performing an assigned task is adopting goals 
of other entities of the environment.  This hierarchy narrows the gap between the 
notion of objects and the notion of agents, and assumes that an agent is an object 
with goals.  However, it stops short from formalizing the dynamic transformation 
of an object to an agent status as proposed in this thesis.

Jennings, Sycara and Wooldridge [Jennings 98] describe objects (in object-
oriented programming) as “entities that encapsulate some state, are able to 
perform actions, or methods on this state and communicate by message 
passing.”  Accordingly they provide three arguments to differentiate between 
objects and agents.  The first argument is around the degree of autonomy and in 
particular around the self-control over its own behavior.  The argument suggests 
that even though encapsulation provides an object with a degree of control over 
its own state the notion of public methods (or public instance variables), where 
other objects can invoke, limits the object control over its own behavior.  
Normally, in an object oriented system this drawback can be remedied if the 
objects in the system are designed so that their methods can only be accessed by 
objects that share common goals with them.  However, in a multi-agent system, 
where agents may be designed by different developers such common goals may 
not exists, and therefore, agents must have more control over their own behavior 
“they do not invoke methods upon one-another, but rather request actions to be 
performed.”  In other words, the decision of what to perform is a property of the 
agent receiving the request while in an object case it is a property of the external 
object invoking the method.  The authors acknowledge that a multi-agent system 
can be implemented using object oriented techniques where a layer of control can 
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be added to the object methods to provide the objects with more control over its 
own behavior and thus a stronger degree of autonomy but autonomy is still “not a 
component in the basic object oriented model.”

The second argument is drawn around the agency notion of being ‘flexible’ with 
its three elements of autonomous behavior (reactive, pro-active, social).  
Standard object models are not designed to accommodate such behavior (even 
though it can be implemented to emulate such behavior).  The third argument is 
that each agent has its own thread of control, so a multi-agent system may 
contain multiple threads of control executed concurrently, while a standard object 
model has one thread of control (again multi threaded programming for object 
models are available in some languages, such as Java, to support concurrency, 
but that still does not capture the idea of agents as autonomous entities).

Rasmus describes agents as a form of objects with the ability to utilize the 
resources of environments’ they live in:

Agents turn out to be specialized objects running in a common 
information environment.  Because they are likely to consume and 
redistribute information, exist in communities, and become subject to a 
form of natural selection, it would be valuable to introduce some organic 
metaphors that help define agents and their environments [Rasmus 95].

Accordingly, Rasmus draws similarities between the concept of agent 
environments and bacteria, where agents interact with the host without being 
completely part of it, and ‘exploit their hosts’ native capabilities to compensate 
for internal deficiencies.  For instance, access to databases might be provided by 
Information Builders EDA/SQL, the agent, then, would not require constructs for 
SQL, but would use whatever SQL the host employs.

As a second distinction from objects Rasmus suggests that not all agents are 
necessarily fully formed upon creation.  Agents, in some cases, will have the 
capability to learn new rules that apply to their tasks, or will have the ability to 
exchange or search for such rules in order to satisfy their changing goals or 
circumstances.  Such a characteristic, in the first glance, seems to suite multi-
agent environments where constant goal changing is a common behavior, such as 
design environments (see Chapter 3 for further discussion about design 
environments characteristics).  
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The last example I review is taken from an agent related project from a School of 
Architecture.  Based on the notion of an intelligent object, Schmitt [Schmitt 94] 
and Smith et al. [Smith 96] present a design system called ‘Interactive Design 
using Intelligent Objects and Models’ (IDIOM).  The intelligent object in IDIOM 
is defined as:

An intelligent object is a part of real case which can be interpreted for 
each new design task using models of their function, behavior and 
structure.  Models provide explicit representations of physical principles, 
thereby avoiding the brittleness associated with traditional rule based 
systems [Smith 96].

The development of IDIOM depends on a prototype for an interactive multi-
agent interface named ‘Sculptor’ [Engeli 96] where design objects contain 
elementary forms of agency.  Conceptually, the objects in Sculptor (essentially 
simple polyhedra) provide reactive, autonomous, and interactive behavior.  
Reactive behavior is demonstrated by the objects in the form of falling because 
of gravity or in collision avoidance with other object.  Autonomous behavior is 
represented in motion and transformation where objects can change their position 
in three dimensional space over time.  The interactive behavior is represented in 
the communication capabilities of the objects among themselves.  

In principal, Sculptor objects did enjoy little of the agency behavior discussed in 
the earlier sections of this chapter, however, they stop short from being agents 
due to the lack of object knowledge and autonomy to initiate or decompose and 
delegate tasks.  In addition, they only enjoyed limited ability to conduct complex 
interactions with the designer or the rest of the environment agents.  This was 
certainly realized by the authors who conclude that the next step for Sculptor is to 
turn its objects into design agents that can be guided by the designer.
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3 Framework of an OA-Based Environment
3.1 Functions of an OA-Based Design Environment

In a computer-based design environment, design objects are treated as 
information entities without ability to initiate actions external to their domain.1  
The designer (DA2) models the design state by manipulating design objects 
whereas expert-agents (EAs3) (e.g., cost-agents, structural-agents, acoustic-
agents) evaluate the individual or collective performance of the design objects, 
based on the design information represented in the model and the prototypical 
information available in the databases or provided by the designer.  Accordingly, 
EAs may warn about performance paucities.  Advanced EAs may be capable of 
recommending and even carrying out the implementation of recommended 
changes to the design objects (i.e., their attributes or relations).  

The proposed approach based on object-agents (OAs) supports design through 
interactions among designers and a group of design agents in the course of 
developing a model.  The approach suggests that the design objects (referred to in 
this thesis as data-object or DOs) themselves can be made responsible to perform 
and manage various design tasks to assist the DA in making various design 
decisions.  

1.  The object methods in an object oriented implementation environment are typically 
geared toward the manipulation of the object’s internal data (or linking internal data 
with internal data of other objects).

2. The designers are treated as distinct agents and are collectively referred to as the DA 
(see also footnote 3).

3. The definitions and terminology used in this chapter is given in the glossary (see 
Appendix A). 
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Changing states vs.
 producing solutions

 Evaluation
The single most important question that must be addressed is: what can be 
achieved in such an OA-based design environment ?

“a CAD tool, AI-based or not, should always be seen as a complement to 
human designers that assists them in tasks where they perform less well, 
but does not compete in areas where they are doing just fine (as many 
recognition tasks) or where automation is hard to defend for reasons of 
principle (as in matters of judgment)” 

Flemming [93]

The proposed OA-based design environment is not intended to automate the 
design process, instead it is to support the DA by providing adequate information 
about the current design state, its DOs and their relations and how they satisfy the 
design requirements.  The concept of objects endowed with agency provides the 
DA with adequate information.  An environment where OAs are able to 
incrementally obtain information (through the interaction with other agents) that 
is most relevant to their immediate tasks provides the DA with rich facilities for 
the incremental development of the design state.

The continuous change of the state of the design objects is required until the 
current state is considered to be acceptable by the DA.  The intention of such an 
environment is not to provide the DA with an optimum solution for a given 
design problem, instead, it is to incrementally change the current state of the 
design through the interaction among the various agents within the environment.  

The OA representation is intended to provide the DOs with properties of agency 
to allow them (when required) to interact and manage other environment agents 
to carry fundamental design tasks such as evaluation, recommendation, 
generation, conflict handling, and implementation concerning its own attributes 
in respect to expected performance.

The DOs can be activated to provide various evaluations of their current state 
upon DA request.  Evaluation tasks may be limited to the collection of the DOs 
factual information or could be extended to the assessment of the expected 
performance of the DOs in respect to the specified design goals and 
requirements.  The later evaluation task requires a search for the DOs’ 
performance requirements (prototypical or DA specified) and computations of 
the current performance values.  In this sense, an OA interacts with the 
environment agents (e.g., DA, SAs) to obtain performance requirements 
(prototypical, DA specified or represented in the model in various forms such as 
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 Recommendation

 Generation

 Conflict handling
constraints networks).  The OA then interacts with the EAs which assess the OA 
performance based on the information provided by the OA and in respect to 
specified requirements.  This dissertation focuses on the evaluation tasks as its 
means to illustrate the approach advocated.

Upon DA request, the OA may extend the evaluation session to obtain 
recommendations from the EAs (i.e., to suggest necessary changes to the OA 
state in order to meet the performance requirements).  If all recommendations 
have been, exhaustively, considered and the OA still does not meet its 
performance requirements, the OA may request a DA interference to either relax 
the performance criteria or suggest changes that may assist the EAs involved to 
produce acceptable recommendations.  

If there are generative agents, the DA may interact with such generative-EAs to 
generate new alternatives.  Recommendation can be viewed as a limited form of 
generation.  However, recommendation, in a general sense, is the generation of 
instructions of how the current state can be modified toward a goal state while 
generation is the complete production of alternative states.4

Recommended modifications of attribute values should be checked for potential 
conflicts before they are implemented.  The OA should provide the DA with a 
list of DO attributes and EAs with interest in the attribute values subject to 
modification.  Each attribute of a DO has a list of other DO attributes and EAs 
that are interested in the value of such attribute.  The interest in any attribute is 
either registered by the EAs or specified in the DO class (during the creation of 
the class), or by the DA in the task dependent hierarchy.5  For instance, a 
daylighting-EA may be linked to a window glazing area; for any change in the 
value of this glazing area, the DA should be provided with a list that includes, but 
not limited to, the daylighting-EA (for potential conflict over the new glazing 
area).  The DA may make use of such information by either modifying the 

4. The generated states can be searched, optimized or tested against a goal state.  If the 
generative-EA adopts a constraint generation mechanism the generated states are valid 
states (in respect to the requirements of the goal state which is implicitly represented 
by the constraints).

5. See A.5.12. See also Chapter 5 for more details on how the interest of a DO attribute in 
another DO attribute is registered.  Basically, attributes of DO types are linked to 
attributes of other DO types by default or by DA specifications (who can also link 
attributes of selected instances of DOs).  Attributes of the same DO class may also be 
linked.  
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recommendations to avoid potential conflicts with interested DOs and EAs,6 or 
by ignoring the list and request the OA to implement the current 
recommendations.  To deal with potential conflicts, the DA will have to request 
further information about such conflicts, in which case the interested DOs7 may 
be activated to evaluate their performance in respect to the recommended 
change.  Conflict detection is therefore the beginning of a conflict handling 
session.  

After the potential conflicts are identified, upon DA request, a conflict 
resolution session is run.  That is, a conflict resolution is a series of local 
bilateral evaluation sessions involving the interested DOs and EAs where the 
decision maker examines various DO attribute values to either resolve the 
conflict or reach an acceptable state of all the parties involved.  Each evaluation 
session involves the decision maker and one of the interested parties.  Evaluation 
results are communicated to the decision maker, no direct communication 
amongst the interested parties regarding the conflict is permitted.  Validating the 
conflict resolution results is the sole responsibility of the decision maker.

The DA may reduce the potential conflicts through the control of tasks being 
executed, DO relations and hierarchies and DOs’ lists of interested DOs and EAs 
(referred hereafter as interestlist).  This is conflict control or prevention.  The 
DA should be in control of such conflict handling session (detection and 
resolution) to eliminate the exponential number of DOs that can be brought into 
the conflict handling session.  Each change in a DO attribute may invoke a 
number of interested DOs, each of which may accordingly result in changing 
other attributes values to balance its own performance in respect to other domain 
requirements.  This in turn, may trigger other conflicts and may require the 
involvement of more DOs and EAs.  A large number of DO activations may 
occur in response to an initial conflict which can cause dependency locks and 
infinite loops of task assignments or conflict handling sessions.  The DA can 
avoid such situations by limiting the: 

• evaluation domains (e.g. daylighting, cost) involved in each session;

6. Detection of conflict is implementation dependent. For instance, if the representation 
of the DO attributes and relations maintains a constraint network, conflicts can be 
detected as soon as a propagated constraint violates an existing one.  The notion of 
interested DOs and EAs is specific to the framework presented in this dissertation.

7. Including the DO of the OA that is currently executing the task (only if an attribute of 
the DO are cross registered in the list of the attribute being modified).
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• involved DOs (or OAs);
• the depth of layers of interested DOs in respect to the conflict in hand (i.e., 

how many layers of interested DOs to be involved in the current session).

In fact, successful bilateral resolution sessions are not always sufficient for 
resolving conflicts, especially when an indirect conflict is triggered by a bilateral 
conflict session. For instance, resolving a conflict between a cost and a lighting 
agents over a window glazing area (e.g., enlarging the glazing area, within the 
total budget, to admit more lighting) does not insure that the total cost is still 
within the budget. A thermal agent (not involved in the original bilateral conflict 
session) may find that enlarging the glazing area increases the heating and air-
conditioning load which, in turn, requires a more expensive mechanical system 
that causes the total cost to be above the budget. The thermal agent may 
accordingly try to reduce the glazing area of the same window erasing the result 
of the original bilateral conflict resolution session.  Such chain effects can be 
automatically detected by the system if the history of the conflict session is 
stored. However, conflict handling requires OAs and EAs to have certain 
capabilities, a rigorous treatment of which is beyond the scope of this thesis.  
These capabilities include the continuous monitoring of certain events in the 
environment or the continuous communication with interested agents and DOs.

Conflict detection does not necessarily require the agents to be aware of the tasks 
and capabilities of the other parties (i.e., agents involved in the same conflict); on 
the other hand, direct negotiation does.  Agents involved in a direct negotiation 
process should be aware of the other parties needs and goals.  OAs in this sense 
should obtain planning capabilities that are external to their local coordination 
knowledge.  Conceptually, the OA approach does not impose any restrictions on 
direct negotiations between the agents.  However, within the framework of this 
thesis, negotiation is only conducted through the DA.  That is, complex 
negotiation between OAs is prohibited; however, OA communication is 
encouraged.  OAs may detect conflicts on their current (or recommended) 
attribute values and may report it to the DA (only if the DA elects to be informed 
of the conflicts resulting from performing the assigned tasks).  To resolve a 
conflict the DA may change conflict parameters by modifying the evaluation 
criteria or the current state of DOs (modifying attribute values, removing or 
introducing new DOs).  After various local evaluation sessions changing the 
above parameters the DA may choose to temporarily or permanently adopt the 
current DO state with its unresolved conflicts.  
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 Implementation
 Upon DA validation of any recommendation or the successful termination of a 
conflict handling session, the DA may implement or ask each OA involved to 
carry the implementation of any recommendation concerning its own attributes.  
To implement a recommendation (e.g., change a window dimension) the OA 
interacts with the CAD-agent and provides the new attribute values (e.g., new 
window height) or the attribute values of the new related DOs to be placed (e.g., 
select a shading device from the DO library for the window).

3.2 Agent Interactions

The creation of OAs to perform various task types depends to a large degree on 
the ability of the OAs to interact with the different agents of the environment.  I 
consider five functional categories of interaction: activation, query, decision 
support, interface, database. The players involved in the different categories are 
illustrated in Figure 3.1.  Each functional category is shaded differently and 
reflects possible agent types involved in its operations and their possible 
relationships.  Three types of relationships are identified. The first two types 
represent direct interactions. 

• Two-way relations between agents, where an agent may ‘inform’ or 
‘request’ information or ‘assign’ tasks to the other.  

• One-way relations between an agent and an entity (e.g., DO, database), 
where an agent may ‘request’ information, ‘update’ or ‘manipulate’ the 
entity information.  

• Secondary relations which represent the relation ‘has access’ to 
information.  These are referred to as secondary since they do not 
necessarily represent interactions.  For instance, the relationship between a 
CAD-agent and a DO database is an example of a secondary relation.

It is instructive to note that not all agents are involved in all categories of 
interaction.  For example in activation the data-base and query-agents do not 
have role.  Likewise, in decision support the OAs play a role whereas the 
corresponding DOs do not.  Only in query and interface interactions might all 
types of entities concurrently play a part.

I look at two categories: activation and decision support; and one aspect of the 
interface category: communication.
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Categories of interaction of an 
OA-Based Design Environment

 Activation
3.2.1 Activation

Activation is essential to any OA-based environment.  There are four main 
functions: activating a DO, deactivating an OA, loading an EA, and unloading an 
EA.

The activation of a DO is the creation of an OA which represents the DO in any 
interaction that requires agency behavior.  The OA contains a copy of the DO 
attribute values, relations and a copy of the behavior expected from this DO type 
(e.g., problem solving protocols), and all the properties of agency planted in an 
OA (Chapter 6 contains detailed description).  The created OA acts on behalf of 
the DO performing tasks assigned to the DO and reporting to the DA and other 
interested agents when required.
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 Deactivation

 Loading

 Unloading
The deactivation of an OA is the termination of the OA upon the completion of 
all assigned tasks.  Updating of the DO (i.e., the DO attribute values and 
relations), informing interested parties with any updates, and informing the DA 
of any potential or detected conflicts in respect to the updated information, must 
all be completed prior to termination.

Loading an EA is to invoke the EA in the current session.  In an architectural 
design session the DA may need to temporarily work with set of selected EAs or 
a single EA, say the lighting-EA to evaluate the current lighting performance of a 
room, the DA may then load the lighting-EA and unload8 all other EAs.  

Unloading is then revoking an EA from the current session.  An EA cannot be 
unloaded if it is involved in any task currently being executed.9

Activation operates in two modes:

• In the DA mode, the DA requests the activation or the deactivation of an 
OA or EA.  The request takes place through the CAD-agent or an 
interface-agent and are executed by an activation-agent.10

• In the OA mode, an OA requests the activation of another DO.  This 
request is sent directly to the activation-agent without involvement of the 
DA.

8. The DA should have the liberty of selecting the appropriate agents for the current 
session.  According to the assigned task other agents (not loaded by the DA) may be 
brought into play to perform related tasks to the task being executed.

9. Unloading in this sense is one way of disabling an EA from participating in the current 
session.  There may exist other ways of implementing a “disable” function, however, 
unload is conceptually transparent and helps reduce overhead  

10.The activation-agent is a conceptual agent; that is, its existence as a separate entity is 
implementation dependent.  In an object oriented language implementation, as in C++, 
activation and deactivation methods can reside in the DO class, and the loading and 
unloading methods can reside in the agent class.  In this case there is no need for an 
independent activation-agent.  The activation can be done directly between the 
requester and the DO and likewise for loading an EA.  In a an expert system language 
implementation, say in CLIPS, an activation-agent can contain all four functions of 
activation.  In such a case any of the four activation requests must be directed to and 
carried out by the activation agent.  While the first approach is direct since only two 
parties are involved in the activation process, the second is closer to activation, as 
described in this dissertation.
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3.2.2 Decision support 

Decision support is the core of an OA-based environment.  In this dissertation, 
this function is to allow the DA to orchestrate the efforts of the local and 
global nodes during the course of performing tasks.  The EAs are domain 
specific problem solving nodes, the OAs are local coordination nodes while the 
DA is global coordinator, principal planner and evaluator.  The DA is the only 
participant who is aware of the motives behind the group effort led by him/her.  
Crucial to decision support is DA interaction with agents.  The interactions of the 
DA with the DOs, OAs, and EAs, are facilitated by both CAD-and interface 
agents.

Upon DA request, the agents provide information (continually or temporally) 
about the individual or collective states of the DOs.  The DA orchestrates the 
efforts of the agents involved in acquiring information about the current state of 
the DOs or in changing the current DOs’ state toward a goal state (which is either 
known solely to the DA or represented explicitly in the model).  

Decision support involves a variety of task types (see Appendix B): evaluation, 
recommendation, generation, conflict handling, implementation.  Tasks can be 
local as evaluating the current state of a single or multiple DOs with respect to a 
single domain (e.g., cost), or global as evaluating the current state of single or 
multiple DOs with respect to multiple domains.  The state of a DO with respect 
to a single domain may be unsatisfactory although it may be satisfactory with 
respect to the collective state of DOs and vice versa.

3.2.3 Communication

How agents communicate ? and what is being communicated ? are two 
fundamental questions that need to be addressed.  Communication among agents 
are facilitated, through interface- agent(s).  Conceptually, interface-agents 
provide a common language to communicate among the various agents, and a 
message handling system to facilitate their interactions.  The communication is 
available to agents locally, within the same environment, or globally, across 
remote environments.  The interface-agents, common language and message 
system are implementation dependent.

Interface agents provide the elements of communication;  a message system to 
pass information among agents locally within the same environment and globally 
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across multiple environments; and a common language which at the minimum 
contains a set of terms that triggers agents actions.  Such terms adhere to the 
agents abilities to execute actions, this institutes that new terms are added when 
agents with new capabilities are introduced to the environment.  

Interface-agents may use local and global message passing that is most 
appropriate to the nature of the environment.  For instance, in an object oriented 
implementation local message system may be replaced by the direct use of object 
methods of the other environment agent.  In other words, agents use object 
methods to communicate.  

The process by which the agents know about the existence of other agents in the 
environment is important.  Conceptually, two approaches are considered:

• The global communication approach assumes that an OA does not 
necessarily know about the other agents of the environment.  To assign a 
task an agent may globally broadcast the task and the appropriate EA 
responds to the message.  This approach emphasizes the role of the 
common language used by the agents and requires the EA to be 
continually observing the broadcasted messages within the environment 
(e.g., through a bulletin board-like system designed to facilitate this type 
of global communication).  This approach complies more with the notion 
of agency since it does not require the agents to know about the existence 
or the abilities of the other agents of the environment.  On the other hand 
this approach relies heavily on either the agents’ ability to interpret and 
filter the global messages observed (which can be a very large number 
considering the number of agents interacting simultaneously).11

• The direct communication approach assumes that the agents are 
knowledgeable of the other agents’ abilities (in particular, the OA 
protocols are designed to identify the agent most suited to the task on 
hand).  To insure a response for sent messages the agents must be 
continually informed as to which agents are currently loaded or unloaded 
in the environment.  In this sense, an agent knows about the existence of 
other agents and their expertise.  Both Lesser and Gmytrasiewicz support 
this approach and claim that in a cooperative problem solving 
environment it is more efficient if the agents have detailed models about 

11.The number of related messages to be filtered can be reduced using a message 
classification mechanism provided by the message system.
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the other agents in the environment [Lesser 92] and [Gmytrasiewicz 93].  
Within the scope of the thesis, this direct communication approach is 
adopted.

3.3 The modeling process

Computer-based design environments offer various approaches to modeling a 
design state.  Environments where generative mechanisms are at the core of 
modeling process provide detailed degrees of design alternatives in accordance to 
a set of defined constraints.  For example, in the SEED project the generation of 
alternative layouts is interactively controlled by the DA within the SEED Layout 
module [Flemming 95].  The DA selects a layout where another set of alternative 
3D projections and building skins can be generated within the SEED-Config 
module [Woodbury 95].  A set of alternative structural schemes can also be 
generated within the SEED-Struct module [Fenves 95].  Preceding the generation 
of layouts, the design requirements and constraints defined by the client and the 
DA can be formulated as an architectural program within the SEED-Pro module 
[Akin 95] and [Donia 98].  The main advantage of such interactive and dynamic 
design environments is to insure the integrity of the design model throughout the 
different generation process.  In addition, no model is generated unless it satisfies 
the design requirements and constraints as represented throughout the process.  
This is a ‘constrained generation’ modeling process [Baykan 92].

With the absence of a generative mechanism, the DA takes a more involved role 
in modeling the geometric and non-geometric information of the building (or 
artifact being designed).  The DA incrementally introduces the requirements and 
constraints using his/her design knowledge.12  In some previous environments, 
such as ICADS, the model is incrementally evaluated as every component of the 
building is interactively being added or modified [Pohl 92].  The evaluation 
process is automated and tied to the construction of the model.  This is an 
‘incremental generate and test’ modeling process.

12.The design requirements and constrains are implicitly considered in the models 
generated by the DA.  Firstly since the DA knowledge encompasses such information.  
Secondly since the utilization of prototypical databases with reusable parts also 
encompasses chunks of such information.  However, the DA take a bigger role in 
maintaining the integrity of model information.
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 DO Relations
and Hierarchies
In other environments, such as SEMPER, the evaluation process does not take 
place until the model representation is completed [Mahdavi 96].  The DA runs 
the model through various simulation sessions involving domain expert 
applications to assess the performance of the current model in respect to the 
design requirements and constraints.  The DA iteratively modifies the current and 
subsequent models to improve their expected performance until the model is 
deemed satisfactory.  This is a ‘generate and test’ modeling process.  

In order to utilize the OA the DA must incrementally interact with OAs to 
develop an acceptable model.  Therefore, an OA-based design environment lends 
itself to the ‘incremental generate and test’ modeling process. 

The DA may use a bottom-up approach to develop a building model from an 
aggregation of rooms, zones, building floors, and building blocks.  Alternatively, 
the DA may wish to follow a top-down approach and first model the building 
mass, then develop the blocks, floors, zones and rooms within that mass.  Both 
approaches, or a combination of both approaches, are supported in an OA-based 
design environment.  The DA may also use generative agents (if these exist in the 
environment) to suggest alternative layouts or building blocks.  Using a top-
down or a bottom-up approach the DA interacts with the environment agents 
including the OAs to incrementally arrive at an acceptable design model. 

To better understand the modeling process by which a DA may interact with a an 
OA-based environment the following scenario assumes a DA using a bottom-up 
approach to generate a design model of an office building.  Through out this 
scenario various design issues concerning the architecture of an OA-based 
environment are discussed. 

The DA selects rooms from a pool of predefined Room-DO types (or defines a 
new Room-DO type).13 The DA may then choose to add Wall-DOs, Opening-
DOs, Floor-DOs, Ceiling-DOs, etc. and link them to the Room-DO.  Linking two 
DOs is to define the nature relation between them.  Three main relation status are 
currently identified;

• no-relation (the default status).  
• constituent-of/contains; 

13.The DA needs to follow the implementation specific procedures provided by the 
environment for defining a new DO type.
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• associated-with;

The relation “constituent-of/contains” has two parties involved; a sub-DO and a 
super-DO (as defined in Chapter 3), where the super-DO contains the sub-DO 
and the sub-DO is a constituent-of the super-DO.  A Wall-DO is logically a sub-
DO of a Room-DO.  However, it should be permitted that the same Wall-DO be a 
super-DO of the same Room-DO if needed.  The DA should be able to assign any 
type of relation between any DO types, the logic behind any relation is solely 
dependent on the DA’s views of how the DOs should be linked.  There is no 
reason why a Wall-DO should not have a constituent-of/contains or associated-
with relation with a Room-DO even if it is not geometrically located within the 
volume of that Room-DO.  Visually, thermally and acoustically (for instance) 
this Wall-DO can still be associated with the Room-DO even if it is located on 
the volume of an adjacent Room-DO.  On the other hand, there may not be a need 
to establish a relation between a door-DO and a BFloor-DO (building floor) if no 
agent in the environment can utilize such relation.

A DO can be a sub-DO of more than one DO simultaneously.  For instance, a 
Window-DO can be a sub-DO of a Wall-DO and a Facade-DO in the same time.  
A Wall-DO can also be a sub-DO of two Room-DOs at the same time in which 
case the Wall-DO is a joint-DO (see definition in Appendix A).  

The relation “associated-with” involves two DOs where a non-hierarchal 
functional or semantic link is needed in the model.  Two DOs may be associated 
by one or more of their attributes.  For instance, A Wall-DO thickness attribute 
may be associated with a Room-DO thermal and acoustic attributes.  The relation 
“associated-with” is temporarily assigned during a design session (e.g., during 
the execution of a task as explained below).  This relation can be used to register 
a DO or and EA in the list of interested DOs and EAs of a DO attribute.

A relation between two DOs is task dependent.  For instance, an interior Wall-
DO that is perpendicular to the facade can be linked to the Facade-DO when the 
later is performing a task to modify its proportions.  The location of interior Wall-
DO may consequently be changed if the proportions of the facade is modified 
(even though the interior Wall-DO is not a constituent-of the Facade-DO).  The 
hierarchy of the DOs is specified by their relations according to the task in hand.  
That is, the DOs should only have task dependent hierarchies.  
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The DOs should not have a hierarchy as they reside in the database (i.e., the 
database should contain a flat set of DOs).  Any hierarchy should only be 
established during the progress of the design session.  The DA assigns the 
relations which, in turn, establish a hierarchy.  The DA may also establish 
multiple hierarchies of the same objects.  A Column-DO can exist in a structural 
hierarchy of a Building-DO and, at the same time, in an enclosure hierarchy of a 
Room-DO.

The questions are then: how does the DA assign relations between DOs ? and 
whether it is necessary that the environment provide means to assist the DA in 
assigning relations and establishing the task depend hierarchies among the 
DOs ?.  

It can be argued that if the DA is to assign each single relation among DOs, 
modeling a large building with thousands of DOs becomes a tedious task.  The 
answer to such an argument is that, in most cases, the design state advances in 
stages by making decisions at any given time.  Therefore, the DA need only to 
assign those relations that are needed for the current tasks on hand.  On the 
contrary, if the environment provides DOs with predefined hierarchies a large 
number of unnecessary relations are produced and may need to be disabled in 
order to perform certain tasks.  That can be a more tedious task than simply 
assigning the needed relations.  It is necessary that the environment adopts the 
DA’s mental model of the design state and not force the DA to adopt a predefined 
model imposed by a set of default DO relations and hierarchies.  

The environment may provide support to the DA in assigning relations amongst 
DOs in various ways:

• Through interface-agents which should provide the DA with multiple 
techniques of assigning relations amongst singular DOs as well as groups 
of DOs (e.g., establish a relation with all Wall-DOs of a Room-DO, a 
Floor-DO, or an entire Building-DO).  The interface-agents should also 
allow the DA to disable or eliminate relations and inform the DA of any 
dependencies which may be effected by such elimination.  The existence 
of DOs in a flat set is independent from its relations, therefore, side effects 
caused by modifying other DOs should be minimal.  In addition, any 
hierarchy established (to perform a task) during a design session can be 
saved and reused while performing similar tasks within the same session 
or in later sessions.
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 Decomposition
• Predefined hierarchies of DOs may only be used to provide the DA with 
an experimental test beds.  The environment can support the DA by 
providing exemplary task dependent hierarchies.  The DA should be able 
to import complete or subsets of such hierarchies.  The use of such 
hierarchies is, therefore, dependent on DA preference, and on the task in 
hand.  

• The environment should provide domain specific agents that are geared 
toward establishing hierarchies amongst the DOs of the model.  The DA 
can interactively (or graphically) use such agents to establish the task 
dependent hierarchy needed for the task in hand.  At any modeling state 
such agent can be loaded into the current session to suggest and/or assign 
relations among the DOs, based on the agent knowledge of the task 
domain and based on the agent’s ability to interpret the model (e.g., 
semantically, or geometrically).  

To summarize the discussion about the DO relations and hierarchies: 

• DOs have no relations to other DOs unless specified by the DA or other 
supporting agents according to the DA preference;  

• relations between DOs are temporal;
• hierarchies established between DOs are task dependent.

3.4 Decision making with OAs

The OA-based approach suggests that a DO is activated (as an OA) to perform a 
task regarding its own design state.  An OA may perform the task directly or 
activates other related DO (as sub-OAs) and decompose the task to sub-tasks 
amongst the sub-OAs.  The decomposition is dependent on the relations and 
hierarchies established between the OA and its sub-OAs.  

When performing a task two types of decompositions can be identified as 
illustrated in Figure 3.2

• Flat/Simple decomposition.
• Complex decomposition.

A flat decomposition is performed whenever

•  the result of the task assigned to the OA is the aggregation of all the 
results of the sub-tasks assigned to its sub-OAs.
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Decomposition types.
• each DOs can only be a constituent of one DO (no joint-DO in the 
hierarchy). 

A cost estimate task for a building block materials is an example of a flat 
hierarchy (Figure 3.3A).  The material cost of a building block is the cost of all 
its material components represented in the a hierarchy as the leaf nodes of the 
hierarchy tree.  The aggregated cost of all leaf nodes regardless of its DO type or 
its spatial location in the block adds up to the total cost of the building block.  
The hierarchy needed to perform such a task is established around the 
constituent-of relations.  In such a hierarchy each DO can be a direct constituent 
of the Block-DO.

A cost estimate task may require an aggregation of multiple levels of flat 
decompositions.  Such a hierarchy is needed for a cost estimate task of a building 
block carpeting classified per room (e.g. the carpeting cost of each room in 
addition to the total cost of the building block carpeting) (Figure 3.3B).  The 
carpet area need not to be represented in the hierarchy since the area of the room 
floor can be sufficient for calculating the carpeting area. Various flat 
decompositions can be established around different classifications of the same 
task.  
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A complex decomposition is performed whenever

•  the result of the task assigned to the OA is not necessarily the aggregation 
of all the results of the sub-tasks assigned to its sub-OAs.

•  at least one DO is a constituent of more than one DO (a joint-DO). 

Performing a framing cost estimate for a building classified per building blocks 
requires a complex decomposition.  The frame cost of each building block is the 
cost of all its frame components (and labor). Some components may be shared 
(joint-DOs) by other building blocks.  A joint-DO such as a shared wall requires 
an additional layer of computation to determine the exact share of each shared 
wall (Figure 3.3C).  For any classified quantity tack-off task for materials such as 
paint, dry walls, insulations, pluming, electrical installations all of which may be 
represented as a constituent of a wall, requires complex decompositions if shared 
walls are involved. .

Tasks which do not depend entirely on aggregation of sub-results may require 
complex decompositions as well.  For instance, the structure analysis of a 
building floor is not necessarily the analysis of each individual room of that 
building floor.  The building floor may be divided in structural zones each of 
which may contain more than one room (some of which may not contain any 
structural elements).  The structural analysis of a zone may not be independent 
from other zones as well.  Columns can be shared among rooms and loads may 
be distributed along continuous beams or frames which runs across multiple 
zones.  In addition, different structure systems may exist in the same floor which 
require separate or different structural analysis method.  In a multi-story building 
of identical floors the aggregation of the individual structural analysis of each 
building floor (top down) may be a valid decomposition.  

The hierarchy (or hierarchies) established for a structural analysis task is 
completely dependent primarily on the type of suggested structure and on the DO 
type (e.g., Building-DO, BFloor-DO, Room-DO).  

Comparing alternative structural systems the DA may need to find the total cost 
of a structural system of the building.  The aggregation of the cost of all 
structural elements such as foundation, columns, beams, trusses constitutes a 
valid decomposition (considering the labor cost).  On the other hand, if 
classification according to individual rooms is requested, the same 
decomposition may not be sufficient.  As discussed previously, a Room-DO may 
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contain no structural elements such as columns and beam; however, this does not 
imply that there is no structural cost to this Room-DO.  The structural cost of a 
space is related to its floor area, the distribution of the total cost of the structural 
system of the building among the total floor area provides the structural cost per 
square foot.  This is an average cost vs. actual cost.  Average cost is more 
appropriate in buildings with homogeneous structures14 (Figure 3.4). 

There are many ways by which a building can be decomposed, according to its 
spatial components such as blocks, floors, zones, rooms, or according to its 
internal subsystems such as structural, electrical, thermal etc., or according to its 
functional use of spaces such as management zones, working zones etc.  To 
perform an evaluation of building using an OA-based environment the 
appropriate decomposition must be applied.  Four main factors affect the 
required decomposition.  Three of which are task related: DO type, task domain, 
task type, and task focus.

It is, therefore, more appropriate to allow the DA to establish the hierarchies 
according to the nature of task in hand.  In such case, task decomposition among 
sub-DOs can be a direct reflection of the established hierarchy.  The question is 
then how does an OA decompose a task among it is sub-DOs?

How do the OAs decompose a task?

An OAs knowledge of how to handle any task in hand is embedded within its 
problem solving protocols.  These protocols are general guidelines of how a task 
can be decomposed when necessary and of how sub-tasks are delegated to the 
sub-OAs, or executed by the OA directly when no decomposition is necessary.  
The protocols are therefore specific to DO-type and task domain, type and focus 
(see Chapter 6 for detailed examples of decomposition protocols).  For instance, 
a Wall-DO would have an evaluation protocol that is specific to cost tasks.  Using 
such protocol a Wall-DO may return its total cost based on average costs of such 
a wall type as provided in the prototypical database.  If classification is requested 
the DA may need to establish a constituent-of relations to its components (e.g., 

14.A multi-story office building with the same structure in each floor is a homogeneous 
structure.  A multipurpose building may contain multiple structures such as a concrete 
frame for a theater space next to a skeleton for an office space.  Such building structure 
is a non-homogeneous.  In which case the building may have an average cost for each 
structural system and general average cost for entire building (including all structural 
systems).
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wood frame, dry walls).  The protocol would use this hierarchy to activate the 
sub-DO and delegate the tasks to the sub-OAs. 

If a building bfloor-OA is not linked in a hierarchy with its structural elements, 
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 Evaluating the model
bfloor own geometry and attributes.  If the DA establishes a hierarchy between 
the bfloor-OA and structural elements, the bfloor-OA would be able to provide 
the structural-agent with more information about its sub-structural elements and 
relations.  The structure-agent, in turn, would be able to provide more specific 
analysis of the building floor structural performance (see the section on The 
Level of Abstraction on page 46).  In another words, the OA needs a hierarchy to 
apply the more sophisticated problem solving protocols.  The OA may assist the 
DA in establishing the hierarchies needed.  Upon request by the DA the OA 
provides the DA with the information embedded in the protocols of how a task 
should be decomposed.  Accordingly, the DA should be able to interactively 
establish the relations needed among the related DOs.  Since the hierarchies are 
used locally (i.e. task specific), there is a strong argument to allow the OAs to 
establish the required hierarchies needed by themselves.  Interacting with agents 
that are capable of interpreting the functional or the spatial relation among the 
candidate DOs an OA may be able to acquire the needed hierarchy for the task in 
hand.  In such case the use of the established hierarchy for task decomposition is 
better monitored or validated by the DA. 

Each problem solving protocol is primarily intended to enable the OA to locate 
and interact with the appropriate EAs to accomplish the task in hand, and when 
necessary to decompose the assigned task to a set of sub-tasks, delegate the sub-
tasks to other OAs (namely its sub-OAs), and manage the sub-OAs while 
executing the sub-tasks.  It does not pertain any domain specific knowledge of 
how to execute the task (e.g., how to calculate the cost or how to analyze or 
recommend a structural system).  In a short, the problem solving protocols 
provide the OA with management and planning knowledge regarding the task 
types to be performed. 

When a new DO-types is added to the environment a set of protocols applicable 
to such type must be made available to its OAs.  If multiple DOs of different DO-
types is to be activated as one composite-OA (e.g., a corner-OA which may be a 
composition of walls floors and ceilings) a new set of protocols need also to be 
made available to such composite-OA.  The aggregation of the protocols of the 
DO types involved in the composite-OA does not necessarily represent the 
required behavior of the composite-OA. 

When a DA adds a new DO to the environment, the DO remains in passive status 
until the DA links it to a hierarchy and activates it in order to perform a task (e.g., 
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activating a Room-DO to evaluate the its daylighting performance).  The DO is 
activated and the newly created Room-OA starts interacting with the appropriate 
agents which will assist in executing the assigned task.

The problem solving protocols of the Room-DO type which is loaded into the 
room-OA during its creation prompts it to first try to identify the daylighting 
requirements for this room (e.g., bedroom, reading space).  This can be achieved 
by either posting a global request to which other agents may respond, or by direct 
communications (see Communications, Section 3.2.3) with the query-agent that 
is responsible for browsing through the prototypical databases.  In either case, the 
room-OA obtains the required daylighting levels either through the query-agent 
or from other agents in the environment that have access to such information 
(such as another room-OA of the same type that is concurrently executing a 
similar task) or, finally, from the DA if no other agent is able to provide the 
required information.

The room-OA then assigns an evaluation task to the domain EA (i.e., the agent 
most related to the task in hand, namely the daylighting-EA in this case).  The 
daylighting-EA requests information about the room-OA such as its dimensions, 
orientation, where it is located in respect to its neighbors, number of openings, 
opening sizes, and non-geometric information such as surface reflectivity, 
glazing type, overhangs and so on.  

The OA should be able to provide information about itself, whether this 
information is geometric or non-geometric.  Its geometric boundary and its 
coordinates are residing in its original DO or obtained through interaction with 
the CAD-agent.  Its geometric relation to other DOs is calculable, upon request.  
Such calculations should be performed based on actual request, however, 
selected information may be stored temporarily and therefore calculations may 
not necessarily be performed upon each request.  To obtain such information the 
room-OA would assign a task to a spatial-relations-agent to find specific 
information relating to its adjacencies.  The spatial-relations-agent performs the 
necessary calculations, and provide the results back to the room-OA which, in 
turn, provided to the requester.  

If the lighting levels are found to be below the required values (which is obtained 
from the prototypical database or from the DA), the room-OA notifies the DA 
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 The Level of Abstraction

 The design of an EA
that current lighting level are below required, which in turns require further 
modifications to the current state in order to meet the performance requirements.

The information provided to the EA by the OA should be relative to the degree of 
abstraction of the model.  Therefore, an EA should be able to provide the 
appropriate level of response to the level of model abstraction.  For a room-OA, 
the level of abstraction can vary from a simple 2D geometric configurations to a 
solid complex objects with attributes, constraints and so on.  A Room-DO may 
be represented as a labeled rectangle or as a 3D solid enclosure.  It may be linked 
in a hierarchy with its walls.  A wall can be represented as a solid with attributes 
such as surface colors and materials and can be linked to openings with attributes 
such as glazing number, reflectivity, types and so on.  The lower the level of 
abstraction of the OAs the more detailed the EAs’ response should be.  The 
minimum level of abstraction that an EA can respond to is dependent on both the 
task domain and type.  For instance, a zoning-EA should be able to perform an 
evaluation task based on the room use and minimal spatial information such as its 
coordinates.  A structural-EA, meanwhile, may not be able to respond to the 
same level of information when performing a structural evaluation task.  The 
same information may be sufficient if the task is a structural recommendation 
task.  Based solely on the room dimensions and location in respect to the 
neighboring rooms the structural-EA should be able to recommend a structural 
schema (e.g., wood, skeleton, steel), and possibly specify the location and 
dimensions of the structural elements needed.  

