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 ABSTRACT 

 

Design is often described as an exploration: a search for an adequate solution amongst a 

space of alternatives (Simon 1969). It involves the development and transformation of 

alternatives. Composition of spatial relations such as symmetry, hierarchy, grid-

alignment, and proportion, termed “design structures,” help in the development of these 

architectural alternatives, and are used as compositional principles during their 

transformation.  

During the exploratory, early phases of design, configurations continually evolve. Both 

configuration elements and their relational structure are subject to change. Defining 

structures, exploring variations within structures, and redefining structures are the 

common means of transforming alternatives. Such transformations are necessary for 

developing design configurations and improving their quality. 

Transformations of design structures, which often yield intellectually stimulating results, 

are labor intensive; they require individual modification of related elements. Such 

repetitive interaction considerably slows down the exploration, and often discourages it 

completely, particularly when configurations are complex and interrelations are 

numerous. 

My research is motivated by the following factors: (i) the necessity of flexible geometry 

for early design exploration; (ii) the intellectual stimulation provided by the exploration 

of structure; (iii) the difficulty involved in transforming design structures; (iv) the lack of 

computational support for design exploration; and (v) the lack of comprehensive 

representations for architecturally significant design structures. 

I have developed a framework of strategies that allows designers to explore complex 

configurations by manipulating their organizational structure. This framework, named 

Interactive Configuration Exploration (ICE), consist of two parallel endeavors: a notation 

and a computer implementation. The ICE notation is a formalism for describing shapes 
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and configurations, by means of their generative and relational structures. The ICE 

implementation is a 3D modeling system that supports the exploration of such shapes and 

configurations through the transformation of their structures.  

The approach used is to separate the structures from configuration elements. In this 

manner, we can use structures to summarize configurations in the ICE notation, and use 

structures as manipulation handles to control the configuration in the ICE system.    

The principal vehicle in ICE is the regulator, which is an abstraction that captures a single 

unit of structure (i.e., a single relationship within a configuration). For instance, a grid 

structure is captured by alignment lines; a symmetry structure is captured by a reflection 

axis or center of rotation. Regulators, which are inspired by regulating lines, encapsulate 

a mathematical formula that determines the relationship between elements.  

The ICE notation enumerates and classifies the various types of regulators. It defines 

composition strategies and generation methods in order to represent the widest possible 

range of configurations. Furthermore, it captures a method for generation as well as a set 

of applicable transformations for any given configuration, based on its organizational 

structure. The ICE notation is not merely a geometric descriptor. It allows the derivation 

of additional geometric information, such as subshapes, boundaries, lengths, areas, 

volumes, and midpoints by means of simple computations on the notation strings. 

Additionally, it is possible to derive steps for transforming one configuration into 

another, by means of a simple algorithm.  

The ICE system, offers a higher-level of interaction with design configurations though 

regulators. These regulators maintain control over configuration elements, thus imposing 

relational constraints and propagating changes within the configuration. The parameters 

of regulators are manipulation handles; therefore, a user can transform the configuration, 

either completely or partially, by applying simple changes to the regulator. Such 

explorations yield significant transformations with relatively short paths, since 

manipulating a spatial relation results in the simultaneous transformation of multiple 

elements.  
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CHAPTER 1                                                                

INTRODUCTION 

 

The early phases of architectural design are characterized by exploratory activities and by 

iterative development. During these phases, concepts evolve, and ideas are explored 

through cycles of decisions, evaluations and transformations.   

Among the numerous descriptive models of design, the most prominent is Simon’s model 

of exploration. Simon describes the design process as a complex form of problem-

solving, and categorizes design problems as ill-structured (Simon, 1969). Design is 

considered as a search for an adequate solution within a large space of alternative states. 

Designers navigate though this space by means of transitions that convert one alternative 

state into another, until the desired goal state is reached.  

Akin (1987, p5) explains that problem structuring is a prerequisite to problem solving. It 

is the phase where the vague, ill-defined description of the problem is converted into a 

precisely defined, well-structured one. Archea (1987) refers to design structuring as 

puzzle making. The process of exploration is an important source for understanding the 

design problem (Harada 1997). The act of repeatedly generating and evaluating 

alternatives lead to the definition and refinement of requirement specifications, design 

relations, and constraints that need to be satisfied within the design solution.  

Failure to satisfy these conditions leads to a restructuring of the problem, which takes the 

form of modifying relations and redefining specifications, thus transforming the 

problem's parameters (Akin 1987). Structuring defines the search space, while solving 

operates within its boundaries; restructuring, on the other hand, breaks the boundaries and 

redefines the search space. Restructuring represents a major iteration in design.  

Architectural design products are complex geometric configurations, serving multiple 

functions simultaneously. These configurations are assemblies of parts, organized by 
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means of spatial relations—such as symmetries, grids, hierarchies, and adjacencies—to 

create unified coherent wholes. Compositions of such spatial relations define “design 

structures” that describe complex geometries, elaborate hierarchies, and intricate 

topologies within architectural configurations. Consider the Pantheon as an example 

(Figure 1.1, source: Ching 1996, p.288). A radial grid, a rectangular grid, rotational 

symmetry and mirror symmetry are composed together in harmony to define the design 

structure of the Pantheon. In Figure 1.1, the structure is indicated by regulating lines. 

 
FIGURE 1.1- The Design Structure of the Pantheon 

   
Design structures are not only fundamental to design products, they are also fundamental 

to the design process. The spatial relations, forming these structures, which are referred to 

as ordering principles (Ching 1996) and formative ideas (Clark 1985), are an essential 

part of architectural design toolkit. Designers deal with structures implicitly, by 

organizing the elements of the configuration, or explicitly, through regulating lines. Le 

Corbusier also prescribed the use of regulating lines to structure architectural 

configurations. 

During structuring, designers compose the structures of architectural configurations. 

They define spatial relations and determine the boundaries of the search space. During 

solving, designers investigate variations within their structures. Their transformations are 

influenced by the spatial relations of the structure and remain within the limits of the 

search space. They manipulate the configuration while preserving the relationships and 

accentuating their structure. During restructuring, designers transform the structure of 

their configuration; their transformations reformulate the spatial relations of the structure, 

thus completely redefining the search space.   
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1.1. MOTIVATION  

During the early phases of design, architectural configurations continually evolve. The 

conceptual dimension of design is flexible, where elements, as well as spatial relations 

are repeatedly being updated. However, current representations of design products, 

whether traditional, in the form of drawings or scaled models, or computational, are not 

flexible. These representations capture static snapshots of design states. They do not fully 

capture the transitions that formulate the conversion of one alternative state to another. In 

traditional media, there is no record of transformations except through inference. In 

computational media, there is a linear record of generative steps, but these cannot be 

captured and manipulated as such. Therefore, an essential exploratory component is 

missing in these representations.   

The process of exploration is a method for refining and improving the design solution. It 

is a means of addressing the design problem from various perspectives. It allows more 

options to be considered and evaluated. It is a vehicle for innovation and discovery, in 

particular, exploration with structures. In additional to being a tool for transformation 

across design alternatives, exploring with structures is an intellectually stimulating 

experience. It leads to the discovery of new forms and compositions, as well as 

considering avenues that would not be otherwise considered.    

Consider the Floor Plan of Frank Lloyd Wright’s Lloyd Lewis House (Figure 1.2a, 

source: Laseau 1992, p.7). Figure 1.2b, 1.2c, and 1.2d show the effects of changing the 

directions of underlying grid lines or changing their curvatures. Furthermore, consider the 

ability to control each of these grid lines individually, and to perceive the effects on a 

certain group of elements. One can only begin to imagine the possibilities for such 

exploration, and the range of ideas that these may bring during early conceptualization 

phases.  

Exploring structures is labor intensive in both traditional and computational media.  

Although design structures are implicit in the arrangement of configuration elements, 

transforming this implicit structure requires the designer to transform every element in 

the configuration, while managing, mentally, complex spatial relations between them. 

Such repetitive interaction considerably slows down the exploration, and often 
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discourages it completely, particularly when configurations are complex, and inter-

relations numerous.  

a  b  

c  d  

FIGURE 1.2 - Transformation of the Structure  of Lloyd Lewis House 

 

Computational design media, such as contemporary CAD systems, are typically 

conceived for representing final design products, not for exploratory activities. These do 

not support user-defined design structures and spatial relations. Instead, they capture 

independent design elements in the form of simple shapes and complex objects. Some 

computational research prototypes capture topological and hierarchical structures; 

however, these are system defined and cannot be easily transformed by users. 

Furthermore, architecturally significant spatial relations, such as symmetry, proportion, 

grids, etc., have not been sufficiently addressed, as exploration tools, in computational 

design research. 

Despite the active role that structures play in design conceptualization, and although 

transformation of structures produce intellectually stimulating results, explorations by 

means of structures are not practically possible. This is due to the time and labor involved 

in re-organizing all elements within a structure.  

Given the aforementioned motivational factors, I believe it is necessary to investigate 

methods for facilitating the exploration by means of structures, and for eliminating the 

labor and time involved in the transformation of structures, in order to make the 

geometric product as flexible as the conceptual dimension of design. 

The primary goal of this research is to make the computational design environment a 
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source for intellectual stimulation. It is important to capture, computationally, the 

semantic complexity of design structures, and to provide support for transformation of 

structures, in an instantaneous, real-time manner. I believe that exploration by means of 

structures will allow the geometric representation to follow an evolving design concept. It 

will promote the discovery of new forms, new relations, and novel configurations that 

would not be otherwise explored. Furthermore, it will encourage the designer to explore a 

much larger space than would be possible with current tools and representations.   

1.2. SCOPE  

This research addresses computational representations for supporting geometric 

exploration during early phases of the architectural design process. The emphasis is on 

the structuring and restructuring activities pertaining to the geometry of architectural 

configurations. The focus is on using design structures as a primary construct for 

generation and transformation of alternative configurations.  

This multidisciplinary research incorporates topics from mathematics, computation, 

software engineering and design processes. It addresses internal computational issues 

such as the flexible representation of structures, and the dependency between design 

structures and configuration elements. It also addresses front-end issues such as the 

designer's interaction with structures, the visual display of these structures, and the ability 

of structures to support exploratory iterative activities. 

I do not prescribe specific methods for design. However, I suggest utilizing existing 

design strategies and augmenting them with computational power, in order to make 

explorations more effective. 

1.3. RESEARCH SYNOPSIS  

I have developed a framework of strategies that allows designers to explore complex 

configurations by manipulating their organizational structure. This framework, named 

Interactive Configuration Exploration (ICE), consist of two parallel endeavors: a notation 

and a computer implementation. The ICE notation is a formalism for describing shapes 

and configurations, by means of their generative and relational structures. The ICE 

implementation is a 3D modeling system that supports the exploration of such shapes and 
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configurations through the transformation of their structures.  

The approach used is to separate the structures from configuration elements. In this 

manner, structures are used to summarize configurations in notation, and used as 

manipulation handles to control the configuration in the implementation.    

The principal vehicle in ICE is the regulator, which is an abstraction that captures a single 

unit of structure (i.e. a single relationship within a configuration). For instance, a grid 

structure is captured by alignment lines; a symmetry structure is captured by a reflection 

axis or center of rotation. Regulators, which are inspired by regulating lines, encapsulate 

a mathematical formula that determines the relationship between elements.  

The ICE notation enumerates and classifies various types of regulators. It defines 

composition strategies and generation methods in order to represent the widest possible 

range of configurations. Furthermore, it captures a method for generation as well as a set 

of applicable transformations for any given configuration, based on its organizational 

structure. The ICE notation is not merely a geometric descriptor. It allows the derivation 

of additional geometric information, such as subshapes, boundaries, lengths, areas, 

volumes, and midpoints by means of simple computations on the notation strings. 

Additionally, it is possible to derive steps for transforming one configuration into 

another, by means of a simple algorithm.  

The ICE system allows a higher-level of interaction with design configurations through 

regulators. Regulators maintain control over configuration elements, thus imposing 

relational constraints, and propagating changes within the configuration. The parameters 

of regulators are manipulation handles; therefore, a user can transform the configuration, 

either completely or partially, by applying simple changes to the regulator. Such 

explorations through regulators yield significant transformations with relatively short 

paths, since manipulating a spatial relation results in the simultaneous transformation of 

multiple elements.  

I envision that this work will impact the way design is carried out in numerous 

disciplines, particularly in architecture, through the descriptive capacity of the notation 

and the exploratory capacity of the implementation. 
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This remaining part of this document is organized as follows: 

• Chapter 2: An overview of computational representations and research 

prototypes addressing various aspects of design exploration. 

• Chapter 3: An overview of the various types of design structures observed in 

architecture, and a description of the regulator framework used for design 

exploration. 

• Chapter 4: A detailed description of the syntax and building blocks and of the 

ICE notation, as well as an investigation of the various categories of shapes and 

configurations represented with the ICE notation.  

• Chapter 5: a detailed description of derivational, properties and algorithmic 

additions to the ICE notation.  

• Chapter 6: Architectural examples, including an ethnographic example 

illustrating the evolution of designs as represented by the ICE notation. 

• Chapter 7: A complete description of the features of the ICE implementation 

system. 

• Chapter 8: Contributions and speculations about future work.  

• Appendices: These include the following: (i) the mathematical background for 

regulators; (ii) the representation of geometrical pattern and their 

transformations; (iii) the engineering of the ICE implementation; and (iv) the 

bibliography. 

1.4. THESIS STATEMENT 

Regulators are defined as abstractions, which capture the spatial relations organizing 

design elements into coherent configurations. In their mathematical form, regulators are 

effective in describing design configurations concisely and accurately. In their 

computational form, regulators are strategic tools for the iterative exploration of design 

configurations. 
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CHAPTER 2                                                                

BACKGROUND REVIEW: 
 COMPUTATIONAL REPRESENTATIONS 

 FOR DESIGN EXPLORATION   

 

In a computational environment, exploration is achieved by means of sharing design 

tasks between the user and the system, with the user focusing on exploring higher level 

ideas and the system managing lower level mechanisms. In the context of this research, 

where design relationships are the primary focus, representations would capture the 

relations among design entities, and systems would manage these relations. 

Representation of design relations can take many forms. Relations can be represented as 

constraints which can be encapsulated in grammar rules. Relations can also be captured 

in dependency hierarchies. Alternatively relations can be represented through hybrid 

combination of the aforementioned approaches. Additionally, relations can be 

represented as mathematical notations.  

In this chapter, various approaches to representations used in exploration are surveyed. 

