
Kong, S.C., Ogata, H., Arnseth, H.C., Chan, C.K.K., Hirashima, T., Klett, F., Lee, J.H.M., Liu, C.C., Looi, C.K., Milrad, M., Mitrovic, A.,

Nakabayashi, K., Wong, S.L., Yang, S.J.H. (eds.) (2009). Proceedings of the 17th International Conference on Computers in Education
[CDROM]. Hong Kong: Asia-Pacific Society for Computers in Education.

Constraint-based Design Critic for Flat-pack

Furniture Design

Yeonjoo OH
a
, Mark D GROSS

a
, Suguru ISHIZAKI

b
, Ellen Yi-Luen DO

c

a
CoDeLab, Carnegie Mellon University, USA

b
Department of English, Carnegie Mellon University, USA

c
Colleges of Architecture and Computing, Georgia Tech, USA

yeonjoo@cmu.edu

Abstract: This paper reports on the Flat-pack Furniture Design Critic (FFDC). By

analyzing the literature of architecture education, we have identified critiquing methods:

delivery types (interpretation, introduction, example, demonstration, and evaluation) and

communication modalities (written comments, graphical annotations, and images). Our

FFDC uses these methods to deliver feedback. This paper also presents how our FFDC

system selects particular methods by considering a certain condition such as user‘s

knowledge level and the previously used methods.

Keywords: design critiquing, constraint-based tutors, delivery types, modalities

Introduction

The studio occupies a pedagogically important position in design education. It is the main

academic course in any architecture or industrial design program. Students in a studio are

subjected to a series of critiquing sessions, where instructors offer critiques on their work.

Essential among these sessions is the ―desk crit‖—a one-on-one critiquing session [1]. For

desk crits, an instructor visits individual students‘ places to critique their work, while other

students wait their turn. This long lineup of students limits the time the instructor can spend

on each student, often resulting in a curtailed or superficial discussion [2]. To address this

problem, we envision that a computer program that could offer effective critique could help

individual students learn designing just as intelligent tutoring systems (ITS) help students

learn other subjects such as algebra [3].

Our main goals in this work are first, by reviewing the literature of architecture

education, to identify what critiquing methods studio teachers use; and second, to develop a

computer-based design critic that incorporates these methods, choosing particular methods

based on conditions such as a student‘s knowledge level and the methods that the system has

previously used with the student. This paper presents our Flat-pack Furniture Design Critic

(FFDC) system as a step toward creating computer-based critics that support design

learning in studio settings. Our FFDC program supports multiple critiquing methods.

1. Related Work

1.1 Constraint-based Tutors (CBT)

Our FFDC program adopts the typical system architecture of constraint-based tutors, which

is suited for design domains. An often-cited characteristic of design is that it lacks

well-structured domain models and that a design problem seldom has a single or best

solution. In this domain, no systematic way exists to determine when a proposed solution is

acceptable. We chose constraint-based tutors, because this approach does not require a

complete domain model. Constraint-based tutors model domain knowledge using a set of

constraints that specify what characteristics a solution should or should not have. These

constraints can provide only a partial description of a solution. The effect of a missing

constraint is highly restricted, resulting only in failing to detect a particular error. A

Kong, S.C., Ogata, H., Arnseth, H.C., Chan, C.K.K., Hirashima, T., Klett, F., Lee, J.H.M., Liu, C.C., Looi, C.K., Milrad, M., Mitrovic, A.,

Nakabayashi, K., Wong, S.L., Yang, S.J.H. (eds.) (2009). Proceedings of the 17th International Conference on Computers in Education
[CDROM]. Hong Kong: Asia-Pacific Society for Computers in Education.

proposed solution can still be analyzed with other constraints. Thus, we can develop a

domain model incrementally.

These constraint-based tutors derive from Ohlsson‘s theory of learning from

performance errors [4]. Ohlsson argues that learning occurs when students catch mistakes

by themselves or when others catch mistakes for them. The fundamental assumption is that

certain problem states reveal diagnostic information. This assumption starts from the fact

that one cannot develop acceptable solutions that violate domain principles. Antonija

Mitrovic and her Intelligent Computer Tutoring Group (ICTG) has explored various topics

in constraint-based tutoring, for example, supporting a variety of tasks, enhancement of

student models, new strategies to deliver feedback, and development of authoring systems

[5].