How does an EA deal with various levels of abstraction of the information 
provided by an OA ? 

Two main factors contribute to answering this question; the design of the EAs 
and the role of the interface-agents.  

An EA should not be designed to expect a complete set of information before it 
provides a response.  An EA should also strive to obtain any missing information 
to complete the minimal set required to provide a response.

Typically an EA requests all the information it needs to provide a detailed 
response to the assigned task.  The OA provides relative information which may 
be a subset of the information requested by the EA.  The algorithms of the EAs 
should be designed to enable the OA to handle any subset of information 
received from the OA.  The response should be relative to the amount of 
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 The role of the
   interface agents

 Executing tasks
 in parallel
information provided by the OA.  If necessary, the EA may request more 
information from a query-agent or from the DA, or may inform the DA that the 
information provided is inadequate or not compatible with the assigned task.  

An alternative to changing the design of the EAs is to make the interface-agents 
(which is facilitating the interactions between the EA and the OA) responsible for 
recognizing the level of abstraction of the information provided by an OA before 
it is delivered to the EA.  The interface-agent would also be responsible to 
complete the minimal set of information needed by the EA to perform the 
assigned task.  In this sense, an interface-agent must know what is needed by 
each EA in the environment.  The knowledge of the interface-agent would be 
altered when new EAs are added to the environment.  Conceptually, this is a 
violation of the notion of agency for both the interface-agents and the EAs.  An 
interface-agent should not pertain to any domain specific knowledge and 
accordingly its performance should not be affected when new EAs are added to 
the environment.  The role of the interface-agents should, therefore, be limited to 
how to facilitate the interactions among agents and not to what is being interacted 
with.  On the other hand, the design of the EA problem solving protocols should 
not depend on the existence of intermediate agents to complete, filter or classify 
the information sent to them.  An EA should be able to independently react to 
any received information.  

When assigned a task, an EA might be working on a prior task from another 
agent.  In this case, the new request can either place the tasks in a queue, or 
spawn a duplicate process to perform the task concurrently.  An OA, should 
always handle multiple tasks in parallel by duplicating itself.  This requires the 
OA to have access to process management knowledge (which may reside in some 
UAs of the environment).  This also requires a more complex mechanism for 
updating the original DO data upon the termination of any task while the 
concurrent tasks are being executed using the initial un-updated DO data. Note 
that DO data are not updated until all duplicates have completed their tasks.

3.5 Advancing a design state with multiple OAs 

A decision making environment that comprises multiple agents relies, to a large 
degree, on the contribution of each agent to the collective effort of the group.  
The contribution of an agent depends on its degree of autonomy and its ability to 
plan and execute actions.  The following sections discuss the various degrees of 
autonomy of an agent, and the planning capabilities that each type of agent may 
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incorporate according to the proposed design environment.  The following 
section presents the proposed approach of how the cooperation of agents with 
different capabilities can support the design activities.

3.5.1 Agent autonomy

The term autonomy describes the degree to which an agent controls its own 
activation, execution and termination.  Non-autonomous agents are slaves to 
external agents that trigger them.  Autonomous agents decide for themselves 
when they should activate, execute and terminate.  Semi-autonomous agents turn 
to an active state by a combination of their own and external commands.

EAs, such as query agents, are primarily non-autonomous since they can only act 
upon request for information or service by other agents.  However, it may be 
possible that an SA, especially EAs, can self-activate when they see fit.  This 
requires the EAs to be able to identify those problems that relate to their area of 
expertise.  In systems such as ICADS, the intelligent design tools (IDTs) run 
continuously to evaluate the current values of the evolving solution.  Whenever a 
new design object is added to the CAD environment, the IDTs are automatically 
activated [Pohl 92].  

Quadrel describes a system comprising an asynchronous team of autonomous 
agents (only system-agents), that are sensitive to events in the environment at 
large, in a network like structure [Quadrel 91].  When applied to design tasks, the 
coordination of such an organization is rather complex even when the kind of 
agents are limited to SAs only.  In an OA-based design environment with a large 
number of agents (SAs and OAs), coordination is an extremely complex task if 
the OAs are to be fully autonomous.  

Agency behavior implies that an OA, as agent, should have the abilities to self-
activate itself when it sees fit.  This requires that an OA should have the ability to 
interpret the other agent actions and to coordinate its actions accordingly.  The 
coordination of the activities conducted by agents depends on the ability of each 
individual agent to plan its activity and to participate in plans made by other 
agents in the environment, including the DA.  Rothman suggests that agents can 
be classified to many levels of complexity, but they can only be considered 
intelligent when they possess planning capabilities [Rothman 93].  An agent 
creates ‘plans’ based on ‘models’ of itself and the environment from which 
action sequences, consisting of instruction level commands, are generated.  The 
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models are used to predict possible future events and states.  An agent that is not 
able to anticipate future events through the use of models is called reactive.  
Reactive agents respond only to the current and past states of the environment.  
To construct such models, agents must obtain communication capabilities with 
the rest of the environment in order to be able to acquire information to generate 
such complex behaviors.  Therefore, planning (or intelligence of an agent) is an 
emergent property of the interactions.

Within the scope of this thesis OAs are semi-autonomous agents.  That is, they 
should be activated when there is a task to be performed.  Accordingly, there 
would be no fully autonomous agents apart from the DA.  

3.5.2 Short term planning vs. long term planning in design

Any type of planning aims at a set of DA goals to be achieved and a set of 
requirements to be met.  In short term planning, agents monitor the situation and 
take actions in reaction to it.  The reaction is triggered by information from other 
agents.  These are considered data-driven actions.  The agents follow rules to 
map states to actions without a long-term view of how actions will lead to 
achieving goals.  While Durfee describes this type of planning as ‘reactive 
planning’, he considers it also important for a problem solving environment to 
adopt what he calls ‘strategic planning’ [Durfee 88].  Strategic planning is a form 
of long term planning where an entire sequence of actions is to be taken starting 
from an initial state to a goal state.  These are considered goal-directed actions.  

In long term planning, a set of global goals are to be accomplished.  Local and 
sub-goals are set to distribute the tasks among the participating agents.  It is 
possible to achieve the long term global goals even if a group of the local and 
sub-goals are modified or changed during the execution of the plan.  However, it 
is difficult to deal with a long term plan when both global and local goals are 
subject to continuous modification and change.  DAs tend to change a 
considerable number of their design goals during the process of design.  In turn, 
the goals of cooperation between the various agents involved may differ as the 
design develops, and the style of cooperation may depend heavily on the problem 
domain.  Accordingly, a dynamic set of coordination mechanisms are needed to 
allow the agents to achieve the appropriate goals of cooperation in many given 
situations.  Such coordination mechanisms would be necessary if agents are to be 
responsible for long term planning.  This is a very questionable proposition and 
requires further discussion.
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It is important to emphasize that global design goals do exist at any point during 
the design, but they may differ at different points in time.  If the OAs are to be 
responsible for long term planning and designing a sequence of problem solving 
procedures, it would be necessary for each OA to take into account the possible 
role of the other OAs that may be involved, and the requirements of the other 
OAs in respect to their design domains (e.g., acoustics, structure, cost).  There 
exist many sequences of actions that lead the OAs to different states where these 
global design goals are totally or partially satisfied.  The possible number of 
paths from a current state to a long term goal state are typically large.  There may 
also exist many ways of judging the relevance of the current state to the goal 
state.  Therefore, it is neither feasible nor necessary to encode, in the knowledge 
of the OA, either a long term planning strategy (or a set of strategies) that enables 
it to consider the different possibilities of how to arrive at a goal state, or an 
evaluation mechanism to judge the current state.  On the other hand, if the 
planning strategy is to adopt one or even a few alternatives it may restrict the 
system from accommodating many feasible paths.  This constrains the creative 
nature of design and may eliminate interesting design alternatives that could be 
realized by the DA during the design process.  

Since changing goals are a property of design, especially creative design, it is 
appropriate to emphasize the role of the DA as the principal long term or 
strategic planner while agents (SAs or OAs) should focus mainly on short term 
activities, and therefore, should be endowed with knowledge that enables them to 
only execute short term and reactive plans.  

Accordingly, I suggest that the DA should be responsible for the long term 
planning and for the collective evaluation of the different states of design.  
However, it does not rule out the possible involvement of the OAs if their 
knowledge is further enhanced so that they are able to support the capabilities of 
the DA for long term planning or for evaluation.  This endorses the notion of 
changing goals and emerging ideas that distinguishes design from other 
practices.  Distributing the roles among the DA and the other agents according to 
such an approach does not impose on the DA a specific design process.

Goals for short term planning of immediate tasks with fewer facets can be 
defined and evaluated in a less complicated fashion than larger tasks with many 
facets.  Distributing the tasks among small entities, such as the OAs, makes it 
feasible to set an acceptance criterion for each task.  
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According to the approach proposed, OAs are to deal with small and immediate 
tasks, which are more applicable to short term planning strategies.  Each OA is 
provided with problem solving protocols that are appropriate to its data-object 
type (e.g., wall, floor, space).  The protocols contain sets of domain specific rules 
to deal with conventional problems in each domain (e.g., problems relating to 
daylighting).  The protocols are not intended to provide predefined solutions for 
predefined problems, they should only provide guidelines for how the OA should 
react in respect to each class of problems (e.g., decomposing, delegating, 
managing).15  The DA should be able to interactively modify these protocols to 
meet the needs of different design situations.  The OAs change their status when 
necessary and to the extent of the knowledge imbedded in their protocols.  

The change of an OA status also depends on the support and response of other 
agents in the environment.  Each change in an OA status is an incremental 
change for the entire design state.  It is up to the DA to decide whether the 
change made by an OA serves the design goals, even if all other agents in the 
environment do not object to the change.  The DA may not be aware of many of 
the individual activities of the agents.  Further, it is not intended that the DA 
guide each event conducted by each agent.  However, it is the DA's responsibility 
to guide the efforts of the agents toward a goal state and to force conversions 
when he/she sees fit.  While the agents in the environment may not be aware of 
the DA's intentions, it is the DA who should recognize solution opportunities and 
orchestrate the agents to arrive at an acceptable state.

The DA's role is to evaluate the current state (independently or with the support 
of other agents), and to participate in the process of changing the design state by 
manipulating the DOs (i.e., introducing new DOs to the CAD environment, 
modifying attributes of current OAs, etc.), and even by modifying the design 
goals.  More importantly, the DA is required to direct and guide the effort of the 
other agents to advance the current state towards an acceptable design.  An 
acceptable design, in this case, is the state of the DOs and their relations which 
the DA considers satisfactory, even if the initial design requirements are not fully 
met.  Such an environment can better accommodate the possible change in DA 
goals that may occur as a result of the incremental change and development.

15. It is possible to store solutions for conventional domain problems in a prototype 
database which OAs can access (directly or through query-agent), however, this is 
beyond the scope of this thesis.
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4 From Scenarios to Interaction Algorithms
4.1 Event-trace Charts

An OA-based environment is a highly interactive system.  Dynamic models show 
the time-dependent behavior of the system and the objects in it (agents and DOs 
in an OA-based environment).  In an interactive system, logical correctness 
depends on the sequence of interactions, not the exact time of the interactions 
[Rumbaugh et al. 91].  The concept of event-traces are used to demonstrate how 
an OA-based design environment operates.  Each event-trace typically identifies 
a scenario of interactions among different agents across time through the 
performance and execution of a task.  As a concept, event-traces are not novel 
[Rumbugh, 91].  In this dissertation I have extended the original notion of event-
traces to include loops, conditional events, non-interaction events (self executed 
events) and referencing of external event-traces (simulating function calls where 
the same members of the event-trace interact to execute related tasks in order to 
execute the task in hand). 

Event-traces are best described through charts that reflect two-dimensional 
relationships over time between entities (namely DOs and agents), where an 
event is recognized, in the chart, by the passing of a message between a pair of 
entities at some time moment.  Each message is associated with a sub-task.

In this chapter, I describe charts that illustrate a variety of scenarios for an 
architectural design session based on an OA design environment.  Two sets of 
charts are developed for general and domain specific tasks.  The general charts 
shows the main interactions among agents needed to perform tasks of the certain 
type such as evaluation tasks, conflict handling tasks, etc. (no domain is 
specified).  The domain specific charts shows detailed scenarios of the expected 
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General
 events charts

Domain specific
 events charts
interactions among different agents to perform an actual assigned task such as 
cost evaluation of a room or handling conflict about a window attribute.  

The scenario of events represented by a chart is described after the chart.  Each 
event (or interaction) in the chart is described in detail.  I adopt the following 
convention.  Each numbered step of the explanation corresponds to the 
identically numbered event in the chart.  The steps that are explained in smaller 
italic text correspond to events located in the gray zone of the chart.  These are 
not directly related to the focus events of the chart (located in the white zone of 
the chart).  Note that events may be conditional in the sense that their execution 
depends on the successful completion of certain tasks within the execution of a 
given task.

Event-trace charts (1-3) are developed for:

1. Activation of a DO and the deactivation of its OA after the execution of 
an assigned task.

2. Task execution by a leaf OA (the last node in a decomposed task).
3. Conflict handling among two leaf OAs of the same DO over shared 

attribute.

Event-trace charts (4-7) are developed for four distinct applications.

1. Execution of a material cost evaluation task by BFloor-OA (building 
floor), classified according to its sub-DO (each rooms material cost) is 
required.

2. Execution of daylighting evaluation task by a BFloor-DO.
3. Execution of a structural analysis task executed by Building-DO.

4. Execution of a conflict handling session among two Room-OAs1 over a 
recommended reduction of a the glazing area attribute of a Window-DO 
(room cost vs. room daylighting levels).  

1. Each OA is responsible for the one task for clarity (though both conflicted attribute 
values are of the same DO).
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4.2 Chart 1. Activation of a DO/Deactivation of an OA

See Definitions A.3.10 and A.3.11.  The event-trace is shown in Figure 4.1 The 
main steps are 1-6 and 25-28. Steps 7-24 deal with task execution and these are 
shown in gray.

1. An Agent sends an activation message to a DO.

2. The DO instantiates an OA of its DO type from the OA class.
An OA of the same DO type is created.

3. The created OA registers itself as an OA of the DO.

4. The created OA requests a clone (a complete copy) of the DO.

5. The DO provides a clone of itself to the sub-OA.

6. The OA registers itself as sub-OA of the super-agent (of step 1).
FIGURE 4.1.

Event-trace of the activation of a 
DO and the deactivation of an 
OA.
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7. The super-agent assigns the created sub-OA a task.

8. The sub-OA loads the appropriate protocols for the task.

9. Interacting with the appropriate agents in the environment the sub-OA initiates a task 
execution session.

10. Task execution interactions (see Chart 2 steps 7-19).

11. The environment agent (of step 9) provides it task execution result to the sub-OA.
The OA stores the results until validated.

12. The sub-OA provides its super-agent (of step 1) with the task execution results.
Conditional (if aggregation is needed): The super-agent aggregates the results of its 
sub-OAs (if more than one sub-OA is executing related tasks).

13. Conditional (if aggregation is performed in step 12): The super-agent requests an 
environment agent (e.g., an EA) to evaluate the aggregation results.

14. Conditional (if step 13 is executed): Evaluation interactions to check the aggregation 
results provided in step 12 (see Chart 2 steps 23-31).

15. Conditional (if step 13 is executed): The environment agent (of step 13) provides its 
evaluation of the aggregation results to the super-agent.
The super-agent stores the results until validated.

16. Conditional (if the results of step 12 or 15 are not satisfactory): The super-OA 
remanages either a task execution session in which case steps 7-16 are repeated, or an 
aggregation session in which case steps 13-16 are repeated.

17. The super-agent validates the results of the task execution, or:
 provides an alternative set of attribute values for task reassignment.

18. Conditional (if alternative values are provided in step 17): The OA reassigns the task 
to the environment agent to examine the alternative attribute values  In such case steps 
9-18 are repeated.

19. Interface option (to allow for conflict check): The super-agent requests a conflict 
check (with other interested DOs or EAs) before the attribute values of the sub-OA are 
modified. 

20. Conditional (if step 19 is executed): Conflict handling interactions, the super-agent 
manages a conflict handling session regarding the targeted attribute values (see Chart 
3 steps 20-45). 

21. Conditional (if the results provided in step 20 is not satisfactory): The super-agent 
reassigns the sub-OA with a modified task.

22. Conditional (if step 20 is executed): The super-agent validates the results (of step 20), 
and:  
Interface option (to allow for implementation): The super-agent requests the 
implementation of the validated results (if attributes values of the sub-OA are 
recommended for modification).
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23. Conditional (if requested in step 22): The sub-OA interacts with the appropriate 
agents in the environment (e.g., CAD-agent) to implement the results.
The environment agent carries the implementation of the results.

24. Conditional (if step 23 is executed): The environment agent which carried the 
implementation confirms its execution.

25. The sub-OA updates its DO information (provided that no other OA of the 
same DO is performing tasks.  If more than an OA is to update the same 
information of the DO an update management session is required.  Such a 
session may include conflict handling among the different OAs involved).

26. The sub-OA de-registers itself as a sub-agent of the super-agent.

27. The OA de-registers itself as an OA of the DO.

28. The OA terminates itself.
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4.3 Chart 2. Task Execution

See Section A.4 for relevant definitions.  The event-trace is shown in Figure 4.2.  
The main steps are 4-35; all other steps (1-3 and 36-45) deal with necessary task 
management activities such as agent activation, result validation and so on.  
FIGURE 4.2.

Event-trace of task execution by 
a leaf-OA (where no further task 
decomposition is applicable).
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1. Conditional (if the targeted DO is not activated): An agent sends an activation 
message to a DO The agent is activating a DO to assign it a task.

2. Conditional (if step 1 is executed): The DO instantiates an OA of its DO type from the 
OA class. 
An OA of the same DO type is created.

3. Conditional (if step 2 is executed): Activation interactions (see Chart 1, steps 3-6).

4. The super-agent assigns a task to the created OA (a sub-OA in the task 
dependent hierarchy).

5. Conditional (if the appropriate protocols are not loaded): The sub-OA loads 
the appropriate protocols for the assigned task.

6. Interacting with the appropriate agent in the environment (e.g., an EA) the 
sub-OA manages a task execution session.

7. The EA requests information from the sub-OA (e.g., geometric and non-
geometric information of the sub-OA).

8. Conditional (when information of a sub-DO is needed and the DO is not 
activated and the activation of such sub-DO is not necessary): The sub-OA 
requests information from its sub-DO(s) in the hierarchy (if a DO is activated 
the information must be requested from its OA).

9. Conditional (if step 8 is executed): The sub-DOs provide the information 
requested to the sub-OA (as available).

10.  Conditional (if the information provided in step 9 is not sufficient): The sub-
OA requests additional information from its sub-DOs.

11. The sub-OA provides the applicable information to the EA.

12.  Conditional (if the information provided in step 11 is not sufficient): The EA 
requests additional information from the sub-OA.  

13. Conditional (if additional information is needed to execute the task): The EA 
requests information from a query-agent (e.g., prototypical information).
The query-agent browses through the available data-base(s).

14. Conditional (if the query-agent was not able to locate the requested 
information of step 13).  The query-agent requests information from the 
super-agent (or from the DA).

15. Conditional (if step 14 is executed): The super-agent provides the EA with the 
requested information.

16. Conditional (if the information provided in step 15 is not sufficient): The 
query-agent requests additional information from the super-agent (or the DA).
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17. Conditional (if step is 13 executed): The query-agent provides the EA with 
the applicable information (as available).

18. Conditional (if the information provided in step 17 is not sufficient): The EA 
requests additional information from the query-agent In such case steps 13-18 
are repeated.

19. Conditional (if the targeted DO is not activated): The EA sends an activation 
message to another DO(s) if the execution of the task in hand is dependent on 
other task execution results to be carried by the activated DO(s).  It should be 
noted that such dependencies need to be monitored and controlled by the DA 
to avoid infinite loops of activations and task assignments.  The DA 
confirmation should be obtained when such activations is requested.
If the information needed is collected the EA executes the assigned task (of 
step 6).

20. The EA provides the sub-OA with the task execution results.
The sub-OA stores the task execution results until validated.

21. The sub-OA provides the super-agent (of step 1) with the task execution 
results.
Conditional (if aggregation is needed): The super-agent aggregates the results 
of its sub-OAs.

22. Conditional (if aggregation is performed in step 21): The super-agent requests 
an environment agent (e.g., an EA) to evaluate the aggregation results.

23. The EA requests information from the super-agent.

24. The super-agent provides the applicable information to the EA.

25. Conditional (if the information provided in step 24 is not sufficient): The EA 
requests additional (or missing) information from the super-agent.  In such 
case steps 23-25 are repeated.

26.  Conditional (if the results of step 24 are not satisfactory or if prototypical 
information is required): The EA sends a query request to the query-agent to 
obtain either prototypical information or any additional information needed to 
perform the task.  The query-agent browses through the environment (or 
DOs) data-bases to obtain the requested information.

27. Conditional (if the information requested in step 26 is not found in the 
environment): The query-agent requests the super-agent or the DA to provide 
the information requested in step 26. 
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28. Conditional (if step 27 is executed): The super-agent or the DA provides the 
query-agent with the requested information.

29. Conditional (if the information provided in step 28 is not sufficient): The 
query-agent requests the super-agent or the DA to provide additional 
information.  In such case steps 27-29 are repeated. 

30. Conditional (if step 26 is executed): The query-agent provides the EA with 
applicable information (as available).

31. Conditional (if the information provided in step 30 is not sufficient): The EA 
sends another query request for additional information.  In such case steps 26-
31 are repeated.  
If the information provided to the EA is sufficient the EA evaluates the 
aggregation results provided by the super-agent in step 22.

32. Conditional (if step 24 is executed): The EA provides its evaluation of the 
aggregation results to the super-agent.
The super-agent stores the results until validated.

33. Conditional (if the results provided in either step 21 or 32 are not 
satisfactory): The super-OA remanages either a task execution session with a 
modified task in which case steps 4-33 are repeated, or an aggregation 
evaluation session in which case steps 22-33 are repeated.

34. The super-agent validates the results (of step 21 or 32), or:
 provides the sub-OA with alternative attribute values for task reassignment 
(or for another aggregation evaluation session).

35. Conditional (if alternative values are provided by the super-agent in step 34): 
The sub-OA remanages a task execution session to examine the alternative 
values.

36. Interface option (to allow for conflict check): The super-agent requests a conflict 
check (with other interested DOs or EAs) before the attribute values of the sub-OA are 
modified. 

37. Conditional (if step 36 is executed): Conflict handling interactions, the super-agent 
manages a conflict handling session regarding the targeted attribute values (see Chart 
3 steps 20-45). 

38. Conditional (if the results of the conflict handling session provided in step 37 are not 
satisfactory): The super-agent reassigns a modified task to the same sub-OA (of step 
Figure 4).
Ph.D. Thesis, Spring 2000 61



62
39. Conditional (if step 36 is executed): The super-agent validates the results (of step 37), 
and:  
Interface option (to allow for implementation): The super-agent requests the 
implementation of the validated results (if the attribute values of the sub-OA are 
recommended for modification).

40. Conditional (if requested in step 39): The sub-OA interacts with the appropriate 
agents in the environment (e.g., CAD-agent) to implement the results.
The environment agent carries the implementation of the results.

41. Conditional (if step 40 is executed): The environment agent which carried the 
implementation confirms its execution.

42. The sub-OA updates the information of its sub-DOs effected by the implementation.

43. The sub-OA updates its DO information (if the DO is activated the update must be 
conducted through its OA).

44. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 
steps 26 & 27).

45. Conditional (if step 44 is executed): The OA terminates itself. 
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Conflict handling types
4.4 Chart 3. Conflict Handling

See Section A.6 for relevant definitions.  The event-trace is shown in Figure 
4.3. The important steps are 20-45. Each attribute of a DO has an attached list of 
interested DOs, EAs and other attributes (see explanation in Section 3.1 & details 
in Section 5.2.2). This list is compiled when the DO class is created. Within a 
session, the list can be modified (after the DO has been instantiated). I recap that 
an interested DO is a DO with at least one attribute registered in the list, and an 
interested EA is an EA registered for at least one attribute in the list. This list is 
provided by a DO instance upon request and serves as a reminder of which DO 
attribute or EA may be affected by any modification to the particular attribute 
value. Such modifications may constitute conflicts with some members of the 
list. The order of the list members is insignificant, however, when a DA selects a 
set of members of a list for conflict check it should be a sorted set. The DA sorts 
the activation of members of the selected set according to a personalized criteria 
for conflicts that are considered most critical. When a DA selects a set to proceed 
with a conflict check: 

•  an OA should be created for each DO (or attribute of the same DO) in the 
set. For instance, if a depth attribute of a Beam-DO is selected from the 
interestlist of a width attribute of a Room-DO a Beam-OA should be 

created for the conflict handling session (about the change in the Room-
DO width). The activated Beam-OA may perform a stress analysis task to 
examine the beam strength in respect to the new width of the Room-DO.

• an OA of the same DO should be created for each selected EA in the set.  
For instance, if a daylighting-EA is selected from the interestlist of a 

glazing-area attribute of a Window-DO, a Window-OA should be created 
to represent the daylighting-EA in the conflict handling session. The 
activated Window-OA may perform a daylighting evaluation task to 
examine the new glazing area of the Window-DO. 

The OA approach can accommodate a variety of mechanisms and guide lines for 
conflict handling. However, the mechanisms and guidelines adopted within the 
scope of this work are intended to demonstrate the potential benefits of the OA 
approach.

A task dependent hierarchy consists of multiple levels of DOs from the DA down 
to the leaf DOs. A conflict handling session may involve OAs in the same level 
or in different levels of the same hierarchy or in multiple hierarchies. The DA 
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may inquire about an interestlist of an OA that is assigned tasks either by the DA 
or by another agent.  Note that the OA that provides an interestlist is considered 
the conflict focus (see Def. A.6.11).  The DA selects a sub-set of the interestlist to 
check for conflict, the members of that sub-set are not necessarily from the same 
FIGURE 4.3.

Event-trace of conflict handling 
among two leaf-OAs.
From Scenarios to Interaction Algorithms



Details of
the interactions
level at the hierarchy nor from the same hierarchy. The two OAs involved in the 
conflict constitute the conflict zone. A direct conflict handling session involves 
two OAs one of which is the conflict focus. An indirect conflict handling 
session involves two OAs neither of which is the conflict focus. Accordingly, the 
conflict zone does not necessarily include the conflict focus. In other words, two 
OAs may have a conflict over an attribute value of a a third OA. In such a case 
the two OAs (who constitute the conflict zone) are involved in an indirect 
conflict about a third OA attribute (who is the conflict focus). The tasks that 
triggers the conflict may be assigned by the OAs or the DA, however, the DA 
may need to interact with OAs which were not directly assigned tasks by DA (the 
DA interacts to provide alternative values for iterative evaluations and to validate 
the conflict results). Figure 4.4 shows various cases of direct and indirect conflict 
handling among OAs in the same or in different levels of a hierarchy. The various 
conflict cases in the figure illustrate that conflict types may require different 
patterns of interaction between the DA and the OAs involved. In particular, the 
figure shows how an OA environment can help the designer be aware of the most 
relevant DOs to a conflict.  Chart 3 is an example of a direct conflict handling 
session for two OAs in the same level (case C of Figure 4.4). Chart 7 is an 
example of an indirect conflict handling session for two OAs in the same level 
(case E of Figure 4.4). The two Charts demonstrate how the conflict type affects 
the pattern of DA interaction with the OAs of the task zone and task focus. 

1. A super-OA assigns a task to a sub-OA (sub-OA1 in this chart).

2. Conditional (if the appropriate protocols are not loaded): Sub-OA1 loads the 
appropriate protocols for the assigned task.

3. Interacting with the appropriate agent in the environment (e.g., an EA) sub-OA1 
initiates a task execution session.

4. Task execution interactions (see Chart 2 steps 7-19).

5. The environment agent provides its task execution results to sub-OA1.  
Sub-OA1 stores the results until validated.

6. Interface option (to allow the DA to validate task results not assigned directly by him/
her): Sub-OA1 provides the DA with the task execution results.

7. Conditional (if step 6 is executed): The DA validates the results of sub-OA1, or:
 provides an alternative set of attribute values for task reassignment. 

8. Conditional (if alternative values are provided in step7): Sub-OA1 reassigns the task 
to the EA to examine the alternative values.  In such case steps 3-8 are repeated.
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FIGURE 4.4.

Conflict handling cases.
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9. Sub-OA1 provides its task execution results to the super-OA.
Conditional (if aggregation is needed): The super-OA aggregates the results of its sub-
OAs.

10. Conditional (if aggregation is performed in step 9): The super-agent requests an 
environment agent (e.g., an EA) to evaluate the aggregation results.

11. Conditional (if step 10 is executed): Evaluation interactions to check the aggregation 
results provided in step 10 (see Chart 2 steps 23-31).

12. Conditional (if step 11 is executed): The environment agent (of step 10) provides its 
evaluation of the aggregation results to the super-agent.
The super-agent stores the results until validated.

13. The super-OA provides the DA with results (of step 9 or 12) for validation.
Conditional (if aggregation is needed): The DA aggregates the provided results.

14. Conditional (if aggregation is performed in step 13): The DA requests an environment 
agent (e.g., an EA) to evaluate the aggregation results.

15. Conditional (if step 14 is executed): Evaluation interactions to check the aggregation 
results provided in step 14 (see Chart 2 steps 23-31).

16. Conditional (if step 15 is executed): The environment agent (of step 14) provides its 
evaluation of the aggregation results to the DA.
The DA stores the results until validated.

17. Conditional (if the results provided in either step 13 or step 16 are not satisfactory): 
The DA/super-agent remanages either a task execution session in which case steps 1-
17 are repeated, or an aggregation session in which case steps 14-17 are repeated.

18. The DA validates the results (of step 13), or:
provides the super-OA with alternative attribute values for task reassignment or to run 
another aggregation session for the sub-results provided in step 10.

19. Conditional (if alternative values are provided by the DA in step 18): The super-OA 
remanages either a task execution session to examine the alternative values, in which 
case steps 1-19 are repeated, or an aggregation session, in which case steps 10-19 are 
repeated.

20. Interface option (to allow for conflict check): The DA requests a conflict 
check (with other interested DOs or EAs) before the attribute values of the 
sub-OA1 are modified.

21. Sub-OA1 checks with its DO for a list of DOs and OAs with interest in the 
targeted attribute values (i.e., which is subject to modification according to 
the task execution results).  The interested DOs or EAs are potential 
candidates for conflict over the recommended attributes values.

22. The DO provides a list of DOs and EAs interested in the targeted attribute 
values.

23. Sub-OA1 provides the DA with the list of interested DOs and EAs.
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24. Conditional (if the list contains one or more DO or OA): The DA selects a set 
of DOs and EAs from the list (according to the DA’s criteria for most critical 
conflicts) to activate for conflict check.  
Conditional (if the targeted DO is not activated): The DA sends an activation 
message to the first DO on the selected set.

25. Conditional (if step 24 is executed): The DO instantiates an OA of its DO 
type from the OA class.
Sub-OA2 is created.

26.  Conditional (if step 25 is executed): Activation interactions (see Chart 1 steps 
3-6).

27. The DA assigns an evaluation task to examine the recommended attribute 
values (which is the focus of the conflict handling session) with respect to the 
sub-OA2 (activated in step 24).

28. Conditional (if the appropriate protocols are not loaded): sub-OA2 loads the 
appropriate protocols for the assigned task.

29. Interacting with the appropriate agent in the environment (e.g., an EA) sub-
OA2 initiates a task execution session.

30. Task execution interactions (see Chart 2 steps 7-19).

31. The EA (of step 29) provides sub-OA2 with the task execution results.  
Sub-OA2 stores the results until validated.

32. Sub-OA2 provides its task execution results to the DA.
Conditional (if aggregation is needed): The DA aggregates the sub-results 
provided in step 31.

33. Conditional (if aggregation is performed in step 32): The DA requests an 
environment agent (e.g., an EA) to evaluate the aggregation results.

34. Conditional (if step 33 is executed): Evaluation interactions to check the 
aggregation results provided in step 33 (see Chart 2 steps 23-31).

35. Conditional (if step 34 is executed): The environment agent (of step 33) 
provides its evaluation of the aggregation results to the DA.
The DA stores the results until validated.

36. Conditional (if the results provided in either step 32 or step 35 are not 
satisfactory): The DA remanages either a task execution session in which case 
steps 27-36 are repeated, or an aggregation session in which case steps 33-36 
are repeated, or:
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37. The DA validates the results (of step 32), or:
provides alternative attribute values for task reassignment.

38. Conditional (if alternative values are provided by the DA in step 37): Sub-
OA2 runs another session to examine the alternative values.  In such case 
steps 29-38 are repeated.

39. Conditional (if the results provided in step 32 are not satisfactory): The DA 
sends a query request to obtain information from the environment agents 
(e.g., a query-agent) to help in reassigning the task to either sub-OA1 or to 
sub-OA2 with alternative attribute values.

40. Conditional (if step 39 is executed): The environment agents provide the DA 
with the applicable information (as available).

41. Conditional (if the information provided in step 40 is not sufficient): The DA 
sends a modified query request to the environment agents.  In such case steps 
39-41 are repeated.

42. Conditional (if the results of step 32 are not satisfactory): The DA reassigns 
another evaluation task to either sub-OA1 in which case steps 1-42 are 
repeated, or to sub-OA2 in which case steps 27-42 are repeated.

43. The DA validates the conflict handling session results (started in step 20).

44. The super-OA validates the results of sub-OA1 (provided in step 9).

45. Conditional (if there are more than one DO or EA in the set selected in step 
24): The DA either activates the next DO in the set, in which case steps 27-45 
are repeated, or assigns another evaluation task to sub-OA1 in relation to the 
next EA in the set, in which case steps 1-45 are repeated.

46. Sub-OA2 updates its DO information (after the implementation of the task results, see 
Chart 2 steps 39-41).

47. Conditional (if no other task is to be executed): Termination interactions (see Chart 1. 
steps 26 & 27).

48. Conditional (if step 47 is executed): Sub-OA2 terminates itself.

49. Sub-OA1 updates its DO information (after the implementation of the task results, see 
Chart 2 steps 39-41).

50. Conditional (if no other task is to be executed): Termination interactions (see Chart 1. 
steps 26 & 27).

51. Conditional (if step 50 is executed): Sub-OA1 terminates itself.
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4.5 Chart 4. Cost Evaluation Task (Classified per Room-DO)

This is the first of four applications illustrating the OA-based design 
environment.  The event-trace chart for cost-evaluation is shown in Figure 4.5.  
For this task I first describe the assigned task, identify the main players, the 
FIGURE 4.5.

Event trace of a painting cost 
evaluation task executed by a 
BFloor-OA (classified per Room-
DO).
From Scenarios to Interaction Algorithms



The assigned task

The main players

The major events

The expected results
major events, the expect results before giving a description of the detailed 
scenario of interactions. 

The DA is interested in evaluating the cost of painting a BFloor-DO.  The 
evaluation should include the total painting cost of the BFloor-DO and a cost 
classification per Room-DO.  This includes the total cost of each individual 
Room-DOs and an itemized cost of its activated sub-DOs such as Wall-DOs, 
Ceiling-DOs (and any DO that need to be painted).  

There are three main players in the scenario for this task: a DA, a BFloor-OA and 
a cost-EA (and the geometry-EA as a secondary player).

There are three main events which are listed below.

• The DA activates the BFloor-DO and assigns it a classified cost evaluation 
task, which, in turn, triggers a chain of activation by the BFloor-OA down 
the hierarchy to its Room-DOs to all leaf-DOs (i.e., the last nodes in the 
task hierarchy such as Walls, Partitions and Ceilings).

• Interacting with the cost-EA, each activated OA runs a cost evaluation 
session regarding its own state.  The sequence of evaluation sessions starts 
from the leaf OAs where the results are provided to their super-agents up 
to the DA level.  As a leaf node, a Wall-DO interacts with the cost-EA to 
calculate its painting cost. The cost-EA requests the total solid area of the 
Wall-DA.  Accordingly, the Wall-DO interacts with the geometry-EA to 
calculate the required area and then provides the cost-EA with the 
requested painting cost.  Each super-agent aggregates the results provided 
by its sub-OAs. Note: There may exist many alternatives of how the cost 
may be calculated.  For instance it is possible to aggregate the areas and 
calculate the total cost at once, however, calculating the cost of each Wall-
DO (or Ceiling-DO, etc.) provides more value to the designer. 

• The OAs update the information of its DOs and terminates itself.

The following two are additional optional results.

• The DA triggers a conflict handling session.

• The DA requests the implementation of new attribute values.

There are two results that can be expected from this task and two additional 
optional result.
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Details of
the interactions
1. For each evaluation session2 the assigned BFloor-OA provides the DA with 

information3 that may contain at least one of the following:

• painting cost of the BFloor-DO, and the classified cost as assigned (see the 
assigned task); 

• prototypical cost of each of the DOs above;

• a warning for each DO that exceeds the specified prototypical cost.

2. The DA examines either new DO attribute values for DOs in the task 
dependent hierarchy or new cost constraints.

3. (Optional) The DA examines new DO attribute values for DOs interested in 
the attribute values of the DOs in the task dependent hierarchy.  This may 
occur as a result of conflict handling sessions (if executed).

4. (Optional) Implementation of examined DO attribute values and updating of 
the DO relations.

The main steps are 16-41.

1. Conditional (if the targeted BFloor-DO is not activated): A DA sends an activation 
message to a BFloor-DO.

2. Conditional (if step 1 is executed): The BFloor-DO instantiates a BFloor-OA.
A BFloor-OA is created.

3. Conditional (if step 2 is executed): Activation interactions (see Chart 1 steps 3-6).

4. The DA assigns the painting cost evaluation task to the created BFloor-OA.

5. Conditional (if the appropriate protocols are not loaded): The BFloor-OA loads the 
cost evaluation protocols.
The BFloor-OA uses the protocols to decompose the task among potential sub-DOs 
(linked to the BFloor-OA in a hierarchy)

6. Conditional (if the targeted sub-DOs are not activated): The BFloor-OA sends 
activation messages to all qualified sub-DOs (Room-DOs in this case).

2. An evaluation session is defined as “an evaluation by the EA (namely the cost-EA in 
this chart) of one set of DO attribute values with respect to either saved prototypical 
values, predefined constrains, or requirements”.

3. The form by which this information is presented (e.g., lists, charts, diagrams) is 
implementation dependent.  The DA should be able to interactively and graphically 
modify such information.
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7. Conditional (if step 6 is executed): The Room-DO class instantiates a Room-OA for 
each activated Room-DO.  
The created Room-OAs are sub-OAs to the BFloor-OA.

8. Conditional (if step 7 is executed): Activation interactions (see Chart 1 steps 3-6).

9. The BFloor-OA assigns painting cost evaluation sub-tasks to the created Room-OAs.

10. Conditional (if the appropriate protocols are not loaded): Each Room-OA loads the 
cost evaluation protocols.
Each Room-OA uses the protocols to decompose the task among potential sub-DOs 
(linked to each Room-OA within the task hierarchy).  The protocols identifies the 
shared-DOs in the hierarchy (such as walls, floors etc.) Other environment agents 
(e.g., geometry-agent) identifies the portion of any shared DO to be considered as a 
sub-DO of its room-super-agent4.  

11. Conditional (if the targeted DOs are not activated): Each Room-OA sends activation 
messages to all its qualified sub-DOs.  For the shared DOs, the activation may only 
occur by one room-super-agent, the rest of the room-super-agents (sharing the same 
DO) may only assign tasks to the created sub-OA.

12. Conditional (if step 11 is executed): The Wall-DO/Ceiling-DO/Floor-DO classes (and 
any other sub-DO in the hierarchy that requires painting) instantiate Wall-OA/
Ceiling-OA/Floor-OA etc. for each activated DO.  
Each created OA is a sub-OA to its Room-OA (as a super OA).

13. Conditional (if step 12 is executed): Activation interactions (see Chart 1. steps 3-6).

14. The Room-OA assigns painting cost evaluation sub-tasks to the created sub-OAs.

15. Conditional (if the appropriate protocols are not loaded) Each sub-OA loads the cost 
evaluation protocols.  The decomposition process terminates when no other sub-DOs 
are found in the hierarchy.  Therefore, the sub-OAs of step 12 are considered leafs in 
the decomposition tree.

16. Interacting with the cost-EA each leaf OA initiates an evaluation task 
execution session.

17. Task execution interactions (see Chart 2 steps 7-19). This may include 
interactions among a geometry-EA and the each leaf-OA to provide the cost-
OA with requested areas of each leaf-OA.

18. The cost-EA provides its cost evaluation results (as assigned; current cost, 
relation to prototypical cost etc.) to the each sub-OA.  
Each sub-OA stores its results until validated.

4. The recognition of the sub-parts depends on a large degree on the representation of 
DOs and on the capabilities of the agents that are concerned with interpreting 
geometric representations.
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19. Interface option (to allow the DA to validate task results not assigned directly 
by him/her): Each sub-OA provides its cost evaluation results to the DA.

20. Conditional (if step 19 is executed): DA validates the sub-OAs cost 
evaluation results, or:
provides the sub-OA with alternative attribute values for task reassignment.

21. Conditional (if alternative values are provided in step 20): The sub-OA 
reassigns the task to the cost-EA to examine the alternative values.  In such 
case steps 16-21 are repeated.

22. Each sub-OA provides its cost evaluation results to its super-OA (Room-OA).
Conditional (if more than one sub-OA provided sub-results to its super-OA): 
The Room-OA uses its domain protocols to aggregate the sub-results 
collected from its sub-OAs.  

23. Conditional (if aggregation is performed in step 22): The Room-OA interacts 
with the cost-EA to evaluate its aggregation results, in respect to the design 
requirements and the prototypical values in the database.