These include research prototypes (Sections 2.1 to 2.4), mathematical notations (section 

2.6), and commercial systems (section 2.5). Research prototypes are further categorized 

as constraint-based representations, associative representations, design grammars 

representations and hybrid representations. 
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2.1. CONSTRAINT-BASED REPRESENTATIONS 

In constraint-based representations, design relations as well as design attributes are 

represented as constraints. In constraint-based systems, users explore by manipulating 

design entities, while the system maintains the constraints and consequently maintains the 

integrity of the design.  

2.1.1. SKETCHPAD (SUTHERLAND 1963)  

SketchPad, a pioneering 2D graphic system, was the first to introduce interactive 

drawing, direct manipulation, and constraint satisfaction. It supports a drawing process 

consisting of two steps: (1) drawing simple 2D shapes (lines and circles) by means of a 

light pen; (2) refining the drawing by applying constraints to it. This process is inspired 

by the way a designer turns a sketch into a precise drawing. The vision of the SketchPad 

system includes the incorporation of design analysis and evaluation functionalities. 

SketchPad's generality allows it to accommodate numerous design domains ranging from 

artistic drawings to circuit design. 

In SketchPad, design relations are defined by constraints, which are maintained upon the 

manipulation of drawing elements. Changes are recursively propagated among the 

repetitive subparts of the drawing. SketchPad’s uses generic structure hierarchies, which 

group drawing objects, constraints, and commands according to their types. These allow 

SketchPad to be extensible, and to accommodate new drawing objects and new constraint 

types.  

Constraint satisfaction is achieved either by the “one-pass method” or by the “relaxation 

method”. Relaxation involves relaxing one or more constraints in the drawing and 

solving for the remainder of the constraints. The one-pass method involves the ordering 

of variables with the following principle: two variables are adjacent if both are affected 

by a single constraint. A free variable is one, which has so few constraints that it can be 

solved quite easily. Solving a free variable would eliminate its constraints, thus causing 

its adjacent variables to become free. Due to the ordering strategy, this method solves all 

the constraints of the drawing in just one pass. The one-pass method is used for complex 

cases, where relaxation would be too slow to achieve real-time results. 
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Basic manipulation of drawing objects is achieved by means of a light pen and a few 

buttons to determine the interaction mode. The graphic display of constraints, which can 

be toggled on and off, allows users to view, select, and delete constraints. 

SketchPad is a seminal work that introduced numerous concepts in graphical interaction 

that are indispensable for design systems. These include direct manipulations, constraints 

satisfaction, and augmenting drawing systems with evaluation tools as well as 

experimenting with motion in drawings. 

2.1.2. THE SKETCHER (MEDJDOUB 1999)  

Sketcher is an interactive constraint-based prototype that supports the precise 

construction and exploration of 2D geometric drawings. As users draw and manipulate 

entities, the system identifies geometric relationships and generates constraints 

automatically. The system maintains the constraints of the drawing upon further 

manipulation. Sketcher supports two types of constraints: topological (tangents, 

perpendiculars, parallels, on and concentric); and metric (fix coordinates, distances, 

length and angles, and equal subdivisions within a shape). Metric constraints are applied 

to geometric entities (points, lines, circles, arcs, ellipses and splines). Sketcher also 

supports the division of a geometric entity into equal parts. Figure 2.1 shows how 

sketcher maintains constraints when manipulated; 2.1a and 2.1b are variations of the 

same model, and 2.1c and 2.1d are variations of another model. 

The constructive approach is used for satisfying the constraints, which are reduced to 

quadratic equations and are solved numerically. The drawing is translated into a graph, 

where nodes are geometric entities and edges are the constraints. A sequence of 

construction steps is derived, and these steps are carried out to obtain the solution. The 

graph is created and solved upon every manipulation or creation of constraints. Well-

constrained problems are solved by choosing the solution, which best matches the mouse 

position. Under-constrained problems are guided by the degrees of freedom for geometric 

attributes. Ruler and compass constructions are solved using quadratic equations, while 

other types of constructions are solved using numeric methods.  
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a b c d 

FIGURE 2.1 -  DRAWINGS GENERATED USING THE SKETCHER 

 

Constraint manipulations vary according to the mouse buttons. Right-mouse interactions 

create and maintain constraints, while left-mouse interactions ignore and break 

constraints. User manipulation can cause a constraint to be relaxed or repositioned, 

resulting in the constraint to change its type (from on to tangent) and, therefore, causes 

the graph to be redefined. As the constraints are identified, they are expressed by means 

of construction lines (parallel/perpendicular and tangent) and labels that appear on the 

drawing. However, constraints that are established in the model are not displayed, thus 

users cannot differentiate among constrained and non-constrained entities. Conflicts 

result from modifications, for which the graph has no solutions. In this case the system 

maintains the last solution and does not attempt to display the conflict situation.  

Sketcher's powerful features include the following: automatic specification of constraints; 

precise feedback as constraints are being identified; automatic sub-division of shapes in 

equal segments; and incorporation of constrained ellipses and splines. However, Sketcher 

would benefit from a clear display of established constraints on the drawing, as well as 

support for users directly manipulating these constraints. 

2.1.3. CODRAW (GROSS 1991)  

CoDraw is an interactive 2D design exploration environment based on the relational 

modeling paradigm. It supports symmetric relations between model variables; this 

enables the bi-directional variation of a model (any variable can be an input from which 

others are derived). Users specify relations as a model is built, which are maintained by 

the system as entities are manipulated. Binary and unary relations are expressed as 

constraints (alignments, tangents, centering, edge offsets, dimension ratio, slopes, and 
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fixed sizes) which are applied to primitive geometric entities (line segments, circles, arcs, 

and poly-lines). The representation in CoDraw blurs the boundary between entities and 

relationships: entities can be considered a set of relations; and relations can be used to 

define entities.  

In CoDraw’s grid module, the grid is a design tool that can be selected, composed, 

superimposed, and used to position design elements and define relations among other 

elements. The grid module was not integrated to the CoDraw’s relational modeling 

mechanism, so grids are used for positioning but not for transforming design. This is due 

to the fact that grid management would require discrete manipulation and multiple values 

that are not supported by CoDraw. 

 
FIGURE 2.2  - THE CODRAW INTERFACE 

 

CoDraw uses CO, a relational modeling language that integrates an object-oriented 

database that organizes elements into hierarchies, and a reverse spread sheet that provides 

two-way calculations. A variable is represented as a group of constraints (for example, 

x=100, 4<x<10, x<5 or x =1\2y) that are stored in a term stack. Constraints also express 

relations with other variables. Conflicts in CoDraw are resolved by constraint relaxation, 

which is determined by the object's internal state; rigid or stretchy. CoDraw is extensible: 

existing relations can be edited and new relations can be specified.  

Relations are displayed on the drawing, in order to differentiate between actually 
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constrained objects and those that just happen to be positioned in a related way, and can 

be hidden upon request. Users can query internal states of elements to find out whether 

they are rigid or stretchy. This affects the behavior of the model upon manipulation. 

However, there is no visual expression for this state, nor is there a visual expression for 

fixed and free variables. Figure 2.2 shows the interface of CoDraw, with the hierarchic 

representations for the design and the relations menu. 

CoDraw's powerful features include the following: user manipulation of constraints; 

extensibility in the form of user defined relations; hierarchical representations; 

manipulations of the internal state of objects, and the grid module.  

2.1.4. BRIAR (GLEICHER 1991)  

The Briar system is an interactive program that supports the rapid construction and 

manipulation of precise 2D drawings, and the simulation of kinematic behavior of those 

drawings. Briar uses augmented snap-dragging to automatically establish persistent 

constraints in drawings, which are maintained upon manipulation by differential methods.  

Briar supports two types of constraints (point-coincident and point-on-objects) that form 

the basis for a variety of relations. These correspond to two types of snaps: snap to point 

(center, endpoints, or intersection); and snap to edge (or curve). Special alignment objects 

(circles of various radii and lines of various orientations) are generated by the system to 

establish relations among multiple objects; these exist only to be snapped at, and are used 

to specify distance, orientation, and alignment. An object can be pulled away from a 

constrained object and then coupled, constrained with another, making it easy for the user 

to redefine the structure of the model.  

Simple geometrical elements are represented by a state vector that contains their 

parameters and connectors. A physical simulation method is used to maintain constraints, 

which are solved differentially by reducing the non-linear equations of the constraints 

into linear equations of their time derivatives. Objects are treated as particles, and user 

actions as forces; the rate of change in the state of objects, as forces act on it, is computed 

over time. (Gleicher 1991, p.7). 
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FIGURE 2.3 - THE BRIAR INTERFACE 

 

Simple geometrical elements are represented by a state vector that contains their 

parameters and both the visual vocabulary for constraints and the feedback regarding 

constraint identification are clearly expressed on the model. This clarifies the state of the 

drawing and promotes the predictability of its behavior upon manipulation. Figure 2.3 

shows the expression of constraints of a drawing generated in Briar. 

Constraints that tend to cluster are placed in an equivalence class, to avoid redundancy in 

the configuration and visual clutter. As users manipulate drawing objects, the system, 

guided by its snap-dragging mechanism, makes and breaks the constraints, which can be 

accepted or rejected by users. Lightweight constraints, such as the tack, give the user 

additional control to lock entities into position. Alignment objects are controlled 

indirectly as user manipulates drawing objects.  

Briar also supports experimenting with motion. Dynamic differential constraints enable 

the simulation of kinematic movement in mechanical drawings, while remaining in the 

interactive mode. 

Briar's powerful features include the following: augmented snap-dragging; automatic 

constraint recognition; a clear visual vocabulary consistent with user feedback; and 

simulation of dynamic motion. However, the palettes for both forms and constraints are 

limited, and users cannot directly manipulate constraints. 
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2.2. ASSOCIATIVE REPRESENTATIONS 

In associative representations, design relations constitute dependencies that are defined 

by the structure of the underlying model. Change is propagated throughout the elements 

of the structure.   

2.2.1. REDRAW (KOLAREVIC 1993)  

ReDraw supports the transformation of 2D design compositions by means of 

manipulating their underlying construction lines. These constitute the framework that 

establishes formal relations among parts of the design composition. ReDraw’s 

representation is based on the drafting metaphor: ink lines depend on pencil lines (infinite 

construction lines), which in turn depend on relations (parallel, perpendicular, and 

connected). In this way, grids, which are patterns of construction lines, and axes, which 

are construction lines of specific importance, define the hierarchical structure of the 

design, and regulate its behavior as parts are manipulated. Although both pencil and ink 

lines are straight in ReDraw's implementation, theoretically, they can be curvilinear 

(circular, elliptic, parabolic). Designs are composed by making pencil lines and assigning 

relations to them. Designs are transformed by manipulating (translating and rotating) 

these pencil lines. ReDraw supports the addition, deletion as well as substituting design 

decisions.  

Every ink line is represented by three pencil lines, one carrier line, and two bounding 

lines defining its endpoints. ReDraw supports hierarchical uni-directional, or bi-

directional, dependencies. Its maintenance mechanism is based on simple direct 

propagation, through recursive traversal up and down the tree data-structure. Conflicts 

are resolved by either eliminating a relation, or establishing new ones within the tree 

structure. 

Ink and pencil lines are visually distinct; however, relations among pencil lines are not 

clearly expressed and must be queried. These visual indicators influence the predictability 

of the model's behavior upon manipulation. As complexity of drawings increases, pencil 

lines can become too numerous and overwhelm the drawing, as is illustrated in Figure 

2.4, where 2.4b is a variations of 2.4a in which the right construction lines are rotated. 
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The order of interaction in ReDraw is prescriptive; users must enter pencil lines first, and 

then ink lines. Similarly, they must specify the type of relation as they are entering the 

pencil lines; furthermore, these relations cannot be deactivated. These restrictions are 

partly alleviated by the presence of an undo command. 

 
a b 

FIGURE 2.4 - DRAWINGS GENERATED IN REDRAW 

 

ReDraw introduces the notion of construction lines into the computational environment, 

which is a powerful contribution because it enables the exploration of the structure of the 

configuration as a whole. However, the sequence of entering pencil lines and relations is 

not flexible, and the display of pencil lines is visually complex; ReDraw does not support 

a visual display for relations between pencil lines and nor does it support the deactivation 

of these relations.  

2.3. DESIGN GRAMMAR REPRESENTATIONS 
Design grammars, which are used to describe languages of designs, are also used as 

venues for design exploration, especially in generative design systems. In grammar-based 

representations, designs are represented by means of a vocabulary of shapes, (defined by 

lines and labels) and a set of production rules; design relations as well as design 

transformations are encapsulated in those rules. Configurations are manipulated by the 

application of these rules in order to change the current state of the design.  
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2.3.1. DISCOVERFORM (CARLSON 1991)  

DiscoverForm is a rule-based program that supports the generation and exploration of 

self-similar recursive forms, such as branching structures, reptiles, or space filling curves. 

Forms are developed by recursively cloning a 2D motif according to a single replication 

rule onto layers that are conceptually ordered along a third dimension. 

The structure of these forms is defined by the transformations (translation, rotation, 

reflection, scale, and shear) that map the motif to its clones. Forms are composed by the 

recursive cloning of the motif; variations within forms are investigated by changing the 

details of the motif; and forms are transformed by changing the clones of the motif.  

The representation is based on structured grammars, where motifs are represented by 

their parts and by the transformation that position, and orient, these parts. Recursive 

structures are described by one motif, one rule, the depth of recursion, and a flag 

“allgens” that determines whether all generations or the last generation are to be 

displayed. The recursive form is represented as an ordered display list of motif primitives 

and clones. 

In Carlson’s structured grammars, α , is defined by means of an object, , (positioned at 

the origin) and the transformation  that positions and orients a  with respect to the 

origin.  . A transformation, 

a

f

),( fa=α g , applied to an object, α , is equivalent to the 

external transformation, g , composed with α ’s internal transformation, . The 

. Complex objects are defined by means of the union, intersection 

and difference of simple structures.  New forms are derived from old ones by means of 

structure rewriting rules. These rules consist of a precedent and a consequent. The 

precedent is further composed of an inclusive condition and an exclusive condition. 

. The rule, 

f

),(),()( gfafagg ==α

β⇒δα= ),(r r , will apply to a form if and only if α  is a subset of the form 

and  is not in the form.  δ

Motifs and clones are displayed together to give the feeling of a single composite form. 

Therefore, there is no visual distinction among the various generations of clones. 

Relations among various parts [clones] are not shown. The transformations are applied 

directly to the motif and clones of the first generation, by using tacks to fix points or lines 
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on motifs. These, combined with the mouse direction, determine the transformation that 

is applicable to the motif (for instance, a fixed point yields a rotation, a fixed line yields 

reflection). 

The resulting forms, as well as the effect of manipulations of motif or clones, are totally 

unpredictable. A small change to the motif can create an un-correspondingly large change 

in the form, due to the complexity of the compounding effect of the recursion, as it is 

illustrated in Figure 2.5. 