Each constraint represents a piece of domain knowledge; it consists of a relevance

condition and a satisfaction condition. The relevance condition indicates when the

constraint should apply—and the satisfaction condition represents states where a certain

piece of knowledge has been correctly applied. Therefore, a solution must satisfy the

satisfaction condition, when the constraint is deemed relevant to the user‘s solution. For

example, a constraint for designing a chair for writing, whose seat‘s height range must be

380mm – 510mm, could be written as: If <designing a chair for writing>, then <the seat

height above floor must be more than 380mm and less than 510mm>. A violated constraint

indicates an opportunity to improve the proposed design so the tutor offers feedback

regarding the violated constraint.

Some constraint-based tutors, for example, Kermit [6] record information about a

student to deliver individually tailored instruction. This student model consists of the history

of all constraints that the tutor has applied to the student‘s design, including both satisfied

and violated constraints. The violated constraints indicate domain knowledge the student

has not yet mastered. Based on this diagnosis, the constraint-based tutor provides feedback

to help the student improve the solution.

1.2 Critiquing Methods used in Intelligent Tutoring Systems and Critiquing Systems

Conventional intelligent tutoring systems and critiquing systems do not provide feedback

using the rich range of methods that design instructors employ in studio teaching. (These are

outlined in the following section.) Most computer-based systems use negative evaluation to

provide feedback, merely pointing out problems or errors. Although researchers in

intelligent tutoring and critiquing have explored various ways to interact with users such as

argumentation [7], examples [8], dialogue [9], question-asking [10], or self-explanation

[11], individual systems still do not cover all critiquing methods that studio instructors are

using. Several systems also offer feedback using multiple modalities. For example, Reading

Tutor [12] combines speech and graphics (highlighting); AutoTutor [9] combines speech

with 3D simulation and facial expression; Design Evaluator [13] combines text with

graphical annotation of a 3D model; and KID [8] combines text with images. Although

taken together these systems recognize diverse methods to interact with users, we are

unaware of any single system that makes decisions, based on a student model, about when to

use which method to deliver particular critiquing methods. That is the focus of the system

we present here.

2. Critiquing Methods – Delivery Types and Communication Modalities

Studio instructors in architectural design use a variety of critiquing methods to convey their

knowledge and professional skills. We divide these methods into two categories: delivery

types and communication modalities.

Kong, S.C., Ogata, H., Arnseth, H.C., Chan, C.K.K., Hirashima, T., Klett, F., Lee, J.H.M., Liu, C.C., Looi, C.K., Milrad, M., Mitrovic, A.,

Nakabayashi, K., Wong, S.L., Yang, S.J.H. (eds.) (2009). Proceedings of the 17th International Conference on Computers in Education
[CDROM]. Hong Kong: Asia-Pacific Society for Computers in Education.

2.1. Delivery Types

Uluoglu [14] and Bailey [15] both identify diverse ‗delivery types‘ by analyzing critiquing

sessions in architecture studios. These include (1) interpretation of the students‘ design

solutions, (2) introduction of new ideas or approaches, (3) description of existing examples

or precedents, (4) demonstration of potential solutions or other design actions, and (5)

evaluation (positive or negative) of the students‘ solutions. The choice of delivery types is

important, because it may influence the students‘ subsequent actions and hence their

learning. For example, when a teacher offers existing examples, students may look at how

the given examples develop ideas and attempt to apply the ideas to their solutions. On the

other hand, when the teacher points out errors, the students may fix these errors. Table 1

shows examples of delivery types in an architectural design critique [16].

Table 1 Feedback Instances of Five Delivery Types

Delivery Types Feedback Instances

Interpretation ―Your building is just getting light into this level (pointing to the bottom window on the

physical model)‖

Introduction ―Have you thought about the sun‘s path over a day and a year?‖

Example ―Le Corbusier‘s building has a similar concept. Look at the windows of his chapel at

Ronchamp.‖

Demonstration ―You need to make a form here. You need to do something here (drawing a line that

represents a wall)‖

Evaluation (positive) ―You take the rough form into something more precise.… which is good‖

(negative) ―No good, horrible—it just ruins the whole idea.‖

2.2. Communication Modalities

We define ‗communication modalities‘ as channels such as speech, text, and drawing. The

primary modality in all face-to-face critiquing sessions is speech—teachers always talk.

Studio teachers also make brief notes as they draw, or annotate their students‘ sketches.

Although these notes are terse, they help students remember the spoken feedback. Design

teachers often use drawings, ranging from abstract diagrams to representational forms.

Schön [16] and Anthony [2] both note that critiques presented in multiple modalities work

together and help students understand the intentions of their instructors (see Figure 1).