24. Conditional (if step 23 is executed): Task execution interactions (see Chart 2 
steps 23-31).

25. Conditional (if step 24 is executed): The cost-EA provides its aggregation 
evaluation results (as assigned; current painting cost, relation to prototypical 
cost etc.) to the Room-OA.  
The Room-OA stores the results until validated.

26. Interface option (to allow the DA to validate task results not assigned directly 
by him/her): Each Room-OA provides its cost evaluation results to the DA.

27. Conditional (if step 26 is executed): The DA validates the results of the cost 
evaluation of each Room-OA if satisfactory, or:
provides the Room-OA with alternative attribute values for task 
reassignment.

28. Conditional (if alternative values are provided by the DA in step 27): The 
Room-OA either reassigns the task to the cost-EA to examine the alternative 
values, in which case steps 14-28 are repeated, or run another aggregation 
evaluation session, in which case steps 23-28 are repeated.

29. Each Room-OA provides its painting cost evaluation results to its super-OA 
(the BFloor-OA in this case).
Conditional (if more than one Room-OA submitted sub-results to the BFloor-
OA): The BFloor-OA uses its protocols to aggregate the sub-results collected 
from the Room-OAs.  
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30. Conditional (if aggregation is performed in step 29): The BFloor-OA interacts 
with the cost-EA to evaluate the aggregated results (in respect to the design 
requirements or the prototypical values in the database).

31. Conditional (if step 30 is executed): Task execution interactions (see Chart 2 
steps 23-31).

32. Conditional (if step 31 is executed): The cost-EA provides its aggregation 
evaluation results (as assigned; current painting cost, relation to prototypical 
cost etc.) to the BFloor-OA.  
The BFloor-OA stores the results until validated.

33. The BFloor-OA provides its task execution results to the DA.
Conditional (if more than one BFloor-OA provided sub-results to the DA): 
The DA aggregates the sub-results of the BFloor-OAs.

34. Conditional (if aggregation is performed in step 33): The DA interacts with 
the cost-EA to evaluate the aggregated results to evaluate the aggregated 
results.

35. Conditional (if step is 34 executed): Task execution interactions (see Chart 2 
steps 23-31)

36. Conditional (if step 35 is executed): The cost-EA provides the DA with its 
aggregation evaluation results (as assigned; current cost, relation to 
prototypical cost etc.).  
The DA stores the results until validated.

37. Conditional (if the results of steps 33 or 36 are not satisfactory): The DA 
either reassigns the initial task (of step 4) to the BFloor-OA with alternative 
attribute values or requirements, in which case steps 4-37 are repeated, or run 
another aggregation evaluation session, in which case steps 34-37 are 
repeated.

38. The DA validates the results of the BFloor-OA (of step 33), or:
provides alternative attribute values for task reassignment.

39. Conditional (if alternative values are provided in step 38): The BFloor-OA 
either reassigns the task to the cost-EA to examine the modified values, in 
which case steps 9-39 are repeated, or run another aggregation evaluation 
session, in which case steps 30-39 are repeated.

40. The BFloor-OA validates the results (of step 29) of each Room-OA.

41. Each Room-OA validates the results (of step 22) of its sub-OAs.
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42. Each sub-OA (of step 12) updates its DO information.

43. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 
steps 26 & 27).
Conditional (if step 42 is executed): Each sub-OA terminates itself.

44. Each Room-OA updates its DO information.

45. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 
steps 26 & 27).
Conditional (if step 44 is executed): Each Room-OA terminates itself. 

46. The BFloor-OA updates its DO information.

47. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 
steps 26 & 27).

48. Conditional (if step 47 is executed): The BFloor-OA terminates itself.
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The assigned task

The main players

The major events

The expected results
4.6 Chart 5. Daylight Evaluation Task

The event-trace chart is shown in Figure 4.6.  As before I describe the assigned 
task, identify the main players, major events and expected results.

The DA is interested in evaluating the daylighting of a BFloor-DO.  The 
evaluation should include daylighting levels classified according to each Room-
DO of the BFloor-DO during a specified range of hours of the day.  

The evaluation should also include the daylighting levels of each individual 
opening within each Room-DO.  The bfloor-evaluation should include statistical 
information about the number of Room-DOs within the BFloor-DO satisfying the 
daylighting constrains and prototypical values.

The scenario of this chart involves three main players; a DA, a BFloor-OA and a 
daylighting-EA.

• The DA activates the BFloor-DO and assigns it a daylighting evaluation 
task, which, in turn, triggers a chain of activation by the BFloor-OA down 
the hierarchy to its Room-DOs (which are the last nodes in the daylighting 
task dependent hierarchy).

• Interacting with the daylighting-EA, each activated OA runs a daylighting 
evaluation session regarding its own state.  The sequence of evaluation 
sessions starts from the leaf OAs where the results are provided to their 
super-agents.  Each super-agent aggregates (when needed) the results 
provided by its sub-OAs, and so forth up to the DA level.

• The OAs update the information of its DOs and terminates itself.

The following two events are optional.

• The DA triggers a conflict handling session.

• The DA requests the implementation of new attribute values.

1. For each evaluation session the assigned BFloor-OA provides the DA with 
information that may contain at least one of the following:

• daylighting levels of each Room-DO (see the assigned task); 

• prototypical daylighting levels of each of the Room-DO types (e.g., living 
room, bedroom);
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• a warning for each DO that is below the specified or prototypical 
daylighting levels.

2. The DA examines either new DO attribute values for DOs in the task 
dependent hierarchy or new daylighting constraints.

3. (Optional) The DA examines new DO attribute values for DOs interested in 
the attribute values of the DOs in the task dependent hierarchy.  This may 
occur as a result of conflict handling sessions (if executed).
FIGURE 4.6.

Event-trace of a daylighting 
evaluation task for a BFloor-OA. 
From Scenarios to Interaction Algorithms



Details of
the interactions
4. (Optional) Implementation of examined DO attribute values and updating of 
the DO relations.

The main steps are 11-28.

1. Conditional (if the BFloor-DO is not activated): A DA sends an activation message to 
a BFloor-DO.

2. Conditional (if step 1 is executed): The BFloor-DO instantiates a BFloor-OA.
A BFloor-OA is created.

3. Conditional (if step 2 is executed): Activation interactions (see Chart 1 steps 3-6).

4. The DA assigns a daylighting evaluation task to the created BFloor-OA.

5. Conditional (if the appropriate protocols are not loaded): The BFloor-OA loads the 
daylighting evaluation protocols.
The BFloor-OA uses the protocols to decompose the task among potential sub-DOs 
(linked to the BFloor-OA in a task dependent hierarchy).

6. Conditional (if the targeted DOs are not activated): The BFloor-OA sends an 
activation message to its qualified room-sub-DOs.

7. Conditional (if step 6 is executed): The Room-DO class instantiates Room-OAs for 
each Room-DO.  
The created Room-OAs are sub-OAs to the BFloor-OA.

8. Conditional (if step 7 is executed): Activation interactions (see Chart 1 steps 3-6).

9. The BFloor-OA assigns daylighting evaluation sub-tasks to the created Room-OAs.

10. Conditional (if the appropriate protocols are not loaded): Each Room-OA loads the 
daylighting evaluation protocols.

11. Interacting with the daylighting-EA each Room-OA initiates a daylighting 
evaluation task session.

12. Task execution interactions (see Chart 2 steps 7-19).
Note: The daylighting-EA activates any adjacent Room-DO (see Chart 2 step 
19) which shares one or more internal openings with any Room-OA being 
evaluated.  The daylighting-EA evaluates the daylighting levels in such 
rooms in order to obtain the lighting levels reflected on the shared openings of 
the Room-OAs being evaluated.  It should be noted that infinite loops of 
Room-DO activations and dependencies may occur if the depth and number 
of adjacent Room-DOs to effect the lighting levels on a shared opening are 
not controlled.
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13. The daylighting-EA provides its daylighting evaluation results (as assigned; 
daylighting levels, relation to prototypical values etc.) to each Room-OA 
requested service.  
Each Room-OA stores its results until validated.

14. Interface option (to allow the DA to validate task results not assigned directly 
by him/her): Each Room-OA provides its daylighting evaluation results to the 
DA.

15. Conditional (if step 14 is executed): The DA validates the Room-OAs 
daylighting evaluation results if satisfactory, or:
provides alternative attribute values for task reassignment.

16. Conditional (if alternative values are provided in step 15): Any Room-OA 
may reassign the task to the daylighting-EA to examine the alternative 
values.  In such case steps 11-16 are repeated.

17. Each Room-OA provides its daylighting evaluation results to the BFloor-OA.
Conditional (if aggregation is needed): The BFloor-OA uses it protocols to 
aggregate the sub-results collected from its Room-OAs.  
Note: The nature of aggregation of the BFloor-OA daylighting sub-results is 
different from that of the cost evaluation sub-results (as in Chart 4) No 
additional calculations by the daylighting-EA are required, instead a listing of 
all daylighting levels in each of its Room-DO may be sufficient (possibly 
done by the BFloor-OA itself).

18. Conditional (if aggregation is performed in step 21): The BFloor-OA requests 
the daylighting-EA to evaluate the aggregated results.

19. Conditional (if step is 18 executed): Task execution interactions (see Chart 2 
steps 23-31)

20. Conditional (if step 19 is executed): The daylighting-EA provides its 
aggregation evaluation results (as assigned; current cost, relation to 
prototypical cost etc.) to the BFloor-OA.  
The BFloor-OA stores the results until validated.

21. The BFloor-OA provides its evaluation results to the DA.
Conditional (if aggregation is needed): The DA aggregates the sub-results (if 
more than one BFloor-OA were executing the daylighting evaluation task 
simultaneously).

22. Conditional (if aggregation is performed in step 21): The DA requests the 
daylighting-EA to evaluate the aggregated results.
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23. Conditional (if step is 22 executed): Task execution interactions (see Chart 2 
steps 23-31)

24. Conditional (if step 23 is executed): The daylighting-EA provides its 
aggregation evaluation results (as assigned; current cost, relation to 
prototypical cost etc.) to the DA.  
The DA stores the results until validated.

25. Conditional (if the results provided in step 21 or 23 are not satisfactory): The 
DA either reassigns the initial task to the BFloor-OA with modified values or 
requirements, in which case steps 4-25 are repeated, or runs another 
aggregation evaluation session, in which case steps 22-25 are repeated.

26. The DA validates the results (of step 25) of the BFloor-OA, or:
provides alternative attribute values for task reassignment.

27. Conditional (if alternative values are provided in step 26): The BFloor-OA 
either reassigns the daylighting task to the daylighting-EA to examine the 
alternative values in which case steps 9-27 are repeated, or runs another 
aggregation evaluation session in which case steps 18-27 are repeated.

28. The BFloor-OA validates the results (of step 17) of each Room-OA.

29. Conditional (if attribute values of related DOs are to be modified): Each Room-OA 
updates the information of its sub-DOs (e.g., opening).

30. Each Room-OA (of step 7) updates its DO information.

31. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 
steps 26 & 27).
Each Room-OA terminates itself. 

32. The BFloor-OA updates its DO information.

33. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 
steps 26 & 27).

34. Conditional (if step 33 is executed): The BFloor-OA terminates itself.
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4.7 Chart 6. Structural Analysis Task

In a structural analysis task, the DA is interested in analyzing the structural 
stability of a Building-DO.  This should include analysis of building loads 
classified according to each block-DO and BFloor-DO.  The analysis should also 
FIGURE 4.7.

Event-trace of a structural 
analysis task executed by a 
Building-OA.
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The main players
include the individual structural elements within each Block-DO or Floor-DO 
(e.g., columns, beams, trusses, sheer walls).  The analysis should include 
statistical information about the number of structural elements (or zones) with 
specifications not sufficient for the prospected loads.  The event-trace chart for 
such a structural analysis is shown in Figure 4.7.

The scenario of this task involves three main players; a DA, a Building-OA and a 
structure-EA.

• The DA activates the Building-DO and assigns it a structural analysis task, 
which, in turn, triggers a chain of activation by the Building-OA down the 
hierarchy to its Block-DOs to their BFloor-DOs (which are the last nodes 
in the structural analysis task dependent hierarchy).

• Interacting with the structural-EA, each activated OA runs a structural 
analysis session regarding its own state.  The sequence of analysis 
sessions starts from the leaf OAs where the results are provided to their 
super-agents.  Each super-agent aggregates (when needed) the results 
provided by its sub-OAs, and so forth up to the DA level.

• The OAs update the information of its DOs and terminates itself.

The following are optional events.

• The DA triggers a conflict handling session.

• The DA requests the implementation of new attribute values.

1. For each analysis session the assigned Building-OA provides the DA with 
information that may contain at least one of the following:

• structural stability of each block -DO and BFloor-DO (see The task 
above); 

• a warning for each structural DO (or zone) where its current specification 
is not sufficient for the expected loads.

2. The DA examines either new DO attribute values for DOs (or a collection of 
DOs in a zone).

3. (Optional) The DA examines new DO attribute values for DOs interested in 
the attribute values of the DOs in the task dependent hierarchy.  This may 
occur as a result of conflict handling sessions (if executed).

4. (Optional) Implementation of examined DO attribute values and updating of 
the DO relations.
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Details of
the interactions
The main steps are 16-41.

1. Conditional (if the targeted BFloor-DO is not activated): A DA sends an activation 
message to a Building-DO.

2. Conditional (if step 1 is executed): The Building-DO instantiates a Building-OA.
A Building-OA is created.

3. Conditional (if step 2 is executed): Activation interactions (see Chart 1 steps 3-6).

4. The DA assigns a structural analysis task to the created Building-OA.

5. Conditional (if the appropriate protocols are not loaded): The Building-OA loads the 
structural analysis protocols.
The Building-OA uses the protocols to decompose the task among qualified sub-DOs 
(linked to the Building-OA in a task dependent hierarchy)

6. Conditional (if the targeted block-DOs are not activated): The Building-OA sends 
activation messages to its block-sub-DOs.

7. Conditional (if step 6 is executed): The block-DO class instantiate block-OAs for each 
block-DO.  
The created block-OAs are sub-OAs to the Building-OA.

8. Conditional (if step 7 is executed): Activation interactions (see Chart 1 steps 3-6).

9. The Building-OA assigns structural analysis sub-tasks to the created block-OAs.

10. Conditional (if the appropriate protocols are not loaded): Each block-OA loads the 
structural analysis protocols.
The block-OAs uses the protocols to decompose the task among potential sub-DOs 
(linked to each block-OA within the task dependent hierarchy).  

11. Conditional (if the targeted BFloor-DOs are not activated): Each block-OA sends an 
activation messages to all its BFloor-DOs.  

12. Conditional (if step 11 is executed): The bfloor class instantiates BFloor-OAs for each 
BFloor-DO.  The created BFloor-OAs are sub-OAs to the block-OAs.

13. Conditional (if step 12 is executed): Activation interactions (see Chart 1 steps 3-6).

14. The block-OA assigns structural analysis sub-tasks to the created BFloor-OAs.

15. Conditional (if the appropriate protocols are not loaded): Each BFloor-OA loads the 
structural analysis protocols.  
The decomposition stops when no other sub-DOs are found in the task dependent 
hierarchy, the current BFloor-OAs are leafs in the decomposition tree.

16. Interacting with the structural-EA each BFloor-OA initiates a structural 
analysis task session.  

17. Task execution interactions (see Chart 2 steps 7-19).
In a multi story building, the analysis of the lower BFloor-OAs are dependent 
on the higher ones.  Therefore, the structural analysis starts from the upper 
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BFloor-OAs to the lower BFloor-OAs.  
Note1: If the DA assigned a structural analysis task to a lower BFloor-OA the 
later will activate the higher BFloor-OA to execute similar task and so forth 
until all higher (or adjacent) BFloor-OA loads are calculated (see Chart 2 step 
19).
Note 2: The information requested from the BFloor-OAs during the 
interaction with the structural-EA can be obtained directly from the each 
BFloor-OA such as the building floor dimensions.  Other information of the 
sub-DOs (which is not activated) such as beam dimensions and material 
requires the interaction of each BFloor-OA with its structural elements sub-
DOs within the task dependent hierarchy (Sub-DOs such as baring Wall-DOs, 
Beam-DOs, and Column-OAs).  Those sub-DOs may be activated during the 
task execution session, but for a basic structural analysis task it is not 
necessary to do so.  The BFloor-OA can access the information needed from 
such linked DOs (see Chart 2 steps 8-10).  No agent properties are necessary 
for those DOs during the session. 

18. The structure-EA provides each BFloor-OA with its structural analysis results 
(as assigned; load and stress analysis, stability, relation to prototypical cases 
etc.).  
Each BFloor-OA stores its results until validated.

19. Interface option (to allow the DA to validate task results not assigned directly 
by him/her): Each BFloor-OA provides its structural analysis results to the 
DA with.

20. Conditional (if step 19 is executed): DA validates the BFloor-OAs structural 
analysis results if satisfactory, or:
provides alternative attribute values for task reassignment.

21. Conditional (if alternative values are provided in step 20): Any BFloor-OA 
may reassign the task to the structure-EA to examine the alternative values.  
In such case steps 16-21 are repeated.

22. Each BFloor-OA provides its structural analysis results to its block-OA.
Each block-OA uses it protocols to aggregate the results collected from its 
BFloor-OAs.  
Note: The nature of aggregation of the BFloor-OA structural sub-results is 
different from the aggregation of the cost or daylighting evaluation sub-
results (as in Chart 4 & 5).  The aggregation can be a classification of loads 
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according to the structural elements (e.g., column, barring walls, cores) where 
the loads are transferred from the higher BFloor-OAs to the lower ones.  
Each block-OA stores its results until validated.

23. Conditional (if aggregation is performed in step 22): Each block-OA requests 
the structural-EA to evaluate its aggregated results.

24. Conditional (if step is 23 executed): Task execution interactions (see Chart 2 
steps 23-31)

25. Conditional (if step 24 is executed): The structural-EA provides its 
aggregation evaluation results to each block-OA.  
Each block-OA stores the results until validated.

26. Interface option (to allow the DA to validate task results not assigned directly 
by him/her): Each block-OA provides its structural analysis results to the DA.

27. Conditional (if step 26 is executed): The DA validates the block-OA results or 
provide alternative attribute values for task reassignment.

28. Conditional (if alternative values are provided in step 27): A block-OA 
reassigns the task to the structure-EA to examine the alternative values.  In 
such case steps 14-28 are repeated or runs another aggregation evaluation 
session In such case steps 23-28 are repeated.

29. Each block-OA provides its structural analysis results to the Building-OA.
The Building-OA uses it protocols to aggregate the results collected from its 
block-OAs.  
Note: As in step 22, the nature of aggregation of the Building-OA sub-results 
is different from that of the cost or daylighting evaluation sub-results (as in 
Chart 4 & 5).  It is also different from the aggregation of the BFloor-OA 
results by their block-OA.  More structural analysis may be required.  

30. Conditional (if aggregation is performed in step 29): The Building-OA 
requests the structural-EA to evaluate its aggregated results.

31. Conditional (if step is 30 executed): Task execution interactions (see Chart 2 
steps 23-31)

32. Conditional (if step 31 is executed): The structural-EA provides its 
aggregation evaluation results to the Building-OA.  
The Building-OA stores the results until validated.

33. The Building-OA provides its evaluation results to the DA.
Conditional (if more than one Building-OA provided structural analysis 
results): The DA aggregates the results of the Building-OAs.
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34. Conditional (if aggregation is performed in step 33): The DA requests the 
structural-EA to evaluate its aggregated results.

35. Conditional (if step is 34 executed): Task execution interactions (see Chart 2 
steps 23-31)

36. Conditional (if step 35 is executed): The structural-EA provides its 
aggregation evaluation results to the DA.

37. Conditional (if the results provided in step or 36 are not satisfactory): The DA 
either reassigns the initial task to the Building-OA with modified values or 
requirements, in which case steps 4-37 are repeated, or runs another 
aggregation evaluation session, in which case steps 34-37 are repeated.

38. The DA validates the results (of step 33) of the Building-OA, or:
provides alternative attribute values for task reassignment.

39. Conditional (if alternative values are provided in step 38): The Building-OA 
reassigns the task to the structure-EA to examine the alternative values.  In 
such case steps 9-38 are repeated, or runs another aggregation evaluation 
session In such case steps 30-38 are repeated.  

40. The Building-OA validates the results (of step 29) of each of its block-OAs.

41. Each block-OA validates the results (of step 22) of each of its BFloor-OAs.

42. Conditional (if attribute values of related DOs are to be modified): Each BFloor-OA 
updates the information of its sub-DOs (e.g., beams, columns).

43. Each BFloor-OA (of step 12) updates its DO information.

44. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 
steps 26 & 27).
Each BFloor-OA terminates itself

45. Each block-OA (of step 7) updates its DO information.

46. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 
steps 26 & 27).
Each block-OA terminates itself

47. The Building-OA updates its DO information.

48. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 
steps 26 & 27).

49. Conditional (if step 48 is executed): The Building-OA terminates itself.
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The main players

The assigned task

The major events
4.8 Chart 7. Handling Conflict Over Window Glazing Area

This possible conflict situation arises when the DA is interested in evaluating the 
cost of a Room-DO.  The cost evaluation which includes a cost classification 
according to the room sub-DOs within Room-OA1 hierarchy (e.g., windows, 
doors, walls).  The cost evaluation results returns the total cost of the Room-DO 
and an itemized cost of its activated sub-DOs.  The DA may find the cost of the 
Room-OA is above the prototypical value, and elects examine the reduction of 
the glazing area to cut the total cost of the Room-OA.  The interestlist of the 
glazing area attribute of the Window-DO includes the daylighting-EA.  The DA 
activates another OA of the same Room-DO (namely Room-OA2) to conduct a 
daylighting evaluation task in respect to the reduced glazing area.  The DA runs 
multiple evaluation sessions between Room-OA1 and Room-OA2 until cost and 
daylighting evaluation results are validated.  The event-trace chart is shown in 
Figure 4.8.

The scenario of this chart involves six main players; a DA, two Room-OAs of the 
same Room-DO, a Window-OA, a cost-EA and a daylighting-EA.  

The DA is interested in evaluating the cost of a Room-DO.  The evaluation 
should include a cost classification according to the room sub-DOs within the 
Room-OA hierarchy (e.g., windows, doors, walls).  This includes the total cost of 
the Room-DO and an itemized cost of its activated sub-DOs.  It should also 
include the total cost of each DO type of the Room-DO such as the total cost of 
all Wall-DOs, all Window-DOs etc.

• The DA activates the Room-DO and assigns it a classified cost evaluation 
task, which, in turn, triggers a chain of activation by Room-OA1 down the 
hierarchy to its Window-DOs, Wall-DOs and all other leaf-DOs of the 
hierarchy.

• Interacting with the cost-EA, each activated OA runs a cost evaluation 
session regarding its own state.  The sequence of evaluation sessions starts 
from the leaf OAs where the results are provided to Room-OA1.  Room-
OA1 aggregates the results provided by its sub-OAs, and provides it to the 
DA.  The cost of the Room-DO is found to be above the prototypical 
value.  Reviewing the cost of each sub-DO (as provided by Room-OA1) 
the DA decides to reduce the window size to reduce the total room cost.
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The expected results

Details of
the interactions
• The DA triggers a conflict handling session about the Window-OA1 to 
check for conflicts over the new window size.  Accordingly, the Window-
OA provides the DA with a list of interested DOs and EAs, the list 
includes the daylighting-EA.  The DA activates another Room-OA 
(Room-OA2) of the same Room-DO to evaluate the daylighting levels in 
respect to the new window size.  The DA examines various window sizes 
until both Room-OA1 and Room-OA2 provide satisfactory cost and 
daylighting evaluation results.  If the results are not satisfactory the DA 
may run other conflict handling sessions over suggested attribute values of 
other sub-DOs of the Room-DO (such sub-DOs may need to be activated 
first).

• The OAs update the information of its DOs and terminates itself.

Additionally the DA may request

• The implementation of new attribute values of the Window-DO (or the 
any other attribute values of any sub-DO of the Room-DO).

1. For each evaluation session the assigned Room-OA1 provides the DA with 
information that may contain at least one of the following:

• cost of the Room-DO, and the classified cost as assigned (see the assigned 
task); 

• prototypical cost of each of the DOs above;

• a warning for each DO that exceeds the specified prototypical cost.

2. The DA examines either new DO attribute values for DOs in the task 
dependent hierarchy or new cost constraints.

3. (Optional) The DA examines new DO attribute values for DOs interested in 
the attribute values of the DOs in the task dependent hierarchy.  This may 
occur as a result of conflict handling sessions (if executed).

4. (Optional) Implementation of examined DO attribute values and updating of 
the DO relations.

The main steps are 25-50.

1. A DA assigns a cost evaluation task to a Room-OA (namely Room-OA1 in this chart).

2. Conditional (if the appropriate protocols are not loaded): Room-OA1 loads the cost 
evaluation protocols.
Room-OA uses it protocols to decompose the cost evaluation task among the qualified 
sub-DOs (e.g., walls, doors, windows, floors, ceilings).
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3. Conditional (if the targeted Window-DO is not activated): Room-OA1 sends an 
activation message all its qualified sub-DOs, however, in this Chart the Window-DO 
will be the only mentioned DO since it is the focus of the conflict handling session 
described.
FIGURE 4.8.

Event-trace of a conflict handling 
session over a Window-OA 
glazing area attribute.
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4. Conditional (if step 3 is executed): The Window-DO class instantiates a Window-OA.
A Window-OA is created.

5. Conditional (if step 4 is executed): Activation interactions (see Chart 1 steps 3-6).

6. Room-OA1 assigns a cost evaluation sub-task to the Window-OA (a sub-OA in this 
chart).

7. Conditional (if the appropriate protocols are not loaded): The Window-OA loads the 
cost evaluation protocols.
Note: No further decomposition is carried, the Window-DO is a leaf on the task 
dependent hierarchy.

8. Interacting with the cost-EA the Window-OA initiates a task execution session.

9. Task execution interactions (see Chart 2 steps 7-19).

10. The cost-EA provides its task execution results to the Window-OA.  
The Window-OA stores the results until validated.

11. Interface option (to allow the DA to validate task results not assigned directly by him/
her): The Window-OA provides the DA with the task execution results.

12. Conditional (if step 11 is executed): The DA validates the results of the Window-OA, 
or:
 provides an alternative set of attribute values for task reassignment.

13. Conditional (if alternative values are provided in step 12): The Window-OA reassigns 
the task to the cost-EA to examine the alternative values.  In such case steps 8-13 are 
repeated.

14. The Window-OA provides its task execution results to Room-OA1.
Conditional (if aggregation is needed): Room-OA1 aggregates the results of its sub-
OAs (windows, doors, walls etc.).

15. Conditional (if aggregation is performed in step 14): Room-OA1 requests the cost-EA 
to evaluate the aggregated results. 

16. Conditional (if step 15 is executed): Evaluation interactions (see Chart 2 steps 23-31) 
to examine the aggregated results provided in step 14.

17. Conditional (if step 16 is executed): The cost-EA provides its evaluation of the 
aggregated results to Room-OA1.
Room-OA1 stores the results until validated.

18. Room-OA1 provides the DA with its task execution results for validation.
Conditional (if more than one Room-OA provided results): The DA aggregates the 
provided results.

19. Conditional (if aggregation is performed in step 18): The DA requests the cost-EA to 
evaluate the aggregated results.

20. Conditional (if step 19 is executed): Evaluation interactions (see Chart 2 steps 23-31) 
to evaluate the aggregated results provided in step 18.
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21. Conditional (if step 20 is executed): The cost-EA provides its evaluation of the 
aggregated results to the DA.
The DA stores the results until validated.

22. Conditional (if the results provided in either step 18 or step 21 are not satisfactory): 
The DA runs either a task execution session in which case steps 1-22 are repeated, or 
an aggregation session in which case steps 19-22 are repeated.

23. The DA validates the results (of step 18), or:
provides Room-OA1 with alternative attribute values for either task reassignment or 
aggregation reevaluation of the sub-results provided in step 14.
For this scenario the DA selects to reduce the window size to reduce the window cost 
and room cost in turn.  

24. Conditional (if alternative values are provided by the DA in step 23): The Room-OA 
runs either a task execution session to examine the alternative values, in which case 
steps 15-24 are repeated, or an aggregation session, in which case steps 6-24 are 
repeated.
The new changes in the window dimensions satisfies Room-OA1 cost requirements.  
This attribute value change requires a conflict check with other DOs and EAs 
interested in the window dimension.

25. Interface option (to allow for conflict check): The DA requests a conflict 
check (with other interested DOs or EAs) before the attribute values of the 
Window-OA are modified.

26. The Window-OA checks with its Window-DO for a list of DOs and OAs with 
interest in the targeted attribute values (i.e., which is subject to modification 
by the DA in respect to the cost evaluation task results).  The interested DOs 
or EAs are potential candidates for conflict over the recommended attributes 
values.  The interested DOs may have attributes values that are linked to the 
Window-OA dimensions.  The Window-OA may also have EAs (e.g., 
daylighting) that are interested in the dimensions subject to modification.  In 
this scenario, the DA request from the Window-OA a list of all DOs and EAs 
interested in its dimensions attribute value.

27. The Window-DO provides a list of DOs and EAs interested in the targeted 
attribute values.  

28. The Window-OA provides the DA with the list of interested DOs and EAs.

29. Conditional (if the list contains one or more DO or OA): The DA selects a set 
of DOs and EAs from the list (according to the DA’s criteria for most critical 
conflicts) to activate for conflict check.  
Conditional (if the targeted DO is not activated): The DA sends an activation 
message to the first DO on the selected set.  For an interested EA, such as the 
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daylighting-EA, the DA may reassign the new daylighting evaluation task to 
the same Room-OA1 or to a new Room-OA (namely Room-OA2 in this 
scenario).

30. Conditional (if step 29 is executed): The DO instantiates another Room-OA 
(of the same Room-DO) from the OA class.
Room-OA2 is created.

31.  Conditional (if step 30 is executed): Activation interactions (see Chart 1 steps 
3-6).

32. The DA assigns a daylighting evaluation task to Room-OA2 to examine the 
suggested window dimensions of step 21 (which is the focus of the conflict 
handling session).

33. Conditional (if the appropriate protocols are not loaded): Room-OA2 loads 
the daylighting protocols.

34. Interacting with the appropriate daylighting-EA Room-OA2 initiates a 
daylighting evaluation session.

35. Task execution interactions (see Chart 2 steps 7-19).

36. The daylighting-EA provides its evaluation results to Room-OA2.  
Room-OA2 stores the results until validated.

37. Room-OA2 provides its evaluation results to the DA.
Conditional (if aggregation is needed): The DA aggregates the sub-results 
provided in step 36.

38. Conditional (if aggregation is performed in step 37): The DA requests the 
daylighting-EA to evaluate the aggregated results.

39. Conditional (if step 38 is executed): Evaluation interactions to evaluate the 
aggregation results provided in step 37 (see Chart 2 steps 23-31).

40. Conditional (if step 39 is executed): The daylighting-EA provides its 
evaluation of the aggregated results to the DA.
The DA stores the results until validated.

41. Conditional (if the results provided in either step 37 or step 40 are not 
satisfactory): The DA runs either a task execution session in which case steps 
32-41 are repeated, or an aggregation session in which case steps 38-41 are 
repeated, or:

42. The DA validates the results (of step 37), or:
provides alternative attribute values for task reassignment.
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43. Conditional (if alternative values are provided by the DA in step 42): Room-
OA2 runs another session to examine the alternative values.  In such case 
steps 34-43 are repeated.

44. Conditional (if the results provided in step 37 are not satisfactory): The DA 
sends a query request to obtain information from the query agent(s) to help in 
reassigning the task to examine alternative attribute values to either Room-
OA1 or Room-OA2.

45. Conditional (if step 44 is executed): The query-agent provides the DA with 
the applicable information (as available).

46. Conditional (if the information provided in step 45 is not sufficient): The DA 
sends a modified query request to the query-agent.  In such case steps 44-46 
are repeated.

47. Conditional (if the results of step 37 are not satisfactory): The DA reassigns 
another evaluation task to either Room-OA1 in which case steps 1-47 are 
repeated, or to Room-OA2 in which case steps 32-47 are repeated.

48. The DA validates the conflict handling session results (started in step 25).

49. Room-OA1 validates the results of Window-OA1 (provided in step 14).

50. Conditional (if there are more than one DO or EA in the set selected in step 
29): The DA either activates the next DO in the set, in which case steps 29-49 
are repeated, or assigns another evaluation task to Room-OA1 in relation to 
the next EA in the set, in which case steps 1-49 are repeated.

51. Room-OA2 updates its DO information (after the implementation of the task results, 
see Chart 2 steps 39-41).  In this scenario the Room-DO still represented by Room-
OA1, therefore, any update is managed by Room-OA1.

52. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 
steps 26 & 27).

53. Conditional (if step 52 is executed): Room-OA2 terminates itself.

54. The Window-OA updates its DO information (after the implementation of the task 
results, see Chart 2 steps 39-41).

55. Conditional (if no other task is to be executed): Termination interactions (see Chart 1. 
steps 26 & 27).

56. Conditional (if step 55 is executed): The Window-OA terminates itself.
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5 Task Handling Algorithms
5.1 Which Tasks?

In a decision making session the success of an OA depends on its ability to 
manage and utilize the environment resources to execute self-initiated or 
assigned tasks.  Self-initiated tasks require the OAs to have reasoning capabilities 
in order to justify the initiation of the task, a property that can be considered for 
an advanced version of an OA-based Environment.  Such a property requires an 
OA to be:

• Permanent in the environment, or in an active status even when not 
assigned tasks (i.e., have the capabilities to observe the environment 
activities);

• Able to interpret changes in the environment (whether these changes are 
observed by the OA or received through an update mechanism);

• Able to execute tasks that are related either to its own state or to the states 
of other DOs or OAs in the environment.1

Within the scope of this thesis, an OA may either execute tasks that are directly 
assigned by other agents or tasks that are executed within the scope of another 
assigned task.  The latter are a limited form of self-initiated tasks.  An OA in this 
sense is merely initiating tasks as a reaction to the originally assigned task.2  
Therefore, within the scope of this work, OAs are considered as:

• Temporal and only existing during the execution of an assigned tasks; 

1. Sub or super-DOs or OAs in a hierarchy, or even hierarchy non-related DOs and OAs.
2. See reactive planning in Chapter 3.
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• Not observing the environment and thus, cannot interpret more than a 
finite set of tasks that are directly assigned to each; 

• Only able to execute tasks pertaining to their own state.  

The expansibility of the OA capability to include self-initiated tasks requires 
further research and experimentation.  OAs with such capabilities are considered 
autonomous.  In Chapter 3, I argued against fully autonomous agents in design 
environments, and therefore, only consider semi-autonomous OAs.  The 
fundamental ability of an OA to execute assigned tasks is the core of an OA-
based environment.  This chapter is concerned with the development of 
algorithms needed by the OAs to carry on the execution of assigned tasks.  An 
OA algorithm, in this sense, is a dynamic short term plan (or reactive plan) 
designed to enable an OA to handle a family of tasks.  Within an algorithm 
multiple OA protocols (namely object-type, task-type and domain protocols) are 
utilized.

Event-trace charts presented in Chapter 4 provide the basis for developing the set 
of task handling algorithms developed in this chapter.  Two main interaction 
algorithms are developed following the charts of Chapter 4; the first is for 
executing evaluation tasks; the second is for conflict handling (which is a DA 
controlled iteration of local evaluation tasks involving more than one OA).  

Evaluation tasks are dependent on the notion of decomposition among applicable 
candidates of the DOs of the environment.  This chapter presents decomposition 
mechanism that are crucial to the execution of evaluation tasks.  

Executing generation tasks, on the other hand, are not dependent on the notion of 
task decomposition.  An OA would interact directly with a generative EA to 
produce alterative solutions.  The generation mechanism is domain specific and 
is applied by the EA, the OA may interact only to provide information about its 
own state when requested.  It is, therefore, not necessary to develop interaction 
algorithms for generation tasks.  Executing implementation tasks is environment 
dependent3 and is also not significant to this framework.  

3. For instance, implementing a recommended modification of a wall-OA thickness 
attribute depends on the applications utilized on the environment.  Most CAD system 
has a set of function calls (or a language, etc.) to execute attribute modifications (e.g., 
AutoLisp in AutoCAD).  An implementation task may be complex and require a 
sequence of actions by the CAD system to geometrically modify an attribute value.
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5.2 OA Task Execution Algorithms

Once an OA is activated (i.e., a class instance is created and registered with its 
super-agent, see details in Chapter 6) the super-agent assigns a task to the OA.  
The super-agent provides the task-type, task-domain, and task-focus (e.g., a value 
of an attribute to be examined.  This sets the context which the task revolve 
around.  The assigned task is classified by the OA and handled by the appropriate 
algorithm (Evaluate, Implement etc.). 

5.2.1  Evaluation

An OA handles an evaluation task according to the task-domain and task-focus.  
The OA uses the domain decomposition protocol to delegate the task to the sub-
DOs in its own OA-hierarchy.  The position of the OA in the domain-hierarchy 
implies whether further decomposition is applicable.  For instance, if an OA is 
representing a leaf-DO in a task hierarchy (e.g., Plumbing-DO in Figure 5.1), no 
further top-down decomposition would be applicable regardless of the nature of 
the task being executed.  In such cases, the leaf OA needs to execute the 
evaluation task interacting with the EA of the task-domain.  Figure 5.1 shows a 
decomposition of a Block-DO for a cost evaluation task.  The decomposition is 
centered around construction categories (such as framing, roofing, etc.) instead 
of the Block-DO spatial elements (i.e., floors, zones, rooms, etc.).  This is a flat/
simple decomposition which corresponds to the example in Figure 3.3A. The 
activated DOs (e.g., Foundation-DO) uses (and activate) related DOs (e.g., Slab-
DOs, Footing-DOs) during the course of evaluating its own cost.

Algorithm: ClassifyTask (task)

start 
1 if task-type == ?
2 case 1. ? == evaluate => Evaluate (Task-Domain, Task-Focus)
3 case 2. ? == generate => Generate 
4 case 3. ? == check-conflict=> ConflictChecking&Handling
5 case 4. ? == implement => Implement (attribute, new-value)
6 else
7 error message
8 end if
end
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The task-focus affects the decomposition in a different manner.  If the task-focus 
implies a classification (i.e., the context of the task is a classified evaluation, such 
as cost of a Block-DO per BFloor-DO) the DO of classification (the Block-DO in 
this case) must be included in the decomposition.  

The following examples show various task-focus cases which affect either the 
decomposition or the aggregation when a DO is executing an assigned cost 
evaluation task such as:

• Block-DO total cost classified per BFloor-DO: 

As illustrated in Figure 5.2, all leaf-DOs of the construction categories are 
included in the decomposition since the cost of the Block-DO is the 
aggregation of its construction categories leaf-DOs’ cost.  The BFloor-DO 
FIGURE 5.1.

Decomposition of a Block-DO 
cost evaluation task.
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is also included in the decomposition as the DO of classification 
(DOclassification hereafter).  In the aggregation process, the cost is 

aggregated according to each BFloor-DO.  The BFloor-DOs costs are then 
aggregated to provide the total cost of the Block-DO.

• Total cost of the StructElement-DOs classified per VZone-DO: 

Figure 5.3 shows a decomposition of a Block-DO cost evaluation task of 
StructElement-DOs’ (classified per VZone-DO).  The VZone-DO class as 
the DOclassification presents a different decomposition case.  

• Total cost of a Block-DO that includes shared DOs: 

When a Wall-DO is shared among Block-DOs, another layer of 
computation is needed for decomposition and aggregations.  Geometric 
FIGURE 5.2.

Decomposition of a Block-DO 
cost evaluation task (classified 
per BFloor-DO).
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computations may be needed to determine the portion of each shared DO 
(e.g., Wall-DO in each Block-DO).  This implies that special DOs (e.g., 
shared DOs) may require another layer of computation for task 
decomposition and sub-results aggregation.

• Total cost of a Block-DOs when DO of classification is not a super-DO to 
the leaf-DOs:

DO classes of the same level but in different branches of the OA hierarchy 
may act as super-OAs to each other.  For instance, in Figure 5.2, if the 
DOclassification is the VZone-DO instead of the BFloor-DO, the construction 

DOs (e.g. Framing-DO, Foundation-DO, Painting-DO) would be in the 
same level of the hierarchy as the VZone-DO.  That is, both VZone-DO and 
construction DOs are direct sub-DOs of the Block-DO class.  The flow of 
FIGURE 5.3.

Decomposition of a Block-DO 
cost evaluation task of 
StructElement-DOs’ (classified 
per VZone-DO).
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the cost task decomposition assigned by the Block-OA to the construction 
OAs goes through the VZone-OA.  The VZone-OA acts as super-OA to the 
construction OAs even though they share the same level in the hierarchy.  
The Framing-OA interacts directly with the cost-EA to find its own cost.  
The VZone-OA, as the super-OA to the construction OAs within the 
context of this task, aggregates the cost results of each construction OA.  In 
other words, task decomposition does not necessarily follow a top down 
order in the hierarchy.

• Total painting cost: 

If paint is not represented explicitly as a DO class (i.e., Painting-DO or 
Paint-DO classes) in the OA-hierarchy each DO pertaining to the “paint” 
attribute, of a Wall-DOs or Ceiling-DOs, would be used by the other OA 
while interacting with the appropriate EA in order to compute the paint area 
FIGURE 5.4.

Decomposition of a Block-DO 
structural analysis task.
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and its cost.  This implies that, computation on a DO attribute may 
substitute for further decomposition. 