 
FIGURE 2.5 - TWO PAIRS OF DRAWINGS GENERATED IN DISCOVER FORM 

 

DiscoverForm's is an innovative design system. It has the ability to explore an infinite 

universe of forms that were not previously possible, with a limited vocabulary (one motif 

and one rule).It also has the ability to transform structures and to explore variation of 

structures by direct manipulations and introduces an innovative interface for applying 

such transformations. However, DiscoverForm does not provide support for altering the 

recursive structure or exploring parts of the recursive form and does not provide a visual 

distinction among clones of the various generations. 
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2.4. HYBRID REPRESENTATIONS 

2.4.1. SEED LAYOUT (FLEMMING 1995) 

SEED-Layout is a generative system that supports the exploration of 2D schematic layout 

designs by rapidly generating and evaluating alternatives, using grammar rules in 

combination with constraint satisfaction. Schematic layouts capture critical architectural 

information such as circulation patterns, zoning, and the overall massing configuration, as 

well as numerous performance factors. 

The spatial containment structure in SEED-Layout is predetermined. It is defined by 

Functional Unit hierarchies consisting of buildings, massing elements, floors, zones, and 

rooms (Figure 2.6). When the Functional Units are allocated in a layout, these form a 

hierarchy of spatially nested sub-layouts. Each Functional Unit, allocated in a layout, has 

a corresponding Design Unit, which captures its geometry. The underlying 'topological' 

structure is strictly orthogonal, and captures the left-right/above below relations between 

rectangular Design Units within a layout. Variations in layouts can be investigated by 

generating layouts with alternative structures. SEED-Layout offers three modes of layout 

generation to the designer: under the designer's control, semi-automated generation, and 

complete automated generation. All three modes use grammar rules to introduce new 

Functional Units (or remove existing ones) in the layouts by expanding or contracting the 

underlying structure. After each modification, the Design Units are re-dimensioned and 

repositioned, taking the changed structure into account. The hierarchical structures in 

SEED-Layout cannot be transformed.  

SEED-Layout uses subdivision and pinwheel rules to generate designs. SEED-Layout 

supports complex requirements and prescriptive constraints. The latter are either value 

constraints (upper and lower bounds on dimensions, areas, and aspect ratios) or relational 

constraints (required adjacency, minimum or maximum distance, and preferred 

directions). Prescriptive constraints, which are satisfied automatically by constraint 

solvers, are formulated explicitly at the Functional Unit and Design Unit levels. 

Functional Unit constraints generate Design Unit constraints as corresponding Design 

Units are generated. Additional constraints are computed directly from the layout to 

guarantee non-overlap between Design Units. The resulting constraints--taken together--
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form a system of simultaneous equations and inequalities, which are solved by constraint 

propagation in numerical intervals, and a disjunctive constraints mechanism, adapted 

from Baykan (1997). 

 
FIGURE 2.6 -THE HIERARCHAL STRUCTURE OF SEED-LAYOUT ILLUSTRATED BY A FIRE STATION 

 

SEED-Layout's elaborate interface supports navigation in a complex design space with 

numerous alternatives. The layout's structure is clearly displayed on the main Layout 

view. It is also displayed in the constituent hierarchy and the design space windows. 

SEED-Layout is unique in its generative capabilities. It has the capacity to generate 

alternative configuration under the designer’s control and a mechanism for managing 

alternatives in a large search space. It also provides a higher-level description of 

constraints from which lower-level descriptions are generated and maintained. However, 

there is no support for direct manipulation of Design Units or their structures.  

2.4.2. FLOOR LAYOUT AND MASSING STUDY PROGRAMS (HARADA 1997) 

Harada's research integrates continuous and discrete transformations in constrained 

design spaces. Physically-based modeling is used for continuous transformation, while 

design grammars are used for the discrete transformation within a design search space. 

The user directly manipulates the design model (by moving and dragging) causing it to 

undergo continuous transformations until a conflict is reached. This triggers a discrete 

search for a solution that accommodates both the user's desired changes and the 
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constraint specification. During this search, the model is transformed by swapping, 

moving, rotating elements in order to generate alternatives, which are then evaluated in 

order to select the best one. 

The system displays the transformation from the model's state prior to the search, to the 

resulting state, by a smooth animation that shows elements moving into their new 

position (Figure 2.7). Continuous and discrete transformations are seamlessly integrated 

in the system, and the details of the discrete search are hidden from the user. To maintain 

interactivity, large combinatorial searches are avoided by limiting the discrete search to a 

couple of elements (the ones adjacent to the selected element) and to minimal 

transformation steps. Topological and hierarchical structures are determined by the 

representation of the system; an additional structure is defined by constraints; the user 

can explore variations within the structure, but only the system can transform it. 

Harada implemented two separate software prototypes, one for 2D floor layout and one 

for 3D massing studies. Both the layout and the massing programs support orthogonal 

configurations. In the floor-planning program, the rectilinear configuration is represented 

by a sub-region tree. The geometry is represented by means of the length and width of the 

top-most rectangle. Child rectangles are represented as a fraction of the parent's length. In 

the volumetric study program, the configuration is represented by an adjacency graph, 

which encapsulates both primary attachment relations and secondary (relative coordinate 

position) relations. Geometry is represented by means of (x, y, z), the block's center, and 

(lx, ly, lz), half of the blocks width and height. The constraints are represented as forces 

acting on the design objects and are satisfied by differential numerical methods. In the 

floor-planning program, constraints are minimum or maximum width, height, area, aspect 

ratio, and the nail constraint. In the volumetric program, constraints are all the above, 

plus the non-interpenetration constraint. 

In both programs, length, area and volume constraints are visually clear. These appear 

when the user pushes the spaces to their limits. When the discrete search is taking place, 

alternatives are counted and the number is displayed to the user. The migration from the 

old state to the new state is shown by smooth animation, which promotes the 

predictability of the models behavior. However, since the system chooses among a set of 

hidden alternatives, the user may not get an expected result. 
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FIGURE 2.7- RE-ARRANGEMENT OF FUNCTIONS UPON MANIPULATION IN HARADA’S PROTOTYPES 

 

Both implementations present an innovative approach to conflict resolution by integrating 

physically-based modeling and design grammars. Powerful features include a clear 

expression of constraints on the model, and a smooth animation to express the discrete 

transformation. However, in both programs, only one scenario for manipulation is 

supported, and users cannot perform discrete manipulations.  

2.4.3. PERFORMANCE SIMULATION INTERFACE (SUTER 1999) 

Suter’s prototype supports the interactive generation and manipulation of building models 

in the performance simulation/analysis environment, SEMPER. It incorporates grammar-

based generation, dimensional constraints and change propagation. The prototype 

assumes a subdivision approach in design. A designer builds a model by subdividing an 

initial cube, and then explores variations in the model by moving/rotating or 

adding/removing the partitions. Adjusting dimensions of the model, results in redefining 

the positions of partitions. Relationships between various parts of the model are 

established by means of link structures. 

The prototype supports orthogonal and slanted geometric entities as well as topological, 
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hierarchical and geometric structures. The former two are automatically defined by the 

hybrid representation, while the latter is defined by link styles. Changing the link styles 

transforms the geometric structure.  

The representation combines space-based, grammar-based, and sub-region 

representations. Therefore, spaces are considered voids surrounded by surfaces, and these 

are subdivided into subspaces by means of grammar rules. Entities are partitioned though 

a set of partitioning rules and articulated through refinement rules. Each entity has a 

maximum and minimum bounding partition and a partitioning direction. Volumes are 

partitioned by surfaces, which are partitioned by lines, which are in turn partitioned by 

points, resulting in separate hierarchies for volumes, surfaces, and lines.  

 
FIGURE 2.8 - THE PERFORMANCE SIMULATION INTERFACE 

 

Refinements, for which there are many types, produce non-orthogonal surfaces such as 

shed and gable roofs. Constraints for dimensions, offsets, and partitioning directions are 

controlled by users. Constraint satisfaction consists of conflict detection and change 

propagation, provided there is no conflict. Conflict resolution is not supported. Changes 

are propagated in a top-down manner starting from the selected entity. 

Links relate distinct entities in the model such that they become identical and are 

modified (manipulated or partitioned) in the same way. Links are applicable to entities 
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across various levels of the hierarchies. Link styles provide patterns of links in the model, 

such as symmetric or rhythmic patterns. 

The interface is elaborate. There are several methods to interact with model abstraction 

and navigate through the model's entities: a component view and a tree view. However, 

there is no direct manipulation with the model 3D view (Figure 2.8). 

Suter’s program provides a coherent representation that supports design subdivision and 

manipulation of configurations and integrates with performance simulation. It also 

provides link structures that support the definition of higher level design notions of 

symmetry and rhythm. However, the complex interaction scheme limits exploration, and 

the fixed hierarchy prevents parts from being manipulated as units, these cannot be pulled 

away or rotated. Furthermore, the system does not support direct manipulation and does 

not provide a clear expression of constraints and links on the model. 

 

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 31   

 



2.5. COMMERCIAL SYSTEMS 

Most industry-standard CAD systems have numerous powerful features for making 

precise 3D models. However, among the many systems surveyed, only two provide 

adequate support for design exploration: GenerativeComponents (Bentley systems) and 

Revit (AutoDesk). 

2.5.1. REVIT, A PARAMETRIC BUILDING MODELER  

AutoDesk’s Revit is a parametric modeler for architectural design. It supports design 

phases ranging from early conceptual design to construction scheduling.   

Revit supports the investigation of variations within architectural configurations by 

combining change propagation with constraint satisfaction on two levels of abstraction: 

(i) for relating elements in the design and (ii) for relating the various drawings of the 

design. Revit’s shared building database ensures the propagation of changes among all 

the drawings in a given design by means of automatic bi-directional associativity. For 

instance, if the roof type is changed from shed to gable, the connection to the walls is 

automatically updated to admit the new configuration, in all drawings. 

Revit has a component-based representation, which enables the designer to work directly 

with walls, floors, doors, windows, roofs etc. Each building component encapsulates its 

own parametric information as well as the information for integrating with other 

components. Revit supports both straight and curved geometries. However, spaces, 

functions, and other abstract design entities are not represented in Revit. 

Revit automatically recognizes design constraints, such as connectedness, dimensions, 

and alignments. These can be accepted or rejected by users. Constraints are preserved 

upon manipulation; and conflicts are reported to users. Revit's recognition and 

manipulation of constraints is better suited for rectilinear configurations, including 

rotated rectilinear grids. Although it supports other angular configurations, it does not 

recognize some of their special constraints, such as 60-degree relationships or corners 

where two coordinate systems join. Therefore, the behavior of such configurations tends 

to be less effective as rectilinear configuration. 
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FIGURE 2.9 - AN EXAMPLE OF A PLAN AND 3D MODEL GENERATED BY REVIT 

 

As model entities are being created, precise angle, dimension and dotted construction 

lines are directly displayed on the model. The construction lines show perpendicular, 

parallel, tangent and endpoint relationships. This information, as well as persistent 

constraint information, appears on the model view when an entity is selected, (Figure 2.9) 

and disappears when the entity is deselected. In this way, visual clutter is avoided. 

However, manipulating multiple constraints is not possible. Revit also supports reference 

planes, which are shown as dotted lines in plan view, used for visual as well as dynamic 

alignment. When walls are constrained to reference lines, moving reference lines will 

move walls. However, rotating reference lines will often create conflicts. 

Revit uses a sketching metaphor to support conceptual design activities such as massing. 

It has a massing sketch mode and allows the switching between massing and modeling 

modes. A mass is first sketched then incorporated into the main model. There are three 

modes for sketching masses: by extrusion, by revolution, or by extension. Massing prior 

to planning is preferable in Revit, because masses can be readily converted into their wall 

components, but walls cannot be converted to masses.  

Overall, Revit is a powerful system that supports the design drawing and documentation 

process as a whole. It has numerous powerful exploratory features such as the built-in 

architectural logic, the automatic recognition of constraints and a clear visual vocabulary 

for constraints expressed on the model without visual clutter. Revit, however, does not 
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support the ability to control multiple constraints or to specify new constraints on a 

model. Furthermore, creating new component is cumbersome.    

2.5.2. GENERATIVECOMPONENTS (AISH, 2005)  

GenerativeComponents supports the creation and exploration of user-defined complex 

3D building elements and integrates interactive manipulation with visual programming 

techniques.  

As the user creates the model, the system keeps track of input parameters and identifies 

their dependencies, which form a directed and acyclic dependency graph, displayed in a 

separate window. Geometrical entities are represented by input parameters. Design 

structures are represented by dependencies. Variations in design structures are 

investigated by manipulating model entities. Structures are transformed by manipulating 

the dependency graph, and by locking or freeing values in the graph. 

GenerativeComponents is based on a change propagation mechanism.  Since the graph is 

directed, change propagates only in one direction, from upstream components to 

downstream components. The graph captures the history or sequential development of the 

modeling operations, with earlier operations forming the upstream components and later 

operations forming the downstream components. This sequence of operations is re-

executed when an input is changed. 

In GenerativeComponents design relations are expressed visually in the dependency 

graph, and numerically in the spreadsheet. All visual representations can be manipulated. 

However, dependencies and constraints are not directly apparent on the model. 

GenerativeComponents models are flexible, but the allowable manipulations depend on 

the input parameters. For instance, a circle entered by its center and radius will be 

manipulated differently from a circle entered by three points on the circumference.  

GenerativeComponents includes a library of abstract geometrical components, point, line, 

Arc, B-splines and as well as Booleans operation and is further extensible to 

accommodate new complex user-defined components without programming from the part 

of the user, such as in Figure 2.10. GenerativeComponents automatically generates 

programmatic modules that capture the novel components and add them to the object 
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library. Users can compose, for example, a banana truss, and then use it in repetition to 

compose a roof structure. This makes two nested levels of dependency structures, one for 

manipulating the truss, and one for manipulating the roof.   

 
FIGURE 2.10   THE DEFINITION OF A RADIAL ARRAY OF A GENERATIVE COMPONENT 

 
 

Models created in generative components can be further analyzed with typical Bentley 

tools such as Bentley Architecture and Bentley Structures.  

GenerativeComponents presents a novel approach to CAD systems: It encourages 

strategic design exploration. Strategic planning is required to define the complex 

dependency structure, and to determine the desired set of desired manipulations and their 

consequences. Its powerful features include the ability to create very complex curvilinear 

geometry from simple components, the capture of operation sequence, and the 

extensibility to create custom components. However, the complexity of the dependency 

graph is significant and it is directly proportional to the number of elements in the model. 