Figure 1 Communication Modalities: (a) A studio instructor, Jan Wampler, sketches on a student‘s drawing,

while offering feedback verbally (Source: MIT Open Courseware [17]); (b) a studio instructor makes sketches

and brief notes (Source: Schön‘s The Design Studio [16])

2.3. Multiple Critiquing Methods

Studio instructors offer feedback using multiple critiquing methods [18] to deliver images,

ideas, examples, and actions acquired from their experiences. The instructors have

accumulated their own collections of images, ideas, examples, and actions. Schön [18] calls

this collection a ‗repertoire‘. When instructors look at a student‘s solution, they scan their

repertoires and for similar situations, for example, buildings they have known, or problems

they have previously encountered. The instructors not only point out errors; they also

describe examples or demonstrate how to solve the problems. Feedback presented using

Kong, S.C., Ogata, H., Arnseth, H.C., Chan, C.K.K., Hirashima, T., Klett, F., Lee, J.H.M., Liu, C.C., Looi, C.K., Milrad, M., Mitrovic, A.,

Nakabayashi, K., Wong, S.L., Yang, S.J.H. (eds.) (2009). Proceedings of the 17th International Conference on Computers in Education
[CDROM]. Hong Kong: Asia-Pacific Society for Computers in Education.

multiple methods helps design students understand their problems better, eliminate errors

from their proposed solutions, and construct their own repertoires [14, 18].

3. Flat-pack Furniture Design Critic (FFDC)

Inspired by the richness of critiquing in architectural design studio, we have built a

constraint based design critic program that offers students feedback using five delivery

types (interpretation, introduction, example, demonstration, and evaluation) and three

communication modalities (written comments, graphical annotations, and images). Our

Flat-pack Furniture Design Critic (FFDC) selects delivery type and modality to present a

critique using a model of the student‘s task and the criticism that the student has previously

received.

Our program utilizes the identified critiquing methods used in architecture studios.

However, we chose as our test-bed for system development the simpler design domain of

flat-pack furniture instead of architecture for several reasons. First, although the problem

space of flat pack furniture design is relatively small, it is still ill-defined and open-ended.

Second, furniture design is often used as an early exercise for first-year architecture students.

Finally, furniture designers familiarize themselves with design problem-solving by drawing

and modeling in the same ways as architecture students do.

3.1. System Architecture

Our FFDC is written in MCL (Macintosh Common Lisp) using OpenGL to provide 3D

models and the Lisa (Lisp-based Intelligent Software Agent) production rule system to

reason about a proposed furniture design using the stored constraints. FFDC comprises a

number of components: it has Construction Interface, Parser, Pattern Matcher, Design

Constraints, Critiquing Rules, User Model, Pedagogical Module, and Critiquer. Figure 2

shows these components, their relationships, and the information flow among them.

Designer

Construction Interface

Parser

Pattern Matcher

Pedagogical Module

Critiquer

Text

Critiquer

Graphic

Critiquer

Example

Finder

User Model Design Constraints

Critiquing Rules

Figure 2 Main FFDC Components in the Iterative Construction-Critiquing-Repair Cycle.

A designer starts designing by sketching an axonometric diagram in the Construction

Interface using a stylus and a digitizing tablet. The program records all sketched glyphs,

identifies the Cartesian coordinate system, and generates a 3D model (shown in Figure 4-(a)

and (b)).

The Parser parses the sketched diagram and the 3D model, producing two kinds of

data: parts and their properties (e.g., x-length, plane, 3D coordinate data, joints, etc.) and

configuration of parts (e.g., parallel, between, top-of, jointing, distance, etc.). The Parser

creates a text file to store a symbolic representation of the designed furniture.

The program stores a set of Design Constraints that represent principles that designers

need to know. FFDC uses two types of constraints: 27 structural constraints that specify

Kong, S.C., Ogata, H., Arnseth, H.C., Chan, C.K.K., Hirashima, T., Klett, F., Lee, J.H.M., Liu, C.C., Looi, C.K., Milrad, M., Mitrovic, A.,

Nakabayashi, K., Wong, S.L., Yang, S.J.H. (eds.) (2009). Proceedings of the 17th International Conference on Computers in Education
[CDROM]. Hong Kong: Asia-Pacific Society for Computers in Education.

forbidden/allowed structures of furniture parts and 36 functional constraints that specify

allowed functions of certain parts or a whole piece of furniture.