Accordingly evaluation tasks fall into one of the following cases:

If no task decomposition is not required (e.g., the task is assigned to a leaf-OA in 
the DO-hierarchy or to an OA that hold attributes which substitute for leaf-OAs):

• case A: (task requires no decomposition) 
evaluate OA(e.g., Wall-OA cost) or;
evaluate OA attribute (e.g., Wall-OA paint cost)

===>

1. OA interacts with domain EA (e.g., Wall-OA interacts with Cost-EA)
FIGURE 5.5.

Decomposition of a BFloor-DO 
daylighting evaluation task.
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If task decomposition is required (e.g., the task is assigned to an OA that is 
neither a leaf-OA nor holds any attributes which substitute for leaf-OAs):

• case B (task requires decomposition)
evaluate OA (e.g. BFloor-OA cost) or;
evaluate OA attribute (e.g., BFloor-OA painting cost)

===>

1. decompose task among applicable leaf sub-DOs of the hierarchy
(use the P_Domain decomposition protocol of this task-domain to 
identify applicable sub-DOs, then activate and assign sub-tasks to the 
activated sub-OAs.  To evaluate an attribute, only the sub-DOs which 
holds such attribute should be activated;

2. repeat case A step 1 for each assigned sub-OA;

3. aggregate results (use the OA P_Domain aggregation protocol).

•case C: (task requires decomposition and classification of sub-results)
evaluate OA classified by a sub-DO type (e.g., cost of a Block-OA

classified per BFloor-DO) or;
evaluate OA attribute classified by a sub-DO type (e.g., cost of a

Building-OA paint classified per Block-DO)
===>

1. decompose task among DOs of classification (e.g., Block-DOs);

2. repeat case B step 1-3 for each activated DO (e.g., BLock-OA);

3. aggregate results (use the OA P_Domain aggregation protocol).
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Algorithm: Evaluate (Task-Domain, Task-Focus)

start
1 get P_Domain protocols (decomposition, sorting, aggregation)
2 makeactivationlist using the P_Domain decomposition protocol,

object-type, and task-focus => return sortedActivationlist
3 if sortedActivationlist is not empty
4 get P_ObjectType protocols
5 Activate (DOs) first DO class instances in the sortedActivationlist 

=> return sub-OAs
6 Assign evaluation sub-task(s) to sub-OAs => return sub-result(s)
7 Validate (sub-results)
8 Aggregate (sub-results) (use P-Domain aggregation protocol)
9 Validate (aggregation-result)
10 else (no decomposition is applicable, execute task by the OA itself)
11 InteractForService (domain-EA) => return result
12 if shared-DO
13 InteractForService (domain-EA)4 to distribute results
14 else (not a shared-DO)
15 end if
16 Validate (result) => return validation
17 end if
18 if this is not a conflict handling session
19 ConflictChecking&Handling
20 else (a conflict handling session) 
21 get validated conflict session results
22 end if
23 return results
24 Update (results)
25 Implement (results)
end

4. The domain-EA, in turn, may interact with the geometric-EA to determine the portion 
of the shared-OA located on each of its super-OAs (e.g., to find the portion of a Wall-
OA on two adjacent Room-OAs).
Task Handling Algorithms



line 2: Making the activation list

In a hierarchy of an OA (OA-hierarchy hereafter, i.e., all constituent DOs and all 
their hierarchies) which is executing an assigned task, it is not necessary to 
decompose the task amongst all DOs that are members of the hierarchy.  In 
respect to the task being executed by an OA, a DO that is a member of an OA-
hierarchy is either:

1. related to the task and crucial to the execution of the task.

2. related to the task but not crucial to the execution of the task.

3. not related to the task.

Therefore, an activation list (referred to as activationlist hereafter) of the sub-
DOs to participate in the task decomposition must be compiled.  This list is 
compiled using the parameters provided by the P_Domain decomposition 
protocol (which is used by the OA to execute a task).  The decomposition 
protocol provides the DOs which belongs to the first category, those DOs are the 
“min-domain-hierarchy”.  The DA may participate in compiling the 
activationlist by providing members of the second category.  

An activation order may also be required for execution of certain tasks.  The 
default activation of DOs follows a top-down order through the OA-hierarchy.  If 
the context of the task implies an activation order which differs from the default 
order, the activationlist must be sorted accordingly.  For instance, in the classified 
cost evaluation task of Figure 5.3, if the initial DO-hierarchy is structured so that 
both VZone-DO class and BFloor-DO class are direct sub-DOs of the Block-DO 
class a VZone-OA must activate the BFloor-DOs though both may co-exist in the 
same level within the hierarchy.  In such a case, the activation follows a 
horizontal order in the hierarchy instead of the top-down order (see discussion in 
page 100).  Another example is the day-lighting task of Figure 5.5, the day-
lighting of a Room-DO with interior Wall-DOs would depend on the daylighting 
of an adjacent Room-DO with exterior Wall-DOs.  In such a case, the 
dependency among Room-DOs also requires horizontal decomposition order 
within the OA-hierarchy.  Other cases may require a decomposition that goes up 
in the hierarchy before it follows the default top-bottom order.

The context of a task is passed from a super-OA to a sub-OA throughout the 
decomposition.  In this sense, the activationlist is global within the realm of the 
task hierarchy, and is used by each sub-OA in the hierarchy to activate the next 
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set of DOs.  Accordingly, to compile the activationlist the following procedures 
are needed: 

1. The set of all DO classes (of the existing hierarchy) which are eligible for 
activation according to the task domain must be defined (see Figure 5.1-
5.5).  This set is the “max-domain-hierarchy” and is bounded by two 
variables “domain-hierarchytop” and “domain-hierarchybottom, which 

are the top and bottom classes (or bottom class level, which is a set of 
classes sharing similar positions in the hierarchy, e.g., the set of all leaf-
DOs specifies a class level and may act as domain-hierarchybottom).  

These two variables differ from domain to another and, therefore, must be 
provided by the P_Domain decomposition protocol of the task in hand.  
For instance, in the hierarchy of Figure 5.4, if a structural analysis task is 
to be performed the Block-DO class may act as the domain-hierarchytop 

and the StructElement-DO class should be the domain-hierarchybottom.  

The max-domain-hierarchy is then compiled as a list of all DO classes 
that is located between the domain-hierarchytop and 

domain-hierarchybottom classes (in addition to the domain-hierarchybottom 

class itself).  

2. The DO classes that should not to be activated are compiled in a 
“skiplist.”  The making of the skip list follows the logic explained in the 

sequel.

3. The “activationlist” is then compiled as the difference between the max-

domain-hierarchylist and skiplist.  The DA may elect to insert additional 

DO classes from the max-domain-hierarchylist to the activation list.  Any 

class added by the DA must conform with the constraints of making the 
skiplist (see “Making the skiplist” on page110).

4. The activationlist is sorted using the P_Domain sorting protocol to 

determine the order of activating the DOs included in the activationlist. 

The following definitions and properties can be deduced from the preceding 
discussion and are necessary for the remaining algorithms5:

5. DO- and OA-hierarchies are defined in Appendix A.
Task Handling Algorithms



max-domain-hierarchy: the set of all eligible classes for task decomposition in 
respect to this particular domain.  This set is defined by the P_Domain 
decomposition protocol of the task in hand.  The max-domain-hierarchy is 
necessarily a subset of a DO-hierarchy.  

min-domain-hierarchy: the minimum set of DO-classes necessary to execute an 
assigned task.  This set is defined by the P_Domain decomposition protocol of 
the task in hand.  The min-domain-hierarchy is also necessarily a subset of a DO-
hierarchy and of the max-domain-hierarchy.

domain-hierarchybottom: a class or a set of classes which represent the lower 
boundary of a max-domain-hierarchy .

domain-hierarchytop: a DO class, which represent the top boundary of the max-
domain-hierarchy.

leaf-DOs: a set of DO-classes that contains all DOs at the lower end of each 
branch of a hierarchy

DOclassification: a DO class used for classifying the results of executing an 
assigned task (e.g., evaluate cost of a BFloor-DO per Room-DO.  The Room-DO 
class is the DOclassification of such task).

activationlist: a set of DO classes of which instances are to be activated to 
execute sub-tasks during the executing of a task.  It is necessarily a subset of the 
max-domain-hierarchylist.

skiplist: a list of DO classes to be skipped during the activation of sub-DOs of an 
OA-hierarchy.  It is a subset of the max-domain-hierarchy.

interest context: the reasons for which an agent or a DO attribute is interested in 
another DO attribute (e.g., Wall-DO width for Room-DO acoustics).

activation order: the order of activating DOs in an OA-hierarchy during the 
execution of a task.
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DO-hierarchy

max-domain-hierarchy

OA-hierarchy

min-domain-hierarchy minimum set of DOs needed by an EA to execute a task

all sub-DOs of an OA assigned a task

all eligible DOs for task decomposition in respect to the domain

a current hierarchy of DOs accepted by the DA
Making the skiplist (as a requirement for making the activationlist) 

The skiplist is used by the “MakeActivationList” algorithm to compile the 
activationlist.  If no DO classes are explicitly specified by the P_Domain 
decomposition protocol or by the DA, the skiplist is compiled so as to minimize 
the number of DOs to be activated, that is, the skiplist is maximized.  The 
“MakeActivationList” algorithm uses the following logic to compile the skiplist.

1. P_Domain specified: The P_Domain protocol must provide a min-
domain-hierarchy and may provide a P_Domain_Skiplist.  If the 

P_Domain protocol provided a P_Domain_Skiplist all DO classes 

included must be in the final skiplist.  For instance, in Figure 5.4 all DO 

classes between the BFloor-DO class and the StructElement-DO class and 
all leaf-DO classes other than StructElement-DO class must be included 
in the skiplist.

2. DA specified: If the DA provided a DA_Skiplist all DO classes included 

must be in the final skiplist (provided that none of the members of the 

DA_Skiplist is a member of the min-domain-hierarchy) For instance, in 

Figure 5.4, the DA may elect to include the VZone-DO class in the 
skiplist.  On the other hand, the DA may chose to activate all the sub-DOs 

of the OA-hierarchy.  In such cases, all sub-DOs in the OA-hierarchy are 
activated excluding any members of the P_Domain_Skiplist (if 

applicable).  No DA_Skiplist is provided in such case.  
FIGURE 5.6.

Relation between Hierarchies 
(general case): min-domain-
hierarchy < OA-hierarchy < max-
domain-hierarchy.
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DO-hierarchy

max-domain-hierarchy

minimum set of DOs needed by an EA to execute a task

all sub-DOs of an OA assigned a task

all eligible DOs for task decomposition in respect to the domain

a current hierarchy of DOs accepted by the DA

OA-hierarchy

min-domain-hierarchy

DO-hierarchy

OA-hierarchy all sub-DOs of an OA assigned a task

all eligible DOs for task decomposition in respect to the domain

a current hierarchy of DOs accepted by the DA

max-domain-hierarchy

min-domain-hierarchy minimum set of DOs needed by an EA to execute a task

B

A

3. Default: A Default_Skiplist is compiled if no skiplist is provided by either 

the P_Domain protocol or by the DA.  The Default_Skiplist includes all 

the classes of the OA-hierarchy and excludes the classes of the min-
domain-hierarchy.  For instance, in Figure 5.1, in addition to the 
Building-DO class all classes below the Block-DO and leaf-DOs (in the 
spatial branch not in the construction categories branch) would be 
included in the skiplist.
FIGURE 5.7.

Special Case Relation Between 
Hierarchies: 
A) Case 1: min-domain-hierarchy 
< max-domain-hierarchy < OA-
hierarchy.
B) Case 2: OA-hierarchy < min-
domain-hierarchy < max-
domain-hierarchy
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From the previous discussion we can deduce that:

• An OA-hierarchy is a subset of a provided DO-hierarchy (see Figure 5.6);

• An OA-hierarchy is typically a subset of the max-domain-hierarchy (see 
Figure 5.6).  It is possible that a max-domain-hierarchy be a subset of a 
OA-hierarchy (see Figure 5.7A).  In such cases, all classes between the 
OA and the domain-hierarchytop should be included in the skiplist;

• An OA-hierarchy may be a subset of the min-domain-hierarchy (see 
Figure 5.7B).  In such case the activationlist may include DOs that are 
higher in the hierarchy then the OA assigned the task.  This presents a case 
of task decomposition which includes DOs outside the OA-hierarchy.

• The min-domain-hierarchy is a subset of the max-domain-hierarchy;

• The min-domain-hierarchy must exist as a subset in the activationlist;

• The activationlist is a subset of the max-domain-hierarchy;

• The skiplist is a subset of the OA-hierarchy, and in most cases is also a 
subset of the max-domain-hierarchy.  In both cases its disjoint from the 
min-domain-hierarchy (see Figure 5.8);

• If a min-domain-hierarchy = activationlist => skiplist is maximum;

• If max-domain-hierarchy = activationlist => skiplist is minimum (may be 
empty).
FIGURE 5.8.

Relation Between a Skiplist and 
an Activationlist (general case).
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Algorithm: MakeSkipList

start
# check that DA_Skiplist does not include min-domain-hierarchy DOs #

1 if Intersection (DA_Skiplist, min-domain-hierarchy) ≠ null
2 get DA validation to mod_DA_Skiplist
3 return mod_DA_Skiplist

else
4 end if
5 mod_DA_Skiplist ← Difference (DA_Skiplist, min-domain-hierarchy)
6 if P_Domain_Skiplist ≠ null
7 skiplist ← Union (P_Domain_Skiplist, mod_DA_Skiplist)
8 else (default: no skiplist is provided by the P_Domain protocol)
9 skiplist ← Difference (OA-hierarchy, min-domain-hierarchy)
10 end if
end

Algorithm: MakeActivationList

start
1 if DOclassification is in max-domain-hierarchy
2 activationlist ← Union (Difference (max-domain-hierarchy, skiplist), 

DOclassification)
3 SortActivationList (activationlist) using activation order provided by 

the domain decomposition protocol => return sortedActivationlist
4 else
5 error message
6 end if
end
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Algorithm: SortActivationList (activationlist)

start
1 get P_Domain sorting protocol
2 oldSortedlist ← null
3 newSortlist ← null
4 for each DO in the activationlist 
5 InsertDOInSortedList (DO, oldSortedlist, newSortedlist)
6 end for
7 sortedActivationlist ← Append (oldSortedlist, newSortedlist)
8 return sortedActivationlist
end

Algorithm: InsertDOInSortedList (DO, oldSortedList, newSortedList)

start
1 if oldSortedlist == null
2 Insert (DO, oldSortedlist)
3 else
4 if first DO of oldSortedlist is lower in the activation order

(as provided by the P_Domain sorting protocol)
5 Insert (DO, oldSortedlist)
6 else
7 newSortedlist ← Append (first DO of oldSortedlist, newSortedlist)
8 oldSortedlist ← Remove (first DO, oldSortedlist)
9 InsertDOInSortedlist (DO, oldSortedlist, newSortedlist)

=> return (oldSortlist, newSortlist)
10 end if
11 end if
end
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Line 8: Aggregation

Any decomposition of a task to sub-tasks is counter balanced with an aggregation 
of the sub-results of the execution of the sub-tasks.  Similar to decomposition, 
aggregation is a domain dependent activity that is necessary to the execution of a 
task by an OA.  For instance, the cost of an OA is the aggregation of the cost of 
the leaf-DOs of the OA-hierarchy (provided that all components of the cost are 
represented as leaf-DOs in the OA-hierarchy).  In addition to the leaf-DOs, the 
cost of an OA may include the cost of attributes of its sub-DOs (typically, such 
attributes substitute for sub-DOs that are not explicitly represented as leaf-DOs in 
the OA-hierarchy).  For instance, in Figure 5.1, the cost of the Painting-DO is the 
aggregation of all Paint-DOs’ cost (represented in the hierarchy as a member of 
the Layer-DO class).  If paint is represented as an attribute of other DOs such as 
Wall-DOs, Ceiling-DOs and not explicitly represented in the hierarchy as Paint-
DOs, then the cost of the Painting-DO is the aggregation of the cost of all paint 
attributes in all DOs.  A third possibility is that paint is not even represented as an 
attribute, in such case, paint may be calculated based on selected DOs total area 
(such as Wall-DOs and Ceiling-DOs).

Aggregation is not necessarily an addition of sub-results, it may require further 
computation by the domain-EA of the task in hand.  For instance, the aggregation 
of structural loads of intersecting StructElement-DOs (e.g., sloped beam resting 
on a column) requires computation beyond mere addition of loads.  Therefore, to 
aggregate sub-results additional interactions between the OA aggregating 
the sub-results and the domain-EA are typically required after the sub-OAs 
return their sub-results to the OA.  Such interactions are guided by the 
P_Domain aggregation protocol of the that task-domain.

   Algorithm: Aggregate (sub-results)

start
1 check sub-DO IDs for repeated sub-results, or check results IDs
2 sub-resultslist ← sub-resultslist with repeated results removed
3 get P_Domain aggregation protocol
4 InteractForService (domain-EA) to evaluate sub-resultslist

=> return aggregation results
5 return aggregation results
end
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Line 7: Validating results

Any task execution or aggregation result must be validated before it is returned to 
the super-agent which assigned the task.  The validation can occur according to 
various preset validation modes.  The validation mode can either be set by the 
designer or by the domain protocol.  Four modes are identified; DA validation, 
super-OA, self validation and no validation.

   Algorithm: Validate (result, validation mode)

start
1 if validation mode == ?
2 case 1. ? == DA validation requested => DAValidation (result)
3 case 2. ? == super-OA validation requested 

=> SuperOAValidation (result)
4 case 3. ? == self validation => SelfValidation (result)
5 case 4. ? == no validation requested => NoValidation (result)
6 else
7 error message
8 end if
end

Algorithm: DAValidation (result)

start
1 get DA validation
2 if results are not validated
3 get DA’s new values for re-evaluation (or for task re-assignment)
4 if no new values are provided by the DA
5 error message
6 else (DA provided new values)
7 InteractForSerivce (domain-EA)

to re-evaluate aggregation results or
8 re-Assign (evaluation task) to sub-OA
9 end if
10 else (results are validated)
11 return validation
12 end if
end
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Algorithm: SuperOAValidation (result)

start
1 get super-agent validation
2 if results are not validated
3 error message
4 else (results are validated)
5 return validation
6 end if
end

Algorithm: SelfValidation (result)

start
1 InteractForSerivce (domain-EA) to evaluate results => return results
2 if results are not validated
3 error message
4 else (results are validated)
5 return validation
6 end if
end

Algorithm: NoValidation (result)

start
1 return validation
end
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5.2.2  Conflict Handling

As explained in section 3.1 of Chapter 3 and illustrated in Chart 7 of Chapter 4, 
the conflict handling process is mainly composed of two steps; conflict detection 
and conflict resolution (ignoring conflict prevention).  

Within the framework of this thesis, conflict detection is dependent on the OAs 
informing the DA of potential agents or DO attributes which are interested in the 
OA attribute value being modified.  In an advanced mode of conflict detection, 
the OA should be permitted to independently activate interested DOs and assign 
to these evaluation tasks to examine the new attribute value being modified.  In 
such cases, the DA should only be notified upon the recognition of an actual 
conflict.  The conflict resolution is heavily dependent on the interaction among 
the DA and the OAs involved in the conflict.  

Within the framework of this thesis conflict resolution is a series of DA 
controlled local evaluations conducted by the OAs to examine alternative 
attribute values.  Accordingly, resolving conflict is done through iterations of 
local evaluation not through direct negotiations among OAs (as argued in 
Chapter 3).

The conflict detection uses attribute lists of interested agents and attributes from 
other DOs and within the same DO (see details of compiling an interest list 
below).  For instance, an interest-list (interestlist hereafter) of a glazing area 
attribute for a Window-DO may include 

• Agents such as daylighting-EA, cost-EA, thermal-EA and elevation-EA;

• Attributes of DO classes such as coordinates of StructElement-DO, Wall-
DO width and height;

• Attributes of the same DO class such as Window-DO glazing-type, 
window-type and shading device types.

If the Window-DO glazing is modified each of the agents or DO attributes above 
may be affected in various capacities.  A Window-OA provides the interestlist to 
the DA, the DA chooses the more critical members of the list to examine in 
order.  Accordingly, the DA activates the necessary DOs and assigns evaluation 
tasks to examine the new glazing area.  If the evaluations are satisfactory, the DA 
validates the conflict handling session and accordingly validates the modified 
glazing area.
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How is the interestlist compiled?

Each attribute of a DO has an interestlist associated with it upon creation.  The 
selection of the members of each list is done when a DO class is defined6.  The 
list includes possible interested DOs and agents from those provided in the 
environment upon the initiation of a session.7  A DO attribute or agent may exist 
in the list even if it is not present in the environment in the current session.  

It is possible to dynamically add more members in an interestlist during a 
session.  The addition of new members can be automated or left to be solely a 
property of the DA.  For instance, a constraint between two attributes provides a 
reasonable basis for the automation of interestlist registration.  That is, the 
constraint parties must be registered on each others interestlists.  For 
instance, if a constraint links the glazing area attribute to the width attribute of a 
Window-DO, the glazing area attribute must be registered as a member of the 
width attribute interestlist and vice versa.  On the other hand agents or DO 
attributes that are not linked to an attribute by constraints should be 
explicitly added by the DA (if needed).

When an attribute value is being modified and checked for potential conflict each 
member of the interestlist is a candidate for conflict check.  Which members are 
selected for conflict checking is left to the DA preferences.  Two types of 
members may register in the interestlist; domain-EAs and DO attributes.  A DO 
attribute can either be of the same DO or of another DO.  This constitutes three 
cases as demonstrated by the following examples:

1. a daylighting-EA should be in the interestlist of any Window-DO glazing 

attribute;

2. a Wall-DO thermal mass attribute should be in the interestlist of its own 

Wall-DO thickness attribute; 

6. The dependency of a DO attribute on the existence of other attributes, DO classes or 
agents may seem to violate a fundamental principle of object oriented design, however, 
the interestlist is merely used to inform the DA of the potential members of the 
environment that may have conflict with the attribute value being modified.  This 
cannot be considered as an explicit dependency among objects.  An interestlist has no 
implications on any external object.

7. No new classes may be admitted at run time.  This may seem to contradict the earlier 
notion (discussed in Chapter 3) of the Composite-DO which is compiled out of a 
collection of DO classes.  A Composite-DO can be created during a session but cannot 
be recognized during a session.
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3. a Door-DO thickness attribute should be in the interestlist of the Wall-DO 

thickness (where the Door-DO is located).  

The first example represents the general case and can be applied to any instances 
of a Window-DO (i.e., daylighting-EA can be included by default in any 
Window-DO glazing area attribute).  Therefore, an interestlist registration of this 
type can be made as a part of the DO class definition upon creation of the class.   
In the second example interest is among two attributes of the same DO, this is a 
specialization of first case.  The interestlist registration can also be made in the 
DO class definition upon creation of the class.  The third example represents a 
more restricted specialization case since the Door-DO is registered in a specific 
Wall-DO instance and cannot be generalized (i.e., only in the Wall-DO where the 
Door-DO is geometrically located).  In this case, the registration in the interestlist 
may also be in the class definition but attached with a constraint to limit it to a 
certain Wall-DO.  The interestlist registration in this case can also be done in run 
time by the DA. 

To avoid redundancy in representation of attribute relations, attribute1 should not 
be in the interestlist of attribute2 within a context if there is a constraint linking 
attribute1 to attribute2 within the same context.

A domain-EA registered in the interestlist of an attribute1 of OA1 may participate 
in a conflict handling session about a new value for attribute1 if the domain-EA:

• is currently providing service to OA2 using the same attribute1.  OA2 can 
either be another OA of the same DO performing a different task 
simultaneously, or an OA of another DO performing a task that require the 
use of attribute1.  In such case, OA2 must run another evaluation session 
interacting with the domain-EA to examine the new value of attribute1. 

• previously provided service to an OA2 regarding the attribute1.  This case 
may only be considered if the domain-EAs are capable of keeping the 
history of services provided to OAs during a session (or previous 
sessions).  If OA2 is no longer activated then the domain-EA must first 
request the activation of OA2 DO.

Each member in the interestlist is coupled with an “interest context”.  The 
context conveys the reason(s) for which this member is interested in this 
attribute.  A member of an attribute interestlist is activated to examine the 
suggested attribute value in respect to the interest context of that member)
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In Table 1 an interestlist of a Wall-DO thickness attribute may include members 
such as: member “1” is a Domain-DO, member “2” is an attribute of the same 
DO, and member “3” is an attribute of another DO.  Each member has its own 
interest context and recommended party to interact with in connection with this 
context.  The interest context may evolve around a third party (i.e., DO).  In such 
cases, activation of this party may also be required (as in member “1” and “2”).

How is the interestlist sorted with respect to the degree of importance of 

conflicts?

The order of an interestlist should be subject to change according to the task in 
hand.  To do so, the question to be addressed would be; how important is a 
potential conflict with respect to the task in hand? To establish a scale to measure 
the importance of a DO attribute or an agent in respect to the attribute value 
being modified a weight mechanism is needed.  An OA-based environment can 
certainly benefit from such a mechanism and can easily adopted it.  There may be 
various ways of establishing such a mechanism, but these are all beyond the 
scope of this framework.  Therefore, in this framework, the DA is the only 
reference to sorting the interestlist.

Controlling the conflict handling dependencies

The recursive effect of changing a single attribute value of a DO on other DOs 
may reach deeply nested levels causing dependences and infinite loops of 
evaluations and conflict handling sessions.  However, such dependencies should 
be prevented in any evaluation session (see Section 3.1).  As an interface aid to 
the DA it may be of great advantage to display a graph of the possible 
dependencies (as a warning) before confirming a modification of an attribute 
value.  It is also possible to design an automated mechanism to allow the 

TABLE 5.1. An example of an Interestlist of a DO Attribute

an interestlist of Wall-DO1 thickness attribute

# DO-inst/Agent interested attribute interest context interact/activate

1 Acoustic-EA N/A Room-DO1 noise level Room-DO1

2 Wall-DO1 thermal time lag (hr) Room-DO1 thermal comfort Thermal-EA

3 Door-DO1 thickness (in) Wall-DO1 assembly (cont.) Geometry-EA
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designer to control the depth of nested conflict checking and to reduce the 
number of participants in a conflict.  Developing such a mechanism is a research 
topic on its own right.  Within the framework of this thesis, to reduce conflict 
checking dependencies, a DO that is activated during a conflict handling 
session may not trigger other conflict handling sessions.

Constraint Satisfaction and the interestlist mechanism 

The notion of an attribute interestlist may project a conflict with the notion of a 
constraint network which may link multiple attribute values of DOs.  If a 
Window-DO height is linked to the width by a proportion constraints, say, for 
aesthetic purposes, then changing the glazing area for a daylighting would effect 
such constraint.  A constraint satisfaction mechanism would attempt to modify 
the height and width to maintain the specified proportions under the new glazing 
area.  Doing so, the width and height attributes of the Window-OA would trigger 
a series of conflict checks that are independent from the initial conflict checks 
triggered by the change in the glazing area.  A constraint satisfaction mechanism 
may work as a drive for modifying attribute values which, in turn, triggers a 
series of conflict checking sessions using the interestlist mechanism.  Therefore, 
the two mechanisms may work separately or conjointly and there is no conflict 
among these.
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Algorithm: ConflictChecking&Handling

start
1 provide the interestlist of attribute1 (being modified) of OA1 to the DA8

2 prompt the DA to SortInterestlist (interestlist) add or remove members
 => return sortedInterestlist

3 for each member of the sortedInterestlist
4 if member == ?
5 case 1. ? == domain-EA & 
5      domain-EA is performing task2 for OA2 about attribute1

=> DomainEAConflictSession (OA1, OA2)
6 case 2. ? == domain-EA & domain is in active mode9

=> ActiveDomainEAConflictSession (OA1)
7 case 3. ? == DO4    => AttributeConflictSession (DO4, OA1)
8 case 4. ? == attribute2=> AttributeConflictSession (DO1, OA1)
9 else
10 error message
11 end if
12 end for
end

8. To deal with the conflict cycle effect (as explained in section 3.1), the algorithm should 
include steps to mark the visited attribute (but only if its value changes as a result of the 
conflict session).  In this way, conflict cycles can be detected; however, the marking of 
a visited attribute may not be straightforward and requires further investigation that is 
not covered in this dissertation.

9. A Domain-EA can be in passive or active mode.  If in active mode and it is a member 
of the interestlist of an attribute it would automatically evaluate any new attribute value 
for this attribute upon modification.
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Algorithm: DomainEAConflictSession (OA1, OA2)

start
1 Assign OA2 an evaluation task to examine the new value of attribute1 

in respect to the current task of OA2 => return result
2 if results are validated
3 return conflict session validated results
4 else (at least one of the results is not validated)
5 EvaluateConflictAlternatives (OA1, OA2)
6 end if
end

Algorithm: ActiveDomainEAConflictSession (OA1)

start
1 Activate (DO)10 (a duplicate of OA1 to conduct the new evaluation 
session)

=> return OA2
2 Assign OA2 an evaluation task to examine the new value of attribute1 

in respect to the context of the domain-EA interest 
=> return results

3 if results are validated
4 return conflict session validated results
5 else (at least one of the results is not validated)
6 EvaluateConflictAlternatives (OA1, OA2)
7 end if
end

10.If the OA is allowed to execute more than one task simultaneously this step would be 
skipped and OA2 should be replaced by OA1in the next step.  This corresponds to 
Chart 3 of Chapter 4.
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Algorithm: AttributeConflictSession(DO, OA1)

start
1 if DO ≠ DO1
2 Activate (DO) => return OA2 (an OA of a different DO)
3 else (DO == DO1, local attribute)
4 Activate (a clone of DO1) => return OA2 (a duplicate of OA1)
5 end if
6 Assign OA2 an evaluation task to examine the new value of attribute1 

in respect to the context11 of attribute2 interest (as in the interestlist)
=> return results

7 if results are validated
8 return conflict session validated results
9 else (at least one of the results is not validated)
10 EvaluateConflictAlternatives (OA1, OA2)
11 end if
end

11.This task assignment may, in turn, require OA2 to activate other DOs to perform sub-
tasks (according to the interest context).  During such process DO1 itself may need to 
be activated more than once.  However, if the task needed (according to the interest 
context) is of the same task-type of the original task of OA1 then OA1 can be 
reassigned the same task instead of activating a duplicate OA.
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Algorithm: EvaluateConflictAlternatives (OA1, OA2)

start
1 get alternative attribute values from DA
2 if alternative attribute values are provided
3 Assign OA1 its current evaluation task with new value 

=> return results
4 Assign OA2 its current evaluation task with new value 

=> return results
5 if both results validated
6 return conflict session validated results
7 else (at least one of the results is not validated)
8 EvaluateConflictAlternatives (OA1, OA2)
9 end if
10 else (no alternative values are provided)
11 error message
12 terminate conflict handling session
13 end if
end
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Line 24: Updating

After the results of both task execution and conflict handling are validated, the 
OA has to update its original DO information.  Since conflict handling process is 
intended to insure the integrity of the information of the DO being modified in 
respect to the interested DO attributes and agents, updating attribute values is 
preceded by two other checks to insure integrity of the DO information in respect 
to constraints and DO clones.  

• Firstly, checking the constraints network.  The DO attributes being 
updated may be linked with other DO attributes by constraints.  Each 
constraint may be associated with other constraints of DO attributes 
through a propagation.  Hence, any attribute value update requires a series 
of constraint satisfaction checks to insure that no other constraints are 
violated by the current update.  If a constraint is violated the DA must be 
notified and validates the update.  As the case with the conflict handling, 
the DA involvement is necessary to control dependencies.  

• Secondly, to update the information of any clones of the DO which are 
used simultaneously by other OAs.  In particular, those OAs which are 
performing tasks on the same DO attribute being modified.  
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Algorithm: Update (new-values)

start
# check for constraints satisfaction with other DOs #

1 for each constraint of the attribute being updated
2 ApplyConstraint (new-value)
3 for each propagated constraint repeat check
4 Activate DOs involved in the constraint 

(to evaluate the new values12) => return OAs
5 for each activated OA 
6 ApplyConstraint (new-value)
7 for end
8 end for
9 end for
10 get DA validation for update

# check for OAs that are currently using the DO being updated#
11 if there is more than an OA for the same DO
12 for each OA of the same DO
13 send an update message of the new values
14 end for
15 else
16 end if
end

Algorithm: CheckConstraint (constraint, new attribute value)

start
1 ApplyConstraint (new-value)
2 if new value does not satisfy constraint
3 error message 
4 else
5 return constraint application result
6 end if
end

12.Conflicts and updates for the activated DOs must be controlled by the DA to avoid 
dependencies & nested checks.
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5.3 Examples of P_Domain protocols.

As demonstrated by the algorithms of this chapter, the OA protocols are mainly 
domain dependent.  This section provides an examples of domain depend OA 
protocols such as decomposition, sorting and aggregation.  The P_Domains 
provided present variables that are required by the P_TaskType algorithms (e.g., 
P_TT_Evaluation, P_TT_Recommendation, see Figure 6.1 of Chapter 6) to 
execute an assigned task (see also lines 2 and 8 in the task evaluation algorithm).

5.3.1  Cost Evaluation Protocols

Cost evaluation decomposition protocol

• skiplist: N/A

• min-domain-hierarchy: all leaf-DO classes (of the construction branch);

• max-domain-hierarchy: [domain-hierarchytop -- domain-hierarchybottom];

• domain-hierarchytop: Site-DO;

• domain-hierarchybottom: leaf-DO level (of the construction branch).

Cost evaluation sorting protocol

• decomposition order: [Site-DO, Building-DO & LandScElement, Block-
DO, and Leaf-DOs (of the construction branch)];

• typical evaluation order: top-down;

• special evaluation order: DOclassification is first in level.

Cost evaluation aggregation protocol

• aggregation-type:
Site-DO (and below) => Request service from cost-EA

5.3.2  Structural Analysis Protocols

Structural analysis decomposition protocol

• skiplist: Site-DO, all leaf-DO classes excluding the StructElement-DO 
class;

• min-domain-hierarchy: [BFloor-DO, StructElement-DO];

• max-domain-hierarchy: [domain-hierarchytop -- domain-hierarchybottom];

•  domain-hierarchytop: Building-DO;

• domain-hierarchybottom: StructElement-DO.
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Note: In a Structural recommendation protocol min-domain-hierarchy does not 
include StructElement-DO (only the BFloor-DO is necessary).

Structural analysis sorting protocol

• decomposition order: [Building-DO, Block-DO, VZone-DO BFloor-DO, 
HZone-DO, StructElement-DO];

• typical analysis order: carried loads (top-down order, higher loads are 
added to the lower ones, e.g., higher BFloor-DOs must be analyzed first);

• special analysis order: suspended loads (bottom-up order, lower loads are 
added to the higher ones, e.g., lower loads of a suspended bridge must be 
analyzed first). 

Structural analysis aggregation protocol

• aggregation-type:
Site-DO => listing (e.g., table)
Building (and below) => Request service from structural-EA

5.3.3  Daylighting evaluation protocols

Daylighting evaluation decomposition protocol

• skiplist: LandScElement-DO, all leaf-DO classes excluding the Opening-
DO class and the Layer-DO class;

• min-domain-hierarchy: [Room-DO, Wall-DO, Ceiling-DO, Floor-DO, 
Opening-DO];

• max-domain-hierarchy: [domain-hierarchytop -- domain-hierarchybottom]

• domain-hierarchytop: Building-DO;

• domain-hierarchybottom: Opening-DO.

Daylighting evaluation sorting protocol

• decomposition order: [Building-DO, Block-DO, VZone-DO BFloor-DO, 
HZone-DO, Room-DO, Opening-DOs];

• typical evaluation order: top-down;

• special evaluation order: must exhaust all Room-DOs with shared 
Opening-DOs.

Daylighting aggregation protocol

• aggregation-type:
BFloor-DO (and above) => listing (e.g., table)
Room-DO (and below) => Request service from daylighting-EA
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6 Implementation Design
6.1 Object Oriented Implementation

Originally, the implementation of the OA model started within a rule-based 
development environment, namely CLIPS 4.3.  The entire activation mechanism 
was developed on top of the ICADS project [Pohl 92] and [Myers 93].   DO 
attributes were implemented as set of facts.  DO facts were asserted in the global 
CLIPS fact list when needed.  The protection of such DO data required an 
additional implementation considerations.  An OA was implemented as a 
collection of its DO facts in addition to a set of related protocols, implemented as 
rules, all were copied into an OA file.  The file was created and configured in the 
environment at run time.  New facts about any newly created OA were asserted 
into the fact list so that all agents of the environment might interact with it.  
Though it was possible to create and configure new OAs at run time, OA 
protocols had to be loaded during the initiation of a session.  Therefore, the local 
protocols of an OA (a set of CLIPS rules) were mere reference to a subset of the 
globally protocols loaded during initiation.  To overcome such shortcoming it 
was necessary to be able to initiate a new CLIPS session for each created OA.  In 
turn, this requires a message passing system to link distributed CLIPS sessions 
each containing independent fact list.  Using such a message handling system, 
facts were asserted simultaneously across distributed fact lists to facilitate 
interaction between distributed agents.  OA protocols were loaded on run time 
and were not necessarily global.  An OA executes its protocols locally within its 
own CLIPS session and only communicates selected execution results to the 
appropriate fact lists.  Certainly, distributed CLIPS sessions each with a smaller 
number of facts and rules, made the control of the execution flow an easier 
implementation task.  However, such distribution required another layer of rules 
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for update and truth maintenance of distributed data that was continually being 
modified.

A later version of CLIPS (namely CLIPS6.0) provided a rule-based object-
oriented test bed for the OA model.  An OA prototype of the activation 
mechanism was developed using object attributes and message-handlers as the 
object methods.  The problem of OA protocols was now handled in a different 
fashion.  With classes and inheritance an OA could be an instance of one or a set 
multiple OA classes and may inherit all its protocols from its super-classes.  A 
DO attributes is no longer public in the fact list, it is rather protected or private.  
Objects and their attributes could be used for pattern matching to execute rules.  
An addition that allowed a more sophisticated yet better controlled OA model to 
be implemented.  However, fact lists which could grow exponentially large 
drastically slowed the execution of tasks when hundreds (or even thousands) of 
objects were involved in a single CLIPS session.  In addition, parts of the OA 
model were more appropriately implemented in a procedural language.  Though, 
CLIPS provided alternative ways of either implementing procedural code or 
integrating exported code, it was more efficient to implement the model in a 
uniform development environment.

A later decision to design the implementation of the OA model using a complete 
object oriented development environment (OODE), namely C++, was made to 
take advantage of various aspects.  In addition to execution speed, uniformity of 
code, complete data encapsulation and protection, the separation of local object 
methods from the message handling system, the ease of controlling the execution 
flow, the ability to establish more complex object compositions, the ability to use 
graphical object modeling tools (such as OMTool) to conceptually represent the 
OA model (which can then be translated into C++ code), the availability of more 
object libraries such ET++ all contributed to such implementation design shift.

The reminder of this chapter focuses on the development of the general object 
model for an OA-based design environment and an exemplary domain specific 
object model.  The objects, of the general model, and their relation are defined 
and detailed.  In addition, the implementation of the activation process of a DO is 
detailed to illustrate what an OA would look like (the collection of objects that 
constitutes an OA) once it is realized in the environment.  This detailed 
activation process is based on Chart 1 of Chapter 5, and can directly be 
transformed into a DO activation algorithm.  Therefore, the activation algorithm 
is omitted from this to avoid redundancy.
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6.2 The Object Models

Using an OODE, object models are necessary to represent the architecture of any 
OA-based environment.   In this chapter I describe object models that are 
developed using the Object Modeling Tool OMTool [Rumbaugh, 91].   Two sets 
of models are developed; the first set provides a general model that is designed to 
accommodate different design domains with examples of domain specific objects 
(a set of related DOs); the second set provides a domain specific model (an 
alternative hierarchies and relations among related DOs).

6.2.1  The general object model

The general object model, shown in, Figure 6.1, is structured around the 
‘Environment’ class, which is the container of two major classes; ‘Agent’ and 
‘DataObject’.  The ‘Environment’ class is a constituent of the ‘Session’ class and 
contain the ‘Scenario’ class.  All three are created for the purpose of version 
management.  
FIGURE 6.1.

A general object model of an OA 
environment
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The ‘Agent’ class is the super-class of a classified hierarchy of different agent 
classes including the OAs, which are represented by the ‘A_Object’ class (the 
focus of this thesis).  The notion of agency is represented through task related 
classes such as ‘Goal’, ‘Result’ and ‘Task’.  The latter class is linked to the 
‘Agent’ class since, in this frame work, the ability to execute tasks constitutes 
agency.  On the other hand, the ‘A_Object’ class contains a classified hierarchy 
of interaction and problem solving protocols that are necessary for an OA to 
execute tasks.  The relation between the ‘Task’ class and the ‘P_TaskType’ class 
and the ‘P_Domain’ class are also crucial to the notion of agency.  Tasks (not 
OAs) manage the loaded domain and task-type protocols.  This allows an OA to 
execute more than one task simultaneously, another property of agency.  

The ‘DataObject’ class is the super-class of any hierarchy of the domain DOs.  It 
holds links to ‘Constraint’ and ‘ConstraintArc’ classes.   Both classes, along with 
the DataObject class, are designed to accommodate constraints and constraint 
propagation.

The relation between the ‘DataObject’ class and both ‘A_Object’ class and 
‘P_ObjectType’ class in addition to the relation between the ‘A_S_Expert’ class 
and the ‘P_Domain’ class are important to OAs.  Parties of both relations are 
paired.  That is, each sub-class of these classes is associated with a sub-class in 
the other side of the relation.  Each DO, which is a sub-class of ‘DataObject’, is 
paired with a set of object-type protocols, a sub-class of ‘P_ObjectType’.  Each 
domain-EA, which is an instance of ‘A_S_Expert’ is paired with domain 
protocols, an instance ‘P_Domain’.

A brief explanation of the object relation is necessary before discussing the 
unique relations of the general model.