GenerativeComponents lacks architectural components, the support for re-definition of 

input parameters and bi-directional association.  
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2.6. MATHEMATICAL REPRESENTATION OF SHAPES AND PATTERNS 

In this section configurations are represented by means of their mathematical properties. 

Design relations are considered as transformations that map one part to another. Although 

the goals of these representations are not design exploration, but rather design description 

and design analysis, the approaches presented here focus on relationships which are a 

fundamental ingredient in design exploration. 

2.6.1. SHAPE PATTERN REPRESENTATION (CHA 2004)  

Cha’s and Gero’s “Shape Pattern Representation” is a notation for describing patterns by 

capturing relations between repetitive parts. These relations are organized in a 

hierarchical tree structure. The goal of this representation is to provide a language for 

style learning, shape analogies and shape complexity measure. 

This representation, which is based on predicate calculus, captures formative ideas in 

design. It captures the implicit design knowledge of shape organizations, by means of 

explicit predicates and arguments.  

A shape  is represented by lines  to .The shape pattern representation syntax 

supports transformation based relations, depicted by 

S 1P nP

τ , and topological relations, 

depicted by . For transformation-based relations: σ 1τ = translation, = rotation, 2τ 3τ = 

mirror and =scale. For topological relations: 4τ 1σ = over, 2σ = under, = right, 3σ 4σ = 

left, and = between = inside, 5σ 6σ 7σ = outside, and 8σ = center. 

A shape pattern consisting of two shapes is represented by the following 

string: . The referent shape  and the parameters  and  are 

arguments for the predicate 

)},(,{ 31112 aaee τ= 1e 1a 3a

1τ , which is the translation relation between the two shapes 

(Figure 2.11a). A composite pattern defined by two relationships such as the translation 

 and scale  is represented by the following composite predicates: 

 (Figure 2.11b). A shape pattern consisting of multiple shapes 

uses the nesting operator  to indicate recursive nature of the pattern, for instance: 

 (Figure 2.11c). A multiple level pattern, such as the pattern 

1τ 4τ

)},(],,[{ 3141412 aaaee ττ=

⊆

)},(,{ 31i1
n

1i aaeS τ⊆= =
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consisting of two translation relations acting on the same referent shape, is represented by 

multiple nesting predicates:  (Figure 2.11d). The 

notation also supports super relationship acting on sub relationships, independently of 

shapes; each sub-relation has a different referent shape such as   

and  illustrated in (Figure 2.11e).  

)},()],,(,[{ 3131i1
m

1i1
n

1i2 aaaaee τ⊆τ⊆= ==

)},(,{ 5i2
6

1i a60SS τ⊆= =

)},(,{ 31i1
4

1ii aaeS τ⊆= =

 

 

 

FIGURE  2.11 SUMMARY OF THE SHAPE PAT
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• Recursion: A recursive scheme embeds within itself.  

• Complexity: Shape complexity is proportional to the composites levels of the 

representation tree. 

• Style: Styles are identified by identifying specific patterns in the tree 

representation. 

• Multiple representations: A single pattern can be represented in several ways. 

Such multiple representations provide various interpretations for a single shape 

pattern as is shown in Figure 2.13. 

 
FIGURE 2.12 - ANALOGOUS SHAPES 

 

 
FIGURE 2.13 - MULTIPLE REPRESENTATION 

 
 

Cha’s shape pattern representation introduced several significant issues pertaining to 

shape pattern analysis and their application in architectural designs. The powerful 

concepts in the representation include shape description through relational knowledge, 

shape pattern schema, and the various strategies for shape analysis. Although this 

representation is used for 2D repetitive patterns, and the scope of relations is limited to 

transformation and topological relations, the syntax is difficult to read. This is due to the 

following factors: (i) the inconsistent use of brackets and parentheses in nested shapes; 
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and (ii) the naming convention for relations and other objects is not mnemonic, with the 

same symbol representing numerous objects. 

2.6.2. A GENERATIVE THEORY OF SHAPE (BASED ON GROUP THEORY) (LEYTON 2001) 

Leyton’s generative theory of shape describes simple and complex shapes by means of 

group structures. The approach is to maximize transfer and the goal is to maximize 

recoverability. In Leyton’s theory, there are no objects; every shape is described using 

actions (Leyton 2001, p.29). Transfer is the ability to re-use previous actions as part of 

subsequent actions; recoverability is the ability to recover the sequence of actions that 

lead to generating the shape. The applicability of the theory ranges from Architectural 

Design, to Mechanical Engineering to Robotic Manipulation, and many others. 

The theory is based on the assumption that complex shapes are generated by means of  

symmetry breaking or more precisely asymmetry building (Leyton 2001, p.40). The 

shape creation (or shape designing) process begins with a series of actions defining the 

symmetries of the shape, and proceeds with a set of actions that break these symmetries. 

The symmetry breaking actions are recorded in the shapes themselves. Consider the 

asymmetric shape in Figure 2.14a: one can infer that a rectangular piece was subtracted 

from the symmetric square; however, one cannot infer from a square all possible 

asymmetric actions that may have been negated to obtain the symmetric square. Consider 

the tilted parallelogram in Figure 2.14b: According to Leyton, its generation steps are as 

follows (1) creating the square, (2) stretching the square to form a rectangle, (3) applying 

shear to the rectangle to form a horizontal parallelogram, and finally (4) rotating the 

horizontal parallelogram to obtain the tilted parallelogram. Therefore, the sequence from 

symmetry to asymmetry allows shapes to record generative actions and, therefore, 

maximizing recoverability. 

 
 
 
 
 
 
 a b 

FIGURE 2.14  - (A) MODIFIED SQUARE  (B) GENERATING A ROTATED PARALLELOGRAM 
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In Leyton’s theory, structures are mathematical groups, which are combined by means 

wreath products . A line, for instance, is denoted by the group of real numbers , and 

the occupancy group . The square is denoted by  and by the 4-fold rotation 

group , which includes the rotation transformations  which are 

subgroups of the symmetries of the square (Leyton 2001, p.9). The parallelogram is 

generated by applying the general linear group 

w  

2     w

4 },,,{ 270r180r90re

( ),2GL  to the wreath structure of the 

square.   

• Line:      w

• Square:  4       ww

• Parallelogram:    ),2GL(www          4

In Leyton’s syntax,  is used to describe continuous generative actions, while  is 

used to describe discrete actions. Typically, the first group in the wreath product is the 

fiber group and the subsequent group is the control group, where control groups move 

(preceding) the fiber groups around.  

 

Leyton (2001, pp.229-238) represents the basic 3D surface shapes as follows. All other 

shapes are generated by using these as primitives, either by means of spatial combination 

or Boolean operations.   is the continuous group of rotation in the plane.   )(2O

• Plane:      w

• Sphere and Torus:          w2Ow2O )()(

• Cylinder and Cone:  )()( 2Ow2Ow      

• Cube:          ww

Both the Sphere and the Torus are represented by the same wreath structure 

. However, the difference is in the distance between the rotation axes with 

respect to each other. This is referred to as the control radius depicted by ; changing it 

breaks the symmetry of the sphere and generates the Torus. Similarly, the Cylinder and 

the Cone are represented by the wreath structure ; with the main difference 

)()( 2Ow2O     

 

)(2Ow    

 

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 40   

 



being the angle between initial line and the rotation axis, which is the control angle, 

depicted by . )(2O

Typically, when shapes are combined, the symmetry of each one is broken and only 

combined symmetries remain. In Leyton’s approach (p.241), the symmetries of each 

shape are stored in their group definition as well as the affine transformation that relate 

them.  is the affine group on the 3D real space and the initial set of primitives 

are referred to the alignment kernel.   

( ,3AGL )

• Combined cylinder and cube: ⎣ ⎦ ( ),3AGLwcubeGcylinderG          ×  

Boolean operations are represented in a similar manner (Leyton 2001, p.252). Union, 

intersection, and difference share the same spatial group structure as spatial combination; 

however, these are further distinguished by means of the occupancy group .   2

Unfolding groups constitute the mechanism that allows control groups to treat various 

shapes within a fiber group differently. (Leyton 2001, p.250)  

• Unfolding group: ⎣ ⎦ ( ) ( ) ( )1n21Tn21 GCwGCwGCwGGG −××              ...  

Leyton (2001, p.365) claims that Architectural Design is a process of asymmetry building 

and can be represented by means of unfolding groups. In the massing study in Figure 

2.15, masses are created by unfolding transfer structure of three basic primitives, the 

sphere, the cylinder and the cube. Each primitive being copied and each copy being 

treated differently by affine transformations to obtain the desired mass, as is illustrated in 

Figure 2.15. 

 
FIGURE 2.15 (A) A MASSING CONFIGURATION (B) ITS CORRESPONDING NOTATION 
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Material choices are represented by color groups, while stairs, column grids and gable 

roofs are conveniently represented by transfer group structures.  

In Leyton’s theory (2001, p.397) solid structures, which are more complex than their 

surface counterparts, are presented by means of hyper-octahedral wreath Hyperplane 

groups, which combine the infinite translations in space to produce a solid with the 

surface definition of a shape.  The cylinder and its corresponding notation are illustrated 

in Figure 2.16. 

 

  
[ ][ ] [ ]

}
[ ]

4847648476444 8444 76
ttomtop and bo

w
nelsurface

2P

structuresolid
1P

nelalignment

1P2P
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)(       
2

      

       ×

FIGURE 2.16 - THE REPRESENTATION FOR A SOLID CYLINDER 

 

Sweep structures are conveniently represented by the fiber control group structure: 

 (2001, p.430). The profile and path are splines denoted by 

 where is the group representation of the Hermite cubic 

spline. 

pathwprofilesweep     =

[ ]       
 

wwww
0

210 /

    Σ 

Leyton’s theory is applicable to many domains; Robotic motion can be described using 

these fiber groups. For instance the motion of cutting machines can be described as 

follows. 

• Rotating blade to create a hole is described by a rotation movement and the 

movement in the z axis.  ( )     w2O   

• Rotating blade to create a slot is described by a rotation movement and the 
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movement in the x and z axes.  ( )         ww2O   

• Rotating blade to create a pocket is described by a rotation movement and the 

movement in the x, y, and z axes. ( )            www2O    

Leyton’s notation gets very complex as configurations become elaborate.  Furthermore, 

the syntax does not capture parameters for shape generation, for instance translation 

distance; neither does the group notation show which transformation are part of the 

group. , for instance, may be representing a 4-fold discrete rotation or a 4-fold 

discrete translation.  Similarly,  can be a reflection or a 2-fold discrete rotation. 

4

2

Leyton’s description of design (Leyton 2001, p.365) equates the design process with the 

drafting process of using AutoCAD or ProEngineer. This surface view of design is not 

comprehensive and does not include essential exploratory activities of the process. 

Although the theory is indented as an underlying computational representation, not for 

exploration, its basic assumptions cannot be applied to an iterative design process. 

Leyton’s approach is based on maximizing transfer in generating all parts of the 

configuration. This does not necessarily match with the designer’s intentions. A designer 

may want to relate some parts, while keeping other parts independent. Leyton imposes a 

specific order of symmetry, then asymmetry, on the generative sequence with the purpose 

of maximizing recoverability. Although, this prescriptive approach organizes the 

representation, it limits the options for generating configurations, and does not 

necessarily match the designer’s methods for defining and exploring shapes. 
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2.7. COMPARATIVE ANALYSIS  
The representations reviewed in this section include seminal as well as novel 

computational approaches to design exploration. The representations have in common the 

encapsulation and management of relations among design entities and expressing these 

either theoretically in the form of a notation or practically in the form of an interactive 

system. Each has its focus, contributions and opportunities for further research. The key 

issues that are relevant to describing and exploring configurations through their relational 

structures are described below.   

Design structures: Flemming and Harada investigated hierarchical and topological 

structures. Sutherland, Gleicher, Medjdoub and Gross investigated topological and 

(some) geometric structures in the form of unary and binary constraints. Carlson dealt 

with hierarchical and geometric structures. Kolarevic worked with a subset of geometric 

structures (grid structures). Suter investigated hierarchical structures and a limited 

version of bilateral symmetry and rhythm in subdivisions by defining them in link styles. 

However, his investigations were restricted by the nearly orthogonal universe of 

configurations defined by his representation. Cha worked with topological and 

symmetrical structures, while Leyton’s approach dealt with isometric and affine group 

structures.  

Transformation of structures: Kolarevic investigated the transformation of grid 

structures, defined by alignments, parallel, and perpendicular relations. However, these 

structures were not flexible, and could not be redefined. Furthermore, Kolarevic’s 

explorations were restricted to the universe of straight-line configurations. His sequential 

approach of interaction, influenced by the drafting metaphor, greatly limits the 

exploration. Carlson investigated transformations of structures within the universe of 

self-similar recursive forms, defined by one motif and one rule. The structure was 

regenerated upon the manipulations of motifs. However, transformations of recursive 

structures are not intuitive and the universe of self-similar forms is quite limited. Harada's 

systems supported discrete transformation of topological structures, but supported only 

one scenario of exploration. 

Dynamic structures: Dynamic constraints, used in Briar, are useful for designing 

movable building components. This approach is valuable for reconfigurable architectural 
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configurations and mechanical parts. Leyton also addressed the representation for the 

motion of robotic components in his theory.  

Extensibility and Customizable structures: In most systems, the structure can be defined 

from a predefined set of relations. However, CoDraw and GenerativeComponents 

provide extensibility by supporting users defined types of structures. 

Discrete explorations within structures: Discrete exploration is essential to design, since 

the design search space is a hybrid (continuous and discrete) space. Harada's prototypes 

used system-initiated discrete transformations to complement user-initiated continuous 

transformations. 

Automatic identification of structures: Automatic constraint generation, used in Briar, 

Sketcher and Revit, relieves the user from the additional burden of specifying constraints. 

However, this mechanism relies on the interpretation of user intent, which, in case of a 

misinterpretation, can generate unintended constraints leading to undesirable behavior.  

Alternatively, Seed-Layout, as well as Harada’s and Suter’s prototypes, have predefined 

structures that are automatically established as users define their models. 

Conflict resolution: Sutherland addresses conflict resolution by relaxing constraints. 

Medjdoub addresses conflict resolution by a constructive method. Gleicher's model 

always satisfies the constraints; consequently, there is no need for conflict resolution. 

GenerativeComponents uses uni-directional associativity, therefore avoiding conflicts. 

Harada addresses conflict resolution in an innovative way by using discrete search 

mechanism to find an alternative solution that avoids the conflict. Other systems, such as 

Revit, and Suter's system, notify users as conflicts are detected.  