The Pattern Matcher compares the symbolic representation of the design against the

Design Constraints in order to detect critiquing opportunities. For example, a chair design

in Figure 4-(a) violates the stored constraint that ‗a chair must have armrests‘. The following

pseudo-code and diagrams show the constraint that the design has violated.
If the designed furniture is a chair

((Seat is placed on top of Leg1)
 (Seat is placed on top of Leg2)
 (Seat is placed on top of Leg3)
 (Seat is placed on top of Leg4)
 (Back is placed on top of Seat))

then the chair must have armrests

((Armrest1 is placed top of Seat)
 (Armrest2 is placed top of Seat)
 (Armrest1 is placed on left side of Back)
 (Armrest1 is jointed with Back)
 (Armrest2 is placed on right side of Back)
 (Armrest2 is jointed with Back))

FFDC stores two types of User Model: a short-term and a long-term user model. The

short-term user model stores the reasoning outputs of the Pattern Matcher, namely the

violated and satisfied constraints for the current critiquing session. Each violated/satisfied

constraint stores (1) the unique constraint number to indicate which constraint is violated or

satisfied; (2) whether this constraint is violated (V) or satisfied (S); (3) how many times this

constraint has been violated or satisfied; (4) what furniture parts violate/satisfy this

constraint; (5) the critiquing delivery types that have already been used to offer feedback on

this constraint; and (6) the used critiquing communication modalities. The long-term user

model stores the history of all violated and satisfied constraints over multiple critiquing

sessions. Using this history of all constraints, the program makes inferences about (1) how

much a designer knows about this flat-pack design field; (2) the specific strengths and

weaknesses of the designer; and (3) which critiquing method works well for a certain

designer. For example, the program identifies a designer who tends to violate important

constraint as a novice. It also observes which types of constraints a designer tends to violate.

When the designer mainly violates structural constraints, the program concludes that the

designer is weak in structural knowledge.

3.2. Selecting Particular Delivery Types and Communication Modalities

This section describes how the FFDC selects particular set of delivery types and modalities.

It explains (1) our constraint design, and (2) the Pedagogical Module and the Critiquing

Rules.

3.2.1. Our Constraint Design

Each constraint data structure has two slots relevant to offering feedback in multiple

methods: critique-delivery-types, and critique-modalities. The critique-delivery-types slot

stores pre-defined written comments for the constraint in five different delivery types. For

example, a bookcase design (Figure 4-(b)) violates a constraint that checks whether a back

part is large enough to support lateral loads. The critique-delivery-types slot stores written

comments in five different delivery types:

((Interpretation – “Your bookcase is composed of two sides, a shelf, a top and a back”)

Kong, S.C., Ogata, H., Arnseth, H.C., Chan, C.K.K., Hirashima, T., Klett, F., Lee, J.H.M., Liu, C.C., Looi, C.K., Milrad, M., Mitrovic, A.,

Nakabayashi, K., Wong, S.L., Yang, S.J.H. (eds.) (2009). Proceedings of the 17th International Conference on Computers in Education
[CDROM]. Hong Kong: Asia-Pacific Society for Computers in Education.

 (Introduction – “Do you think that your back part is big enough to support lateral loads?”)
 (Example – “Please see how other furniture support lateral loads from the shown examples”)
 (Demonstration – “You need to make the back part bigger as shown”)
 (Evaluation – “Your furniture is structurally unstable to support lateral loads”))

The critique-modalities slot stores a list of calls to routines that deliver feedback in

different communication modalities. The FFDC delivers feedback using the selected

communication modalities by executing these routines: graphic annotations, e.g., painting

parts that violate a constraint in red; displaying graphic icons such as arrows to indicate load

placed on a furniture part; and retrieving and presenting images of relevant examples.

3.2.2. Pedagogical Module and Critiquing Rules

The Pedagogical Module takes as input (1) the data of a violated constraint from the

short-term user model, and (2) the data about a specific designer from the long-term user

model. It then chooses particular critiquing methods by applying the Critiquing Rules (see

Figure 3). The FFDC has a set of Critiquing Rules that specify which delivery types and

communication modalities to use under what conditions. In other words, the Pedagogical

Module considers the violated constraint and the designer‘s history with the system in order

to select a particular critiquing method (Figure 3).