Object Relations

The general object model, shown in Figure 6.1, comprises a collection of objects 
with aggregation, association and generalization relationships.  A relation is 
graphically represented by a line connecting two labeled boxes (where each box 
represents a class).1  The nature of the relationship may be explicitly represented 

1. Four types of association relationships are provided in OMT; one → one, one → many, 
many → one and many → many.
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using roles of a relation, or through the attributes and methods of the two classes 
involved in the relation.2

Association

An association relationship is a link between two classes.  There may exist more 
than one association relationship between the same two classes, each of which 
are identified by different roles.  For example, in Figure 6.1, the ‘A_Object’ and 
‘DataObject’ classes are linked with two association relationships.  The first is a 
‘one → many’ relation marked by two roles; ‘clones’ and ‘master’.  An instance 
of an ‘A_Object’ class (i.e., master) may have links to multiple clone instances of 
the ‘DataObject’ class (i.e., clones).3  The second is a ‘many → many’ 
relationship marked by two roles; ‘DOs’ and ‘OAs’.  An instance of the 
‘DataObject’ class, may have links to multiple instances of the ‘A_Object’ class 
(i.e., OAs) performing different tasks simultaneously.  In addition, an instance of 
the ‘A_Object’ class may have links to multiple instances of the ‘DataObject’ 
class, (i.e., DOs).4

Aggregation

An aggregation relationship is marked by a diamond shape attached to the class 
box indicating the ‘whole’ side of the relation.  Multiplicity is marked by a filled 
circle attached to the class box indicating the ‘many’ side of the relation.5  For 

2. OMTool does not generate specific code to represent the nature of the link, therefore, it 
should be explicitly described in the attributes and methods of the objects involved in 
the relation.  This is applicable to association and aggregation relationships.  When 
generating C++ code OMT does not make a distinction between an association or an 
aggregation relationship.  For instance, in an aggregation relationship, if the super-
class, which is the ‘container’, is deleted the sub-class, which is the ‘constituent‘, are 
not deleted (as it conceptually should).  The deletion of the sub-classes should be 
explicitly represented by a method in the super-class.  On the other hand, a 
generalization relationship is distinct from aggregation and association since 
inheritance is represented in the OMTool generated C++ code. 

3. For both roles ‘clone’ and ‘master’, when OMTool generate C++ code it creates an 
attribute named ‘clones’ of the type SeqCollection in the ‘A_Object’ class, and an 
attribute named ‘master’ in the ‘DataObject’ class.  The methods needed to access such 
attributes such as ‘addClone’, ‘getClones’ and ‘removeClone’ are not automatically 
generated and must be explicitly developed.

4. The multiplicity here is intended to permit composite OAs.  A composite OA 
represents more than one DO at the same time.

5. Four types of the aggregation relations are provided in OMT some of which are 
utilized in the general model; one part → one whole, one part → many whole’ many 
parts → one whole, many parts → many whole.
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example, in Figure 6.1, the two classes ‘Environment and ‘Agent’ are connected 
by an aggregation relation of the type ‘many parts → one whole’, where the 
‘Environment’ has many ‘Agents’ (or many ‘Agents’ are part of the 
Environment).

Conceptually, an aggregation relationship is a specialization of an association 
relationship.  It represents the conventional relationship ‘part-of/has’ also known 
as ‘constituent/container’.  

Generalization 

A generalization relationship represents the relation sub-class/super-class, and is 
marked by an triangular shape on the line connecting the super-class and its sub-
classes.  Hierarchies are defined through generalization.  For example, in Figure 
6.1, the ‘Agent’ class is the super-class of the ‘A_object’, ‘A_System’, and the 
‘A_DecisionMaker’ classes.  The ‘A_DM_Princepal’ and ‘A_DM_Secondary’ 
are sub-classes of the ‘A_DecisionMaker’ class and, therefore, they belong to the 
same hierarchy of the ‘Agent’ class.  Hierarchies constitute inheritance of object 
attributes, methods and relations.  Inheritance may be constrained locally within 
each object in the hierarchy.  Attributes and methods may be made public, 
protected or private as explained below in this section.

The general object model comprises the following object classes.  All object 
classes are identified as either concrete or abstract.

Session

An instance of the ‘Session’ class would contain information needed to manage 
the decision making session.  Management of a session includes saving 
retrieving, augmenting, freezing, deleting a session with all its current 
environments.  A DA may compile one or more environments for decision 
making experimentation within the same session.   ‘Session’ is a concrete class.

Environment

An instance of the ‘Environment’ class would contain the main players needed 
for decision making during the current session, such as domain agents and 
domain DOs.  A DA initializes an environment and load the appropriate agents 
and DOs and initiate a scenarios where tasks can be assigned.  Many 
environments can be compiled within the same session and many scenarios can 
be managed for any single environment.  ‘Environment’ is a concrete class.6
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Scenario

An instance of the ‘Scenario’ class holds the information of a sequence of 
decision making events (the order of activating and deactivating agents and DOs, 
task assignments and execution).  ‘Scenario’ is a concrete class.

Agent

This class contains all possible agent classes within an environment.  The 
common behavior of an agent is represented in this class.  An agent may have 
multiple tasks to execute each with a goal to accomplish and a result for each 
task.  ’Agent’ is an abstract class.

Task

An instance of the ‘Task’ class holds information about an assigned task.   Such 
information as task-type, task-domain, task-focus, context and any related 
variables needed for the execution of the task.   It also holds links to; the super-
agent (who assigned the task), the sub-agents (if the task is decomposed and 
delegated to other agents).  The ‘Task’ class is linked to the domain protocol 
‘P_Domain’ class and to the task-type protocol ‘P_TaskType’ class.  ‘Task’ is a 
concrete class.

Result

An instance of the ‘Result’ class holds information about the result of the 
execution of the assigned task.  ‘Result’ is a concrete class.

Goal

An instance of the ‘Goal’ class holds information about what need to be 
accomplished as a result of the execution of a task.  Such information can be used 
as an evaluation criteria against the execution results.  An additional set of 
classes such as specifications or functional requirement classes can expand the 
notion of the ‘Goal’ class.   However, within the scope of this work the functions 
of such classes would be incorporated as methods and attributes within the ‘Goal’ 
class.  In other words, the ‘Goal’ class holds the context of the assigned task.  
‘Goal’ is a concrete class.

A_DecisionMaker

This class contains all possible DM classes within an environment.  A DM 

6. Instantiation is permitted only in concrete classes.
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initiate sessions, compile environments, manage agent interactions, experiment 
with various scenarios, assign tasks, and evaluate results.  The common behavior 
expected from a DM is represented in this class.  ‘A_DecisionMaker’ is an 
abstract class.

A_D_Principal

An instance of the ‘A_D_Principal’ class holds information about a principal DM 
who is granted all possible authorities and capabilities as the main agent in the 
environment.  ‘A_D_Principal’ is a concrete class.

A_D_Secondary

An instance of the ‘A_D_Secondary’ class holds information about a DM who is 
given limited authorities and capabilities as an agent in the environment. 
‘A_D_Secondary’ is a concrete class.

A_System

This class contains all possible SA classes, namely all UAs that are essential to 
the environment, and all EAs necessary for the execution of various tasks.  The 
common behavior expected from an SA is represented in this class.  ‘A_System’ 
is an abstract class.

A_S_Utility

An instance of the ‘A_S_Utility’ class is a UA which is environment specific 
agent such as a communication-UA, a configuration-UA, or a CAD-UA.  Such 
agents are provides the infrastructure of any design environment.  Replacement 
of such agents may effect the architecture of the entire system.  However, it is 
expected that different domains may require different behavior from some of 
these agents.  Therefore, a DM should be able to dynamically tune the behavior 
of any of these agents for each session.  ‘A_S_Utility’ is a concrete class.

A_S_Expert

An instance of the ‘A_S_Expert’ class is an EA which is a domain specific 
application (an executable entity) such as a daylighting-EA, a cost-EA or a 
geometry-EA.  Such agents are loaded or unloaded in an environment (initially) 
upon DA request.  Each domain EA is coupled with a set of protocols to facilitate 
the execution of task of this domain by the OAs.  This is represented by an 
explicit relationship between the ‘A_S_Expert’ class and the ‘P_domain’ class.  
‘A_S_Expert’ is a concrete class.
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A_object

An instance of the ‘A_object’ class is an OA which is a temporal agent of DO 
performing an assigned task (Figure 6.7).  This class contains the ‘Protocol’ 
class.  During the course of executing an assigned task, an OA loads the object-
type protocols ‘P_ObjectType’ of the same OA-type to interact with other agents 
in the environment.   ‘A_object’ is a concrete class.

Protocol

This is the super class of all the protocol classes.  The sub-class of this class 
contain the interaction and the problem solving protocols needed by an OA to 
perform a task.  ‘Protocol’ is an abstract class.

P_ObjectType

This is the super class of all the DO-coupled protocol classes.  Each DO in the 
environment must be coupled with a ‘P_ObjectType’ sub-class (of the same type) 
within the same environment.  A subclass of this class contains interaction 
instructions for a specific DO-type (e.g., building-DO, room-DO).  Such 
interaction protocols carries what can be communicated with this DO-type.  This, 
in turn, constitutes the behavior expected from an OA amongst the environment 
agents with this DO-type.  An instance of the coupled P_ObjectType sub-class is 
acquired upon creation of an OA.  ‘P_ObjectType’ an abstract class.

P_TaskType

This is the super-class of all protocols related to the task-types that can be 
performed in the environment.  Types of tasks may vary according to the 
environment.  In a design environment task-types may be ‘evaluation’, 
‘recommendation’, ‘generation’, ‘implementation’ and ‘conflict handling’.  For 
example, an evaluation protocol may be described as the general execution plan 
to be used by an OA to perform an evaluation task (see Chart2, Chapter 5 and 
Section 6.2.1).  An instance of a sub-class of the ‘P_TaskType’ is loaded after the 
OA is created and assigned a task by its super-agent.  An evaluation protocol 
should be independent from both task-domain and DO-type (of the OA 
performing the task).  However, the ‘P_Domain’ and ‘P_ObjectType’ should 
feed into a ‘P_TaskType’ (as variables or functions) during the execution of a 
task (see Section 6.2.1).  There may exist various types of evaluation protocols in 
the same environment, and ideally, the DM should be able save modified 
versions of a ‘P_TaskType’ protocol as instances.   ‘P_TaskType’ is an abstract 
class.
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P_Domain

An instance of the ‘P_Domain’ class holds information about the task-domain 
(e.g., cost, structural).  A ‘P_Domain’ object contains instructions that enables an 
OA to interact with the appropriate EA.  It also contains instructions of how an 
OA can decompose a task or aggregate the results when needed (see Section 
6.3).  An instance of any sub-class of the ‘P_Domain’ is loaded by the ‘Task’ 
object after the OA is created and assigned a task by its super-agent.  Each 
domain-EA in the environment must be associated with a set of ‘P_Domain’ 
objects.  ‘P_Domain’ is a concrete class.

DataObject

This is the super class of all DO classes within an environment.  Various domain 
specific DO classes (architectural, structural, mechanical, etc.) may be added as a 
sub-class of the ‘DataObject’ class.  Each DO is a representation of a real world 
object (e.g., a wall or a window in architectural domain).  As mentioned earlier, 
each DO class in the environment is associated with an OA class of the same 
type.  This association is represented by a relation between the ‘DataObject’ class 
and the ‘A_Object’ class.  The behavior expected from an activated DO (i.e., an 
OA) is reflected by the execution of the its protocols.  Therefore, there is an 
explicit relation between the ‘DataObject’ class and the ‘P_ObjectType’ class, 
which indicates that each DO in the environment is coupled with a set of 
protocols that is specific for such DO-type.  ‘DataObject’ is an abstract class.

Constraint

An instance of the ‘Constraint’ class represents a constraint on a single attribute 
value of a DO.  A ‘Constraint’ object mainly has two attributes; an upper and a 
lower bounds of the attribute value.  For instance, a Door-DO width attribute DW 
may be represented using a ‘Constraint’ object Const1 with lower bound attribute 
LB = 2 ft. and with upper bound attribute UB = 6 ft., or:

‘Constraint’ is a concrete class.

ConstraintArc

An instance of ‘ConstraintArc’ class represents a constraint relation between; 

• Two attribute values, which may belong to the same DO or to two 
different DOs;

2ft DW 6ft≥≥
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• An attribute value and another constraint arc;

• Two ‘Constraint’ objects;

• Two ‘ConstraintArc’ objects.  

A ‘ConstraintArc’ object has one or more logical expressions or mathematical 
equations that represent the constraint between the two ends of the arc.   For 
instance, a proportion between a Wall-DO width attribute WW and a Door-DO 
width attribute DW may be represented using a ‘ConstraintArc’ object 
ConstArc1 which holds an expression such as:
  

Using ConstraintArc objects allow for constraint propagation among DO 
attributes.  An attribute value may depend on the evaluation of another 
ConstraintArc.  For instance, the Wall-DO width WW may depends on the 
Door-DO width.  In such case ConstArc1 would link the Wall-DO width attribute 
WW with constraint object Const1 of DW (and not to the attribute DW itself).   
‘ConstraintArc’ is a concrete class.

WW DWŠ
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6.2.2  A domain specific object model

Two domain specific object models are presented in this section.  The first is for 
architectural design as shown in Figure 6.2, while the second is for structural 
engineering as shown in Figure 6.3.  In each model, two sets of concrete classes 
are added to the general object model of Figure 6.1.  The first set is a collection 
of domain specific DOs added as sub-classes of the ‘DataObject’ class, while the 
second set is a collection of related interaction protocols added as a sub-classes to 
FIGURE 6.2.

An object model of an 
architectural environment.
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the ‘P_ObjectType’ class.  Each sub-class of the ‘P_ObjectType’ is coupled with 
a sub-class of the ‘DataObject’ class (or one of its classified sub classes).

In the first model, the first added set is a set of architectural DOs classified as 
sub-classes of the ‘DO_Element’ class which is a classification of the 
‘DataObject’ class.  The DO_Element set comprises of design elements needed 
by the architectural domain including site and landscape elements.  An 
architectural design element may include site, building, floor, and wall etc.  An 
instance of a site element would hold information about a site such as location, 
FIGURE 6.3.

An object model of a structural 
environment.
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area, coordinates, orientation, topography and links to existing landscape 
objects.  On the other hand, ‘DO_Activity’ class, which is a holder of any 
activity objects is intend to accommodate additional architectural EAs [El_Attar 
97], same applies to the ‘DO_Occupant’ class, which is a holder of any occupant 
objects.  

This classification is exemplary and can be collapsed or expanded to 
accommodate other related DOs.  A DM may remove some of these DO classes 
during a session.  However, any newly defined DO classes need to be introduced 
before any session (unless the implementation environment permits that).  

The second set is a group of sub-classes of the ‘P_ObjectType’ class.  It provides 
the associated object-type protocol classes which is a partial set of the necessary 
protocols needed by a DO to act as an OA.  Each sub-class of ‘P_ObjectType’ is 
coupled with one of the classified sub-classes of the ‘DataObject’ class.  Those 
are used after the activation of a DO.  When a DO is activated to an OA an 
instance of the coupled sub-class is created and loaded into the OA (for details 
see Section Heading2).  

Figure 6.3 provides a second example of domain specific model for structural 
engineering.  As in, Figure 6.2 a set of structural ‘DataObject’ sub-classes and 
coupled ‘P_ObjectType’ sub-classes are added to the general model of Figure 
6.1.

6.3  DO-Hierarchies

DO-hierarchies are used for task decompositions (see Sections 4.3.4 and 6.2.1).  
The DM may either:

1.  Establish a new hierarchy of the DOs of the environment.

2. Use existing hierarchy which may either be provided by the environment 
or saved from a previous session.  The DM may use an entire hierarchy or 
a subset of it.  The DM may modify an existing hierarchy by adding DOs 
or changing the nature of relations between DOs.

Agents of the environment uses the current DO-hierarchies (as established by the 
DM) and may not modify or establish new hierarchies.  Figure 6.4 shows an 
exemplary object model of an architectural hierarchy which may be provided in 
the environment.  The model covers a variety of possible relations between 
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architectural objects.  A DM may use the entire model as the current DO-
hierarchy or may compile a DO-hierarchy as a subset of this model.  A DM 
should be able to graphically compile a subset of any DO-hierarchy.  Certain 
relations and constraints may have to be maintained in any subset hierarchy, 
therefore, it may be required to develop a warning mechanism if such relations or 
constraints are violated.  

The model also includes few non-design objects such as Occupant, Activity, 
Landscape, and Topography.  The earlier two objects may be expanded to include 
hierarchies about the different occupants and different activities that may occur 
in an architectural space [El_Attar, 97].  Landscape and Topography objects may 
be expanded to include a wide range of natural site objects.  
FIGURE 6.4.

An architectural object hierarchy. 
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Except Occupant and Activity objects, each object in Figure 6.4 typically has an 
enclosure with volume that has regular geometry.  Figure 6.5 provides an object 
model for objects with enclosure.  The model is intend to accommodate various 
geometrical configurations.  Such hierarchy may operates under solid or two 
dimensional representations of objects.  The existence of such hierarchy within 
the environment is essential and permits EAs with geometric interpretation 
capabilities to participate in a design session and produce vital information to the 
execution of tasks by other agents in the environment.

6.4 Implementation Design of the Activation Process

The following scenario is provided to illustrate how an OA is created according 
to the architectural object model provided in Figure 6.2.  

• An agent (e.g., DM) requests the activation of a DO_E_Room to perform 
a daylighting evaluation task.  
FIGURE 6.5.

Object model for geometrical 
representation.
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• The request is received by the ‘A_Object’ class which, in turn, creates a 
Room-OA instance (an A_O_Room according to the naming convention 
used in this model as described in Section 6.5.1).  

• The A_O_Room requests a clone of the DO_E_Room (a copy of the exact 
DO_E_Room being activated).  

• Provided the clone, the A_O_Room would load the interaction protocols 
related to its DO-type (makes an instance of the ‘P_OT_Room’ class).  

• The DM assigns the task to the created A_O_Room, which, in turn, loads 
the task-type protocols (makes an instance of the ‘P_TT_Evaluation’ 
class).  This enables the A_O_Room to proceed with the execution of the 
evaluation task.  

• The A_O_Room also loads the domain specific daylighting protocols 
(makes an instance of the ‘P_D_Daylighting’ class) which provide the 
daylighting parameters needed by the A_O_Room for the decomposition, 
aggregation and sorting of the daylighting task (all are subclasses of the 
‘P_D_Daylighting’ class).  

• The A_O_Room is now ready to interact with the environment agents to 
complete the execution of the assigned task (for more details on the 
execution of a daylighting evaluation task see Chart 5 of Chapter 5).

This Scenario is generalized in the activation diagram provided in Figure 6.6.  
The implementation of the activation process starting from the activation request 
till the completion of the OA with all its necessary objects is shown in this 
figure.  The steps are marked sequentially to illustrate the activation process in 
detail if implemented in an object-oriented development environment.  Each gray 
rectangle indicates an object with its sequential lists that are necessary for the 
creation of an OA and the assignment of a task.  Each arrow represent a specific 
event as explained below.  These elaborated 28 steps are derived from the first 
eight steps of activation event-trace chart (Chart 1 of Chapter 5).  

Detailed steps of the activation process shown in Figure 6.6:

1. activate: a DM (or any agent) send an activation message to a DO;

2. new OA: the DO instantiates an OA object;

3. register: the OA registers itself in the OAs list of the DO;

4. register: the DO registers itself in the DOs list of the OA;
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5. clone: the OA requests a clone of the DO;

6. new clone: the DO duplicates itself.  In addition, the DO registers itself with 
the DO-Clone);

7. register: clone registers itself in the clones list of the DO;

8. register: DO-Clone registers itself in the clones list of the OA;

9. register: OA registers itself with the DO-Clone;

10. new P_ObjectType: the OA instantiates a new object-type protocol object of 
the same DO-type (e.g., Wall-DO, Room-DO).  In addition, the OA registers 
itself in the OAs list of the P_ObjectType;

11. register: the P_ObjectType registers itself in the Protocols list of the OA;
FIGURE 6.6.

The implementation design of the 
activation process.
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12. register: the OA registers itself in the sub-agents list of the DM;

13. assign: the DM assigns a task to the OA;

14.  new task: the OA instantiates a new Task object.  In addition, the OA 
registers itself in the OAs list of the Task;

15. new goal: the Task instantiates a new Goal object.  In addition, the Task 
registers itself with the Goal;

16. register: the Goal registers itself in the goals list of the Task;

17. new result: the OA instantiates a new Result object.  In addition, the Task 
registers itself with the Result;

18. register: the Result registers itself in the results list of the Task;
FIGURE 6.7.

Object model of an OA.
.
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Naming convention
19. new P_TaskType: the Task instantiates a task-type protocol object of the same 
task-type (e.g., evaluation, conflict handling etc.).  In addition, the Task 
registers itself in the tasks list of the P_TaskType; 

20. register: the P_TaskType registers itself in the Protocols list of the Task;

21. new P_Domain: the Task instantiates a domain protocol object of the same 
task-domain and task-focus (e.g., cost, structure).  In addition, the Task 
registers itself in the tasks list of the P_Domain;

22. register: the P_Domain registers itself in the Protocols list of the Task; 

23. register: the Task registers itself in the tasks-in list of the OA;

24. register: the OA registers itself in the tasks-out list of the DM;

25. execute task: OA starts executing the assigned task (this step is not included 
in Figure 6.5).

Figure 6.7 shows an object model of an OA after it is instantiated, assigned a task 
and loaded the appropriate protocols.  The objects in the shaded area belong to 
the OA.  Objects outside of the shaded area have immediate relations to the OA 
but are not part of the OA (e.g., the super-agent which activated the DO and 
assigned the task to its OA).

6.5 The Objects Implementation Design

This section presents the design of objects of the model shown in Figure 6.1 to be 
developed in an OODE.  The objects are defined earlier in Section 6.2.1 and are 
detailed in this section.

6.5.1  The object structure

As in any OODE, each object has three main components; a name, a set of 
attributes and a set of methods to execute operations that are mostly related to the 
attribute values of the object.  Graphically, each object is represented by a box 
which is divided into three parts that corresponds with each of the three 
components.  The upper part contains the object name; the middle part contains 
the object attributes; and the lower part contains the object methods (see Figures 
6.8-6.12).  

The object names follow a convention that is specific to this framework.  Names 
of objects in the same hierarchy starts with the same letter.  The sub-class name is 
appended to the initials of its super-classes.7  The initials of a class is either one 
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Attributes
or more letter, for instance the initials of the class named ‘DataObject’ are ‘DO’.  
Therefore, any ‘DataObject’ subclass name starts with ‘DO_’.  All types of 
agents starts with the letter ‘A_’ since the super-class is named ‘Agent’.  
‘A_System’ is an SA and it is a sub-class of the ‘Agent’ class.  A_S_Expert is a 
domain EA which is a sub-class of the ‘A_System’ class.  

Object attributes are holders to the necessary information of the object.  Each 
attribute is declared with its type whether it is factual or relational data.  Data 
types such as; ‘bool’ a boolean value, ‘char *’ a pointer to an array of characters, 
‘string’ a string, ‘int’ an integer, ‘float’ a float; ‘SeqCollection *’ a pointer to a 
sequential collection (a list) or ‘OrdCollection *’ a pointer to an ordered 
collection (an ordered list), ‘<object-name> *’ a pointer to an object, ‘<_object-
name_>’ a specific object type, or exceptional types such as ‘void’ which may 
act as wild card for any type provided within the implementation environment. 

The attributes are also relation holders.  For instance, an attribute of the type 
‘<object-name> *’ constitutes a relation to a single object, while an attribute of 
the type ‘SeqCollection *’ constitutes a set of relations to a set of objects.  In the 
object models created using OMTool, such as the model shown in Figure 6.1, 
relations between objects are identified through roles (for more details about 
roles see Section 6.2.1).  Attribute values and relations may also represent 
constraints.  For instance, an attribute may hold a lower and upper values, or may 
be broken into two attributes each of which holds a value limit.  However, the 
issue of constraint representation, propagation and management for the OAs 
require further work that is beyond the scope of this thesis. 

The objects illustrated on this chapter are produced in OMTool and, therefore, 
they follow the OMTool symbology.  When an attribute name is preceded with a 
‘+’ symbol this indicates a public attribute, any object can access such 
information.  A ‘#’ symbol indicates a protected attribute, only the sub-classes 
can access such information.  A ‘-’ symbol indicates a private attribute, no other 
object can access such information.8  

In this implementation design most of the attributes are protected.  Therefore, 
accessing the information stored in any object attribute is a function of the object 
methods associated with such attribute.  For example, in Figure 6.10, the ‘Agent’ 

7. In this model no class is a sub-class of two super-classes, there can be only one 
hierarchy of super-classes for each sub-class.
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class has a ‘sub-agent’ attribute which is a list of all current agents that are 
currently assigned tasks by the agent.  The methods associated with the ‘sub-
agent’ attribute are the typical add, get and remove; ‘addSubAgent’ to add a new 
agent on the sub-agent list, ‘removeSubAgent’ to remove an agent from the list, 
‘getSubAgents’ to obtain the list.  

An attribute may be set to a specified default value upon creation of the object 
instance.  For example, in Figure 6.8, the ‘Data_Object’ class has an 
‘activationstatus’ attribute that is set to ‘FALSE’ upon creation of an instance, 
and the ‘numofclones’ attribute is set to ‘0’.  Other attributes are set upon 
creation or later using its associated ‘set’ method.

As in any OODE, the object methods serves primarily as the interface to its own 
attributes.  External objects may use the object methods to access or manipulate 
(if permitted) the information stored in the object attributes.  Internally, an object 
may use its methods to manipulate its own attributes, such as setting values or 
adding external object to its lists when necessary.

Typically, common attributes of the types ‘char *’, ‘bool’, ‘int’, ‘float’ and 
‘<object-name> *’are associated with ‘set’ and ‘get’ methods, while attributes of 
the type ‘SeqCollection’ are associated with ‘add’, ‘remove’ (or ‘delete’ in some 
cases), and ‘get’ methods.  Each class in this model has a ‘name’ attribute of the 
type ‘char *’, ‘ID’ attribute of the type ‘int’ and in many cases ‘type’ attribute of 
the type ‘char *’.  Both ‘ID’ and ‘name’ attribute has its related ‘get’ and ‘set’ 
methods.  A sub-class of any generalization inherit such attributes and methods 
from its super-class, therefore, such attributes and methods are not repeated in 
any sub-class.  For any concrete sub-class the value of such attributes (such as 
ID) are assigned upon creation.

In each object there is a ‘Constructor’ method and a ‘Destructors’ method.  A 
constructor method uses the same object name, and destructor method uses the 
same object name preceded by a ‘~’.  A constructor method main purpose is to 
create an instance of such class.  The initial attribute settings are performed 

8. Some of the attributes in the object figures are shown for clarity of object design 
though they are not needed during the generation of the C++ code by OMTool.  Such 
attributes are necessary and each of them are represented on the object models of 
Figure 6.1 as a ‘role’.  During the generation of the C++ code OMTool translate each 
role into an attribute automatically, therefore, they should not be represented explicitly 
in the object attributes during implementation to avoid redundancy.
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during the execution of the constructor method.  A destructor method is used to 
eliminate an instance with all its pointers.9

Other methods are designed to achieve environment specific functions such as 
the ‘activate’ and ‘deactivate’ methods of the ‘DataObject’ class, or for 
manipulating external objects such as the ‘assignTask’ method of the ‘Agent’ 
class.  Certainly all methods of agency such as task, goal, result or any protocol 
objects are environment specific.

6.5.2  Characterized attributes of objects in the OA model

The following section describes few characterized attributes of selected objects 
from those shown in Figures 7.8-7.12.  Each object is represented by a figure 
which shows the attributes and methods that are necessary to the functionality of 
that object within the OA model.  Other attributes and methods that are not 
directly related to the functionality of the OA model are not listed neither in the 
figures nor on the attribute descriptions.

Attributes of the ‘Session’ class (of Figure 6.8):

• environments: a list of all saved environments

Attributes of the ‘Environment’ class (of Figure 6.8):

• session: a link to the Session where this Environment is created

• scenarios: a list of all saved Scenarios of this Environment

• agents: a list of Agents currently active in this Environment

• DOs: a list of DOs currently instantiated in this Environment

Attributes of the ‘Scenario’ class (of Figure 6.8):

• environment: a link to the Environment where this Scenario is recorded 

9. In some cases such a destructor method deals with the lower level necessities of object 
elimination such as memory management.  This depends on the OODE.  In most C++ 
environments such allocation and freeing of memory spaces is required, while in JAVA 
and Eifel [Meyer, 88] this is unnecessary.  ET++ provides means to reduce the need for 
memory management and pointer deletion upon elimination of an object.
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Session
#name:char *
#ID:int
#type:char *
#environments:SeqCollection *

+Session
+~Session
+setName(sessname:char *):bool
+getName( ):char *
+setID(sessid:int):bool
+getID( ):int
+setType(sesstype:char *):bool
+getType( ):char *
#newSession( ):bool
+openSession(sessname:char *):bool
+saveSession(sess:Session *):bool
+deleteSession(sess:Session *):bool
+newEnvironment(playlist:SeqCollection *):bool
+getEnvironments( ):SeqCollection *
+addEnvironment(env:Environment *):bool
#removeEnvironment(env:Environment *):bool
+cloneEnvironment(env:Environment *):Environment *
#deleteEnvironment(env:Environment *):bool
+loadEnvironment(env:Environment *):bool
+unloadEnvironment(env:Environment *):bool
+freezeEnvironment(env:Environment *):bool
+unfreezeEnvironment(env:Environment *):bool

Environment
#name:char *
#ID:int
#type:char *
#scenarios:SeqCollection *
#agents:SeqCollection *
#DOs:SeqCollection *
#session:Session *

+Environment
+~Environment
+setName(envname:char *):bool
+getName( ):char *
+setID(envid:int):bool
+getID( ):int
+setType(envtype:char *):bool
+getType( ):char *
+setSession(sess:Session *):bool
+getSession():Session *
+saveEnvironment(env:Environment *):bool
#newScenario( ):bool
+addScenario(scen:Scenario *):bool
+getScenarios( ):SeqCollection *
+appendScenarios(scens:SeqCollection *):SeqCollection *
#removeScenario(scen:Scenario *):bool
#newDO(typename:char *):DataObject *
+addDO(do:DataObject *)
#removeDO(do:DataObject *)
#deleteDO(do:DataObject *):bool
+getDOs( ):SeqCollection *
+getDOsOfType(doclass:Class *):SeqCollection *
+findDOs(discrip:char *):SeqCollection *
+findDO(doname:char *):DataObject *
+makeNewDOType(typename:char *):bool
+deleteDOType(typename:char *):bool
#addAgent(a:Agent *):bool
#removeAgent(a:Agent *):bool
+loadAgent(aname:char *):bool
+unloadAgent(a:Agent *):bool
+getAgents( ):SeqCollection *
+getAgentsOfType(atype:Class *):SeqCollection *
+findAgents(discrip:char *):SeqCollection *
+findAgent(aname:char *):Agent *
+sendMessage(obj:Object *):bool
+sendMessage(anything:void *):bool
+sendMessage(agents:SeqCollection *):bool

Scenario
#name:char *
#ID:int
#environment:Environment *

+Scenario
+~Scenario
+setName(scenname:char *):bool
+getName( ):char *
+setID(scenid:int):bool
+getID( ):int
+setEnvironment(env:Environment *):bool
+getEnvironment( ):Environment *
+recordScenario( ):bool
+saveScenario(scen:Scenario *):bool
Attributes of the ‘DataObject’ class (DO) (of Figure 6.9):

• activationstatus: a boolean to indicate whether an OA for this DO is 
currently active

• clones: a list of all clones of this DO currently used by OAs 

• numofclones: number of clones on the previous list

• interestlist: a list of interested DOs and EAs for each attribute of the DO

• shared: a boolean to indicate whether the DO is a shared one

• OAs: a list of OAs that are currently representing the DO

• clonesof: the DO of which this clone is a duplicate of (only when the DO 
is a cloned instance)

• master: the first OA that is currently representing the DO

• environment: the current environment where the DO exists

• constraints: a list of all constraints on the DO attributes
FIGURE 6.8.

Session, Environment and 
Scenario Objects.
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e.g., sessname and aname

DataObject
#name:char *
#ID:int
#type:char
#activationstatus:bool=FALSE
#clones:SeqCollection *
#numofclones:int=0
#interestlist:SeqCollection *
#shared:SeqCollection *
#OAs:SeqCollection *
#cloneof:DataObject *
#master:Agent *
#environment:Environment *
#constraints:SeqCollection *
#arcs:SeqCollection *

+DataObject
+~DataObject
+setName(doname:char *):bool
+getName( ):char *=0
+setID(doid:int):bool
+getID( ):int
+setType(dotype:char *):bool
+activate(superagent:Agent *):A_Object *
+deactivate(oa:A_Object *):bool
#setActivationStatus(activationstatus:bool)
+getActivationStatus( ):bool
+newClone(do:DataObject *):DataObject*
#deleteClone(doclone:DataObject *)
#addClone(doclone:DataObject *):bool
#removeClone(oa:Agent *):bool
+getClones( ):SeqCollection *
#setNumOfClones(num:int):bool
+getNumOfClones( ):int
+addOA(oa:A_Object *):bool
#removeOA(oa:A_Object *):bool
+getOAs( ):SeqCollection *
+update(attrib:void *):bool
#addShared(geodo:DataObject *):bool
+removeShared(geodo:DataObject *):bool
+getShared( ):SeqCollection *
+addInterestedDO(do:DataObject *):bool
#removeInterestedDO(do:DataObject *):bool
+getInterestList( ):SeqCollection *
+setCloneOf(do:DataObject *):bool
+getCloneOf( ):DataObject *
+setEnvironment(env:Environment *):bool
+getEnvironment( ):Environment *
+setMaster(Agent *):bool
+getMaster( ):Agent *
+addConstraint(const:Constrint *):bool
+getConstraints( ):SeqCollection *
#removeConstriants(const:Constriant *):bool
+deleteConstraint(const:Constraint *):bool
+addArc(arc:ConstraintArc *):bool
+getArcs( ):SeqCollection *
#removeArc(arc:ConstraintArc *):bool
#deleteArc(arc:ConstraintArc *):bool
+addModifier(modif:Modifier *):bool
+getModifiers( ):SeqCollections *
+removeModifier(modif:Modifier *):bool

ConstraintArc
#name:char *
#ID:int
#type:char
#DOs:SeqCollection *
#arcends:SeqCollection *
#value:float
#expression:Equation

+ConstraintArc
+~ConstraintArc
+setName(arcname:char *):bool
+getName( ):char *
+setID(arcid:int):bool
+getID( ):int
+setType(arctype:char *):bool
+getType( ):char *
#setDO(do:DataObject *):bool
+getDOs(  ):SeqCollection *
+setArcEnds(const/attrib:Constraint *, Attributes):bool
+getArcEnds( ):SeqCollection *
+setArcValue(value: float):bool
+getArcValue( ):float
+setExpression(express: Equation):bool
+getExpression( ):Expression *

Constraint
#name:char *
#ID:int
#type:char
#DO:DataObject *
#arcs:SeqCollection *
#attribute:char *
#min:float
#max:float

+Constraint
+~Constraint
+setName(constname:char *):bool
+getName( ):char *
+setID(constid:int):bool
+getID( ):int
+getType( ):char *
+setType(consttype:char *):bool
#setDO(do:DataObject *):bool
+getDOs( ):SeqCollection *
+setMax(value:float):bool
+getMax( ):float
+setMin(value:float):bool
+getMin( ):float *
+setAttribute(attrib:char *):bool
+getAattribute( ):char *
+addArc(arc:ConstraintArc *):bool
+getArcs( ):SeqCollection *
#removeArc(arc:ConstraintArc *):bool
• arcs: a list of all constraint arcs linking the DO attributes with other 
attributes, constraints or constraint arcs.

Attributes of the ‘Constraint’ class (of Figure 6.9):

• DO: the DO of the constrained attribute

• arcs: a list of all constraint arcs linking this constraint with other attributes, 
constraints or constraint arcs
FIGURE 6.9.

DataObject (DO), Constraint and 
ConstraintArc objects.
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A_Object
#protocols:SeqCollection *
#DOs:SeqCollection *
#clones:SeqCollection *

+A_Object
+~A_Object
#newOTProtocol( ):Protocol *
+addOTProtocol(otprot: P_ObjectType *):bool
+getOTProtocols( ):SeqCollection *
#removeOTProtocol(otproto: P_ObjectType *):bool
+addDO(do:DataObject *):bool
#removeDO(do:DataObject *):bool
+getDOs( ):SeqCollection *
+addClone(clone:DataObject *):bool
#removeClone(clone:DataObject *):bool
+getClones( ):Seqcollection *

Agent
#name:char *
#ID:int
#type:char *
#superagents:SeqCollection *
#subagents:SeqCollection *
#tasksout:SeqCollection *
#tasksin:SeqCollection *
#environment:Environment *

+Agent
+~Agent
+setName(aname:char *):bool
+getName( ):char *=0
+setType(atype:char *):bool
+getType( ):char *
+setID(aid:int):bool
+getID( ):int
+setEnvironment(env:Environment *):bool
+getEnvironment( ):Environment *
#newTask( ):Task *
#assignTask(a:Agent *,context:char *,goaldis:char *):Task *
+executeTask(task:Task *):Result *
+validateResult(result:Result *):void *
#addSuperAgent(a:Agent *):bool
#removeSuperAgent(a:Agent *):bool
+getSuperAgent( ):SeqCollection *
+addSubAgent(a:Agent *):bool
#removeSubAgent(a:Agent *):bool
+getSubAgent( ):SeqCollection *
#deleteTask(task:Task *):bool
+addTaskIn(task:Task *):bool
#removeTaskIn(task:Task *):bool
+getTasksIn( ):SeqCollection *
+addTaskOut(task:Task *):bool
#removeTaskOut(task:task *):bool
+getTasksOut( ):SeqCollection *
• attribute: the attribute name

• min: the lower bond of the constraint acceptable range

• max: the upper bond of the constraint acceptable range

Attributes of the ‘ConstraintArc’ class (of Figure 6.9):

• DOs: a list of DO using this constraint arc

• arcends: a list of attributes, constraints, and constraint arcs linked by this 
constraint arc

• expression: an expression that represents the link between the arc-ends.

• value: the current evaluation of the constraint arc expression (e.g., 
mathematical equation)

Attributes of the ‘Agent’ class (of Figure 6.10):

• superagents: a list of all agents that are currently assigning a task to this 
agent

• subagents: a list of all agents that are currently assigned tasks by this agent

• tasksout: a list of all assigned tasks by this agent
FIGURE 6.10.

Agent and A_Object (OA) 
Objects.
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Goal
#ID:int
#maxvalue:void *
#minvalue:void *
#unit:char *
#task:Task *

+Goal
+~Goal
+getID( ):int *
+setID(taskid:int *):bool
+getMaxValue( ):void *
+setMaxValue(void *):bool
+getMinValue( ):void *
+setMinValue(void *):bool
+getUnit( ):char *
+setUnit(char *):bool
+getTask( ):Task *
+setTask(Task *):bool

Task
#ID:int
#domain:char *
#type:char *
#focus:char *
#assignedby:Agent *
#assignedto:OrdCollection *
#subtasks:OrdCollection *
#satisfied:bool=FALSE
#results:SeqCollection *
#goals:SeqCollection *

+Task
+~Task
+getID( ):int *
+setID(taskid:int *):bool
+setDomain(domname:char *):bool
+getDomain( ):char *
+setType(tasktype:char *):bool
+getType( ):char *
+setFocus(foc:char *):bool
+getFocus( ):char *
+setAssignedBy(a:Agent *):bool
+getAssignedBy( ):Agent *
+addAssignedTo(a:agent *):bool
+getAssignedTo( ):OrdCollection *

+addSubTask(task:Task *):bool
#RemoveSubTask(Task *):bool
+getSubTasks( ):OrdCollection *
#newResult(task:Task *):Result *
+addResult(Result *):bool
#removeResult(Result *):bool
#deleteResult(result:Result *):bool
+getResults( ):SeqCollection *
+getGoals( ):SeqCollection *
#newGoal(task:Task *):Goal *
+addGoal(Goal *):bool
#removeGoal(Goal *):bool
+getSatisfied( ):bool
+setSatisfied(satisf:bool):bool

Result
#ID:int
#value:void *
#task:Task *

+Result
+~Result
+setID(resid:int *):bool
+getID( ):int *
+setTask(task:Task *):bool
+getTask( ):Task *
+setValue(void *):bool
+getValue( ):void *

#protocols: SeqCollection *

#newTTProtocol(ttype:char *):P_TaskType *

+addProtocol(prot:Protocol *):bool
+getProtocols( ):SeqCollection *
#removeProtocol(prot:Protocol *):bool
#deleteProtocol(prot:Protocol *):bool

#newDProtocol(tdomain:char *):P_Domain *

#activationlist: OrdCollection *

+addToActivationList(classname:Char *):bool
+getActivationList( ):OrdCollection *
#removeFromActivationList(classname:Char *):bool

#removeAssignedTo(a:agent *):bool
• taskin: a list of all tasks assigned to this agent

• environment: the environment where this agent currently exists

Attributes of the ‘A_Object’ class (of Figure 6.10):

• DOs: a list of all DOs that are currently represented by this OA

• clones: a list of all clones that are currently used by this OA

Attributes of the ‘Task’ class (of Figure 6.11):

• assignedby: the agent that assigned this task

• focus: the main attribute to be modified or the alternative attribute value to 
be examined
FIGURE 6.11.