Interaction with structures: Some systems (SEED-Layout, Harada's system, Suter's 

system, and CoDraw) support user manipulation of structures; this is usually achieved 

through creating and breaking constraints or relations. Others manage the making and 

breaking of structures solely by the system (Briar, Sketcher). Revit, on the other hand, 

combines system generation of constraints with users breaking constraints. Although the 

user manipulation of constraints is essential for redefining structures (Akin 1987), it 

becomes more cumbersome as configurations increase in complexity, and constraints 

increase in number. 
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Visual display of structures: The clear display of structure is a crucial usability issue that 

affects predictability among other factors. Some of the reviewed systems provide a clear 

display of the structure directly on the model (Briar, SEED-Layout, Harada's systems, 

and CoDraw); while others provide separate displays (GenerativeComponents, Suter). 

Revit provides a selective display that shows constraints bound to selected objects. In 

addition, the systems that provide automatic identification of constraints (Gleicher, 

Medjdoub, and Revit) provide a clear feedback to users regarding the creation of 

constraints. 

Predictability of structural manipulations: Each of the system surveyed has a different 

level of predictability, depending on the system's intent. Carlson's recursive structures, 

for instance, are very unpredictable, due to the non-intuitive characteristic of recursive 

structures. Carlson's intended DiscoverForm as a tool for the discovery of unanticipated 

avenues of inquiry (Carlson 1991). The predictability of Kolarevic's models depends on 

their complexity; Kolarevic's also intended ReDraw to produce surprising results, which 

can trigger innovation and creativity (Kolarevic 1997). Harada, on the other hand, 

effectively used smooth animation to provide predictability.  

Complexity of the syntax: In both Leyton and Cha’s representation, the notation is quite 

complex. Cha’s notation, based on predicates and arguments, captures a lot of relations in 

the design; however, the facts that the naming convention is not mnemonic, the 

inconsistency of the brackets and the extensive use of subscripts, make the notation 

difficult to read. The complexity of Leyton’s representation is due to the necessity to 

describe every shape by means of group constructs. The use of unfolding increases the 

complexity and therefore decreases the readability of the notation. However, essential 

parameters in the description of the shapes are not captured in the notation string, but are 

subsumed in the group definition.  

Capturing history of generation: On the theoretical level Leyton’s theory is motivated 

by capturing a unique generative process for any shape. However, because symmetry 

actions need to precede asymmetry actions in order to maximize recoverability, this 

approach imposes a sequential application on the design process, thus limiting the options 

for design generation. This prescriptive sequence does not necessarily match the 

designer’s approach. On the systems level, GenerativeComponents captures all actions 
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leading to creating a form; this sequence is later used to modify and explore the form.  

2.7.1. OPPORTUNITIES 

Each of the aforementioned representations focused on a particular aspect of exploration, 

however, none of them investigated exploration in a comprehensive way in order that 

determine ingredients, strategies and techniques for maximizing exploration.   

• None of these representations addressed the complete set of higher-level 

geometric relations such as symmetry, hierarchy, proportion, and rhythm, which 

are essential compositional tools in architecture, and which play a fundamental 

role in architectural design exploration.  

• None of these representations had a scheme for organizing lower level 

dependencies at higher levels of abstractions. 

• Some of these representations addressed transformation of structures at a limited 

level, but none addressed the redefinition, deactivation, replacement of structures 

that is necessary for achieving the maximum flexibility or interaction and for 

discovering new structures. 

• Although Harada addressed discrete transformations, none of the representations 

supported users making their own discrete transformations such as swapping or 

inserting.   
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CHAPTER 3                                                                

APPROACH: A FRAMEWORK FOR 

DESIGN EXPLORATION   

 

The representations surveyed in the previous chapter, “Background: Representations for 

Design Exploration,” addressed several aspects of design exploration independently. 

Each aspect focused on a specific method of exploration within a specific class of 

configurations. However, there has been no comprehensive framework investigating the 

variety of exploratory activities for the complete range of configurations that exist in 

architectural design.  

In this chapter, I present the premise of this dissertation from a normative perspective, as 

well as from an empirical perspective. I describe the approach for developing a 

framework for design exploration, from the computational perspective. In section 3.1, I 

discuss the classification, representation, and use of design structures as observed in 

notable architectural endeavors, and as explained in architectural theory. In section 3.2, I 

illustrate the representation and strategic use of structure in early design processes, 

through the results of an empirical study. In section 3.3, I describe a framework for 

representing and exploring architectural configurations. The framework, named 

Interactive Configuration Exploration (ICE), uses relational and generative structures, as 

a means for concisely describing, rapidly generating, and interactively transforming 

design configuration. 
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3.1. DESIGN STRUCTURES 

Design structures are abstractions encapsulating compositions of spatial relations, which 

organize simple architectural elements into coherent complex configurations. 

Architectural compositions consist of numerous elements, which can be spatial entities 

(spaces or zones) or building components (walls, windows, columns, etc). A structure 

organizes such individual elements by determining formal properties such as position, 

orientation, sizes and form. Design structures are of special significance in architecture, 

because they utilize ordering principles to relate elements within complex configurations 

as well as elements within various resolutions. 

Design structures play an important role in design conceptualization. These are the 

implicit vehicles used to compose and refine complex configurations of spatial entities. 

For every design problem there are numerous possible solutions and, therefore, several 

possible structural organizations. Hence the need for exploring structures. Through 

design structures, one can explore design configurations globally, rather than manipulate 

numerous individual elements, locally.  

In this section, I present a classification for design structures, and discuss the basic units 

for each of these classes. I also review visual representations of structures, and describe 

the concept of “transformation of structures” as an exploration tool.  

3.1.1. CATEGORIES OF DESIGN STRUCTURES 

There are numerous classifications of architectural configurations; Most rely on style; 

others base their categories on plan-shape (Curtis 1935, and Krier 1988a,), spatial 

organization (Ching 1996), and formative ideas (Clark 1985). Curtis (1935, pp.189-195) 

and Krier’s (1988a, pp.43-67) classifications, based on plan shape include square, round, 

octagonal, cross, L-shaped, U-shaped, T-shaped, and many others. Ching’s (1996, p.189), 

classification, based on spatial organizations, include centralized, linear, radial, clustered, 

grid organizations. Each of these can be further classified according to their main 

ordering principles of symmetry, hierarchy, rhythm, datum (Ching 1996, p.320). Clark 

(1985, p.137) presents an elaborate classification based on formative ideas. These include 

plan to section, unit to whole, repetitive to unique, additive to subtractive, symmetry, 

balance, geometry, configuration patterns, progressions, and reduction. Each of these is 
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further classified into its own subcategories. For instance, configuration patterns are 

classified as being linear, central, double-center, cluster, nested, and concentric.  

Wong (1993, p.59), on the other hand, classified abstract 2D design configurations 

according to their structure. He identifies formal, semiformal, informal structures, as well 

as active, inactive, visible and invisible structures. Within formal structures, Wong 

includes repetition, gradation, and radiation.  

In this context, architecturally significant structures are used to classify architectural 

design configurations. These structures, which are applicable to any level of abstraction 

in design configurations (such as plan organization, 3D massing, 2D façade, etc.) can be 

categorized as topological, hierarchical or geometric.  

Topological structures define networks of relations between spatial entities. These are 

typically used in adjacency diagrams of early architectural conceptualizations to 

determine the location of spaces with respect to each other. March (1974) studied graph 

networks as an interpretation of space arrangement. Figure 3.1 shows three of Frank 

Lloyd Wright's houses, Life (1938), Jester (1938), and Sundt (1940) that differ in 

geometry, but share the underlying topological structure (March 1974, p.27). They also 

share a similar geometric coherence among their parts expressed by regular forms. 

 
FIGURE  3.1 -  FRANK LLOYD WRIGHT’S LIFE, JESTER, AND SUNDT HOUSES, AND THEIR SHARED 

TOPOLOGICAL STRUCTURE 

 

Hierarchical structures define grouping and organizational hierarchies of spatial entities.   

Figure 3.2 shows the hierarchical decomposition of a fire station into wings, zones, and 

spaces.  
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FIGURE  3.2 -  THE HIERARCHICAL STRUCTURE FOR A FIRE STATION 

 

Geometric structures define formal relationships between elements. These are the most 

versatile types of structures. Even with the same topology and hierarchy, a configuration 

can have many geometrical alternatives as was illustrated by the three Frank Lloyd 

Wright Houses in Figure 3.1. These can be further categorized as grid structures, 

repetitive structures, variational structures, and non-regular structures.  

Symmetry structures define symmetrical mappings between elements. Grid structures 

organize proportions, alignments, and angles between configuration elements. Figure 3.3 

shows the reflectional symmetry and grid structures of Andrea Palladio's Villa Capra 

(source: Ching 1996, p.195). Variational structures form rhythm and gradation pattern 

within elements. Non-regular structures define subtractive and additive configurations 

achieved by operations such as adding, cutting or slicing, thereby breaking the regularity 

of a configuration. Figure 3.4 illustrates the variational structure of the Guggenheim 

museum in its gradation, and its non-regular structure in the union of its distinct parts 

(source: Laseau 1992, pp.121-127). 

 
FIGURE 3.3 - THE GRID AND SYMMETRY STRUCTURE OF PALLADIO’S VILLA CAPRA 
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FIGURE  3.4 - VARIATIONAL AND NON-REGULAR STRUCTURE OF  THE GUGGENHEIM MUSEUM 

 

Typically the total structure of a building is composed of several superimposed 

substructures, consisting of topological, hierarchical and geometric abstractions. One can 

consider early design conceptualization as a process in which these multiple layers of 

structures are developed either simultaneously or separately then integrated.  

3.1.2. UNITS OF DESIGN STRUCTURES 

Complex design structures are compositions of simple spatial relations. The following 

relations, which constitute the smallest units defining topological, hierarchical, and 

geometric structures, are classified according to their mathematical properties. 

3.1.2.1 TOPOLOGICAL RELATIONS 

Topological relations, determined by design requirements, define the proximity between 

two design elements. The most common is the adjacency relation, followed by the 

overlap, inside, and distance (or separated) relations. Some spaces need to be adjacent 

due to circulation, whilst others need to be far apart due to thermal or acoustic 

circumstances. The inside relation defines a boundary: For instance, the site and its 

setbacks form a boundary that defines the region where a building can be located.  

Figure 3.5 illustrates examples of adjacent spaces in Fisher von Erlach’s Pavilion Design, 

and overlapping spaces in Balthazar Neumann’s’ Pilgrimage church (source: Ching 1996, 

pp.185-187). 
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A - Adjacency 

 
B - Overlaps 

FIGURE  3.5 -  TOPOLOGICAL RELATIONS  

 

3.1.2.2 HIERARCHICAL RELATIONS 

Hierarchical relations relate elements in an organizational hierarchy. These consist of the 

containment, or subshape relations. A container can have many constituents, and 

containment hierarchies can have indefinite depths. For example, a building contains 

several zones, which in turn contain many spaces. A space can be further decomposed 

into floor, wall, and ceiling components. Similarly, windows and doors are contained 

within the walls. In its abstract form, the containment relation is independent of 

geometry; however, when spaces become actual architectural elements, topologies and 

geometries become significant factors. The subshape relation, on the other hand, is purely 

geometric. It defines shapes that are “sub-part” of others, for instance, a façade 

articulation is a subshape of the façade. 

3.1.2.3 GEOMETRIC RELATIONS FORMING SYMMETRY STRUCTURES 

Symmetry relations organize repetitive elements in a configuration. Symmetry is a very 

common formal organization tool in architecture. It can be observed in floor plans, 

façades, gardens, and decorative articulations. These include translational, reflectional, 

and rotational symmetry. Other forms of repetitive structures can be defined by 

curvilinear relations.  

Figure 3.6 illustrates examples of symmetry and repetitive relations used in plan 

organizations. 3.6a - Two major axes of reflection join to form the structure in the church 

in S. Vitale Ravenna (source: Ching 1996, p.247). 3.6b - Rotational symmetry globally 

defines the structure in St. Mark’s Towers (source: Ching 1996, p.76). 3.6c - The 
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rotational and reflectional symmetry define the pentagonal plan of Vignola’s Pallazo 

Farnese (source: Ching 1996, p.194). 3.6d - The curvilinear repetition defining the 

structure of Alvar Alto’s Baker House (source: Ching 1996, p.207). 

 

 
a - Reflectional Symmetry 

 
b - Rotational Symmetry 

 
c - Rotational Symmetry 

 

 
d - Curve Repetition 

FIGURE  3.6 -  SYMMETRY AND REPETITIVE RELATIONS  

 

3.1.2.4 GEOMETRIC RELATIONS FORMING GRID STRUCTURES 

Grid structures are the most common ordering strategies in architecture. Relations 

defining grid structures can be considered as positional, directional, and dimensional 

constraints. Positional constraints, such as alignments, define positions of elements in the 

configuration. Directional constraints define the orientation of elements and angles 

between them. Dimensional constraints, such as proportion, restrict the sizes of elements. 

These are used to define proportion systems.  

Alignment defines reference lines and planes to align elements. Typically buildings are 

aligned with their surroundings; windows are aligned on façades, etc. Many architectural 

schools of thought are based primarily on proportion systems, for instance, the Golden 
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Section, Ken, Modulo, just to name a few. Proportion restricts the relation between two 

sides of an element or group of elements. The Size constraint, which restricts the length, 

area or volume of elements, is particularly significant for area requirements in space 

allocation. The angle relation, which restricts the angle between two elements, can be 

used to define minimum roof slopes, for instance.  

 
a - Alignment  

 
b - Proportion 

 
c - Size 

 
d - Angle 

FIGURE  3.7 -  RELATIONS DEFINING GRID STRUCTURES 

  
Figure 3.7 illustrates the use of constraint relations. 3.7a - Parallel planes are aligned to 

form le Corbusier’s Sarabhai House (source: Ching 1996, p.144). 3.7b - The Parthenon’s 

Golden proportions are indicated by diagonal lines (source: Ching 1996, p.288). Notice 

the reflectional and translational symmetry in the Parthenon as well. 3.7c - The modular 

size constraint is maintained by the Ken proportion in the Japanese residence (source: 

Ching 1996, p.308). 3.7d - The 60º angle relations are consistently maintained in Frank 

Lloyd Wright’s Sundt house (source: Ching 1996, p.40).                         