Figure 3 Pedagogical Module and Critiquing Rules

Our FFDC system selects critiquing methods differently according to certain

conditions. When the program knows nothing about the designer, or if the long-term user

model stores no history of the violated constraints, the Pedagogical Module chooses

delivery types and modalities following two sequences: (1) interpretation – introduction –

example – demonstration – evaluation, and (2) written comments – graphic annotations –

images – multiple modalities. These two sequences are the initial setup for selection of

critiquing methods. Once the program learns more about the designer, it selects delivery

types and modalities following the Critiquing Rules. For example, when a designer is

identified as a novice, the Pedagogical Module will select the ‗demonstration‘ delivery type

rather than ‗example‘ because novices often have difficulty utilizing examples in their

designs. Or if a designer tends to violate structural constraints, the Pedagogical Module will

select graphical annotation with written comments, because feedback in multiple modalities

(text + drawing) works better for a student who lacks prior knowledge about the subject

matter [19].

3.3. Presenting Feedback using the Selected Delivery Types and Modalities

Once the Pedagogical Module selects a critiquing method, the Critiquer activates one or

more of its components to present the critique to the designer. The Critiquer has three

components: (1) a Text Critiquer, which presents the written comments associated with a

violated constraint, (2) an Example Finder, which selects relevant examples from a library,

Kong, S.C., Ogata, H., Arnseth, H.C., Chan, C.K.K., Hirashima, T., Klett, F., Lee, J.H.M., Liu, C.C., Looi, C.K., Milrad, M., Mitrovic, A.,

Nakabayashi, K., Wong, S.L., Yang, S.J.H. (eds.) (2009). Proceedings of the 17th International Conference on Computers in Education
[CDROM]. Hong Kong: Asia-Pacific Society for Computers in Education.

and (3) a Graphic Critiquer, which highlights relevant furniture parts and draws graphical

annotations on a designer‘s diagram. If the Pedagogical Module selects the critiquing

methods ‗introduction‘ and ‗graphical annotation‘, then the Critiquer activates two

components (Figure 4-(a)): the Text Critiquer and the Graphic Critiquer. The Text Critiquer

presents the stored ‗introduction‘ message from the violated constraint. The Graphic

Critiquer executes function calls stored in the critiques-modalities slot (using the stored

relevant furniture parts as parameters) to annotate the designer‘s diagram.

Figure 4. (a) Chair: FFDC introduces a new idea of adding armrests to a chair for a user‘s comfort by

making graphic annotations in the Construction Interface (two circles) to indicate possible

positions of armrests and displaying written comment ―How about adding armrests to your

chair?” (introduction + graphical annotation); (b) Bookcase: FFDC demonstrates how to resolve

the detected situation by making graphical annotations in the Construction Interface (a rectangle

with two arrows) and displaying a written comment “You need to make the back part bigger as

shown”(demonstration + graphical annotation).

When the Pedagogical Module selects ‗example‘ as delivery type and ‗images‘ as

modality, the Critiquer activates the Text Critiquer and the Example Finder. The Example

Finder looks through stored designs that other designers have made and retrieves the

relevant ones. The program stores a furniture design as three kinds of data in a text file: (1)

the parsed data that the Parser has generated, (2) the geometrical data of the drawn diagram

and (3) a list of the violated constraints of the design (when constraints are violated). The

Example Finder compares previously stored designs with the current design to retrieve

relevant cases. For example, suppose that a certain design that the Example Finder finds is a

chair. The Example Finder scans through previously saved files. If it finds that the parsed

data in a file satisfy the constraint that checks whether a design is a chair, it decides the

retrieved design is relevant. The Critiquer then presents all the retrieved chairs (Figure 5).

Figure 5 FFDC Presents Several Examples of Other Chairs

4. Conclusion

The Flat-pack Furniture Design Critic applies the constraint based tutoring approach to the

domain of design. We also have analyzed design critiquing by reviewing the literature of the

pedagogy of architecture studios. FFDC supports delivery types and communication

modalities that are used in architectural education settings. It also selects particular methods

to deliver feedback by considering a user‘s knowledge and the critiquing methods that the

program has previously used for this user.

Kong, S.C., Ogata, H., Arnseth, H.C., Chan, C.K.K., Hirashima, T., Klett, F., Lee, J.H.M., Liu, C.C., Looi, C.K., Milrad, M., Mitrovic, A.,

Nakabayashi, K., Wong, S.L., Yang, S.J.H. (eds.) (2009). Proceedings of the 17th International Conference on Computers in Education
[CDROM]. Hong Kong: Asia-Pacific Society for Computers in Education.

Our FFDC system is intended to close the gap between human critics and

computer-based critiquing systems and intelligent tutors. It adds the richness of design

critiquing to the conventional feedback of those systems in the form of diverse delivery

types and communication modalities. We believe that feedback presented in these multiple

methods can help designers develop their solutions better and learn designing better.