Task, Goal, and Result Objects.
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P_D_Decomposition
#skiplist:SeqCollection *
#mindomainhierachy:SeqCollection *
#maxdomainhierarchy:SeqCollection *

+P_D_Decomposition
+~P_D_Decomposition
+addSkipClass(doclassname:Char *):bool
+getSkipList( ):SeqCollection *
#removeSkipClass(doclassname:Char *):bool
+addToMinDomain(doclassname:Char *):bool
#removeFromMinDomain(doclassname:Char *):bool
+getMinDomain( ):SeqCollection *

#domainhierarchytop:DataObject *
#domainhierarchybottom:SeqCollection *

+addToMaxDomain(doclassname:Char *):bool
#removeFromMaxDomain(doclassname:Char *):bool
+getMaxDomain( ):SeqCollection *
+addToMinDomain(doclassname:Char *):bool
#setHierTop(doclassname:Char *):bool
+getHierTop( ):SeqCollection *
+addToHierBottom(doclassname:Char *):bool
#removeFromHierBottom(doclassname:Char *):bool
+getHierBottom( ):SeqCollection *

P_D_Sorting
#decompositionorder:OrdCollection *
#evaluationorder:Char *
#classificationorder:Char *

+P_D_Sorting
+~P_D_Sorting
+appendToDecompOrder(doclassname:Char *):bool
+getDecompOrder( ):OrdCollection *
#removeFromDecompOrder(doclassname:Char *):bool

#specialcaseorder:Char *

#setSpecialCaseOrder(doclassname:Char *):bool
+getSpecialCaseOrder( ):Char *

#setEvaluationOrder(doclassname:Char *):bool
+getEvaluationOrder( ):Char *
#setDOClassification(doclassname:Char *):bool
+getDOClassification( ):Char *

Protocol
#name:char *
#ID:int
#type:char *
#OA:A_Object *

+Protocol
+~Protocol
+setName(protoname:char *):bool
+getName( ):char *
+setID(proid:int *):bool
+getID( ):int *
+setOA(oa:A_Object *):bool
+getOA( ):A_Object *
• subtasks: a list of all sub-tasks assigned to other agents as a results of 
executing this task (e.g., decomposition of this task)

• assignedto: a list of all sub-agents that are currently assigned sub-tasks by 
this task 

• satisfied: a boolean to indicate whether this task is executed successfully

• results: a list of all results generated as a result of executing this task

• goals: a list of all goals to be accomplished by the execution of this task

• protocols: a list of all protocols that are currently loaded for the execution 
of this task

Attributes of the ‘Goal’ class (of Figure 6.11):

• maxvalue: upper bond of the acceptable value range

• minvalue: lower bond for the acceptable value range

• unit: units of measurement (of the values)

• task: the task of which this goal is related

Attributes of the ‘Result’ class (of Figure 6.11):

• value: the current result value

• task: the task of which this result is related
FIGURE 6.12.

Protocol, P_D_Decomposition 
and P_D_Sorting objects.
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Attributes of the ‘Protocol’ class (of Figure 6.12):

• OA: a list of all OAs that are currently using this protocol

The following two objects are exemplary damian protocols.  These are not 
included in the object model of Figure 6.1:

Attributes of the ‘P_D_Decomposition’ class (of Figure 6.12):

• skiplist: a list of all DOs to be skipped during the decomposition of a task

• mindomainhierarchy: a set of the minimum DO classes needed for the 
execution of tasks of this domain

• maxdomainhierarchy: a set of the maximum DO classes that can be 
included for the execution of tasks of this domain

• domainhierarchytop: a DO class that marks the upper bond of the domain-
hierarchy

• domainhierarchybottom: a set of DO classes that mark the lower bond of 
the domain-hierarchy

Attributes of the ‘P_D_Sorting’ class (of Figure 6.12):

• evaluationorder: the general orientation of task decomposition

• decompositionorder: an ordered list of DO classes used as a specific guide 
for task decomposition, activation, and hence, task execution.

• doclassification: a DO class where the task result is classified about (e.g., 
cost of a BFloor-DO per Room_DO, the Room-DO is a doclassifiction in 
this case)

• specialcaseorder: an additional variable to accommodate special cases of 
task decomposition.
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7 Conclusions
7.1 Contributions

During the past two decades, several design support tools have been developed 
for both research and commercial purposes.  Most are stand-alone tools, few are 
comprehensive or collaborative design environments.  Such tools encompass a 
wide range of design activities from simulation and evaluation to generation and 
recommendation to production and documentation.  Most are intended for the 
early stages of design and for rapid prototyping, few for the later stages of design 
and for detailed modeling of the artifact being designed.  Some tools have 
adopted the notion of computational agency.  In such cases, the domain 
applications encapsulate the domain expertise and act as expert agents with a 
degree of autonomy.  Nevertheless, none of the tools – that I have surveyed 
during the course of developing this thesis – employ any kind of representation 
where agency behavior can be considered as a property of design objects as well.  
This dissertation, thoroughly investigates the notion of design objects endowed 
with agency behavior.  The engineering of an object-agent based framework for 
computational design environments, as a decision making environment, is the 
main contribution of this work.

7.1.1 Specific contributions

This thesis is structured around the development of a framework for an a object-
agent-based decision making environment.  During the course of developing this 
framework (Chapters 3-6) the following results were accomplished:
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• A general architecture of an object-agent-based environment as a 
demonstration of how a design tool or a comprehensive design 
environment can be conceptually structured around such notions was 
developed (Chapter 3). 

• A computational framework for task1 execution, decomposition, 
delegation, and management for global and local decision making nodes 
was developed (Chapter 3, 4, and 5).  

• A set of general and domain specific reusable patterns of interaction 
needed to allow a designer to orchestrate and finally benefit from such a 
fine grain multi-agent decision making environment was developed 
(Chapter 4).  The developed patterns focused on evaluation tasks and on 
conflict handling.  These patterns can be reused for generation, 
recommendation and implementation tasks. Each pattern of interaction is 
graphically represented by an enhanced event-trace chart.  Each step in a 
pattern in the event-trace chart maps to an object method in an object 
oriented implementation of an OA-based environment (Chapter 4, 5, and 
6).

• A set of interaction algorithms (mainly for activation, decomposition and 
conflict handling) to be used by the object-agents during the course of 
handling tasks was developed.  With minimal modifications this set of 
algorithms can also be adopted for non-design decision making 
environments (Chapter 5).

• A mechanism for compiling an activation list to contain the design objects 
which can (or must) participate in the execution of a task was developed.  
Such activation lists reflect the valid task decomposition of a design object 
in a defined hierarchy (Chapter 5).

• A general object oriented implementation design for an object-agent-
based environment was engineered (Chapter 6). 

7.2 Research Topics and Agenda for Future Work

This dissertation addresses a number of fundamental issues around the notion of 
agency in design.  The main outstanding task is a computer implementation of an 
object-agent-based design environment built upon the framework presented in 
this thesis.  This effort requires the participation of distinct groups of researchers, 

1. This is based on the notion of agency tied primarily to the ability to execute tasks.
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and substantial funding.  However, the issues listed below are open research 
topics that can be tackled by individual researchers.  Advancements in any one of 
these issues can contribute to the approach advocated in this dissertation.

7.2.1 Object-agents knowledge

Access to and interpretation of external knowledge beyond the immediate 
coordination knowledge of an agent affects their role in the environment. This 
can be enhanced through:

1. A global communication mechanism; where agents can participate in 
communication systems where they are able to continually monitor and 
interpret messages of interest which may not be communicated directly to 
them (see Section 5.3.1).

2. Planning long term activities; where agents can dynamically plan 
activities considering other agents plans and capabilities (see Section 
3.4.2). 

7.2.2 Conflict handling mechanism 

In conflict handling situations, enabling agents (in general) to conduct direct 
negotiations with other agents to resolve design conflicts is an area of interest to 
enhance the abilities of OAs (See sections 3.1 and 5.2.2).

Another area of work that is specific to the OA, is the enhancement of the 
conflict detection mechanism through the use of the interestlists:

1. Sorting the interest list; establishing a weight mechanism to enable 
object-agents to sort any of their attribute interestlist in respect to the 
degree of relevance to the task in hand (see Section 5.2.2).

2. Controlling conflict dependencies; establishing a mechanism to control 
the number of conflict handling sessions triggered by the task in hand and 
to eliminate possible cyclic dependencies among members and non-
members of an attribute interest list (see conflict handling in Section 3.1).

7.2.3 Object-agent autonomy in design

Agent autonomy and the ability to self-initiate tasks, plan activities, handle 
expanded goals can be enhanced through: 

1. Self-initiated tasks; in addition to executing assigned tasks object-agents 
should have the ability to initiate a task when it sees fit (see Section 5.1).
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2. Expanding the notion of goals for object-agents; an object-agent 
executing a task may then encapsulate an entire structure which 
represents design requirements, functional specification of that task.  To 
consider a goal as accomplished, all requirements of such structure 
(which are sub-components of the goal) need to be satisfied (see Section 
6.2.1).

7.2.4 Interface of an object-agent-based environment

An object-agent-based environment is a highly interactive system.  Therefore, 
interface design plays a major role in its success.  In fact, in such environments, it 
is difficult to draw the line between the interface and the main system 
functionality.  One may consider some of the interface issues listed here out of 
context.  It is my judgement that these issues are more related to designer/agents 
interactions and accordingly related to interface design.  I list four main aspects 
of interfaces that require further research; building, providing and manipulating 
task dependent hierarchies, controlling the flow of task executions, managing 
conflict handling sessions, and facilitating communications among agents.

1. Providing and manipulating task dependent hierarchies; an interface 
should provide functionality related to whole or sub-parts of hierarchies 
such as create, save, import, freeze or related to relations among objects 
such as new, duplicate, add, remove (see Section 3.3.3).  Such 
functionality should be provided to the designer in various forms 
especially graphical.  Established hierarchies and relations should be 
validated and should generate errors, warnings and notes as necessary.  In 
addition, the ability to reuse and modify hierarchies should be supported.  
The interface should provide libraries of previously established or 
typically used domain hierarchies.

2. Controlling the flow of task executions; through the interface the designer 
should be aware (upon request) of each task being executed and who is 
executing such task.  The interface should provide textual and graphical 
representation of the tasks execution and delegation among the agents at 
any point in time.  The designer should be able to interact by assigning, 
eliminating, replicating, freezing tasks, providing alternative values for 
re-evaluation, validating and implementing task execution results 
through any provided form of interface representation.  
Conclusions



3. Managing conflict handling sessions; the interface should provide the 
designer with the means to access and re-sort interestlists of any design 

object (see Section 5.2.2).  Any cross dependencies among interestlist 

members should be graphically displayed as a warning mechanism.  The 
interface should provide the designer with a mechanism to control the 
number of participants in a conflict handling session and the depth 
conflict checking to be generated from a task.

4. Facilitating communications among agents; to control the interactions 
among agents of the environment the interface should provide the 
designer with the ability to suspend and establish communication among 
single and groups of agents.  A message classification mechanism 
provided by the interface (or agents of the interface) may also help agents 
of the environment to participate more efficiently in a global messaging 
system. 
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A Appendix: Terms and Definitions
For ease of reference, I have collected, into this appendix, the definitions that are 
pertinent to a computational decision making environment based on an object-
agent model.  The validity of these definitions are limited to the scope of this 
thesis.  Other definitions local to the context in which they arise are given in the 
appropriate sections of this dissertation.

The following terms are general and are used in all chapters.

A.1 Decision Makers, Designers and Artifacts.

Def. A.1.1 Decision Maker

Is a principal agent1 in an environment.  

The decision maker manipulates representations of a problem state and 
guides the other agents efforts to incrementally changing a current problem 
state toward the goal state.  

The distinction between a decision maker and other agents lies in the fact that 
the decision maker possesses both intention and ability to exercise judgement 
beyond heuristics.

Def. A.1.2  Designer

Is a decision maker who manipulates representations of an artifact being 
designed to reach an acceptable design state.  

1. In any definition through Appendix A., the first appearance of a term that refers to a 
successor definition is in bold. 
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Def. A.1.3  Artifact

A real world product.  

Example.  In an architectural context, a building is an artifact.

The following terms are used in Chapters 3 through 7.

A.2 Data-Objects.

Def. A.2.1  Data-object

A data-object is a representation of an artifact or some part of it.  

A data-object generally contains geometric and non-geometric information 
about the artifact.  The information contained in a data-object is accessible by 
any agent, but data-objects cannot access external information.

Def. A.2.2 Data-Object Type

A collection of data-objects that identify a relationship.

Example.  In an architectural context, a wall type is a data-object type.

Def. A.2.3 Sub-Data-Object

A data-object that is a constituent of another data-object in a data-object 
hierarchy.  It is a sub-data-object of this particular data-object.

Def. A.2.4 Super-Data-Object

A data-object that is a container of a another data-object in a data-object 
hierarchy.  It is a super-data-object of this particular data-object.

Def. A.2.5 Joint Data-Object

A data-object that is a sub-data-object of more than one data-object in the 
data-object hierarchy.  

Example.  A shared wall between two spaces can be a joint data-object.

Def. A.2.6 Active and Passive Data-Object

A data-object is active if there is an object-agent for it; and passive 
otherwise.  
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Def. A.2.7 Data-Object State

The values, at a any given time, of the attributes and relationships (to other 
data-objects) of a data-object.  

Only agents can alter the data-object state.

Def. A.2.8 Data-Object Goal State

A final data-object state.  

Def. A.2.9 Design State

The collective state of all data-objects in an environment.  

This is distinct from the ‘state’ of the environment in that it reflects the data 
values as can be seen by the agents at any given time.  Note that the 
environment may have object-agents that may be in the process of changing 
data values.  These changing data values are not part of the design state.

Def. A.2.10  Goal State

A final design state.

A.3 Agents

Def. A.3.1 Agent

An entity with the ability to initiate actions, perform tasks, and interact with 
other agents in the environment.  

Agents are executable.  Any agent executing a task is bound to return 
execution results or error messages.  Therefore, agency incorporates a degree 
of liability.  The object-agent model distinguishes three types of agents: 
decision maker, system-agent and object-agent.

Def. A.3.2 Object-Agent

An object-agent is an agent that represents a data-object.  

An object-agent is a temporal version of its data-object; it contains 
prototypical and domain specific knowledge of its data-object type.

Note that the distinction between object agency and methods is that the 
object-agent has the ability to alter the state of any data-object, whereas 
methods may only alter the state of their associated data-objects.
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Def. A.3.3 Object-Agent Type

A collection of object-agents of the same data-object type.

Example.  In an architectural context, a wall object-agent type is an object-
agent type.

Def. A.3.4 Sub-Agent

An agent that is assigned a task by another agent.2  The agent is a sub-agent 
within the context of the assigned task.3  

Def. A.3.5 Super-Agent

An agent that has assigned a task to another agent.  The agent is a super-agent 
within the context of the assigned task.4  

Def. A.3.6 Composite-Agent

A composite-agent is an object-agent that is created from more than one data-
object.  It has information that belongs to more than one data-object.5

Def. A.3.7 Joint-Agent

A joint-agent is an object-agent of a joint data-object.

Def. A.3.8 System-Agent 

A system-agent is an agent that performs a set of related domain specific tasks 
for other agents.  A system-agent has local coordination knowledge, and 
internal procedures.6

2. Notice that being a sub-agent is task dependent while being a sub-data-object is 
representation dependent (based on the data-object hierarchy).  This, as well, applies 
for super-agent and super-data-object.

3. Note that an agent can simultaneously be a sub-agent of more than one agent, that is, it 
may concurrently perform different tasks assigned to it by different agents.

4. Note that an agent can simultaneously be a super-agent to more than one agent, that is, 
an agent may have sub-agents that are concurrently performing different tasks.

5. The initial set of data-object types that a decision maker uses may not be sufficient for 
each situation.  Composite-agents represent an important concept in this regard.  New 
data-objects or new features of existing data-objects may emerge during the decision 
making process.  Combining information from multiple data-objects (or from the 
decision maker) might allow the decision maker to progressively realize new data-
objects that are more suitable to the current stage.  This suggests that it might be 
possible to create new data-object types based on the information collected in a 
composite-agent.  
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Def. A.3.9 System-Agent Type

A set of domain related system-agents.7  

Def. A.3.10  Activation

Activation is a task assigned by an agent to bring an entity to participate in a 
current session.  

To activate a system-agent is to load the system-agent into the current 
session.  To activate a data-object, when passive, is to create an object-
agent.8  

Def. A.3.11  Deactivation

Deactivation is a task assigned by an agent to remove an agent from the 
current decision making session.  

To deactivate a system-agent is to unload the system-agent from the session.  
To deactivate an object-agent is to destroy the object-agent.9  

6. A an expert-agent can be an expert system or a procedural program, etc.  The internal 
knowledge in an expert system, for instance, is its inference engine and knowledge-
base which contains an initial set of facts and rules.  Though the facts in working 
memory may change (to a different set of facts), the inference engine, and the initial set 
of facts and rules typically do not change after the termination of the execution state.  
Some expert systems are designed to generate new rules using different techniques 
such as machine leaning.  An object-agent-based model does not impose any 
restrictions on the possible use of these types of expert systems as system-agents.  In a 
procedural program, the internal knowledge is the algorithms and information 
structures; these do not change after the termination of the execution state.  In the 
object-agent-based model, system-agents do not change their internal procedures.

7. A system-agent is typically an expert-agent or a utility-agent.  An expert-agent, for 
instance, evaluates, generates, synthesizes, analyzes, recognizes, criticizes, 
recommends, explains, modifies, and optimizes.  A utility-agent for instance, searches 
for requested information; provides interface facilities between the user, data-objects 
and agents.

8. A system-agent can be loaded into a session even if it is not necessarily engaged in the 
current activity by the other agents.  The system-agent in this case is considered 
activated.  In other words, for a system-agent, it is activated whenever it is loaded .  For 
an object-agent if it is activated it is engaged in performing tasks, otherwise it should 
not exist.  The data-object can have the capability to observe the environment, 
therefore, there is no need for an idle object-agent.  Activation of a data-object is, 
therefore, only associated with task assignment (self assignment or by other agents).

9. A data-object state must be updated before the deactivation of its object-agent.
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A.4 Task Execution

Def. A.4.1 Action

Acts executed by an agent.

Def. A.4.2 Action Type

A set of related actions.  An action type is simple whenever an agent executes 
a single act, and complex, otherwise.

Def. A.4.3 Task

An assignment of service to be performed by an agent.  A task can be simple 
or complex depending upon its action type.  

Note that tasks are assigned, actions are not.  

Def. A.4.4 Task Type

A set of related tasks.  

Typically, task are related by context.  Examples of context include 
evaluation, generation and implementation.

Def. A.4.5 Direct Task 

A task performed by an assigned agent (i.e., without the need to decompose 
and distribute the task to sub-agents).

Def. A.4.6 Indirect Task 

A task that is performed by a sub-agent as a result of decomposition or 
distributing a another task.

Def. A.4.7 Plan

An ordered sequence of actions10 towards a state.  

Def. A.4.8 Task Handling Protocol

A plan executed by one or more agents to perform a task.  

Task handling protocols may be general or specific.  General protocols are 
independent of both object-agent types and the task domain.  Specific 

10.The execution of a plan may be sequential or concurrent, and may involve one or more 
agents.  Typically, the plan of an object-agent is to attain a desired data-object state.
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protocols are, typically, sets of parameters to be used by the task type 
protocols during the execution of a task (and mainly represents the domain 
effect on the task in hand (see Chapter 5 for details).

Performing tasks

An object-agent employs a set of general task handling protocols for each task 
type.  Its object-agent type and the task domain add an additional layer of 
specificity to the sequence of actions.  General and specific protocols 
represent short term planning capabilities of an object-agent.  Using such 
protocols an object-agent can obtain services from other agents, distribute 
tasks to other object-agents, manage other agents,11 and run conflict handling 
sessions, about its data-object state, that involve multiple agents.

Def. A.4.9 Interaction protocol

Is a set of data-object type-specific instructions that enables an object-agent 
(of this data-object-type) to interact with other agents of the environment in 
during the execution of a task.  

A.5 Task Decomposition

Def. A.5.1 Data-Object-Hierarchy

The global data-object class hierarchy used by the designer at any point in 
time.  

The data-object-hierarchy may be compiled by the designer or provided as an 
exemplar hierarchy in the environment data-base, and possibly modified by 
the designer and saved for later use.

Def. A.5.2 Object-Agent-Hierarchy

A set of data-object classes each of which is a constituent of the object-agent 
or a constituent of a sub-data-object of the object-agent.  

11.Within the context of a task assigned by one agent to another, some hierarchies may 
require the object-agents executing a task to follow certain order of execution.  This 
hierarchy is task dependent and not class dependent.  The task hierarchy is established 
when an object-agent is assigned a task (see Chapter 5.2, Making the Activation List).  
An object-agent may be involved in more than one task hierarchy at any given time.  
That occurs when an object-agent is involved in performing multiple tasks 
concurrently.
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Def. A.5.3 Max-Domain-Hierarchy

The set of all eligible classes for task decomposition with respect to this 
particular domain.  This set is defined by the P_Domain decomposition 
protocol (see Chapter 5 for details and Section 5.2 for specific examples) of 
the task in hand.  

Def. A.5.4 Min-Domain-Hierarchy

The minimum set of data-object-classes necessary to execute an assigned 
task.  This set is defined by the P_Domain decomposition protocol of the task 
in hand.  

Def. A.5.5 Domain-Hierarchybottom

A class or a set of classes which represent the lower boundary of a 

max-domain-hierarchy .

Def. A.5.6 Domain-Hierarchytop

A data-object class which represent the top boundary of the 

max-domain-hierarchy.

Def. A.5.7 Leaf-Data-Object

A data-object class at the lower end of each branch of a data-object-hierarchy

Def. A.5.8 Data-Objectclassification

A data-object class used for classifying the results of executing an assigned 
task.

Example.  In evaluating the cost of a BFloor-data-object per 

Room-data-object (see the example in chapter 4), the Room-data-object class 
is the data-objectclassification of this task.

Def. A.5.9 Activationlist

A set of data-object classes were their instances are to be activated to execute 
sub-tasks during the executing of a task.  The activationlist is always a subset 
of the max-domain-hierarchylist.
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Def. A.5.10  Skiplist

A list of data-object classes to be skipped during the activation of sub-data-
objects of an object-agent-hierarchy.  This too is a subset of the max-domain-
hierarchy.

Def. A.5.11  Activation Order

The order of activating data-objects in an object-agent-hierarchy during the 
execution of a task.

Def. A.5.12  Task Dependent Hierarchy

The hierarchy of the data-objects in the activationlist.  

This is the hierarchy of data-objects that participate in the decomposition with 
respect to the task in hand.

A.6 Conflict Handling

Def. A.6.1 Conflict

An attribute value that is being modified to a new value causing an interested 
data-object or expert-agent not to be satisfied.

Def. A.6.2 Conflict handling

The process by which a conflict is detected and resolved.

Def. A.6.3 Conflict detection

The process by which the decision maker becomes aware of a conflict.

Def. A.6.4 Conflict Resolution

The process by which a decision maker is able to arrive at a set of acceptable 
values for all interested parties as well as for the attribute being modified.  

In a sense, conflict resolution is a series of local bilateral evaluation sessions 
involving the interested data-objects and expert-agents where the decision 
maker examines various data-object attribute values to either resolve the 
conflict or reach an acceptable state of all the parties involved.  Each 
evaluation session involves the decision maker and one of the interested 
parties.  Evaluation results are communicated to the decision maker, no direct 
communication amongst the interested parties regarding the conflict is 
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permitted.  Validating the conflict resolution results is the sole responsibility 
of the decision maker.

Def. A.6.5 Conflict Prevention/Control

The process by which a decision maker is able to avoid or reduce the number 
of conflict handling sessions about an attribute value that is being modified.

Def. A.6.6 Attribute Interestlist

A list of data-object attributes and expert-agents that are interested in this 
attribute value.  Each member of the list is paired with an Interest Context.

Def. A.6.7 Interest Context

The reasons of which an agent, or a data-object attribute is interested in 
another data-object attribute (e.g., Wall-data-object width for Room-data-
object acoustics).  The context may also include the recommended expert-
agent to interact with in respect to the focus of this context.

Def. A.6.8 Interested Attribute

An data-object attribute that is registered in the interestlist of another data-
object attribute.

Def. A.6.9 Interested Data-Object

A data-object with at least one attribute registered in the interestlist of an 
another data-object attribute.  

Note that, within the same data-object, an attribute may be registered in the 
interestlist of another attribute.  

Def. A.6.10  Interested Expert-Agent

An expert-agent that is registered in the interestlist of data-object attribute.  

Def. A.6.11  Conflict Focus

An object-agent that is currently providing an interestlist for a conflict check.  

Def. A.6.12  Conflict Zone

The two object-agents involved in a conflict handling session.  
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Def. A.6.13  Direct Conflict Handling 

A conflict handling session involving two object-agents one of which is the 
conflict focus.  

Def. A.6.14  Indirect Conflict Handling 

A conflict handling session involving two object-agents none of which is the 
conflict focus.  

Accordingly, the conflict zone does not necessarily include the conflict focus.

A.7 Abbreviations

In this dissertation, the following abbreviations are employed:

Data-Object → DO

Object-Agent → OA

System-Agent→ SA 

Expert-Agent→ EA (a specialization of a System-Agent)

Utility-Agent→ UA (a specialization of a System-Agent)
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B Appendix: Actions, Tasks and Interactions
  Action Types
Agents interact whenever one communicates to another.  They trigger others to 
take actions.  The DA may trigger a chain of actions to perform certain task.  The 
following action types are applicable to the various agent types:

Actions are either simple or complex;

Simple actions require the execution of a single act by sending a message (or 
simply use an object method of another DO).  Simple actions may include but not 
limited to:  

‘Activate’, ‘assign’, ‘query’ and ‘request’ are examples of simple actions 
initiated by an agent. ‘Provide’ is an action taken by an agent in response to an 
action by another agent.  In other words, it is a simple reaction.

Complex actions require the execution of a sequence of simple or complex 
actions.  Such actions can be initiated by the agent when needed or can be a 
reaction to one or more actions by other agents (a complex reaction).  An agent 

TABLE B.1. Simple Actions

Action Description

activate a DO or load an agent (i.e., EA or UA)

assign a task, or request service from an agent

query information, or request data.

provide results (evaluation, query results, etc.), alternative values for 
task reassignment, an interestlist, a DO clone, a confirmation 
or validation.
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  OA Task Types
executes an action using its problem solving protocols (see Chapter 6).  Complex 
actions may include but not limited to: 

An OA can be assigned one of five task types (all of which are complex actions 
since they require the implementation of a sequence of simple and complex 
actions):

• evaluation
• recommendation 
• generation
• conflict handling
• implementation

TABLE B.2. Complex Actions

Action Description

generate geometric/non-geometric information (layouts, recommenda-
tions etc.)

search for requested information; 

recognize geometric and non-geometric patterns or configura-
tions.

detect inadequacy of an attribute value;

conflicted or interfered attribute values.

modify attribute values of an existing DO, or add/delete DOs; 

evaluation criteria used by an EA.

plan activities conduct by the agent itself;

activities conduct by the other agents (as the case in task 
decomposition scenario.)

validate results of tasks executed by other agents.

update attribute values and relations of DOs in respect to validated 
task results.
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The OA performs a set of actions to accomplish an assigned task: 

For an evaluation task, an OA may take actions of any of the following kind.1 

For a recommendation or generation, an OA may take one of the following 
actions. 

TABLE B.3. Evaluation Task Actions

Action Description

assign a task to a query-agent to search for certain values;

a task to an EA to evaluate the current DO state.

detect inadequacy of a current attribute value.

candidates of conflict about an attribute value being modified.

provide a requester with evaluation results;

a requester with query results;

a DA with a warning about a detected inadequacy (of DO 
attribute values or relations) or a list of candidates of conflict.

plan a sequence of task assignments (e.g., in a task that requires 
decomposition).

1. These actions are not listed in order, the order by which these actions are executed is 
specified in the problem solving protocols of each DO type.  These sequence of actions 
may be changed or repeated according to the task being performed.

TABLE B.4. Recommendation and Generation Task Actions

Action Description

assign a task to an EAs to evaluate or provide alternatives.

query information from other DOs.

generate proposals for alternative attribute values, relations, DOs or 
arrangement of DOs (including new DOs).

provide a requester of recommendation generated;
a requester with query results.
Ph.D. Thesis, Spring 2000 197



198

  Agent Interaction Types
For a conflict handling, an OA may take one of the following actions. 

For an implementation, an OA may take actions of the following kind.

The OA-based environment has three types of agents; DAs, SAs (which includes 
EAs and UAs), and OAs.  An agent may interact with any type of agents.  The 
types of agents involved in an interaction define the type of interaction.  
Interaction types constitute the action types that can be taken by the agents 
involved in an interaction (directly or via an interface-agent).  

Five interaction types among agents are identified  in Figure B.1.  The arrow 
indicates the sense of the interaction where the first agent type takes action in 
interacting with the second agent type.  The  interaction types are listed below.

• OA-OA interactions
• OA-SA interactions
• SA-SA interactions
• DA-OA interactions.

TABLE B.5. Conflict Handling Task Actions

Action Description

provide a DA with an interestlist (DOs and EAs);
a DA with a warning about a detected conflict.

plan a conflict handling session regarding its own attributes (which 
may be initiated as a result of the new values generated during 
the current conflict handling session).

detect a conflict between a recommended and a current DO attribute 
values (or relation).

TABLE B.6. Implementation Task Actions

Action Description

assign a task to an EA (e.g. CAD-agent) to modify the OA current 

state according to the recommendation validated by the DA;
a

a.  The modifications may include, adding/removing DOs or changing attribute 
values of existing ones, and updating the necessary relations of such attributes.

request validation from the DA before the implementation.

provide a confirmation of implementation.
Actions, Tasks, and Interactions



FIGURE B.1.

The Interaction Types.
• DA-SA interactions

 

The following table illustrate the possible agent interaction types.

TABLE B.7. Types of Agent Interaction

Interaction Action Description

OA  → OA assign query requests, evaluation, recommendation, 
generation, conflict handling or 
implementation tasks

provide query results

validate results of directly assigned tasks

OA → SA assign query requests, evaluation, generation, 
recommendation, implementation or 
activation/deactivation tasks

provide query results

SA → OA assign query requests

provide query, evaluation, recommendation, 
generation, and implementation results

SA

OA

DA
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SA → SA assign query requests, or activation/deactivation tasks

provide query results

DA → OA assign query requests, an evaluation, generation, 
recommendation, conflict handling, 
implementation and activation/deactivation 
tasks

provide requested information (not available in the 
environment)

validate results of directly or indirectly assigned tasks

modify attribute values, performance criteria and OA 
authorizations

plan activities (synchronize, freeze, resume)

OA → DA assign query requests

provide query and task results and interestlists

request validation of task results

DA → SA assign query requests, evaluation, generation, 
recommendation, implementation, or 
activation/deactivation tasks

provide query results, 

validate assigned task results

modify evaluation criteria (used by an EA), and acti-
vation status

plan activities (synchronize, freeze, resume)

SA → DA assign query requests

request validation of task results

provide query, task results

TABLE B.7. Types of Agent Interaction

Interaction Action Description
Actions, Tasks, and Interactions
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	1 Problem Statement
	1.1 Belief

	The context of this dissertation is architectural design.� Within this context, I view the proces...
	• Design is an intelligent activity involving complex forms of decision making.�
	• Design problems, in general, can be decomposed to smaller problems that are easier to handle.�
	• Designing is a collaborative effort of many individuals or agents all of whom may act independe...
	• Agents work cooperatively to change the current design state.�
	• The flow of relevant information with respect to any design state is always considered as signi...
	• Certain design values are best decided by judgement of the designer(s).�
	Design problems are multi-faceted, involving many aspects that contribute, in varying degrees, to...
	1.2 Computational design environments

	Computational design environments are computer systems that are meant to provide designers with a...
	The development of computational design tools has been mostly oriented along a single tool approa...
	The notion of multi-agent design environments is an attractive proposition for the following thre...
	• accommodate the diversity of design activities and knowledge, based on geographic or functional...
	• provide rich environments based on contributions from multiple agents, where the designer can s...
	• provide opportunities for reducing complexity by breaking the knowledge down into different coo...
	A number of design environments have been investigated by various research labs.� Some have reach...
	• For commercial purposes, design environments require vast investments for development.� Moreove...
	• For technical reasons, design environments are difficult to develop owing to the diversity of t...
	There are stand alone architectural design applications that are widely available commercially, e...
	A computational representation of a design environment relies on individual domain applications (...
	1.3 Problem and Proposal

	The problem addressed in this dissertation is focused on the representation of design objects and...
	Typically, an expert application which represents domain knowledge of a real world expert is an a...
	However, design environments made up of active and passive players typically suffer from some of ...
	• elimination of rich sources of design information from local nodes;
	• difficulties to identify problem sources in their immediate settings;
	• loss of capability to handle problems at the local level;
	• inability to handle design problems with a high level of abstraction, or the need for relativel...
	In this dissertation, I propose to expand, in a specific way, the notion of representing design k...
	As a short hand, I call a design object which is capable of performing such activities an object-...
	In a computational design environment, design objects represent the artifact being designed at va...
	To illustrate the basic premise of the object-agent approach, in an architectural design setting,...
	1.4 Objectives and Method

	The objective of this dissertation is to explore the potential benefits and disadvantages, from a...
	Figure 1.1 illustrates a conceptual architecture for a multi-agent design environment without fur...
	The model has to accommodate an initial set of domain-objects and applications and is, at the sam...
	• Developing a framework for a design object-agent based environment.� The framework is comprised...
	• Identifying the patterns of interactions among the modules of the framework.� This is achieved ...
	• Developing a set of task handling algorithms that enable an object-agent to manage the executio...
	• Engineering a detailed implementation design of such an environment using object models and sta...
	1.5 Thesis Structure

	The outline of the dissertation is as follow:
	• Chapter 2 provides additional motivation for adopting an object-agent approach in a computation...
	• Chapter 3 outlines a framework of an object-agent based environment and discusses the tradition...
	• Chapter 4 presents a series of general and domain specific scenarios of agent interactions in a...
	• Chapter 5 introduces a set of task handling algorithms that are fundamental to object-agents.� ...
	• Chapter 6 presents an implementation design of an object-agent design environment using an obje...
	• Chapter 7 identifies the research contributions and the research issues raised by the object-ag...
	FIGURE 1.1

	A conceptual architecture of a multi-agent environment and issues of focus in this dissertation.
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	2 Review of Related Work
	2.1 Background

	The subject matter of this dissertation was proposed and presented in February 1993.� At the time...
	2.2 Agent and Agency

	The Latin word ‘agans’ means ‘to act’.� Accordingly, the word ‘agent’ is defined as the producer ...
	There are no rigorous principles about what constitutes an agent or how an agent should behave.� ...
	Actions are distinguished from mere random behavior in that action is goal directed whereas not a...
	Daniel Rasmus suggests that, in a network of agents, an agent must include reasoning capability, ...
	Computational Agents
	Within its limited domain, an agent will try to accomplish a task.� It may be a sub-task of a lar...
	Agent environments should be so designed that the collective efforts of agents toward executing t...
	Agents don’t do very much as individuals.� They know how to schedule a meeting, buy a ticket, or ...
	Agents need more than an operating system for survival.� They require cooperating partners, infor...
	Steiner et al.[Steiner 93] discuss the definition of agent in IMAGINE (an Integrated Multi-AGent ...
	Rational Agent: An agent should structure its behavior in a way that, as it reasons, will optimal...
	Generic Cooperation: When several agents cooperate, they should do so in ways that are, in import...
	Reactivity: The architecture of an agent should be such that it can react in timely fashion to ch...
	Steiner et al. further draw a distinction between agent tasks and goals, and assumes that an agen...
	In the simplest model an agent comes into existence with one goal; it derives a course of action,...
	For an agent to carry out more than one goal Steiner suggest that a more complex taxonomy is need...
	Agents in multi-agent systems may find that optimal means (from their point of view) to reach the...
	Goals are activated either internally, when an agent react to events in the environment, or exter...
	Agency can be defined by linking the notion of goals to the ability to perform actions.� Wobcke p...
	Agent models
	Agency is best understood as self-controlled goal-directed activity, where the notion of action b...
	The ‘normal’ conditions referred to in Wobcke’s proposal is determined by the context of the acti...
	• normally succeeds when it is attempted by the agent;
	• is only under the control of the agent if the agent can influence the outcome of the attempt;
	• be within the control of the agent in the sense that it is within the agent’s power not to do t...
	Wagner proposes a model of an agent based on agent actions.� He lists five basic transitions of w...
	A vivid agent is a software-controlled entity whose state is represented by a knowledge-base and ...
	Wagner further emphasizes the difference between action and reaction where agent actions are deli...
	In an elaborate research effort to identify the characteristics of an agent, Foner reviews the be...
	• Autonomy: where periodic action, spontaneous execution and initiative enable an agent to indepe...
	• Personality: where learning and memory enable an agent to improve its ability to handle tasks a...
	• Discourse: where an agent shares the user’s agenda about what and how a task should be executed...
	• Cooperation: where an agent collaborates with the user rather than receiving commands.
	• Risk and trust: where a balance between trust and risk is necessary since the notion of task de...
	• Domain: where the seriousness of the delegated task requires a relative degree of trust (risky ...
	• Graceful degradation: where an agent should strive to execute a task or a subset of the task in...
	• Expectations: where user expectations from an agent should not exceed agent ability to perform ...
	• Anthropomorphism: where an agent depicts human behavior.� Though agency does not imply a need f...
	It should be noted that not of all of these properties are pertinent to agent-based decision maki...
	The notions of discourse, risk and trust, domain, graceful degradation and expectations overlap w...
	Commitment
	Having adopted a commitment, we do not expect an agent to drop it until, for some reason, it beco...
	Durfee et al. [Durfee 92] add another dimension to the notion of commitment, that is, an agent sh...
	By propagating more abstract models of itself, an agent commits itself to fewer specifics, and th...
	Of course, being overly abstract will sometimes make coordination inefficient.
	The degree to which the models provide enough information to lead to effective collective interac...
	Durfee et al. suggest that an agent can dynamically influence how it is modeled by other agents t...
	In a later research effort, Singh discusses the notion of commitment in information-rich environm...
	The main problem is to structure activities in a manner that can respect the autonomy of the info...
	Singh presents an approach called ‘Spheres of Commitment’ (SoCom).� In SoCom, agents interact by ...
	The above views of commitment as a property of agency lead to the belief that a representation of...
	Planning is another property of agency that depends on agent ability to reason about other agents...
	Planning and reactiveness
	In effect, we want the model of the mental objects that are in someone’s head (or knowledgebase) ...
	Russel and Norvig then discuss alternative representations of mental objects.� They introduce the...
	The purpose of such models is to make an agent useful by helping an agent to do some actions it c...
	Chaib-Draa and Levesque categorize the types of interaction among agents based on the situation; ...
	Agents should prefer low levels (i.e., routine and familiar situations) than high level (i.e., un...
	In multi-agent environments autonomy leads to uncoordinated activities due to the uncertainty (or...
	Wooldridge and Jennings support the notion that agents as ‘intelligent reactive systems’ need to ...
	A computer system, situated in some environment, that is capable of flexible autonomous action in...
	According to them, ‘Situatedness’ means that the agent receives sensory input from an environment...
	An object-agent, as proposed in this thesis, should exhibit a wide range of social and responsive...
	Jennings distinguishes multi-agent systems from other software paradigms (such as object-oriented...
	Patterns of interaction
	Multi-agent systems are ideally suited to representing problems that have multiple problem solvin...
	Lyons and Hendriks [Lyons 95] discuss the importance of extracting the inherent patterns of inter...
	2.3 Objects vs. Agents

	Luck and d’Inverno presented a three-tiered hierarchy of entities comprising objects, agents and ...
	Jennings, Sycara and Wooldridge [Jennings 98] describe objects (in object- oriented programming) ...
	The second argument is drawn around the agency notion of being ‘flexible’ with its three elements...
	Rasmus describes agents as a form of objects with the ability to utilize the resources of environ...
	Agents turn out to be specialized objects running in a common information environment.� Because t...
	Accordingly, Rasmus draws similarities between the concept of agent environments and bacteria, wh...
	As a second distinction from objects Rasmus suggests that not all agents are necessarily fully fo...
	The last example I review is taken from an agent related project from a School of Architecture.� ...
	An intelligent object is a part of real case which can be interpreted for each new design task us...
	The development of IDIOM depends on a prototype for an interactive multi- agent interface named ‘...
	In principal, Sculptor objects did enjoy little of the agency behavior discussed in the earlier s...
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	3 Framework of an OA-Based Environment
	3.1 Functions of an OA-Based Design Environment

	In a computer-based design environment, design objects are treated as information entities withou...
	The proposed approach based on object-agents (OAs) supports design through interactions among des...
	The single most important question that must be addressed is: what can be achieved in such an OA-...
	“a CAD tool, AI-based or not, should always be seen as a complement to human designers that assis...
	Flemming [93]
	The proposed OA-based design environment is not intended to automate the design process, instead ...
	The continuous change of the state of the design objects is required until the current state is c...
	Changing states vs. producing solutions
	The OA representation is intended to provide the DOs with properties of agency to allow them (whe...
	The DOs can be activated to provide various evaluations of their current state upon DA request.� ...
	Evaluation
	Upon DA request, the OA may extend the evaluation session to obtain recommendations from the EAs ...
	Recommendation
	If there are generative agents, the DA may interact with such generative-EAs to generate new alte...
	Generation
	Recommended modifications of attribute values should be checked for potential conflicts before th...
	Conflict handling
	After the potential conflicts are identified, upon DA request, a conflict resolution session is r...
	The DA may reduce the potential conflicts through the control of tasks being executed, DO relatio...
	• evaluation domains (e.g. daylighting, cost) involved in each session;
	• involved DOs (or OAs);
	• the depth of layers of interested DOs in respect to the conflict in hand (i.e., how many layers...
	In fact, successful bilateral resolution sessions are not always sufficient for resolving conflic...
	Conflict detection does not necessarily require the agents to be aware of the tasks and capabilit...
	Upon DA validation of any recommendation or the successful termination of a conflict handling ses...
	Implementation
	3.2 Agent Interactions

	The creation of OAs to perform various task types depends to a large degree on the ability of the...
	FIGURE 3.1.