3.1.2.5 GEOMETRIC RELATIONS FORMING VARIATIONAL STRUCTURES 

Variational relations such as rhythm and gradation introduce variations into repetitive 

structures. These bring perceived dynamism in configurations that would otherwise be 
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considered static. Figure 3.8 shows the rhythm in Luis Khan’s Indian Institute of 

Management, and the gradation in  Alvar Alto’s Church at Vuoksennisk (source: Ching 

1996, p.318 and p.369). Notice the overlapping relation in Alvar Alto’s Church as well. 

 
a - Rhythm  

 
b - Gradation 

FIGURE 3.8 - VARIATION STRUCTURES  

 

3.1.2.6 GEOMETRIC RELATIONS FORMING NON-REGULAR STRUCTURES  

Relations forming non-regular structures are realized through operations. Additive 

structures are defined by union operation of overlapping elements, while subtractive 

structures are generated by a subtraction of minor elements from a major element. Other 

non-regular forms can be defined by subdividing a form or cutting it. Figure 3.9 shows 

the subtractive structure in Mario Botta’s House at Stabio (source: Ching 1996, p.53)                       

and the structure of the cut sphere in the proposal of the Turkish pavilion (source: Onat 

1995, p.59).                     

     

 
a - Subtraction  

 
b- Cutting 

FIGURE 3.9 - NON REGULAR STRUCTURES DEFINED BY OPERATIONS  
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The diversity of the examples illustrating structures and spatial relations suggest that the 

concept of structure exist in architecture across the boundaries of time and culture.  

3.1.3. REPRESENTATION OF DESIGN STRUCTURES 

 
It is common practice in architecture to visually express geometric relations among 

elements by using regulating lines. According to Le Corbusier, “A regulating line is an 

inevitable element of Architecture …. It is an assurance against capriciousness … it 

confers on the work the quality of rhythm …. The regulating line is a satisfaction of a 

spiritual order, which leads to the pursuit of ingenious and harmonious relations. … The 

choice of regulating line fixes the fundamental geometry of the work.” (Le Corbusier 

1960, p.71). 

Regulating lines are visual abstractions used to represent relations. These are used as 

guidelines that determine the basic geometric structure in an architectural composition. 

Regulating lines are used to control proportions and indicate common alignments of 

elements. Regulating lines can be straight or curved; in fact, regulating arcs and circles 

have been widely used to represent relations among elements in plans as well as in 

facades. Figure 3.10 illustrates the use of regulating lines to organize the circular plan of 

the Pantheon (source: Ching 1996, p.288), and the use of circular lines to regulate the 

Achaemenian cupolas (source: Le Corbusier 1960, p.72). 

 
a - Straight regulating lines 

 
b - Circular regulating lines  

FIGURE 3.10 - REGULATING LINES  

 
 

From Le Corbusier 's description of regulating lines, it is evident that he promotes their 

use in design. This can be interpreted as a prescriptive approach toward establishing a 
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geometric structure to define an order within architectural compositions. He also refers to 

“the choice of the regulating line,” implying that it defines the geometry of the work and 

the character of the architectural composition. 

JNL Durand, in an effort to systemize the architectural design process, introduced a 

“method to follow in the composition of any project” (Madrazo 1994, p.16). Although his 

method was widely criticized, it is worthy of mention, because it relies on establishing 

the structure as a primary design step. 

Durand's method begins by establishing the basic structure by regulating lines. It then 

proceeds by further developing the structure at a higher resolution (Figure 3.11). “Durand 

has actually described a transformation of a rough scheme into a detailed representation 

of a building, a transformation of geometry into architecture,” (source: Madrazo 1994, 

p.17). 

 
FIGURE 3.11 -  DURANT’S PRESCRIPTIVE METHOD FOR DESIGN  

 
Durand’s approach highlights the importance of the design structure in the course of 

design development. However, he uses this structure to restrict the design process, not 

only to organize the composition. His method overlooks the fact that structures can be 

identified anytime during the course of design and could be derived from other elements 

or even discovered as emergent forms.  

3.1.4. TRANSFORMATION OF STRUCTURES 

In a design space where each configuration is considered a state, transformations are the 

primary vehicles used to navigate through these states. Transformations can be 

continuous or discrete. Continuous transformations, which include isometries 

(translation, rotation, mirror, glide), affinities (scaling, stretching, shearing) and 
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projections (perspective), preserve the essential properties of elements to which they are 

applied. Discrete transformations change fundamental properties of their elements and 

often vary the number of elements in a configuration. Discrete transformations include 

instantiation, deletion, subdivision, replacement, and Boolean operations.  Subdivision 

takes one element and converts them to many; Boolean operations, which include union, 

intersection, difference and symmetric difference, take many elements and convert them 

into one. Replacement, which is the most versatile transformation, takes away one/many 

element/s from a configuration and returns another/others (perhaps with a completely 

different form).  

Although structures are used as composition tools, these have rarely been used as 

exploration tools. This is due to the complexity involved in exploring compound 

structures. Transforming a structure is equivalent to transforming the numerous elements 

forming that structure, thus, it is equivalent to transforming the whole configuration.  

Nevertheless, the concept of transforming structures was investigated within various 

domains as analytical or generative tools. Dürer, Thompson (1971), Laseau (1992) 

investigated continuous transformations of structures, while Steadman (1998) 

investigated discrete transformations of the structure of an archetypal building to generate 

other building types.   

Dürer described transformations of the human profile by introducing variations in the 

underlying grid structure (Mitchell 1990, p.116). By varying the coordinates of the grid 

lines, he varied the proportions of the profile. By varying the angle of the grid lines, he 

introduced shear or perspective in the profile (Figure 3.12). Therefore, the corresponding 

profiles were changed according to new grids, and Dürer was able to produce various 

caricatures (source: Mitchell 1990, p.116).  
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FIGURE 3.12 - DÜRER’S HUMAN PROFILES 

 

D'Arcy Thompson (1971, pp.268-325) extended this concept further by using radial 

coordinates to vary the curvature of the grid lines. In his study of related forms, 

Thompson developed a systematic method of transforming grid lines that corresponded 

with natural growth patterns. He was able to develop a deformation scheme that allowed 

him to trace the similarities and difference in proportions between species. By varying the 

curvature of each line of the coordinate system differently, he was able to map one the 

skeleton or profile of one species into another. Figure 3.13 shows examples using this 

system to compare fish and crustacean forms. Thompson also applied this technique to 

transform skulls and bones of various mammals.  

 
FIGURE 3.13 -  D'ARCY THOMPSON’S TRANSFORMATIONS OF FISH SPECIES 

 

Laseau and Tice (1992, p.7) emulated Thompson’s approach of varying grid curvatures to 

determine the transformation mappings for two of Frank Lloyd Wright’s Usonian Houses 

(Figure 3.14). 
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FIGURE 3.14 - LASEAU’S ANALYSIS OF LLOYD LEWIS AND DAVID WRIGHT  HOUSE PLANS 

 
 

Steadman (1994, pp.S7-S30) presents a classification of built form based on lighting 

(natural, and artificial), and average room size (cellular, open space, and hall). This yields 

six categories, further classified by the number of stories and by the type of natural 

lighting (side or top). He also investigated a method of transforming built form from a 

standard parametric “archetype” into any configuration within these classifications 

(Steadman 1998, p.98). The method included discrete transformations of suppressing 

parts, connecting parts, as well as dimensional transformations such as scaling (Figure 

3.15).   

 
FIGURE 3.15 -  STEADMAN’S DISCRETE TRANSFORMATION OF STRUCTURES 

 

Figure 3.16 illustrates a hypothetical example of transforming Life House to Jester 

House, by using discrete transformations of replacing forms. The process begins with 

Life house. It then proceeds by replacing the square spaces by circular ones and the 
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rectilinear masses by curvilinear ones, whilst adjusting their positions and sizes. 

 
FIGURE 3.16  THE HYPOTHETICAL TRANSFORMATION FROM LIFE HOUSE TO JESTER HOUSE 

 
 

As these examples illustrate, slight transformations of structures can greatly affect 

configurations, and are undoubtedly a source for intellectual stimulations and therefore, 

are powerful venues for design exploration.   
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3.2. EMPIRICAL OBSERVATION OF DESIGN STRUCTURES 

In this section, I describe an empirical observation based on a protocol experiment that 

illustrates the use of structures in early phases of design. The goal of this study was 

motivated by the need to discover whether design structures are merely theoretical 

constructs, or whether they are practical entities playing an active role in design 

development. It led to evidence of the use of regulating elements, not only to express and 

compose structures of architectural configurations, but also as strategic devices in guiding 

the design process. Further analysis of the data indicates that these devices play a 

significant role in defining strategies for structuring sub-problems, managing part-whole 

hierarchies, organizing topology-geometry, scaffolding the design process, and 

restructuring of problem parameters. In this section, I present the abridged version of 

results; for the complete results the reader is referred to Akin, Ö. and H. Moustapha 

“Strategic Use of Representation in Architectural Massing” (Design Studies, 25, 1, 2003, 

pp31-50). 

3.2.1. EXPERIMENTAL SETUP 

The protocol experiment consisted of observing six architects while they designed a 

three-dimensional massing model of a dormitory building on the Carnegie Mellon 

campus. Each session lasted two hours on the average, and was recorded on videotape. 

All participants, who are professional architects, with experiences ranging from 5 to 25 

years, are referred to as P1 to P6. The corresponding protocol sessions are referred to as 

S1 to S6, where the first three were carried out in the sketch medium (pencil and paper) 

and the three others in the computing medium (CAD system). Alternatives generated by 

each participant are referred to as Ai1 to Ain, where ‘i’ corresponds to the participant ID.  

3.2.2. REGULATING ELEMENTS AS DESIGN STRATEGIES 

The principal mechanism utilized in structuring massing activities was the use of 

regulating elements such as axes of symmetry, alignment axes, and bounding lines. All 

participants maintained geometric order in their designs using such mechanisms. 

Although they freely manipulated (added and removed) massing elements, through the 

use of regulating elements they were able to preserve their underlying structures and even 
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accentuate them.  

3.2.2.1 REPRESENTING STRUCTURES 

In the protocol sessions, participants used external representations, whether 

verbalizations, sketches, or computational records, with the apparent purpose of carrying 

on a design dialogue with themselves. They used regulating elements to express their 

design organization, either explicitly or implicitly. The explicit expression took either a 

graphic or verbal form. In the implicit expression, the relation was defined by the position 

of elements, but no lines were drawn nor discussed, as in the case of P2 (Table 3.1a). 

Participants also made verbal references to regulating axes as in the case of P4 (Table 

3.1b), who defines the geometric structure verbally prior to any drawing activity. Even 

though the axis is not explicitly depicted, its verbal presence serves, just as successfully, 

the same function that the explicit axes serve in other protocol episodes.  

 

 
1.9.1   “One possibility is to make it a 

continuing line from Margaret Morrison 
and then design at the corner a 
transition into the new coordinate 
system.” 

 
1.9.2   “The same way in which the dormitories 

use the octagon to transition between 
the Carnegie Mellon grid and the dorms 
grid, which happens to be 45° such 
that an octagon can do it very 
nicely.” 

 

a - Implicit representation of axes  b - Verbal representation of axes  

TABLE 3.1 - IMPLICIT AND VERBAL REPRESENTATION OF REGULATING AXES 

 

3.2.2.2 STRUCTURING THE SUB-PROBLEM 

One of the most straightforward ways of structuring an ill-structured problem is to break 

it into more and more specialized parts. In the case of massing, the decomposition of the 

design problem is graphically driven. The participants appear to create local problem sub-

structures by adding sub-division lines into the massing representation as for the case of 

P1 and P3 (Figure 3.17).  
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FIGURE 3.17 -  P1 AND P3 DEVELOPING SUBSTRUCTURES 

 

3.2.2.3 MANAGING PART -WHOLE HIERARCHY 

A popular regulating element, observed during the protocol sessions is the alignment line 

that aligns individual design elements with respect to it. Aside from the compositional 

orders that result from such use, the alignment axes represent meta-elements that control 

the spatial organization of other, lower-level elements. The evidence suggests that the 

massing strategies defined here, establish a two-tier hierarchy between the regulator 

(super-node) and the regulated (sub-node). Nested regulating elements of massing can 

then create indefinitely deep hierarchies. 

3.2.2.4 SCAFFOLDING THE DESIGN PROCESS 

Another view of the protocol data relies on the scaffolding metaphor (Akin et. al. 2003). 

Just as a scaffold provides a structure for accommodating construction activities, the 

physical massing activities of design elements relies on the framework created by the 

regulating elements. There appears to be a two-way interaction between the regulating 

and massing elements, particularly in the manner in which regulating elements are 

derived from masses and, inversely, masses are guided by regulating elements. Scaffold 

creation seems to be based on the extension of alignments in the current design. This is 

particularly evident in P1 (Table 3.2), and P4 (Table 3.3).  
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5.1.1  P1 draws the courtyard. 
5.1.2  She draws the public (administration & restaurant) around the 

courtyard. 
5.1.3  Then she draws the central axis line.  
5.2 P1 develops the dorm zone. 
5.2.1  She starts by drawing 3 blocks.  
5.2.2 She then divides one of them along the central axis ending with 4 

blocks. 
 

TABLE 3.2 -  P1 DERIVING AN AXIS FROM A MASSING ELEMENT 

 
 

 
  
 P4 uses the strategy of extending two lines from an existing 

building’s external protrusion, and utilizes these as guides to 
create a protrusion onto her own proposed building. She then 
discovers a novel relation (Akin 1996) between these lines and her 
own buildings sub-structure. She says “Ahaaa … I found a very 
interesting relationship”. This causes an adjustment to the proposed 
massing configuration. 

 

TABLE  3.3 - EXTENDING A SUBDIVISION LINE  

 

3.2.2.5 ORGANIZING TOPOLOGY AND GEOMETRY 

Regulating elements of massing also appear to be representing the topology of a given 

geometric composition. For instance, axes are used to represent associations and 

alignments of spaces, independent of shape and size. Spaces can be strung along an axis 

creating a linear topological structure. Alternatively, multiple axes can be used to create 

much more complex relationships, like grids and urban road patterns.  Table 3.4 shows 

P1’s sketches for determining the topological relationships. 
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1.2    P1 identifies patterns in the 
program. 

1.3    She divides the program into zones 
(Entrance, administration zone, 
study zone, dorm zone, etc.) 

1.4    She analyses relationships between 
the zones by drawing arrows. 

1.5 Adjacencies, Accessibility (public, 
semipublic, private), Exits. 

1.6 Start developing concepts based on 
these relations. 

   
TABLE  3.4 - P1 DERIVING TOPOLOGY FROM PROGRAM RELATIONS  

 

3.2.2.6 RESTRUCTURING OF PROBLEM PARAMETERS  

One of the behavioral characteristics of expert designers is a skill and propensity to 

restructure design problems (Akin and Moustapha 2003). The protocol data showed 

several forms of restructuring. A frequent form of restructuring is through the 

development of alternatives such as in the case of P1 (Figure 3.18). However, 

restructuring the problem does not always mean a wholesale redesign, or the generation 

of an entirely new alternative. Occasionally, the participants achieved the same effect by 

modifying key elements or secondary regulating element in the solution domain, as in the 

case of P4 (Figure 3.19). 