We chose flat-pack furniture designing as an example domain, but our system could

be extended for other domains such as architecture, product design, or engineering. Our

system mechanism that selects particular critiquing methods is applicable to other domains:

The system determines critiquing methods by considering domain independent information

such as a user‘s knowledge level and previously used delivery types and modalities. A

system designer could implement a system for another domain by developing a Parser that

analyzes designs and Design Constraints that represent domain knowledge.

FFDC could also serve as a tool for experimenting with different delivery types and

communication modalities for learning design. These experiments could help us refine and

enhance the selection mechanism of critiquing methods to support learning design.

References
[1] Goldschmidt, G. (2002). One-on-One: A Pedagogic Base for Design Instruction in the Studio Common

Ground Design Research Society International Conference Brunel University 430 - 437

[2] Anthony, K. H. (1991). Design Juries on Trial: the Renaissance of the Design Studio. New York: Van

Nostrand Reinhold.

[3] Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A. (1997). Intelligent Tutoring Goes to the

Big City. International Journal of Artificial Intelligence in Education, 8, 30 - 43.

[4] Ohlsson, S. (1996). Learning from Performance Errors. Psychological Review, 3(2), 241 - 262.

[5] The Intelligent Computer Tutoring Group (ICTG). (2009). Retrieved Aug, 20, 2009, from

http://ictg.canterbury.ac.nz/

[6] Suraweera, P., & Mitrovic, A. (2002). Kermit: A Constraint-Based Tutor for Database Modeling.

Intelligent Tutoring Systems, 2363, 377 - 387.

[7] Fischer, G., McCall, R., & Morch, A. I. (1989). Design Environments for Constructive and Argumentative

Design. Human Factors in Computing Systems (CHI '89), Austin, Texas. 269 - 275.

[8] Nakakoji, K., Yamamoto, Y., Suzuki, T., Takada, S., & Gross, M. D. (1998). From Critiquing to

Representational Talkback: computer support for revealing features in design. Knowledge-Based

Systems, 11(7-8), 457 - 468.

[9] Graesser, A. C., Chipman, P., Haynes, B. C., & Olney, A. (2005). AutoTutor: An Intelligent Tutoring

System with Mixed-initiative Dialogue. IEEE Transactions in Education, 48, 612 - 618.

[10] Milik, N., Marshall, M., & Mtrovic, A. (2006). Responding to Free-form Student Questions in

ERM-Tutor. Lecture Notes in Computer Science, 4053, 707 - 709.

[11] Mitrovic, A. (2002). NORMIT: A Web-Enabled Tutor for Database Normalization. International

Conference on Computers in Education (ICCE). 1276 - 1280.

[12] Mostow, J., Aist, G., Burkhead, P., Corbett, A., Cuneo, A., Eitelman, S., et al. (2003). Evaluation of an

Automated Reading Tutor that Listens: Comparison to Human Tutoring and Classroom Instruction.

Journal of Educational Computing Research, 29(1), 61 - 117.

[13] Oh, Y., Do, E. Y.-L., & Gross, M. D. (2004). Intelligent Critiquing of Design Sketches. AAAI (American

Association for Artificial Intelligence) Fall Symposium - Making Pen-based Interaction Intelligent and

Natural, Washington DC. 127 - 133.

[14] Uluoglu, B. (2000). Design Knowledge Communicated in Studio Critiques Design Studies, 21(1), 33 - 58

[15] Bailey, R. O. N. (2004). The Digital Design Coach: Enhancing Design Conversations in Architecture

Education. PhD Dissertation Victoria University of Wellington

[16] Schön, D. A. (1985). The Design Studio. London: RIBA.

[17] Wampler, J. (2002). Architecture Studio: Building in Landscapes. Retrieved Jan. 2009, from MIT Open

Courseware:

http://ocw.mit.edu/OcwWeb/Architecture/4-125Architecture-Studio--Building-in-LandscapesFall2002/

CourseHome/index.htm

[18] Schön, D. A. (1983). The Reflective Practitioner: How Professionals Think in Action Basic Books Inc. .

[19] Mayer, R. E. (2001). Multimedia Learning: Cambridge University Press.

http://ictg.canterbury.ac.nz/
http://ocw.mit.edu/OcwWeb/Architecture/4-125Architecture-Studio--Building-in-LandscapesFall2002/CourseHome/index.htm
http://ocw.mit.edu/OcwWeb/Architecture/4-125Architecture-Studio--Building-in-LandscapesFall2002/CourseHome/index.htm