	Categories of interaction of an OA-Based Design Environment
	• �Two-way relations between agents, where an agent may ‘inform’ or ‘request’ information or ‘ass...
	• One-way relations between an agent and an entity (e.g., DO, database), where an agent may ‘requ...
	• Secondary relations which represent the relation ‘has access’ to information.� These are referr...
	It is instructive to note that not all agents are involved in all categories of interaction.� For...
	I look at two categories: activation and decision support; and one aspect of the interface catego...
	3.2.1 Activation

	Activation is essential to any OA-based environment.� There are four main functions: activating a...
	The activation of a DO is the creation of an OA which represents the DO in any interaction that r...
	Activation
	The deactivation of an OA is the termination of the OA upon the completion of all assigned tasks....
	Deactivation
	Loading an EA is to invoke the EA in the current session.� In an architectural design session the...
	Loading
	Unloading is then revoking an EA from the current session.� An EA cannot be unloaded if it is inv...
	Unloading
	Activation operates in two modes:�
	• In the DA mode, the DA requests the activation or the deactivation of an OA or EA.� The request...
	• In the OA mode, an OA requests the activation of another DO.� This request is sent directly to ...
	3.2.2 Decision support

	Decision support is the core of an OA-based environment.� In this dissertation, this function is ...
	Upon DA request, the agents provide information (continually or temporally) about the individual ...
	Decision support involves a variety of task types (see Appendix B): evaluation, recommendation, g...
	3.2.3 Communication

	How agents communicate�? and what is being communicated�? are two fundamental questions that need...
	Interface agents provide the elements of communication;� a message system to pass information amo...
	Interface-agents may use local and global message passing that is most appropriate to the nature ...
	The process by which the agents know about the existence of other agents in the environment is im...
	• The global communication approach assumes that an OA does not necessarily know about the other ...
	• The direct communication approach assumes that the agents are knowledgeable of the other agents...
	3.3 The modeling process

	Computer-based design environments offer various approaches to modeling a design state.� Environm...
	With the absence of a generative mechanism, the DA takes a more involved role in modeling the geo...
	In other environments, such as SEMPER, the evaluation process does not take place until the model...
	In order to utilize the OA the DA must incrementally interact with OAs to develop an acceptable m...
	The DA may use a bottom-up approach to develop a building model from an aggregation of rooms, zon...
	To better understand the modeling process by which a DA may interact with a an OA-based environme...
	The DA selects rooms from a pool of predefined Room-DO types (or defines a new Room-DO type).�The...
	DO Relations and Hierarchies
	• no-relation (the default status).�
	• constituent-of/contains;
	• associated-with;
	The relation “constituent-of/contains” has two parties involved; a sub-DO and a super-DO (as defi...
	A DO can be a sub-DO of more than one DO simultaneously.� For instance, a Window-DO can be a sub-...
	The relation “associated-with” involves two DOs where a non-hierarchal functional or semantic lin...
	A relation between two DOs is task dependent.� For instance, an interior Wall- DO that is perpend...
	The DOs should not have a hierarchy as they reside in the database (i.e., the database should con...
	The questions are then: how does the DA assign relations between DOs�? and whether it is necessar...
	It can be argued that if the DA is to assign each single relation among DOs, modeling a large bui...
	The environment may provide support to the DA in assigning relations amongst DOs in various ways:
	• Through interface-agents which should provide the DA with multiple techniques of assigning rela...
	• Predefined hierarchies of DOs may only be used to provide the DA with an experimental test beds...
	• The environment should provide domain specific agents that are geared toward establishing hiera...
	To summarize the discussion about the DO relations and hierarchies:
	• DOs have no relations to other DOs unless specified by the DA or other supporting agents accord...
	• relations between DOs are temporal;�
	• hierarchies established between DOs are task dependent.
	3.4 Decision making with OAs

	The OA-based approach suggests that a DO is activated (as an OA) to perform a task regarding its ...
	When performing a task two types of decompositions can be identified as illustrated in Figure 3.2
	Decomposition
	FIGURE 3.2.

	Decomposition types.
	• Flat/Simple decomposition.
	• Complex decomposition.
	A flat decomposition is performed whenever
	• the result of the task assigned to the OA is the aggregation of all the results of the sub-task...
	• each DOs can only be a constituent of one DO (no joint-DO in the hierarchy).
	A cost estimate task for a building block materials is an example of a flat hierarchy (Figure 3.3...
	FIGURE 3.3.

	Task and decomposition.
	A cost estimate task may require an aggregation of multiple levels of flat decompositions.� Such ...
	A complex decomposition is performed whenever
	• the result of the task assigned to the OA is not necessarily the aggregation of all the results...
	• at least one DO is a constituent of more than one DO (a joint-DO).
	Performing a framing cost estimate for a building classified per building blocks requires a compl...
	Tasks which do not depend entirely on aggregation of sub-results may require complex decompositio...
	The hierarchy (or hierarchies) established for a structural analysis task is completely dependent...
	Comparing alternative structural systems the DA may need to find the total cost of a structural s...
	FIGURE 3.4.

	Hierarchy and decomposition 1.
	There are many ways by which a building can be decomposed, according to its spatial components su...
	FIGURE 3.5.

	Hierarchy and decomposition 2.
	It is, therefore, more appropriate to allow the DA to establish the hierarchies according to the ...
	How do the OAs decompose a task?
	An OAs knowledge of how to handle any task in hand is embedded within its problem solving protoco...
	If a building bfloor-OA is not linked in a hierarchy with its structural elements, the OA would (...
	Each problem solving protocol is primarily intended to enable the OA to locate and interact with ...
	When a new DO-types is added to the environment a set of protocols applicable to such type must b...
	When a DA adds a new DO to the environment, the DO remains in passive status until the DA links i...
	Evaluating the model
	The problem solving protocols of the Room-DO type which is loaded into the room-OA during its cre...
	The room-OA then assigns an evaluation task to the domain EA (i.e., the agent most related to the...
	The OA should be able to provide information about itself, whether this information is geometric ...
	If the lighting levels are found to be below the required values (which is obtained from the prot...
	The information provided to the EA by the OA should be relative to the degree of abstraction of t...
	The Level of Abstraction
	How does an EA deal with various levels of abstraction of the information provided by an OA�?
	Two main factors contribute to answering this question; the design of the EAs and the role of the...
	An EA should not be designed to expect a complete set of information before it provides a respons...
	The design of an EA
	Typically an EA requests all the information it needs to provide a detailed response to the assig...
	An alternative to changing the design of the EAs is to make the interface-agents (which is facili...
	The role of the interface agents
	When assigned a task, an EA might be working on a prior task from another agent.� In this case, t...
	Executing tasks in parallel
	3.5 Advancing a design state with multiple OAs

	A decision making environment that comprises multiple agents relies, to a large degree, on the co...
	3.5.1 Agent autonomy

	The term autonomy describes the degree to which an agent controls its own activation, execution a...
	EAs, such as query agents, are primarily non�autonomous since they can only act upon request for ...
	Quadrel describes a system comprising an asynchronous team of autonomous agents (only system-agen...
	Agency behavior implies that an OA, as agent, should have the abilities to self- activate itself ...
	Within the scope of this thesis OAs are semi�autonomous agents.� That is, they should be activate...
	3.5.2 Short term planning vs. long term planning in design

	Any type of planning aims at a set of DA goals to be achieved and a set of requirements to be met...
	In long term planning, a set of global goals are to be accomplished.� Local and sub-goals are set...
	It is important to emphasize that global design goals do exist at any point during the design, bu...
	Since changing goals are a property of design, especially creative design, it is appropriate to e...
	Accordingly, I suggest that the DA should be responsible for the long term planning and for the c...
	Goals for short term planning of immediate tasks with fewer facets can be defined and evaluated i...
	According to the approach proposed, OAs are to deal with small and immediate tasks, which are mor...
	The change of an OA status also depends on the support and response of other agents in the enviro...
	The DA's role is to evaluate the current state (independently or with the support of other agents...
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	4 From Scenarios to Interaction Algorithms
	4.1 Event-trace Charts�

	An OA-based environment is a highly interactive system.� Dynamic models show the time-dependent b...
	Event-traces are best described through charts that reflect two-dimensional relationships over ti...
	In this chapter, I describe charts that illustrate a variety of scenarios for an architectural de...
	The scenario of events represented by a chart is described after the chart.� Each event (or inter...
	Event-trace charts (1-3) are developed for:
	General events charts
	1. Activation of a DO and the deactivation of its OA after the execution of an assigned task.
	2. Task execution by a leaf OA (the last node in a decomposed task).
	3. Conflict handling among two leaf OAs of the same DO over shared attribute.

	Event-trace charts (4-7) are developed for four distinct applications.
	Domain specific events charts
	1. Execution of a material cost evaluation task by BFloor-OA (building floor), classified accordi...
	2. Execution of daylighting evaluation task by a BFloor-DO.
	3. Execution of a structural analysis task executed by Building-DO.
	4. Execution of a conflict handling session among two Room-OAs over a recommended reduction of a ...
	4.2 Chart 1. Activation of a DO/Deactivation of an OA

	See Definitions A.3.10 and A.3.11.� The event-trace is shown in Figure 4.1�The main steps are 1-6...
	1. An Agent sends an activation message to a DO.
	2. The DO instantiates an OA of its DO type from the OA class. An OA of the same DO type is created.
	3. The created OA registers itself as an OA of the DO.
	4. The created OA requests a clone (a complete copy) of the DO.
	5. The DO provides a clone of itself to the sub-OA.
	6. The OA registers itself as sub-OA of the super-agent (of step 1).
	7. The super-agent assigns the created sub-OA a task.
	8. The sub-OA loads the appropriate protocols for the task.
	9. Interacting with the appropriate agents in the environment the sub-OA initiates a task executi...
	10. Task execution interactions (see Chart 2 steps 7-19).
	11. The environment agent (of step 9) provides it task execution result to the sub-OA. The OA sto...
	12. The sub-OA provides its super-agent (of step 1) with the task execution results. Conditional ...
	13. Conditional (if aggregation is performed in step 12): The super-agent requests an environment...
	14. Conditional (if step 13 is executed): Evaluation interactions to check the aggregation result...
	15. Conditional (if step 13 is executed): The environment agent (of step 13) provides its evaluat...
	16. Conditional (if the results of step 12 or 15 are not satisfactory): The super-OA remanages ei...
	17. The super-agent validates the results of the task execution, or: provides an alternative set ...
	18. Conditional (if alternative values are provided in step 17): The OA reassigns the task to the...
	19. Interface option (to allow for conflict check): The super-agent requests a conflict check (wi...
	20. Conditional (if step 19 is executed): Conflict handling interactions, the super-agent manages...
	21. Conditional (if the results provided in step 20 is not satisfactory): The super-agent reassig...
	22. Conditional (if step 20 is executed): The super-agent validates the results (of step 20), and...
	23. Conditional (if requested in step 22): The sub-OA interacts with the appropriate agents in th...
	24. Conditional (if step 23 is executed): The environment agent which carried the implementation ...

	25. The sub-OA updates its DO information (provided that no other OA of the same DO is performing...
	26. The sub-OA de-registers itself as a sub-agent of the super-agent.
	27. The OA de-registers itself as an OA of the DO.
	28. The OA terminates itself.
	4.3 Chart 2. Task Execution

	See Section A.4 for relevant definitions.� The event-trace is shown in Figure 4.2.� The main step...
	1. Conditional (if the targeted DO is not activated): An agent sends an activation message to a D...
	2. Conditional (if step 1 is executed): The DO instantiates an OA of its DO type from the OA clas...
	3. Conditional (if step 2 is executed): Activation interactions (see Chart 1, steps 3-6).
	4. The super-agent assigns a task to the created OA (a sub-OA in the task dependent hierarchy).
	5. Conditional (if the appropriate protocols are not loaded): The sub-OA loads the appropriate pr...
	6. Interacting with the appropriate agent in the environment (e.g., an EA) the sub-OA manages a t...
	7. The EA requests information from the sub-OA (e.g., geometric and non- geometric information of...
	8. Conditional (when information of a sub-DO is needed and the DO is not activated and the activa...
	9. Conditional (if step 8 is executed): The sub-DOs provide the information requested to the sub-...
	10. Conditional (if the information provided in step 9 is not sufficient): The sub- OA requests a...
	11. The sub-OA provides the applicable information to the EA.
	12. Conditional (if the information provided in step 11 is not sufficient): The EA requests addit...
	13. Conditional (if additional information is needed to execute the task): The EA requests inform...
	14. Conditional (if the query-agent was not able to locate the requested information of step 13)....
	15. Conditional (if step 14 is executed): The super-agent provides the EA with the requested info...
	16. Conditional (if the information provided in step 15 is not sufficient): The query-agent reque...
	17. Conditional (if step is 13 executed): The query-agent provides the EA with the applicable inf...
	18. Conditional (if the information provided in step 17 is not sufficient): The EA requests addit...
	19. Conditional (if the targeted DO is not activated): The EA sends an activation message to anot...
	20. The EA provides the sub-OA with the task execution results. The sub-OA stores the task execut...
	21. The sub-OA provides the super-agent (of step 1) with the task execution results. Conditional ...
	22. Conditional (if aggregation is performed in step 21): The super-agent requests an environment...
	23. The EA requests information from the super-agent.
	24. The super-agent provides the applicable information to the EA.
	25. Conditional (if the information provided in step 24 is not sufficient): The EA requests addit...
	26. Conditional (if the results of step 24 are not satisfactory or if prototypical information is...
	27. Conditional (if the information requested in step 26 is not found in the environment): The qu...
	28. Conditional (if step 27 is executed): The super-agent or the DA provides the query-agent with...
	29. Conditional (if the information provided in step 28 is not sufficient): The query-agent reque...
	30. Conditional (if step 26 is executed): The query-agent provides the EA with applicable informa...
	31. Conditional (if the information provided in step 30 is not sufficient): The EA sends another ...
	32. Conditional (if step 24 is executed): The EA provides its evaluation of the aggregation resul...
	33. Conditional (if the results provided in either step 21 or 32 are not satisfactory): The super...
	34. The super-agent validates the results (of step 21 or 32), or: provides the sub-OA with altern...
	35. Conditional (if alternative values are provided by the super-agent in step 34): The sub-OA re...
	36. Interface option (to allow for conflict check): The super-agent requests a conflict check (wi...
	37. Conditional (if step 36 is executed): Conflict handling interactions, the super-agent manages...
	38. Conditional (if the results of the conflict handling session provided in step 37 are not sati...
	39. Conditional (if step 36 is executed): The super-agent validates the results (of step 37), and...
	40. Conditional (if requested in step 39): The sub-OA interacts with the appropriate agents in th...
	41. Conditional (if step 40 is executed): The environment agent which carried the implementation ...
	42. The sub-OA updates the information of its sub-DOs effected by the implementation.
	43. The sub-OA updates its DO information (if the DO is activated the update must be conducted th...
	44. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 steps...
	45. Conditional (if step 44 is executed): The OA terminates itself.

	4.4 Chart 3. Conflict Handling

	See Section A.6 for relevant definitions.� The event-trace is shown in Figure 4.3.�The important ...
	• an OA should be created for each DO (or attribute of the same DO) in the set.�For instance, if ...
	• an OA of the same DO should be created for each selected EA in the set.� For instance, if a day...
	The OA approach can accommodate a variety of mechanisms and guide lines for conflict handling.�Ho...
	A task dependent hierarchy consists of multiple levels of DOs from the DA down to the leaf DOs.�A...
	Conflict handling types
	1. A super-OA assigns a task to a sub-OA (sub-OA1 in this chart).

	Details of the interactions
	2. Conditional (if the appropriate protocols are not loaded): Sub-OA1 loads the appropriate proto...
	3. Interacting with the appropriate agent in the environment (e.g., an EA) sub-OA1 initiates a ta...
	4. Task execution interactions (see Chart 2 steps 7-19).
	5. The environment agent provides its task execution results to sub-OA1.� Sub-OA1 stores the resu...
	6. Interface option (to allow the DA to validate task results not assigned directly by him/ her):...
	7. Conditional (if step 6 is executed): The DA validates the results of sub-OA1, or: provides an ...
	8. Conditional (if alternative values are provided in step7): Sub-OA1 reassigns the task to the E...
	9. Sub-OA1 provides its task execution results to the super-OA. Conditional (if aggregation is ne...
	10. Conditional (if aggregation is performed in step 9): The super-agent requests an environment ...
	11. Conditional (if step 10 is executed): Evaluation interactions to check the aggregation result...
	12. Conditional (if step 11 is executed): The environment agent (of step 10) provides its evaluat...
	13. The super-OA provides the DA with results (of step 9 or 12) for validation. Conditional (if a...
	14. Conditional (if aggregation is performed in step 13): The DA requests an environment agent (e...
	15. Conditional (if step 14 is executed): Evaluation interactions to check the aggregation result...
	16. Conditional (if step 15 is executed): The environment agent (of step 14) provides its evaluat...
	17. Conditional (if the results provided in either step 13 or step 16 are not satisfactory): The ...
	18. The DA validates the results (of step 13), or: provides the super-OA with alternative attribu...
	19. Conditional (if alternative values are provided by the DA in step 18): The super-OA remanages...
	20. Interface option (to allow for conflict check): The DA requests a conflict check (with other ...
	21. Sub-OA1 checks with its DO for a list of DOs and OAs with interest in the targeted attribute ...
	22. The DO provides a list of DOs and EAs interested in the targeted attribute values.
	23. Sub-OA1 provides the DA with the list of interested DOs and EAs.
	24. Conditional (if the list contains one or more DO or OA): The DA selects a set of DOs and EAs ...
	25. Conditional (if step 24 is executed): The DO instantiates an OA of its DO type from the OA cl...
	26. Conditional (if step 25 is executed): Activation interactions (see Chart 1 steps 3-6).
	27. The DA assigns an evaluation task to examine the recommended attribute values (which is the f...
	28. Conditional (if the appropriate protocols are not loaded): sub-OA2 loads the appropriate prot...
	29. Interacting with the appropriate agent in the environment (e.g., an EA) sub- OA2 initiates a ...
	30. Task execution interactions (see Chart 2 steps 7-19).
	31. The EA (of step 29) provides sub-OA2 with the task execution results.� Sub-OA2 stores the res...
	32. Sub-OA2 provides its task execution results to the DA. Conditional (if aggregation is needed)...
	33. Conditional (if aggregation is performed in step 32): The DA requests an environment agent (e...
	34. Conditional (if step 33 is executed): Evaluation interactions to check the aggregation result...
	35. Conditional (if step 34 is executed): The environment agent (of step 33) provides its evaluat...
	36. Conditional (if the results provided in either step 32 or step 35 are not satisfactory): The ...
	37. The DA validates the results (of step 32), or: provides alternative attribute values for task...
	38. Conditional (if alternative values are provided by the DA in step 37): Sub- OA2 runs another ...
	39. Conditional (if the results provided in step 32 are not satisfactory): The DA sends a query r...
	40. Conditional (if step 39 is executed): The environment agents provide the DA with the applicab...
	41. Conditional (if the information provided in step 40 is not sufficient): The DA sends a modifi...
	42. Conditional (if the results of step 32 are not satisfactory): The DA reassigns another evalua...
	43. The DA validates the conflict handling session results (started in step 20).
	44. The super-OA validates the results of sub-OA1 (provided in step 9).
	45. Conditional (if there are more than one DO or EA in the set selected in step 24): The DA eith...
	46. Sub-OA2 updates its DO information (after the implementation of the task results, see Chart 2...
	47. Conditional (if no other task is to be executed): Termination interactions (see Chart 1. step...
	48. Conditional (if step 47 is executed): Sub-OA2 terminates itself.
	49. Sub-OA1 updates its DO information (after the implementation of the task results, see Chart 2...
	50. Conditional (if no other task is to be executed): Termination interactions (see Chart 1. step...
	51. Conditional (if step 50 is executed): Sub-OA1 terminates itself.

	4.5 Chart 4. Cost Evaluation Task (Classified per Room-DO)

	This is the first of four applications illustrating the OA-based design environment.� The event-t...
	The DA is interested in evaluating the cost of painting a BFloor-DO.� The evaluation should inclu...
	The assigned task
	There are three main players in the scenario for this task: a DA, a BFloor-OA and a cost-EA (and ...
	The main players
	There are three main events which are listed below.
	The major events
	• The DA activates the BFloor-DO and assigns it a classified cost evaluation task, which, in turn...
	• Interacting with the cost-EA, each activated OA runs a cost evaluation session regarding its ow...
	• The OAs update the information of its DOs and terminates itself.
	The following two are additional optional results.
	• The DA triggers a conflict handling session.
	• The DA requests the implementation of new attribute values.
	There are two results that can be expected from this task and two additional optional result.
	The expected results
	1. For each evaluation session the assigned BFloor-OA provides the DA with information that may c...

	• painting cost of the BFloor-DO, and the classified cost as assigned (see the assigned task);
	• prototypical cost of each of the DOs above;
	• a warning for each DO that exceeds the specified prototypical cost.
	2. The DA examines either new DO attribute values for DOs in the task dependent hierarchy or new ...
	3. (Optional) The DA examines new DO attribute values for DOs interested in the attribute values ...
	4. (Optional) Implementation of examined DO attribute values and updating of the DO relations.

	The main steps are 16-41.
	Details of the interactions
	1. Conditional (if the targeted BFloor-DO is not activated): A DA sends an activation message to ...
	2. Conditional (if step 1 is executed): The BFloor-DO instantiates a BFloor-OA. A BFloor-OA is cr...
	3. Conditional (if step 2 is executed): Activation interactions (see Chart 1 steps 3-6).
	4. The DA assigns the painting cost evaluation task to the created BFloor-OA.
	5. Conditional (if the appropriate protocols are not loaded): The BFloor-OA loads the cost evalua...
	6. Conditional (if the targeted sub-DOs are not activated): The BFloor-OA sends activation messag...
	7. Conditional (if step 6 is executed): The Room-DO class instantiates a Room-OA for each activat...
	8. Conditional (if step 7 is executed): Activation interactions (see Chart 1 steps 3-6).
	9. The BFloor-OA assigns painting cost evaluation sub-tasks to the created Room-OAs.
	10. Conditional (if the appropriate protocols are not loaded): Each Room-OA loads the cost evalua...
	11. Conditional (if the targeted DOs are not activated): Each Room-OA sends activation messages t...
	12. Conditional (if step 11 is executed): The Wall-DO/Ceiling-DO/Floor-DO classes (and any other ...
	13. Conditional (if step 12 is executed): Activation interactions (see Chart 1. steps 3-6).
	14. The Room-OA assigns painting cost evaluation sub-tasks to the created sub-OAs.
	15. Conditional (if the appropriate protocols are not loaded) Each sub-OA loads the cost evaluati...
	16. Interacting with the cost-EA each leaf OA initiates an evaluation task execution session.
	17. Task execution interactions (see Chart 2 steps 7-19). This may include interactions among a g...
	18. The cost-EA provides its cost evaluation results (as assigned; current cost, relation to prot...
	19. Interface option (to allow the DA to validate task results not assigned directly by him/her):...
	20. Conditional (if step 19 is executed): DA validates the sub-OAs cost evaluation results, or: p...
	21. Conditional (if alternative values are provided in step 20): The sub-OA reassigns the task to...
	22. Each sub-OA provides its cost evaluation results to its super-OA (Room-OA). Conditional (if m...
	23. Conditional (if aggregation is performed in step 22): The Room-OA interacts with the cost-EA ...
	24. Conditional (if step 23 is executed): Task execution interactions (see Chart 2 steps 23-31).
	25. Conditional (if step 24 is executed): The cost-EA provides its aggregation evaluation results...
	26. Interface option (to allow the DA to validate task results not assigned directly by him/her):...
	27. Conditional (if step 26 is executed): The DA validates the results of the cost evaluation of ...
	28. Conditional (if alternative values are provided by the DA in step 27): The Room-OA either rea...
	29. Each Room-OA provides its painting cost evaluation results to its super-OA (the BFloor-OA in ...
	30. Conditional (if aggregation is performed in step 29): The BFloor-OA interacts with the cost-E...
	31. Conditional (if step 30 is executed): Task execution interactions (see Chart 2 steps 23-31).
	32. Conditional (if step 31 is executed): The cost-EA provides its aggregation evaluation results...
	33. The BFloor-OA provides its task execution results to the DA. Conditional (if more than one BF...
	34. Conditional (if aggregation is performed in step 33): The DA interacts with the cost-EA to ev...
	35. Conditional (if step is 34 executed): Task execution interactions (see Chart 2 steps 23-31)
	36. Conditional (if step 35 is executed): The cost-EA provides the DA with its aggregation evalua...
	37. Conditional (if the results of steps 33 or 36 are not satisfactory): The DA either reassigns ...
	38. The DA validates the results of the BFloor-OA (of step 33), or: provides alternative attribut...
	39. Conditional (if alternative values are provided in step 38): The BFloor-OA either reassigns t...
	40. The BFloor-OA validates the results (of step 29) of each Room-OA.
	41. Each Room-OA validates the results (of step 22) of its sub-OAs.
	42. Each sub-OA (of step 12) updates its DO information.
	43. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 steps...
	44. Each Room-OA updates its DO information.
	45. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 steps...
	46. The BFloor-OA updates its DO information.
	47. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 steps...
	48. Conditional (if step 47 is executed): The BFloor-OA terminates itself.

	4.6 Chart 5. Daylight Evaluation Task

	The event-trace chart is shown in Figure 4.6.� As before I describe the assigned task, identify t...
	The DA is interested in evaluating the daylighting of a BFloor-DO.� The evaluation should include...
	The assigned task
	The evaluation should also include the daylighting levels of each individual opening within each ...
	The scenario of this chart involves three main players; a DA, a BFloor-OA and a daylighting-EA.
	The main players
	• The DA activates the BFloor-DO and assigns it a daylighting evaluation task, which, in turn, tr...
	The major events
	• Interacting with the daylighting-EA, each activated OA runs a daylighting evaluation session re...
	• The OAs update the information of its DOs and terminates itself.
	The following two events are optional.
	• The DA triggers a conflict handling session.
	• The DA requests the implementation of new attribute values.
	1. For each evaluation session the assigned BFloor-OA provides the DA with information that may c...

	The expected results
	• daylighting levels of each Room-DO (see the assigned task);
	• prototypical daylighting levels of each of the Room-DO types (e.g., living room, bedroom);
	• a warning for each DO that is below the specified or prototypical daylighting levels.
	2. The DA examines either new DO attribute values for DOs in the task dependent hierarchy or new ...
	3. (Optional) The DA examines new DO attribute values for DOs interested in the attribute values ...
	4. (Optional) Implementation of examined DO attribute values and updating of the DO relations.

	The main steps are 11-28.
	Details of the interactions
	1. Conditional (if the BFloor-DO is not activated): A DA sends an activation message to a BFloor-DO.
	2. Conditional (if step 1 is executed): The BFloor-DO instantiates a BFloor-OA. A BFloor-OA is cr...
	3. Conditional (if step 2 is executed): Activation interactions (see Chart 1 steps 3-6).
	4. The DA assigns a daylighting evaluation task to the created BFloor-OA.
	5. Conditional (if the appropriate protocols are not loaded): The BFloor-OA loads the daylighting...
	6. Conditional (if the targeted DOs are not activated): The BFloor-OA sends an activation message...
	7. Conditional (if step 6 is executed): The Room-DO class instantiates Room-OAs for each Room-DO....
	8. Conditional (if step 7 is executed): Activation interactions (see Chart 1 steps 3-6).
	9. The BFloor-OA assigns daylighting evaluation sub-tasks to the created Room-OAs.
	10. Conditional (if the appropriate protocols are not loaded): Each Room-OA loads the daylighting...
	11. Interacting with the daylighting-EA each Room-OA initiates a daylighting evaluation task sess...
	12. Task execution interactions (see Chart 2 steps 7-19). Note: The daylighting-EA activates any ...
	13. The daylighting-EA provides its daylighting evaluation results (as assigned; daylighting leve...
	14. Interface option (to allow the DA to validate task results not assigned directly by him/her):...
	15. Conditional (if step 14 is executed): The DA validates the Room-OAs daylighting evaluation re...
	16. Conditional (if alternative values are provided in step 15): Any Room-OA may reassign the tas...
	17. Each Room-OA provides its daylighting evaluation results to the BFloor-OA. Conditional (if ag...
	18. Conditional (if aggregation is performed in step 21): The BFloor-OA requests the daylighting-...
	19. Conditional (if step is 18 executed): Task execution interactions (see Chart 2 steps 23-31)
	20. Conditional (if step 19 is executed): The daylighting-EA provides its aggregation evaluation ...
	21. The BFloor-OA provides its evaluation results to the DA. Conditional (if aggregation is neede...
	22. Conditional (if aggregation is performed in step 21): The DA requests the daylighting-EA to e...
	23. Conditional (if step is 22 executed): Task execution interactions (see Chart 2 steps 23-31)
	24. Conditional (if step 23 is executed): The daylighting-EA provides its aggregation evaluation ...
	25. Conditional (if the results provided in step 21 or 23 are not satisfactory): The DA either re...
	26. The DA validates the results (of step 25) of the BFloor-OA, or: provides alternative attribut...
	27. Conditional (if alternative values are provided in step 26): The BFloor-OA either reassigns t...
	28. The BFloor-OA validates the results (of step 17) of each Room-OA.
	29. Conditional (if attribute values of related DOs are to be modified): Each Room-OA updates the...
	30. Each Room-OA (of step 7) updates its DO information.
	31. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 steps...
	32. The BFloor-OA updates its DO information.
	33. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 steps...
	34. Conditional (if step 33 is executed): The BFloor-OA terminates itself.

	4.7 Chart 6. Structural Analysis Task

	In a structural analysis task, the DA is interested in analyzing the structural stability of a Bu...
	The scenario of this task involves three main players; a DA, a Building-OA and a structure-EA.
	The main players
	• The DA activates the Building-DO and assigns it a structural analysis task, which, in turn, tri...
	• Interacting with the structural-EA, each activated OA runs a structural analysis session regard...
	• The OAs update the information of its DOs and terminates itself.
	The following are optional events.
	• The DA triggers a conflict handling session.
	• The DA requests the implementation of new attribute values.
	1. For each analysis session the assigned Building-OA provides the DA with information that may c...

	• structural stability of each block -DO and BFloor-DO (see The task above);
	• a warning for each structural DO (or zone) where its current specification is not sufficient fo...
	2. The DA examines either new DO attribute values for DOs (or a collection of DOs in a zone).
	3. (Optional) The DA examines new DO attribute values for DOs interested in the attribute values ...
	4. (Optional) Implementation of examined DO attribute values and updating of the DO relations.

	The main steps are 16-41.
	Details of the interactions
	1. Conditional (if the targeted BFloor-DO is not activated): A DA sends an activation message to ...
	2. Conditional (if step 1 is executed): The Building-DO instantiates a Building-OA. A Building-OA...
	3. Conditional (if step 2 is executed): Activation interactions (see Chart 1 steps 3-6).
	4. The DA assigns a structural analysis task to the created Building-OA.
	5. Conditional (if the appropriate protocols are not loaded): The Building-OA loads the structura...
	6. Conditional (if the targeted block-DOs are not activated): The Building-OA sends activation me...
	7. Conditional (if step 6 is executed): The block-DO class instantiate block-OAs for each block-D...
	8. Conditional (if step 7 is executed): Activation interactions (see Chart 1 steps 3-6).
	9. The Building-OA assigns structural analysis sub-tasks to the created block-OAs.
	10. Conditional (if the appropriate protocols are not loaded): Each block-OA loads the structural...
	11. Conditional (if the targeted BFloor-DOs are not activated): Each block-OA sends an activation...
	12. Conditional (if step 11 is executed): The bfloor class instantiates BFloor-OAs for each BFloo...
	13. Conditional (if step 12 is executed): Activation interactions (see Chart 1 steps 3-6).
	14. The block-OA assigns structural analysis sub-tasks to the created BFloor-OAs.
	15. Conditional (if the appropriate protocols are not loaded): Each BFloor-OA loads the structura...
	16. Interacting with the structural-EA each BFloor-OA initiates a structural analysis task session.�
	17. Task execution interactions (see Chart 2 steps 7-19). In a multi story building, the analysis...
	18. The structure-EA provides each BFloor-OA with its structural analysis results (as assigned; l...
	19. Interface option (to allow the DA to validate task results not assigned directly by him/her):...
	20. Conditional (if step 19 is executed): DA validates the BFloor-OAs structural analysis results...
	21. Conditional (if alternative values are provided in step 20): Any BFloor-OA may reassign the t...
	22. Each BFloor-OA provides its structural analysis results to its block-OA. Each block-OA uses i...
	23. Conditional (if aggregation is performed in step 22): Each block-OA requests the structural-E...
	24. Conditional (if step is 23 executed): Task execution interactions (see Chart 2 steps 23-31)
	25. Conditional (if step 24 is executed): The structural-EA provides its aggregation evaluation r...
	26. Interface option (to allow the DA to validate task results not assigned directly by him/her):...
	27. Conditional (if step 26 is executed): The DA validates the block-OA results or provide altern...
	28. Conditional (if alternative values are provided in step 27): A block-OA reassigns the task to...
	29. Each block-OA provides its structural analysis results to the Building-OA. The Building-OA us...
	30. Conditional (if aggregation is performed in step 29): The Building-OA requests the structural...
	31. Conditional (if step is 30 executed): Task execution interactions (see Chart 2 steps 23-31)
	32. Conditional (if step 31 is executed): The structural-EA provides its aggregation evaluation r...
	33. The Building-OA provides its evaluation results to the DA. Conditional (if more than one Buil...
	34. Conditional (if aggregation is performed in step 33): The DA requests the structural-EA to ev...
	35. Conditional (if step is 34 executed): Task execution interactions (see Chart 2 steps 23-31)
	36. Conditional (if step 35 is executed): The structural-EA provides its aggregation evaluation r...
	37. Conditional (if the results provided in step or 36 are not satisfactory): The DA either reass...
	38. The DA validates the results (of step 33) of the Building-OA, or: provides alternative attrib...
	39. Conditional (if alternative values are provided in step 38): The Building-OA reassigns the ta...
	40. The Building-OA validates the results (of step 29) of each of its block-OAs.
	41. Each block-OA validates the results (of step 22) of each of its BFloor-OAs.
	42. Conditional (if attribute values of related DOs are to be modified): Each BFloor-OA updates t...
	43. Each BFloor-OA (of step 12) updates its DO information.
	44. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 steps...
	45. Each block-OA (of step 7) updates its DO information.
	46. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 steps...
	47. The Building-OA updates its DO information.
	48. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 steps...
	49. Conditional (if step 48 is executed): The Building-OA terminates itself.

	4.8 Chart 7. Handling Conflict Over Window Glazing Area

	This possible conflict situation arises when the DA is interested in evaluating the cost of a Roo...
	The scenario of this chart involves six main players; a DA, two Room-OAs of the same Room-DO, a W...
	The main players
	The DA is interested in evaluating the cost of a Room-DO.� The evaluation should include a cost c...
	The assigned task
	• The DA activates the Room-DO and assigns it a classified cost evaluation task, which, in turn, ...
	The major events
	• Interacting with the cost-EA, each activated OA runs a cost evaluation session regarding its ow...
	• The DA triggers a conflict handling session about the Window-OA1 to check for conflicts over th...
	• The OAs update the information of its DOs and terminates itself.
	Additionally the DA may request
	• The implementation of new attribute values of the Window-DO (or the any other attribute values ...
	1. For each evaluation session the assigned Room-OA1 provides the DA with information that may co...

	The expected results
	• cost of the Room-DO, and the classified cost as assigned (see the assigned task);
	• prototypical cost of each of the DOs above;
	• a warning for each DO that exceeds the specified prototypical cost.
	2. The DA examines either new DO attribute values for DOs in the task dependent hierarchy or new ...
	3. (Optional) The DA examines new DO attribute values for DOs interested in the attribute values ...
	4. (Optional) Implementation of examined DO attribute values and updating of the DO relations.

	The main steps are 25-50.
	Details of the interactions
	1. A DA assigns a cost evaluation task to a Room-OA (namely Room-OA1 in this chart).
	2. Conditional (if the appropriate protocols are not loaded): Room-OA1 loads the cost evaluation ...
	3. Conditional (if the targeted Window-DO is not activated): Room-OA1 sends an activation message...
	4. Conditional (if step 3 is executed): The Window-DO class instantiates a Window-OA. A Window-OA...
	5. Conditional (if step 4 is executed): Activation interactions (see Chart 1 steps 3-6).
	6. Room-OA1 assigns a cost evaluation sub-task to the Window-OA (a sub-OA in this chart).
	7. Conditional (if the appropriate protocols are not loaded): The Window-OA loads the cost evalua...
	8. Interacting with the cost-EA the Window-OA initiates a task execution session.
	9. Task execution interactions (see Chart 2 steps 7-19).
	10. The cost-EA provides its task execution results to the Window-OA.� The Window-OA stores the r...
	11. Interface option (to allow the DA to validate task results not assigned directly by him/ her)...
	12. Conditional (if step 11 is executed): The DA validates the results of the Window-OA, or: prov...
	13. Conditional (if alternative values are provided in step 12): The Window-OA reassigns the task...
	14. The Window-OA provides its task execution results to Room-OA1. Conditional (if aggregation is...
	15. Conditional (if aggregation is performed in step 14): Room-OA1 requests the cost-EA to evalua...
	16. Conditional (if step 15 is executed): Evaluation interactions (see Chart 2 steps 23-31) to ex...
	17. Conditional (if step 16 is executed): The cost-EA provides its evaluation of the aggregated r...
	18. Room-OA1 provides the DA with its task execution results for validation. Conditional (if more...
	19. Conditional (if aggregation is performed in step 18): The DA requests the cost-EA to evaluate...
	20. Conditional (if step 19 is executed): Evaluation interactions (see Chart 2 steps 23-31) to ev...
	21. Conditional (if step 20 is executed): The cost-EA provides its evaluation of the aggregated r...
	22. Conditional (if the results provided in either step 18 or step 21 are not satisfactory): The ...
	23. The DA validates the results (of step 18), or: provides Room-OA1 with alternative attribute v...
	24. Conditional (if alternative values are provided by the DA in step 23): The Room-OA runs eithe...
	25. Interface option (to allow for conflict check): The DA requests a conflict check (with other ...
	26. The Window-OA checks with its Window-DO for a list of DOs and OAs with interest in the target...
	27. The Window-DO provides a list of DOs and EAs interested in the targeted attribute values.�
	28. The Window-OA provides the DA with the list of interested DOs and EAs.
	29. Conditional (if the list contains one or more DO or OA): The DA selects a set of DOs and EAs ...
	30. Conditional (if step 29 is executed): The DO instantiates another Room-OA (of the same Room-D...
	31. Conditional (if step 30 is executed): Activation interactions (see Chart 1 steps 3-6).
	32. The DA assigns a daylighting evaluation task to Room-OA2 to examine the suggested window dime...
	33. Conditional (if the appropriate protocols are not loaded): Room-OA2 loads the daylighting pro...
	34. Interacting with the appropriate daylighting-EA Room-OA2 initiates a daylighting evaluation s...
	35. Task execution interactions (see Chart 2 steps 7-19).
	36. The daylighting-EA provides its evaluation results to Room-OA2.� Room-OA2 stores the results ...
	37. Room-OA2 provides its evaluation results to the DA. Conditional (if aggregation is needed): T...
	38. Conditional (if aggregation is performed in step 37): The DA requests the daylighting-EA to e...
	39. Conditional (if step 38 is executed): Evaluation interactions to evaluate the aggregation res...
	40. Conditional (if step 39 is executed): The daylighting-EA provides its evaluation of the aggre...
	41. Conditional (if the results provided in either step 37 or step 40 are not satisfactory): The ...
	42. The DA validates the results (of step 37), or: provides alternative attribute values for task...
	43. Conditional (if alternative values are provided by the DA in step 42): Room- OA2 runs another...
	44. Conditional (if the results provided in step 37 are not satisfactory): The DA sends a query r...
	45. Conditional (if step 44 is executed): The query-agent provides the DA with the applicable inf...
	46. Conditional (if the information provided in step 45 is not sufficient): The DA sends a modifi...
	47. Conditional (if the results of step 37 are not satisfactory): The DA reassigns another evalua...
	48. The DA validates the conflict handling session results (started in step 25).
	49. Room-OA1 validates the results of Window-OA1 (provided in step 14).
	50. Conditional (if there are more than one DO or EA in the set selected in step 29): The DA eith...
	51. Room-OA2 updates its DO information (after the implementation of the task results, see Chart ...
	52. Conditional (if no other task is to be executed): Termination interactions (see Chart 1 steps...
	53. Conditional (if step 52 is executed): Room-OA2 terminates itself.
	54. The Window-OA updates its DO information (after the implementation of the task results, see C...
	55. Conditional (if no other task is to be executed): Termination interactions (see Chart 1. step...
	56. Conditional (if step 55 is executed): The Window-OA terminates itself.

	FIGURE 4.1.

	Event-trace of the activation of a DO and the deactivation of an OA.
	FIGURE 4.2.

	Event-trace of task execution by a leaf-OA (where no further task decomposition is applicable).
	FIGURE 4.3.

	Event-trace of conflict handling among two leaf-OAs.
	FIGURE 4.4.

	Conflict handling cases.
	FIGURE 4.5.

	Event trace of a painting cost evaluation task executed by a BFloor-OA (classified per Room- DO).
	FIGURE 4.6.

	Event-trace of a daylighting evaluation task for a BFloor-OA.
	FIGURE 4.7.

	Event-trace of a structural analysis task executed by a Building-OA.
	FIGURE 4.8.

	Event-trace of a conflict handling session over a Window-OA glazing area attribute.
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	5 Task Handling Algorithms
	5.1 Which Tasks?