 
FIGURE 3.18 -  P1’S ALTERNATIVES ILLUSTRATING MAJOR CHANGES IN STRUCTURE 
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FIGURE 3.19 - P4 CHANGES THE GEOMETRIC STRUCTURE OF THE ROOF CONFIGURATION. 

 
The protocols results illustrated several situations where designers handled the geometric 

structure of a massing configuration in such a way that they seemed to be doing more 

than just composing forms. Repeatedly and consistently, the data showed behaviors that 

structure and manage the design development process. This evidence highlights the 

importance of structures in early design activities and emphasizes the strategic and active 

nature of regulating elements for design exploration. 
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3.3. THE ICE FRAMEWORK FOR EXPLORING WITH DESIGN 

STRUCTURES   

After surveying the types of design structures in notable architectural configurations, and 

after establishing their strategic role in early design development through empirical 

observation, I introduce the Interactive Configuration Exploration (ICE) framework. The 

ICE framework is a comprehensive mechanism that relies on architecturally significant 

structures for design representation, and relies on transformation of structures for design 

exploration. The ICE framework supports transformation of structures conceptually, 

formally, and computationally, with the purpose of maximizing the exploratory potential 

of design configurations. Conceptually, ICE is an exploratory venue in the domain of 

architecture. Formally, ICE is a notational representation. Computationally, ICE is an 

interactive real time experience. 

The approach used in the ICE framework is to separate the organizational dimension of 

design structures from the physical dimension of architectural elements. Therefore, each 

dimension can be addressed separately. Through design structures, one can explore a 

design configuration as a whole, while maintaining its integrity. By manipulating 

individual elements, one can explore variations within the same structure. By 

manipulating the structure itself, one can all redefine all elements organized by the 

structure, and thus transform configurations completely.   

3.3.1. REGULATORS 

The principal vehicles used in the ICE framework, are regulators, which are abstraction 

that capture the spatial relations of design structures. Each regulator is associated to a 

specific set of elements in the configuration and is augmented with control over these 

elements.  Regulators, which are inspired by regulating lines, are expressed 

computationally analogous to the way spatial relations are expressed traditionally. 

However, these are extended to include regulating points, planes and volumes, which, in 

combination, express the structure of the architectural configurations in three dimensions.  

• Regulating points include intersections of lines and centers of rotations.  

• Regulating lines or arcs include intersections of planes, axes of rotations, axes of 
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symmetry, alignment lines, bounding lines and diagonal proportion lines.  

• Regulating planes include axis of symmetry for volumes, alignment planes and 

bounding planes. 

• Regulating volumes include bounding volumes. 

In the ICE framework, there is a regulator corresponding to each of the spatial relations 

described in Section 3.12. Regulators convert relations into dynamic, reconfigurable 

entities rather than static entities. Regulators control their associated elements according 

to specific mathematical properties. Each regulator type encapsulates a formula (a 

polynomial equation), by which it controls the attributes of its associated elements. The 

parameters of equation can be set and modified by users. These modifications result in 

changing position, orientation, curvature or other factors of the regulators which, in turn,  

influence positions, orientations, curvatures, or other factors of regulated elements.  

Regulators are not merely visual abstractions, but computational abstractions that 

represent handles for the structure of the configuration. Therefore, regulators allow the 

use of the structure as an exploratory venue in order to promote intellectual stimulation. 

A designer explores an architectural configuration with regulators in the following 

manner. He/she composes structures by generating regulators of various types and 

associating various configuration elements to them. He/she investigates variations within 

structures by manipulating configuration elements; regulators ensure that relations among 

elements are preserved. He/she transforms structures of configurations by manipulating 

regulators and modifying their parameters; regulator transforms the configuration 

accordingly.  

Regulator are conceived with transformation of structure in mind and are designed to 

capture the most basic relations that, when composed together, define complex structures. 

In the following section, I describe exploratory patterns for preserving as well as for 

transforming configurations defined by each regulator type. 
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3.3.1.1 TOPOLOGICAL REGULATORS 

Topological regulators (Figure 3.20) correspond to topological relations. These binary 

regulators ensure that the two topologically related elements always maintain their 

relations even when one of them is manipulated. Elements controlled by the Adjacency 

regulator are always adjacent; when one is moved, the other one follows. The Distance 

regulator maintains a specific minimum, or maximum, distance by preventing the 

elements from moving beyond that distance. Elements controlled by the Overlap 

regulator always remain overlapping; motions that disjoin these elements are prevented. 

In the case of the Boundary (or inside) regulator, one element always remains inside the 

other. The internal element is not allowed to move beyond the boundary element. When 

the boundary element is moved, the internal element follows. Also the internal element 

cannot be resized beyond the size of its boundary. 

   
FIGURE 3.20 - ADJACENCY, OVERLAP AND DISTANCE REGULATORS 

 

3.3.1.2 HIERARCHICAL REGULATORS 

Hierarchical regulators correspond to hierarchical relationships. The Containment 

regulator defines a container and its constituent elements. The Containment regulator in 

itself has no geometrical implications; however, it can be composed with other regulators 

to introduce geometrical and topological restrictions to the hierarchy. For example, a 

Boundary regulator prevents contained spaces from being positioned outside the 

container zone. The Subshape regulator establishes geometrical coherence between 

shapes, and ensures that the subshape always has the same geometry as the supershape. If 

the geometry of the supershape, for instance a façade, is modified, its subshape 

articulations are also updated as well.   
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3.3.1.3 GEOMETRIC – TRANSFORMATIONAL –REGULATORS  

Transformational regulators are inspired by symmetry relations, which are based on 

isometry transformations in 3-dimensional space such as translation, rotation, and 

reflection. However, these are extended to include affine transformations, such as scale 

and shear, as well as equations in space to represent additional repetitive relations, such 

as curves. Transformational regulators are the primary constructs of the ICE framework 

because, in addition to controlling relations between symmetrical elements, 

transformational regulators generate elements based on these relations.  

Transformational regulators generate multiple outputs, from a single input element. 

Regulators control the position/orientation of outputs, with respect to the input.  

Transformational regulators ensure that the symmetrical relation between these elements 

is preserved upon their manipulation, and if the regulator’s geometry or variables are 

modified, the relation is redefined.  

The Translation regulator generates outputs translated along a straight line. The variables 

of the Translation regulator include the distance, the orientation of the line and the 

number of outputs. Figure 3.21 illustrates the effects of changing the distance and the 

orientation of the Translation regulator.  

   
FIGURE 3.21  -  TRANSLATION REGULATOR 

 

The Rotation regulator creates outputs rotated about a point/line. The variables of the 

Rotation regulator are the rotation degree, the number of outputs, the position, and 

orientation of the Rotation regulator. Figure 3.22 illustrates the effects of changing the 

orientation and the position of the Rotation regulator. 
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FIGURE 3.22 -  ROTATION REGULATOR 

 

The Mirror regulator generates an output reflected about a line or plane. The variables of 

the Mirror regulator are position and orientation of the mirror plane. Figure 3.23 

illustrates the effects of changing the orientation and the position of the Mirror regulator. 

   
FIGURE 3.23 -  MIRROR REGULATOR 

 

The Dilation regulator scales the outputs about a specific center of scale. The variables of 

the Dilation regulator are the scale factor, the center of scale, and the number of outputs. 

The Shear regulator creates sheared outputs. Its variables are the shear factor, and the 

direction of orientation of the Shear regulator. Figure 3.24 illustrates the effects of 

moving the center of scale and rotating the Shear regulator. 

 
 

   

FIGURE 3.24 -  DILATION AND SHEAR REGULATORS 

 

The Curve regulator produces outputs along a curved line. The variables of the Curve 
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regulator are the distance between outputs, the curvature, and the direction of the curved 

line. Figure 3.25 illustrates the effects of increasing the distance and rotating the Curve 

regulator. 

   
FIGURE 3.25 -  CURVE REGULATOR 

 

The basic set of transformation regulators can be composed to form more complex 

relations. The Glide regulator (Figure 3.26a) is formed by composing Translation and 

Mirror regulators and the Screw regulator (Figure 3.26b) is formed by the composing 

Translation and Rotation regulators.  

a-        b-          

FIGURE 3.26 -  GLIDE AND SCREW REGULATORS 

 

3.3.1.4 GEOMETRIC – CONSTRAINT – REGULATORS  

Constraint regulators correspond to relations defining grid structures. Constraint 

regulators restricts positions, define minimum/maximum values that must not be 

exceeded, or an incremental module that must be satisfied.  

The Alignment regulator restricts elements to a reference point, line, or plane. The 

elements are allowed to move only along the alignment reference. If the Alignment 

regulator is moved or rotated the elements are re-aligned with it. Alignment can also 

restrict element along a circle or curve. Figure 3.27 illustrates the effects of linear and 

circular alignments as well as rotating the Alignment regulator. 
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FIGURE 3.27 – ALIGNMENT REGULATOR 

 

The Proportion regulator restricts the aspect ratio of an element by means of a diagonal 

line. The element can only be resized within these proportions. Moving or rotating the 

diagonal line redefines new proportions. Figure 3.28 illustrates the effects of 

manipulating the Proportion regulator.  

   
FIGURE 3.28 – PROPORTION REGULATOR 

 

The Angle regulator restricts the angle between two elements. If one element is rotated 

beyond the minimum/maximum range, the other element is also rotated to preserve the 

angle. If the angle’s values are updated, the shapes are reconfigured. Figure 3.29 

illustrates the effects of reconfiguring the angle.  

   
FIGURE 3.29 – ANGLE REGULATOR 

 

The Size regulator restricts the lengths, areas and volumes of elements to a maximum or 

minimum value. Elements cannot be resized beyond their minimum/maximum range.  
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In addition to positional, directional, and dimensional constraint-based regulators, value 

constraint regulators are introduced. The Equivalence regulator defines an equivalence 

relation between attributes across many shapes. When this attribute is changed in one 

element, it is changed in the others. Color, form, and size are applicable attributes. For 

example, in Frank Lloyd Wright’s Jester House (Figure 3.1), most spaces are equivalent 

in their circular form, yet their other attributes, including scale and position are not linked 

in any other way.   

3.3.1.5 GEOMETRIC – VARIATIONAL – REGULATORS  

Variational regulators correspond to the relations defining variational structures. The 

Rhythm regulator creates rhythmic effects with the output set; if the rhythm coefficient 

and cycle are modified the configuration is updated. The Gradation regulator creates 

gradual effects with the output set, as the gradation coefficient is changed, the 

configuration is updated. Figure 3.30 illustrates the rhythm and gradation regulators 

composed with a Rotation regulator.  

  
FIGURE 3.30 – RHYTHM AND GRADATION REGULATORS 

 

The variation regulators are extended to include the exception and the differential 

regulators. The Exception regulator designates an element as being different from the 

output set. The Differential regulator introduces a rhythm or gradation effect as the 

regulator is applied to various inputs. Figure 3.31 shows two exceptions applied to a 

Rotation regulator and a Differential regulator applied to the second of two successive 

Translation regulators. 
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FIGURE 3.31 – EXCEPTION AND DIFFERENTIAL REGULATORS 

 

3.3.1.6 GEOMETRIC – OPERATIONAL – REGULATORS  

Operational regulators correspond to operations defining non-regular structures. These 

include Boolean operations, subdivisions and cutting.  

The Boolean operation regulators, inputs several elements and generates the Union, 

Subtraction, or Intersection as an output. The Boolean regulator ensures that the 

resultant form is redefined when the input forms are manipulated. Figure 3.32 shows the 

effects of resizing the subtracted form. 

   
FIGURE 3.32 – BOOLEAN DIFFERENCE REGULATOR 

 

The Subdivision regulator inputs an element and subdivides it into equal subparts, which 

are produced as outputs. It can be composed with variational regulators to introduce 

rhythmic parts, which are gradually increasing or decreasing in size. When the original 

shape is modified, the subdivisions will be redefined. The Cutting regulator cuts the 

shape along a plane (or planes). If the plane is modified, the cutting pieces are redefined. 

Figure 3.33 shows the effects of rotating subdivision planes and redefining the original 

shape.  
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FIGURE 3.33 – SUBDIVISION REGULATORS 

 

3.3.2. THE DYNAMICS OF REGULATORS 

The ICE framework is designed with the goal of supporting cyclic/iterative exploration, 

and, consequently, with flexibility as a major priority. Regulators offer the ability to 

produce topological, hierarchical, symmetry and grid structures. Regulators introduce 

constraints and variations in these structures, and produce non-regular forms through 

operations. Regulators are intended to support transformation of structures at a 

continuous, as well as at a discrete level. 

To define such complex structures, it is necessary to compose regulators. Regulators can 

be composed simultaneously to create complex relationships from simple ones (Figure 

3.26 shows the composite regulators of Glide and Screw). Regulators can also be 

composed successively to form elaborate patterns, such as in Figure 3.34, which 

illustrates a linear element with the successive application of Rotation, Mirror, and 

Translation regulators. Furthermore, as a flexible measure, regulators can be 

decomposed. 

 
FIGURE 3.34 – REGULATOR SUCCESSIVE COMPOSITION 
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Regulators and elements are dynamically associated and dissociated. Consequently, 

elements can have multiple regulators (Figure 3.35a), regulators can have multiple 

elements (Figure 3.35b), and mixed structures can be explored within a single 

configuration. Furthermore, association can be terminated at anytime.   

a  b  

FIGURE 3.35 – REGULATOR SHARING 

 

Regulators support continuous as well as discrete generations. Points are regulated 

continuously to create shapes, and shapes are regulated discretely to create patterns and 

configurations. Regulators can also be regulated to create complex schema, resulting in 

multiple control structure. 

The overall structure of a configuration can be decomposed into a set of substructures: 

topological, hierarchical, symmetrical, grid, and others. It is not possible to explore all 

these structures at the same time, because the exploration space of one structure will yield 

configurations that destroy relationships of another structure. Regulators offer the ability 

to focus on exploring a particular structure, while deactivating the others. This activation 

and deactivation of regulators allow users to define their sequence for exploring 

structures, depending on the design phase and their preferences. For example, one can 

explore of topological structures then geometrical structures. It also allows the 

exploration of configurations with and without specific relationships. 

As an additional measure of exploratory flexibility, configuration elements as well as 

regulators can be replaced at any time, in order to explore different structures without 

reestablishing associations. Figure 3.36a shows the successive composition of Rotation 

and Translation regulators. The Translation is replaced by a Mirror in Figure 3.36b and 

by a Rotation in Figure 3.36c. 