	In a decision making session the success of an OA depends on its ability to manage and utilize th...
	• Permanent in the environment, or in an active status even when not assigned tasks (i.e., have t...
	• Able to interpret changes in the environment (whether these changes are observed by the OA or r...
	• Able to execute tasks that are related either to its own state or to the states of other DOs or...
	Within the scope of this thesis, an OA may either execute tasks that are directly assigned by oth...
	• Temporal and only existing during the execution of an assigned tasks;
	• Not observing the environment and thus, cannot interpret more than a finite set of tasks that a...
	• Only able to execute tasks pertaining to their own state.�
	The expansibility of the OA capability to include self-initiated tasks requires further research ...
	Event-trace charts presented in Chapter 4 provide the basis for developing the set of task handli...
	Evaluation tasks are dependent on the notion of decomposition among applicable candidates of the ...
	Executing generation tasks, on the other hand, are not dependent on the notion of task decomposit...
	5.2 OA Task Execution Algorithms

	Once an OA is activated (i.e., a class instance is created and registered with its super-agent, s...
	Algorithm: ClassifyTask (task)

	start 1 if task-type == ? 2 case 1. ? == evaluate => Evaluate (Task-Domain, Task-Focus) 3 case 2....
	5.2.1 Evaluation

	An OA handles an evaluation task according to the task-domain and task-focus.� The OA uses the do...
	The task-focus affects the decomposition in a different manner.� If the task-focus implies a clas...
	The following examples show various task-focus cases which affect either the decomposition or the...
	• Block-DO total cost classified per BFloor-DO:
	As illustrated in Figure 5.2, all leaf-DOs of the construction categories are included in the dec...
	• Total cost of the StructElement-DOs classified per VZone-DO:
	Figure 5.3 shows a decomposition of a Block-DO cost evaluation task of StructElement-DOs’ (classi...
	• Total cost of a Block-DO that includes shared DOs:
	When a Wall-DO is shared among Block-DOs, another layer of computation is needed for decompositio...
	• Total cost of a Block-DOs when DO of classification is not a super-DO to the leaf-DOs:
	DO classes of the same level but in different branches of the OA hierarchy may act as super-OAs t...
	• Total painting cost:
	If paint is not represented explicitly as a DO class (i.e., Painting-DO or Paint-DO classes) in t...
	Accordingly evaluation tasks fall into one of the following cases:
	If no task decomposition is not required (e.g., the task is assigned to a leaf-OA in the DO-hiera...
	• case A: (task requires no decomposition) evaluate OA(e.g., Wall-OA cost) or; evaluate OA attrib...
	1. OA interacts with domain EA (e.g., Wall-OA interacts with Cost-EA)

	If task decomposition is required (e.g., the task is assigned to an OA that is neither a leaf-OA ...
	• case B (task requires decomposition) evaluate OA (e.g. BFloor-OA cost) or; evaluate OA attribut...
	1. decompose task among applicable leaf sub-DOs of the hierarchy (use the P_Domain decomposition ...
	2. repeat case A step 1 for each assigned sub-OA;
	3. aggregate results (use the OA P_Domain aggregation protocol).

	• case C: (task requires decomposition and classification of sub-results) evaluate OA classified ...
	1. decompose task among DOs of classification (e.g., Block-DOs);
	2. repeat case B step 1-3 for each activated DO (e.g., BLock-OA);
	3. aggregate results (use the OA P_Domain aggregation protocol).
	Algorithm: Evaluate (Task-Domain, Task-Focus)

	start 1 get P_Domain protocols (decomposition, sorting, aggregation) 2 MakeActivationList using t...
	line 2: Making the activation list
	In a hierarchy of an OA (OA-hierarchy hereafter, i.e., all constituent DOs and all their hierarch...
	1. related to the task and crucial to the execution of the task.
	2. related to the task but not crucial to the execution of the task.
	3. not related to the task.

	Therefore, an activation list (referred to as activationlist hereafter) of the sub- DOs to partic...
	An activation order may also be required for execution of certain tasks.� The default activation ...
	The context of a task is passed from a super-OA to a sub-OA throughout the decomposition.� In thi...
	1. The set of all DO classes (of the existing hierarchy) which are eligible for activation accord...
	2. The DO classes that should not to be activated are compiled in a “skiplist.”� The making of th...
	3. The “activationlist” is then compiled as the difference between the max- domain-hierarchylist ...
	4. The activationlist is sorted using the P_Domain sorting protocol to determine the order of act...

	The following definitions and properties can be deduced from the preceding discussion and are nec...
	max-domain-hierarchy: the set of all eligible classes for task decomposition in respect to this p...
	min-domain-hierarchy: the minimum set of DO-classes necessary to execute an assigned task.� This ...
	domain-hierarchybottom: a class or a set of classes which represent the lower boundary of a max-d...
	domain-hierarchytop: a DO class, which represent the top boundary of the max- domain-hierarchy.
	leaf-DOs: a set of DO-classes that contains all DOs at the lower end of each branch of a hierarchy
	DOclassification: a DO class used for classifying the results of executing an assigned task (e.g....
	activationlist: a set of DO classes of which instances are to be activated to execute sub-tasks d...
	skiplist: a list of DO classes to be skipped during the activation of sub-DOs of an OA-hierarchy....
	interest context: the reasons for which an agent or a DO attribute is interested in another DO at...
	activation order: the order of activating DOs in an OA-hierarchy during the execution of a task.
	Making the skiplist (as a requirement for making the activationlist)
	The skiplist is used by the “MakeActivationList” algorithm to compile the activationlist.� If no ...
	1. P_Domain specified: The P_Domain protocol must provide a min- domain-hierarchy and may provide...
	2. DA specified: If the DA provided a DA_Skiplist all DO classes included must be in the final sk...
	3. Default: A Default_Skiplist is compiled if no skiplist is provided by either the P_Domain prot...

	From the previous discussion we can deduce that:
	• An OA-hierarchy is a subset of a provided DO-hierarchy (see Figure 5.6);
	• An OA-hierarchy is typically a subset of the max-domain-hierarchy (see Figure 5.6).� It is poss...
	• An OA-hierarchy may be a subset of the min-domain-hierarchy (see Figure 5.7B).� In such case th...
	• The min-domain-hierarchy is a subset of the max-domain-hierarchy;
	• The min-domain-hierarchy must exist as a subset in the activationlist;
	• The activationlist is a subset of the max-domain-hierarchy;
	• The skiplist is a subset of the OA-hierarchy, and in most cases is also a subset of the max-dom...
	• If a min-domain-hierarchy = activationlist => skiplist is maximum;
	• If max-domain-hierarchy = activationlist => skiplist is minimum (may be empty).
	Algorithm: MakeSkipList

	start # check that DA_Skiplist does not include min-domain-hierarchy DOs # 1 if Intersection (DA_...
	Algorithm: MakeActivationList

	start 1 if DOclassification is in max-domain-hierarchy 2 activationlist ¨ Union (Difference (max-...
	Algorithm: SortActivationList (activationlist)

	start 1 get P_Domain sorting protocol 2 oldSortedlist ¨ null 3 newSortlist ¨ null 4 For each DO i...
	Algorithm: InsertDOInSortedList (DO, oldSortedList, newSortedList)
	start 1 if oldSortedlist == null 2 Insert (DO, oldSortedlist) 3 else 4 if first DO of oldSortedli...
	Line 8: Aggregation
	Any decomposition of a task to sub-tasks is counter balanced with an aggregation of the sub-resul...
	Aggregation is not necessarily an addition of sub-results, it may require further computation by ...
	Algorithm: Aggregate (sub-results)
	start 1 check sub-DO IDs for repeated sub-results, or check results IDs 2 sub-resultslist ¨ sub-r...
	Line 7: Validating results
	Any task execution or aggregation result must be validated before it is returned to the super-age...
	Algorithm: Validate (result, validation mode)
	start 1 if validation mode == ? 2 case 1. ? == DA validation requested => DAValidation (result) 3...
	Algorithm: DAValidation (result)
	start 1 get DA validation 2 if results are not validated 3 get DA’s new values for re-evaluation ...
	Algorithm: SuperOAValidation (result)

	start 1 get super-agent validation 2 if results are not validated 3 error message 4 else (results...
	Algorithm: SelfValidation (result)
	start 1 InteractForSerivce (domain-EA) to evaluate results => return results 2 if results are not...
	Algorithm: NoValidation (result)
	start 1 return validation end
	5.2.2 Conflict Handling

	As explained in section 3.1 of Chapter 3 and illustrated in Chart 7 of Chapter 4, the conflict ha...
	Within the framework of this thesis, conflict detection is dependent on the OAs informing the DA ...
	Within the framework of this thesis conflict resolution is a series of DA controlled local evalua...
	The conflict detection uses attribute lists of interested agents and attributes from other DOs an...
	• Agents such as daylighting-EA, cost-EA, thermal-EA and elevation-EA;
	• Attributes of DO classes such as coordinates of StructElement-DO, Wall- DO width and height;
	• Attributes of the same DO class such as Window-DO glazing-type, window-type and shading device ...
	If the Window-DO glazing is modified each of the agents or DO attributes above may be affected in...
	How is the interestlist compiled?
	Each attribute of a DO has an interestlist associated with it upon creation.� The selection of th...
	It is possible to dynamically add more members in an interestlist during a session.� The addition...
	When an attribute value is being modified and checked for potential conflict each member of the i...
	1. a daylighting-EA should be in the interestlist of any Window-DO glazing attribute;
	2. a Wall-DO thermal mass attribute should be in the interestlist of its own Wall-DO thickness at...
	3. a Door-DO thickness attribute should be in the interestlist of the Wall-DO thickness (where th...

	The first example represents the general case and can be applied to any instances of a Window-DO ...
	To avoid redundancy in representation of attribute relations, attribute1 should not be in the int...
	A domain-EA registered in the interestlist of an attribute1 of OA1 may participate in a conflict ...
	• is currently providing service to OA2 using the same attribute1.� OA2 can either be another OA ...
	• previously provided service to an OA2 regarding the attribute1.� This case may only be consider...
	Each member in the interestlist is coupled with an “interest context”.� The context conveys the r...
	.�
	TABLE 5.1. An example of an Interestlist of a DO Attribute

	an interestlist of Wall-DO1 thickness attribute
	#
	DO-inst/Agent
	interested attribute
	interest context
	interact/activate
	1
	Acoustic-EA
	N/A
	Room-DO1 noise level
	Room-DO1
	2
	Wall-DO1
	thermal time lag (hr)
	Room-DO1 thermal comfort
	Thermal-EA
	3
	Door-DO1
	thickness (in)
	Wall-DO1 assembly (cont.)
	Geometry-EA
	In Table 1 an interestlist of a Wall-DO thickness attribute may include members such as: member “...
	How is the interestlist sorted with respect to the degree of importance of conflicts?
	The order of an interestlist should be subject to change according to the task in hand.� To do so...
	Controlling the conflict handling dependencies
	The recursive effect of changing a single attribute value of a DO on other DOs may reach deeply n...
	Constraint Satisfaction and the interestlist mechanism
	The notion of an attribute interestlist may project a conflict with the notion of a constraint ne...
	Algorithm: ConflictChecking&Handling

	start 1 provide the interestlist of attribute1 (being modified) of OA1 to the DA 2 prompt the DA ...
	Algorithm: DomainEAConflictSession (OA1, OA2)

	start 1 Assign OA2 an evaluation task to examine the new value of attribute1 in respect to the cu...
	Algorithm: ActiveDomainEAConflictSession (OA1)

	start 1 Activate (DO) (a duplicate of OA1 to conduct the new evaluation session) => return OA2 2 ...
	Algorithm: AttributeConflictSession(DO, OA1)

	start 1 if DO ¹ DO1 2 Activate (DO) => return OA2 (an OA of a different DO) 3 else (DO == DO1, lo...
	Algorithm: EvaluateConflictAlternatives (OA1, OA2)

	start 1 get alternative attribute values from DA 2 if alternative attribute values are provided 3...
	Line 24: Updating
	After the results of both task execution and conflict handling are validated, the OA has to updat...
	• Firstly, checking the constraints network.� The DO attributes being updated may be linked with ...
	• Secondly, to update the information of any clones of the DO which are used simultaneously by ot...
	Algorithm: Update (new-values)

	start # check for constraints satisfaction with other DOs # 1 for each constraint of the attribut...
	Algorithm: CheckConstraint (constraint, new attribute value)
	start 1 ApplyConstraint (new-value) 2 if new value does not satisfy constraint 3 error message 4 ...
	5.3 Examples of P_Domain protocols.

	As demonstrated by the algorithms of this chapter, the OA protocols are mainly domain dependent.�...
	5.3.1 Cost Evaluation Protocols

	Cost evaluation decomposition protocol
	• skiplist: N/A
	• min-domain-hierarchy: all leaf-DO classes (of the construction branch);
	• max-domain-hierarchy: [domain-hierarchytop -- domain-hierarchybottom];
	• domain-hierarchytop: Site-DO;
	• domain-hierarchybottom: leaf-DO level (of the construction branch).
	Cost evaluation sorting protocol
	• decomposition order: [Site-DO, Building-DO & LandScElement, Block- DO, and Leaf-DOs (of the con...
	• typical evaluation order: top-down;
	• special evaluation order: DOclassification is first in level.
	Cost evaluation aggregation protocol
	• aggregation-type: Site-DO (and below) => Request service from cost-EA
	5.3.2 Structural Analysis Protocols

	Structural analysis decomposition protocol
	• skiplist: Site-DO, all leaf-DO classes excluding the StructElement-DO class;
	• min-domain-hierarchy: [BFloor-DO, StructElement-DO];
	• max-domain-hierarchy: [domain-hierarchytop -- domain-hierarchybottom];
	• domain-hierarchytop: Building-DO;
	• domain-hierarchybottom: StructElement-DO.
	Note: In a Structural recommendation protocol min-domain-hierarchy does not include StructElement...
	Structural analysis sorting protocol
	• decomposition order: [Building-DO, Block-DO, VZone-DO BFloor-DO, HZone-DO, StructElement-DO];
	• typical analysis order: carried loads (top-down order, higher loads are added to the lower ones...
	• special analysis order: suspended loads (bottom-up order, lower loads are added to the higher o...
	Structural analysis aggregation protocol
	• aggregation-type: Site-DO => listing (e.g., table) Building (and below) => Request service from...
	5.3.3 Daylighting evaluation protocols

	Daylighting evaluation decomposition protocol
	• skiplist: LandScElement-DO, all leaf-DO classes excluding the Opening- DO class and the Layer-D...
	• min-domain-hierarchy: [Room-DO, Wall-DO, Ceiling-DO, Floor-DO, Opening-DO];
	• max-domain-hierarchy: [domain-hierarchytop -- domain-hierarchybottom]
	• domain-hierarchytop: Building-DO;
	• domain-hierarchybottom: Opening-DO.
	Daylighting evaluation sorting protocol
	• decomposition order: [Building-DO, Block-DO, VZone-DO BFloor-DO, HZone-DO, Room-DO, Opening-DOs];
	• typical evaluation order: top-down;
	• special evaluation order: must exhaust all Room-DOs with shared Opening-DOs.
	Daylighting aggregation protocol
	• aggregation-type: BFloor-DO (and above) => listing (e.g., table) Room-DO (and below) => Request...
	FIGURE 5.1.

	Decomposition of a Block-DO cost evaluation task.
	FIGURE 5.2.

	Decomposition of a Block-DO cost evaluation task (classified per BFloor-DO).
	FIGURE 5.3.

	Decomposition of a Block-DO cost evaluation task of StructElement-DOs’ (classified per VZone-DO).
	FIGURE 5.4.

	Decomposition of a Block-DO structural analysis task.
	FIGURE 5.5.

	Decomposition of a BFloor-DO daylighting evaluation task.
	FIGURE 5.6.

	Relation between Hierarchies (general case): min-domain- hierarchy < OA-hierarchy < max- domain-h...
	FIGURE 5.7.

	Special Case Relation Between Hierarchies:
	A) Case 1: min-domain-hierarchy < max-domain-hierarchy < OA- hierarchy.
	B) Case 2: OA-hierarchy < min- domain-hierarchy < max- domain-hierarchy
	FIGURE 5.8.

	Relation Between a Skiplist and an Activationlist (general case).
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	6 Implementation Design
	6.1 Object Oriented Implementation

	Originally, the implementation of the OA model started within a rule-based development environmen...
	A later version of CLIPS (namely CLIPS6.0) provided a rule-based object- oriented test bed for th...
	A later decision to design the implementation of the OA model using a complete object oriented de...
	The reminder of this chapter focuses on the development of the general object model for an OA-bas...
	6.2 The Object Models

	Using an OODE, object models are necessary to represent the architecture of any OA-based environm...
	6.2.1 The general object model

	The general object model, shown in, Figure 6.1, is structured around the ‘Environment’ class, whi...
	The ‘Agent’ class is the super-class of a classified hierarchy of different agent classes includi...
	The ‘DataObject’ class is the super-class of any hierarchy of the domain DOs.� It holds links to ...
	The relation between the ‘DataObject’ class and both ‘A_Object’ class and ‘P_ObjectType’ class in...
	A brief explanation of the object relation is necessary before discussing the unique relations of...
	Object Relations
	The general object model, shown in Figure 6.1, comprises a collection of objects with aggregation...
	Association
	An association relationship is a link between two classes.� There may exist more than one associa...
	Aggregation
	An aggregation relationship is marked by a diamond shape attached to the class box indicating the...
	Conceptually, an aggregation relationship is a specialization of an association relationship.� It...
	Generalization
	A generalization relationship represents the relation sub-class/super-class, and is marked by an ...
	The general object model comprises the following object classes.� All object classes are identifi...
	Session
	An instance of the ‘Session’ class would contain information needed to manage the decision making...
	Environment
	An instance of the ‘Environment’ class would contain the main players needed for decision making ...
	Scenario
	An instance of the ‘Scenario’ class holds the information of a sequence of decision making events...
	Agent
	This class contains all possible agent classes within an environment.� The common behavior of an ...
	Task
	An instance of the ‘Task’ class holds information about an assigned task.� Such information as ta...
	Result
	An instance of the ‘Result’ class holds information about the result of the execution of the assi...
	Goal
	An instance of the ‘Goal’ class holds information about what need to be accomplished as a result ...
	A_DecisionMaker
	This class contains all possible DM classes within an environment.� A DM initiate sessions, compi...
	A_D_Principal
	An instance of the ‘A_D_Principal’ class holds information about a principal DM who is granted al...
	A_D_Secondary
	An instance of the ‘A_D_Secondary’ class holds information about a DM who is given limited author...
	A_System
	This class contains all possible SA classes, namely all UAs that are essential to the environment...
	A_S_Utility
	An instance of the ‘A_S_Utility’ class is a UA which is environment specific agent such as a comm...
	A_S_Expert
	An instance of the ‘A_S_Expert’ class is an EA which is a domain specific application (an executa...
	A_object
	An instance of the ‘A_object’ class is an OA which is a temporal agent of DO performing an assign...
	Protocol
	This is the super class of all the protocol classes.� The sub-class of this class contain the int...
	P_ObjectType
	This is the super class of all the DO-coupled protocol classes.� Each DO in the environment must ...
	P_TaskType
	This is the super-class of all protocols related to the task-types that can be performed in the e...
	P_Domain
	An instance of the ‘P_Domain’ class holds information about the task-domain (e.g., cost, structur...
	DataObject
	This is the super class of all DO classes within an environment.� Various domain specific DO clas...
	Constraint
	An instance of the ‘Constraint’ class represents a constraint on a single attribute value of a DO...
	ConstraintArc
	An instance of ‘ConstraintArc’ class represents a constraint relation between;
	• Two attribute values, which may belong to the same DO or to two different DOs;
	• An attribute value and another constraint arc;
	• Two ‘Constraint’ objects;
	• Two ‘ConstraintArc’ objects.�
	A ‘ConstraintArc’ object has one or more logical expressions or mathematical equations that repre...
	6.2.2 A domain specific object model

	Two domain specific object models are presented in this section.� The first is for architectural ...
	In the first model, the first added set is a set of architectural DOs classified as sub-classes o...
	This classification is exemplary and can be collapsed or expanded to accommodate other related DO...
	The second set is a group of sub-classes of the ‘P_ObjectType’ class.� It provides the associated...
	Figure 6.3 provides a second example of domain specific model for structural engineering.� As in,...
	6.3 DO-Hierarchies

	DO-hierarchies are used for task decompositions (see Sections 4.3.4 and 6.2.1).� The DM may either:
	1. Establish a new hierarchy of the DOs of the environment.
	2. Use existing hierarchy which may either be provided by the environment or saved from a previou...

	Agents of the environment uses the current DO-hierarchies (as established by the DM) and may not ...
	The model also includes few non-design objects such as Occupant, Activity, Landscape, and Topogra...
	Except Occupant and Activity objects, each object in Figure 6.4 typically has an enclosure with v...
	6.4 Implementation Design of the Activation Process

	The following scenario is provided to illustrate how an OA is created according to the architectu...
	• An agent (e.g., DM) requests the activation of a DO_E_Room to perform a daylighting evaluation ...
	• The request is received by the ‘A_Object’ class which, in turn, creates a Room-OA instance (an ...
	• The A_O_Room requests a clone of the DO_E_Room (a copy of the exact DO_E_Room being activated).�
	• Provided the clone, the A_O_Room would load the interaction protocols related to its DO-type (m...
	• The DM assigns the task to the created A_O_Room, which, in turn, loads the task-type protocols ...
	• The A_O_Room also loads the domain specific daylighting protocols (makes an instance of the ‘P_...
	• The A_O_Room is now ready to interact with the environment agents to complete the execution of ...
	This Scenario is generalized in the activation diagram provided in Figure 6.6.� The implementatio...
	Detailed steps of the activation process shown in Figure 6.6:
	1. activate: a DM (or any agent) send an activation message to a DO;
	2. new OA: the DO instantiates an OA object;
	3. register: the OA registers itself in the OAs list of the DO;
	4. register: the DO registers itself in the DOs list of the OA;
	5. clone: the OA requests a clone of the DO;
	6. new clone: the DO duplicates itself.� In addition, the DO registers itself with the DO-Clone);
	7. register: clone registers itself in the clones list of the DO;
	8. register: DO-Clone registers itself in the clones list of the OA;
	9. register: OA registers itself with the DO-Clone;
	10. new P_ObjectType: the OA instantiates a new object-type protocol object of the same DO-type (...
	11. register: the P_ObjectType registers itself in the Protocols list of the OA;
	12. register: the OA registers itself in the sub-agents list of the DM;
	13. assign: the DM assigns a task to the OA;
	14. new task: the OA instantiates a new Task object.� In addition, the OA registers itself in the...
	15. new goal: the Task instantiates a new Goal object.� In addition, the Task registers itself wi...
	16. register: the Goal registers itself in the goals list of the Task;
	17. new result: the OA instantiates a new Result object.� In addition, the Task registers itself ...
	18. register: the Result registers itself in the results list of the Task;
	19. new P_TaskType: the Task instantiates a task-type protocol object of the same task-type (e.g....
	20. register: the P_TaskType registers itself in the Protocols list of the Task;
	21. new P_Domain: the Task instantiates a domain protocol object of the same task-domain and task...
	22. register: the P_Domain registers itself in the Protocols list of the Task;
	23. register: the Task registers itself in the tasks-in list of the OA;
	24. register: the OA registers itself in the tasks-out list of the DM;
	25. execute task: OA starts executing the assigned task (this step is not included in Figure 6.5).

	Figure 6.7 shows an object model of an OA after it is instantiated, assigned a task and loaded th...
	6.5 The Objects Implementation Design

	This section presents the design of objects of the model shown in Figure 6.1 to be developed in a...
	6.5.1 The object structure

	As in any OODE, each object has three main components; a name, a set of attributes and a set of m...
	The object names follow a convention that is specific to this framework.� Names of objects in the...
	Naming convention
	Object attributes are holders to the necessary information of the object.� Each attribute is decl...
	Attributes
	The attributes are also relation holders.� For instance, an attribute of the type ‘<object-name> ...
	The objects illustrated on this chapter are produced in OMTool and, therefore, they follow the OM...
	In this implementation design most of the attributes are protected.� Therefore, accessing the inf...
	An attribute may be set to a specified default value upon creation of the object instance.� For e...
	As in any OODE, the object methods serves primarily as the interface to its own attributes.� Exte...
	Methods
	Typically, common attributes of the types ‘char *’, ‘bool’, ‘int’, ‘float’ and ‘<object-name> *’a...
	In each object there is a ‘Constructor’ method and a ‘Destructors’ method.� A constructor method ...
	Other methods are designed to achieve environment specific functions such as the ‘activate’ and ‘...
	6.5.2 Characterized attributes of objects in the OA model

	The following section describes few characterized attributes of selected objects from those shown...
	Attributes of the ‘Session’ class (of Figure 6.8):
	• environments: a list of all saved environments
	Attributes of the ‘Environment’ class (of Figure 6.8):
	• session: a link to the Session where this Environment is created
	• scenarios: a list of all saved Scenarios of this Environment
	• agents: a list of Agents currently active in this Environment
	• DOs: a list of DOs currently instantiated in this Environment
	Attributes of the ‘Scenario’ class (of Figure 6.8):
	• environment: a link to the Environment where this Scenario is recorded
	Attributes of the ‘DataObject’ class (DO) (of Figure 6.9):
	• activationstatus: a boolean to indicate whether an OA for this DO is currently active
	• clones: a list of all clones of this DO currently used by OAs
	• numofclones: number of clones on the previous list
	• interestlist: a list of interested DOs and EAs for each attribute of the DO
	• shared: a boolean to indicate whether the DO is a shared one
	• OAs: a list of OAs that are currently representing the DO
	• clonesof: the DO of which this clone is a duplicate of (only when the DO is a cloned instance)
	• master: the first OA that is currently representing the DO
	• environment: the current environment where the DO exists
	• constraints: a list of all constraints on the DO attributes
	• arcs: a list of all constraint arcs linking the DO attributes with other attributes, constraint...
	Attributes of the ‘Constraint’ class (of Figure 6.9):
	• DO: the DO of the constrained attribute
	• arcs: a list of all constraint arcs linking this constraint with other attributes, constraints ...
	• attribute: the attribute name
	• min: the lower bond of the constraint acceptable range
	• max: the upper bond of the constraint acceptable range
	Attributes of the ‘ConstraintArc’ class (of Figure 6.9):
	• DOs: a list of DO using this constraint arc
	• arcends: a list of attributes, constraints, and constraint arcs linked by this constraint arc
	• expression: an expression that represents the link between the arc-ends.
	• value: the current evaluation of the constraint arc expression (e.g., mathematical equation)
	Attributes of the ‘Agent’ class (of Figure 6.10):
	• superagents: a list of all agents that are currently assigning a task to this agent
	• subagents: a list of all agents that are currently assigned tasks by this agent
	• tasksout: a list of all assigned tasks by this agent
	• taskin: a list of all tasks assigned to this agent
	• environment: the environment where this agent currently exists
	Attributes of the ‘A_Object’ class (of Figure 6.10):
	• DOs: a list of all DOs that are currently represented by this OA
	• clones: a list of all clones that are currently used by this OA
	Attributes of the ‘Task’ class (of Figure 6.11):
	• assignedby: the agent that assigned this task
	• focus: the main attribute to be modified or the alternative attribute value to be examined
	• subtasks: a list of all sub-tasks assigned to other agents as a results of executing this task ...
	• assignedto: a list of all sub-agents that are currently assigned sub-tasks by this task
	• satisfied: a boolean to indicate whether this task is executed successfully
	• results: a list of all results generated as a result of executing this task
	• goals: a list of all goals to be accomplished by the execution of this task
	• protocols: a list of all protocols that are currently loaded for the execution of this task
	Attributes of the ‘Goal’ class (of Figure 6.11):
	• maxvalue: upper bond of the acceptable value range
	• minvalue: lower bond for the acceptable value range
	• unit: units of measurement (of the values)
	• task: the task of which this goal is related
	Attributes of the ‘Result’ class (of Figure 6.11):
	• value: the current result value
	• task: the task of which this result is related
	Attributes of the ‘Protocol’ class (of Figure 6.12):
	• OA: a list of all OAs that are currently using this protocol
	The following two objects are exemplary damian protocols.� These are not included in the object m...
	Attributes of the ‘P_D_Decomposition’ class (of Figure 6.12):
	• skiplist: a list of all DOs to be skipped during the decomposition of a task
	• mindomainhierarchy: a set of the minimum DO classes needed for the execution of tasks of this d...
	• maxdomainhierarchy: a set of the maximum DO classes that can be included for the execution of t...
	• domainhierarchytop: a DO class that marks the upper bond of the domain- hierarchy
	• domainhierarchybottom: a set of DO classes that mark the lower bond of the domain-hierarchy
	Attributes of the ‘P_D_Sorting’ class (of Figure 6.12):
	• evaluationorder: the general orientation of task decomposition
	• decompositionorder: an ordered list of DO classes used as a specific guide for task decompositi...
	• doclassification: a DO class where the task result is classified about (e.g., cost of a BFloor-...
	• specialcaseorder: an additional variable to accommodate special cases of task decomposition.
	FIGURE 6.1.
	A general object model of an OA environment
	FIGURE 6.2.
	An object model of an architectural environment.
	FIGURE 6.3.
	An object model of a structural environment.
	FIGURE 6.4.
	An architectural object hierarchy.
	FIGURE 6.5.
	Object model for geometrical representation.
	FIGURE 6.6.
	The implementation design of the activation process.
	FIGURE 6.7.
	Object model of an OA.
	.
	FIGURE 6.8.
	Session, Environment and Scenario Objects.
	FIGURE 6.9.
	DataObject (DO), Constraint and ConstraintArc objects.
	FIGURE 6.10.
	Agent and A_Object (OA) Objects.
	FIGURE 6.11.
	Task, Goal, and Result Objects.
	FIGURE 6.12.
	Protocol, P_D_Decomposition and P_D_Sorting objects.
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	7 Conclusions
	7.1 Contributions

	During the past two decades, several design support tools have been developed for both research a...
	7.1.1 Specific contributions

	This thesis is structured around the development of a framework for an a object- agent-based deci...
	• A general architecture of an object-agent-based environment as a demonstration of how a design ...
	• A computational framework for task execution, decomposition, delegation, and management for glo...
	• A set of general and domain specific reusable patterns of interaction needed to allow a designe...
	• A set of interaction algorithms (mainly for activation, decomposition and conflict handling) to...
	• A mechanism for compiling an activation list to contain the design objects which can (or must) ...
	• A general object oriented implementation design for an object-agent- based environment was engi...
	7.2 Research Topics and Agenda for Future Work

	This dissertation addresses a number of fundamental issues around the notion of agency in design....
	7.2.1 Object-agents knowledge

	Access to and interpretation of external knowledge beyond the immediate coordination knowledge of...
	1. A global communication mechanism;�where agents can participate in communication systems where ...
	2. Planning long term activities;�where agents can dynamically plan activities considering other ...
	7.2.2 Conflict handling mechanism

	In conflict handling situations, enabling agents (in general) to conduct direct negotiations with...
	Another area of work that is specific to the OA, is the enhancement of the conflict detection mec...
	1. Sorting the interest list;�establishing a weight mechanism to enable object-agents to sort any...
	2. Controlling conflict dependencies; establishing a mechanism to control the number of conflict ...
	7.2.3 Object-agent autonomy in design

	Agent autonomy and the ability to self-initiate tasks, plan activities, handle expanded goals can...
	1. Self-initiated tasks;�in addition to executing assigned tasks object-agents should have the ab...
	2. Expanding the notion of goals for object-agents;�an object-agent executing a task may then enc...
	7.2.4 Interface of an object-agent-based environment

	An object-agent-based environment is a highly interactive system.� Therefore, interface design pl...
	1. Providing and manipulating task dependent hierarchies;�an interface should provide functionali...
	2. Controlling the flow of task executions;�through the interface the designer should be aware (u...
	3. Managing conflict handling sessions; the interface should provide the designer with the means ...
	4. Facilitating communications among agents; to control the interactions among agents of the envi...
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	A Appendix: Terms and Definitions
	For ease of reference, I have collected, into this appendix, the definitions that are pertinent t...
	The following terms are general and are used in all chapters.
	A.1 Decision Makers, Designers and Artifacts.
	Def. A.1.1 Decision Maker


	Is a principal agent in an environment.�
	The decision maker manipulates representations of a problem state and guides the other agents eff...
	The distinction between a decision maker and other agents lies in the fact that the decision make...
	Def. A.1.2 Designer

	Is a decision maker who manipulates representations of an artifact being designed to reach an acc...
	Def. A.1.3 Artifact

	A real world product.�
	Example.� In an architectural context, a building is an artifact.
	The following terms are used in Chapters 3 through 7.
	A.2 Data-Objects.
	Def. A.2.1 Data-object


	A data-object is a representation of an artifact or some part of it.�
	A data-object generally contains geometric and non-geometric information about the artifact.� The...
	Def. A.2.2 Data-Object Type

	A collection of data-objects that identify a relationship.
	Example.� In an architectural context, a wall type is a data-object type.
	Def. A.2.3 Sub-Data-Object

	A data-object that is a constituent of another data-object in a data-object hierarchy.� It is a s...
	Def. A.2.4 Super-Data-Object

	A data-object that is a container of a another data-object in a data-object hierarchy.� It is a s...
	Def. A.2.5 Joint Data-Object

	A data-object that is a sub-data-object of more than one data-object in the data-object hierarchy.�
	Example.� A shared wall between two spaces can be a joint data-object.
	Def. A.2.6 Active and Passive Data-Object

	A data-object is active if there is an object-agent for it; and passive otherwise.�
	Def. A.2.7 Data-Object State

	The values, at a any given time, of the attributes and relationships (to other data-objects) of a...
	Only agents can alter the data-object state.
	Def. A.2.8 Data-Object Goal State

	A final data-object state.�
	Def. A.2.9 Design State

	The collective state of all data-objects in an environment.�
	This is distinct from the ‘state’ of the environment in that it reflects the data values as can b...
	Def. A.2.10 Goal State

	A final design state.
	A.3 Agents
	Def. A.3.1 Agent


	An entity with the ability to initiate actions, perform tasks, and interact with other agents in ...
	Agents are executable.� Any agent executing a task is bound to return execution results or error ...
	Def. A.3.2 Object-Agent

	An object-agent is an agent that represents a data-object.�
	An object-agent is a temporal version of its data-object; it contains prototypical and domain spe...
	Note that the distinction between object agency and methods is that the object-agent has the abil...
	Def. A.3.3 Object-Agent Type

	A collection of object-agents of the same data-object type.
	Example.� In an architectural context, a wall object-agent type is an object- agent type.
	Def. A.3.4 Sub-Agent

	An agent that is assigned a task by another agent.� The agent is a sub-agent within the context o...
	Def. A.3.5 Super-Agent

	An agent that has assigned a task to another agent.� The agent is a super-agent within the contex...
	Def. A.3.6 Composite-Agent

	A composite-agent is an object-agent that is created from more than one data- object.� It has inf...
	Def. A.3.7 Joint-Agent

	A joint-agent is an object-agent of a joint data-object.
	Def. A.3.8 System-Agent

	A system-agent is an agent that performs a set of related domain specific tasks for other agents....
	Def. A.3.9 System-Agent Type

	A set of domain related system-agents.�
	Def. A.3.10 Activation

	Activation is a task assigned by an agent to bring an entity to participate in a current session.�
	To activate a system-agent is to load the system-agent into the current session.� To activate a d...
	Def. A.3.11 Deactivation

	Deactivation is a task assigned by an agent to remove an agent from the current decision making s...
	To deactivate a system-agent is to unload the system-agent from the session.� To deactivate an ob...
	A.4 Task Execution
	Def. A.4.1 Action


	Acts executed by an agent.
	Def. A.4.2 Action Type

	A set of related actions.� An action type is simple whenever an agent executes a single act, and ...
	Def. A.4.3 Task

	An assignment of service to be performed by an agent.� A task can be simple or complex depending ...
	Note that tasks are assigned, actions are not.�
	Def. A.4.4 Task Type

	A set of related tasks.�
	Typically, task are related by context.� Examples of context include evaluation, generation and i...
	Def. A.4.5 Direct Task

	A task performed by an assigned agent (i.e., without the need to decompose and distribute the tas...
	Def. A.4.6 Indirect Task

	A task that is performed by a sub-agent as a result of decomposition or distributing a another task.
	Def. A.4.7 Plan

	An ordered sequence of actions towards a state.�
	Def. A.4.8 Task Handling Protocol

	A plan executed by one or more agents to perform a task.�
	Task handling protocols may be general or specific.� General protocols are independent of both ob...
	Performing tasks
	An object-agent employs a set of general task handling protocols for each task type.� Its object-...
	Def. A.4.9 Interaction protocol

	Is a set of data-object type-specific instructions that enables an object-agent (of this data-obj...
	A.5 Task Decomposition
	Def. A.5.1 Data-Object-Hierarchy


	The global data-object class hierarchy used by the designer at any point in time.�
	The data-object-hierarchy may be compiled by the designer or provided as an exemplar hierarchy in...
	Def. A.5.2 Object-Agent-Hierarchy

	A set of data-object classes each of which is a constituent of the object-agent or a constituent ...
	Def. A.5.3 Max-Domain-Hierarchy

	The set of all eligible classes for task decomposition with respect to this particular domain.� T...
	Def. A.5.4 Min-Domain-Hierarchy

	The minimum set of data-object-classes necessary to execute an assigned task.� This set is define...
	Def. A.5.5 Domain-Hierarchybottom

	A class or a set of classes which represent the lower boundary of a
	max-domain-hierarchy�.
	Def. A.5.6 Domain-Hierarchytop

	A data-object class which represent the top boundary of the
	max-domain-hierarchy.
	Def. A.5.7 Leaf-Data-Object

	A data-object class at the lower end of each branch of a data-object-hierarchy
	Def. A.5.8 Data-Objectclassification

	A data-object class used for classifying the results of executing an assigned task.
	Example.� In evaluating the cost of a BFloor-data-object per
	Room-data-object (see the example in chapter 4), the Room-data-object class is the data-objectcla...
	Def. A.5.9 Activationlist

	A set of data-object classes were their instances are to be activated to execute sub-tasks during...
	Def. A.5.10 Skiplist

	A list of data-object classes to be skipped during the activation of sub-data- objects of an obje...
	Def. A.5.11 Activation Order

	The order of activating data-objects in an object-agent-hierarchy during the execution of a task.
	Def. A.5.12 Task Dependent Hierarchy

	The hierarchy of the data-objects in the activationlist.�
	This is the hierarchy of data-objects that participate in the decomposition with respect to the t...
	A.6 Conflict Handling
	Def. A.6.1 Conflict


	An attribute value that is being modified to a new value causing an interested data-object or exp...
	Def. A.6.2 Conflict handling

	The process by which a conflict is detected and resolved.
	Def. A.6.3 Conflict detection

	The process by which the decision maker becomes aware of a conflict.
	Def. A.6.4 Conflict Resolution

	The process by which a decision maker is able to arrive at a set of acceptable values for all int...
	In a sense, conflict resolution is a series of local bilateral evaluation sessions involving the ...
	Def. A.6.5 Conflict Prevention/Control

	The process by which a decision maker is able to avoid or reduce the number of conflict handling ...
	Def. A.6.6 Attribute Interestlist

	A list of data-object attributes and expert-agents that are interested in this attribute value.� ...
	Def. A.6.7 Interest Context

	The reasons of which an agent, or a data-object attribute is interested in another data-object at...
	Def. A.6.8 Interested Attribute

	An data-object attribute that is registered in the interestlist of another data- object attribute.
	Def. A.6.9 Interested Data-Object

	A data-object with at least one attribute registered in the interestlist of an another data-objec...
	Note that, within the same data-object, an attribute may be registered in the interestlist of ano...
	Def. A.6.10 Interested Expert-Agent

	An expert-agent that is registered in the interestlist of data-object attribute.�
	Def. A.6.11 Conflict Focus

	An object-agent that is currently providing an interestlist for a conflict check.�
	Def. A.6.12 Conflict Zone

	The two object-agents involved in a conflict handling session.�
	Def. A.6.13 Direct Conflict Handling

	A conflict handling session involving two object-agents one of which is the conflict focus.�
	Def. A.6.14 Indirect Conflict Handling

	A conflict handling session involving two object-agents none of which is the conflict focus.�
	Accordingly, the conflict zone does not necessarily include the conflict focus.
	A.7 Abbreviations

	In this dissertation, the following abbreviations are employed:
	Data-Object Æ DO
	Object-Agent Æ OA
	System-Agent Æ SA
	Expert-Agent Æ EA (a specialization of a System-Agent)
	Utility-Agent Æ UA (a specialization of a System-Agent)
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	B Appendix: Actions, Tasks and Interactions
	Agents interact whenever one communicates to another.� They trigger others to take actions.� The ...
	Actions are either simple or complex;
	Action Types
	Simple actions require the execution of a single act by sending a message (or simply use an objec...
	TABLE B.1. Simple Actions

	‘Activate’, ‘assign’, ‘query’ and ‘request’ are examples of simple actions initiated by an agent....
	Complex actions require the execution of a sequence of simple or complex actions.� Such actions c...
	TABLE B.2. Complex Actions

	An OA can be assigned one of five task types (all of which are complex actions since they require...
	OA Task Types
	• evaluation
	• recommendation
	• generation
	• conflict handling
	• implementation
	The OA performs a set of actions to accomplish an assigned task:
	For an evaluation task, an OA may take actions of any of the following kind.
	TABLE B.3. Evaluation Task Actions

	For a recommendation or generation, an OA may take one of the following actions.
	TABLE B.4. Recommendation and Generation Task Actions

	For a conflict handling, an OA may take one of the following actions.
	TABLE B.5. Conflict Handling Task Actions

	For an implementation, an OA may take actions of the following kind.
	TABLE B.6. Implementation Task Actions

	The OA-based environment has three types of agents; DAs, SAs (which includes EAs and UAs), and OA...
	Agent Interaction Types
	Five interaction types among agents are identified in Figure B.1.� The arrow indicates the sense ...
	• OA-OA interactions
	• OA-SA interactions
	• SA-SA interactions
	• DA-OA interactions.
	• DA-SA interactions
	FIGURE B.1.

	The Interaction Types.
	The following table illustrate the possible agent interaction types.
	TABLE B.7. Types of Agent Interaction