 

ARCHITECTURAL EXPLORATIONS  CHAPTER 3 79   

 



a  b  c  

FIGURE 3.36 –REPLACING REGULATORS 

 

Regulators can be applied at various resolutions, including local to a part of the 

configuration, and global to the whole configuration. The depth to which regulators can 

be applied is theoretically infinite. Furthermore, regulators can be defined at any stage of 

developing the configuration, where these can be identified with any element or extended 

from any element.  

Tables 3.5, 3.6, and 3.7 illustrate examples of exploring building configurations with 

regulators. Table 3.5 shows the exploration of single floor layout, where curvatures and 

directions of walls are investigated. Table 3.6 shows the exploration of a building mass, 

where roof slopes and curvatures are investigated. Table 3.7 shows the transformation of 

one simple configuration, into an elaborate Chinese pagoda, with just a series of simple 

steps.  
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The initial layout consist of one Mirror 
regulator and several Alignment regulators 
forming a grid. The Mirror regulator 
controls both the walls and the Alignment 
regulators. 

 

THE USER ROTATES ONE SIDE OF THE 
ALIGNMENT REGULATOR OF THE 
FAÇADE 
The Alignment regulator realigns all walls 
and windows according to its new 
orientation. The Mirror regulator ensures 
that the change is properly reflected on both 
sides.  

 

THE USER CHANGES THE 
CURVATURE OF THE ALIGNMENT 
REGULATOR OF THE FAÇADE 
The Alignment regulator re-configures the 
walls, doors, and windows, such that they 
follow the curve.  The regulator of the 
façade also automatically reconfigures the 
grid lines that are perpendicular (to the 
curve).  

 

THE USER CHANGES THE 
ORIENTATION OF THE INTERNAL 
ALIGNMENT REGULATOR 
The central Mirror regulator ensures that the 
change is properly reflected on both sides. 

TABLE 3.5 - EXPLORATION OF A PLAN LAYOUT AND MASSING 
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The initial configuration consists of two Mirror 
regulators and three Translation regulators, which act 
as horizontal axes that control the windows as well 
as the orientation of the roof. 
 

THE USER ROTATES THE HORIZONTAL 
TRANSLATION REGULATOR 
The Translation regulator aligns the windows along a 
slanted line, and updates the roof orientation creating 
a gable roof.  
 

THE USER REDUCES THE FREQUENCY OF 
THE WINDOWS BY UPDATING THE NUMBER 
IN THE TRANSLATION  REGULATOR 

THE USER TRANSFORMS THE CURVATURE 
OF THE TRANSLATION REGULATOR 
The Curve regulator realigns the windows and 
changes the curvature of the roof forming a vault. 

TABLE 3.6 -  EXPLORATION OF A MASSING CONFIGURATION AND FAÇADE 
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The initial configuration consists of two Mirror 
regulators, two Translation regulators, an area 
regulator (not shown), and an adjacency 
regulator. 
 
 
THE USER DECREASES THE FOOTPRINT 
OF THE BUILDING. 
The area regulator adds floors to ensure that the 
area requirement be maintained after the change.  

 

THE USER UPDATES THE NUMBER, SIZE, 
AND FORM OF THE WINDOWS ON ONE 
FLOOR. 
The Translation regulator ensures that the 
windows of all floors are updated in the same 
way. 
 
THE USER REPLACES THE REFLECTION 
REGULATORS BY A ROTATION 
REGULATOR. 
THE USER CHANGES THE FORM OF THE 
ROOF. 

 

THE USER ADDS ONE SUB-ROOF TO ONE 
FLOOR 
The Translation regulator propagates the change 
to all the floors. 
 
 
THE USER CHANGES THE ROTATION 
DEGREE FROM 90º TO 60º. 
The plan changes from a square to a hexagon. 
The Translation regulator ensured that the all 
floors are updated. 

 

THE USER INTRODUCES A SCALE 
FACTOR TO THE TRANSLATION 
REGULATOR.  
The floors gradually decrease upon ascending. 
 
THE USER SELECTS A FLOOR AND 
TREATS IT AS AN EXCEPTION AND THEN 
APPLIES A SCALE TRANSFORMATION TO 
MAKE IT MORE PROMINENT. 
The result is a pagoda.  

TABLE 3.6 - EXPLORING TRANSFORMATION ACROSS STYLES
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3.3.3. NOTATION AND IMPLEMENTATION  

The ICE framework has two major components: a descriptive component consisting of a 

formal notation, and a computational component consisting of an interactive 

implementation. Both use the design structure as a primary vehicle for description and 

transformation.   

The ICE notation uses regulators for describing shapes and configurations, as a concise 

string, by means of its generative and relational structure. Through its symbolic 

representation of regulators, the ICE notation describes the generation path and 

transformable parameters for every configuration. For instance, in Figure 3.37, Palladio’s 

Villa Capra is described – and can be generated discretely – by means of Mirror 

regulators composed successively with its top left corner as an input. The ICE notation is 

described in greater detail in Chapter 4.  

 
 

 

 
corner M (corner) M (M (corner) ) M (M (M (corner))) 

FIGURE 3.37  - PALLADIO’S VILLA  CAPRA DESCRIBED USING THE ICE NOTATION 

 

The ICE implementation uses regulators for transforming shapes and configurations 

through their structures. The ICE implementation provides a systematic approach to 

managing complex relations, while allowing users to interact with higher-level structures 

as opposed to lower-level details. The parameters of regulators are manipulation handles, 

and are used to transform configurations, slightly, as well as significantly, to 

accommodate various levels of exploration. Figure 3.38 shows an example of 

manipulating Palladio’s Villa Capra by means of moving rotating, and replacing its 

regulators. The ICE implementation is described in greater detail in Chapter 7.  
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a a- Moving horizontal Mirror  b- Rotating diagonal Mirror 

 
  

c-  Replace two mirrors with a 
rotation 

d- Increasing rotation degree       e- Moving the rotation point 

FIGURE 3.38 - PALLADIO’S VILLA CAPRA IS EXPLORED MANIPULATING THE GEOMETRY OF ITS 
GENERATIVE REGULATORS 

 

The notational description does not correspond to the way designers would go about 

developing configurations with regulators. The notation provides a concise description 

that summarizes the relationships in the configuration by means of an ordered syntax. 

Designers, on the other hand, would develop elements and regulators with no particular 

order. They would derive initial regulators from the surrounding site and would derive 

additional regulators, perhaps at a later stage, from configuration elements; therefore, 

associating elements and regulators as the configuration is being established. Such 

interactions and derivations methods are illustrated in the protocols in Tables 3.1 and 3.2.   

As designers are engaged in their exploration, they discover new ideas and new relations, 

consequently, defining new regulators and reconfiguring the structure. As structures 

change, novel exploration paths are formed. Exploration does not follow a predetermined 

path, but rather, a path that is constantly being redefined during the course of the 

exploration. 
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CHAPTER 4                                                                

THE ICE NOTATION    

 

The ICE notation is the descriptive formalism of the ICE framework. It is a formal 

notation specifying complex configurations through generative and relational constructs, 

which are encapsulated by regulators. The ICE notation describes geometric 

configurations in a clear, succinct, and complete manner and supports the description of a 

wide range of configurations in two and three dimensions. Additionally for any given 

configuration, the ICE notation captures, parsimoniously, the process for its generation 

and as well as a set of applicable transformations that could be used for exploring the 

configuration. 

In this chapter, I describe the syntax of the ICE notation, and focus on the various 

regulator types, their composition strategies, and their generation methods, from a 

notational perspective. I discuss the capacity of ICE to capture applicable transformations 

as well as the generative history for any given configuration, and I introduce the ICE 

transformation syntax. A gallery of shapes and patterns illustrates how the ICE notation 

represents shapes, patterns, and classes of compositional schemata.  
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4.1. THE ICE NOTATION SYNTAX 

The ICE notation specifies a geometric configuration in terms of a minimal number of 

steps required for its generation, and the meaningful relationships for its organization.  

The principal building blocks used in the ICE notation are the “point” and “regulator”, 

which encapsulates a formula for its spatial relation. Notationally, points are indicated in 

lowercase, for instance, p , and regulators in (bold) uppercase, for instance, T  for 

translation. Shapes, denoted as lowercase words, are composite objects defined by points 

and regulators. A prefix, depicted in uppercase Greek,  indicates the regulator’s category, 

for example, Δ : transformations, Φ : constraints, Ψ : hierarchies, Π : topologies, Ξ : 

variations, and Ω : operations. Superscripted suffixes indicate regulator subtype, for 

instance, pCΔ and eCΔ  respectively specify parabolic and elliptical curve regulators with 

each having its own formula. Numerical suffixes denote the dimension of the regulator, 

for instance, 0MΔ , 1MΔ , and 2MΔ , respectively represent a mirror point (0-dimensions), 

a mirror line (1-dimension) and a mirror plane (2-dimensions). Subscripted suffixes for 

regulators, shapes, or points represent as indices; for example 1TΔ , and 2TΔ  are two 

different instances of Translation regulators used in the same configuration. 

The ICE notation can be expressed in either a short or expanded form. The former 

operates on a relational level, while the latter operated on a parametric level which is 

essential for system implementation. The short form captures the regulator and regulated 

objects, for instance, )(shapeTΔ . The expanded form, additionally, includes the 

parameters of the regulator; these are enclosed within curly braces with vectors depicted 

by an overline, for example, ])(},,,{[ shapendtp1TΔ . Parameters contribute to a 

regulator’s formula and include geometric parameters, t , such as translation vectors, 

rotation points/lines, reflection axes, as well as generative parameters, such as translation 

distance, d , rotation degrees, θ , and the number of generated objects, n .  

Regulators regulate points thereby creating shapes, likewise, regulate shapes to create 

configurations, and regulate other regulators to create complex schemata. Regulators can 

be generative or non-generative. Generative regulators take an input shape and create 

output shapes, while non-generative regulators act on the input shape. The generative 
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property is depicted by the presence of the “ n ” parameter. ])(},,,{[ shapendtp1TΔ  is a 

generative regulator , while ])(},,{[ shapedtp1TΔ  is a non-generative one. Regulators 

that generate shapes from input points are applied continuously, while regulators that 

generate configuration from input shapes are applied discretely. The continuity factor is 

indicated by superscript brackets. >><><<Δ 210s)(T is a discrete application generating 

disjoint points, while ><Δ 210s ,,)(T  is a continuous application generating a line.  

The ICE notation has a corresponding graph representation, which presents an alternative 

view to the ICE string and serves to visualize internal associations between elements of 

the ICE string namely points/shapes and regulators (Table 4.1). Graph representation is 

particularly significant in the description of compositions and schemata.  

T

 

s
p

  

p p p p
 

p p p p
 

Regulator and parameters Shape s and point p  Input and output 
connectors 

Discrete associations 
Continuous association 

s

T

p
t
d
n

s2s1 s3 sn

 
s

T

p
t
d
n

 

T

p
t
d
n

p p1 p3 p4p2

 

Generative-discrete: 
])(},,,{[ >><><><><<Δ 43210shapendtp1T

 

Non-generative: 
)]}(,,[{ shapedtp1TΔ

Generative-continuous: 
])(},,,{[ ,,,, ><Δ 43210sndtp1T

 

TABLE 4.1 -  GRAPH REPRESENTATION FOR REGULATOR AND SHAPE ASSOCIATIONS 
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4.2. REGULATORS CATEGORIES AND TYPES 

The notational description formalizes the concept of regulators and clarifies the various 

subtypes and their corresponding parameters. In this section, I describe the notation for 

each regulator in the ICE framework. The mathematics corresponding to the defining, 

transforming, and composing these regulators is presented in Appendix B. 

4.2.1. TRANSFORMATION REGULATORS 

Transformation regulators are the primary constructs of the ICE notation. Not only are 

these used as exploration tools, but as generative vehicles as well. Transformation 

regulators, based on isometric and affine transformations, are indicated by the Δ  prefix. 

Transformational regulators take as input a shape or a point, and generate “ n ” output 

shapes or points. The input element is assigned index 0 and the output elements are 

assigned indices, n−1 . The position of the outputs is determined by the type of 

transformation.   

Transformation regulators operate by applying an equation to the input element to derive 

the output set of elements. The basic transformation regulators can be composed 

simultaneously, to define complex transformation effects. These regulators use the 

properties of their respective transformations to preserve points, lines, and planes, as a 

visual depiction for the regulators. Table 4.2 illustrates transformation regulators with 

their corresponding notations. 

The Translation regulator generates n  output shapes ( d  distance apart) along the line 

specified by a starting point p  and a direction vector t . If applied continuously, 

translation specifies lines and extrudes shapes. The Translation regulator is depicted by a 

line along the t  vector. 
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Translation 
 

])(},,,{[ shapendtp1TΔ  

 
Rotation 

])(},,,{[ shapentp θΔ 1R   

])])(},,{[ shapenp θΔ 0R  

 

Mirror ])(},{[ shapenp0MΔ  

])(},,{[ shapentp1MΔ  

])(},,,{[ shapenvtp2MΔ  

 

Dilation 
(scale) 

])(},,{[ shapenkp0DΔ  

 
 

Shear ])(},{[ shapenk SΔ   

Glide  
 

])(},,,{[ shapendtp11 MT ΔΔ   

])(},,,,,{[ shapenedvtp21 MT ΔΔ  

Screw   ])(},,,,{[ shapendtp θΔΔ 11 TR  

 

Curve ])(},,,{[ shapentp αΔ eC  

])(},,,{[ shapentp αΔ hC  

TABLE 4.2 – REGULATORS BASED ON  GEOMETRIC TRANSFORMATIONS 

 

 

CΔ  

TR ΔΔ  

MT ΔΔ  

SΔ  

DΔ  

MΔ  

RΔ  

TΔ  
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The Rotation regulator generates n  output shapes, each rotated θ  degrees apart. In 3D 

space, rotation is about the axis specified by a starting point p  and a direction vector t , 

and in the 2D plane, the rotation is about a point p . If applied continuously, the rotation 

specifies circles and surfaces of revolutions. The regulator is depicted by the rotation 

point or axis. 

The ICE notation supports three subtypes of the Mirror regulator: an inversion about a 

point; a reflection about a line; and a reflection in the plane. These are depicted by the 

point, line and plane, respectively. In 3D space, reflection about a line is not orientation 

reversing; it is therefore, equivalent to a rotation. However, in the 2D plane, it is an 

actual, orientation reversing, reflection. Although reflection produces a single image, the 

reflection regulator allows for n  output elements to accommodate the composition of 

mirror with other regulators. 

The Dilation regulator scales successive output shapes by a factor k , represented by a 

vector. Dilation, which is either isotropic (equal in the xyz-directions) or anisotropic, is 

depicted by a point p  representing the origin of the scaling.   

The Shear regulator shears the successive output shapes by a factor k and is depicted by 

an arrow showing the direction of the shear.   

The Glide regulator is a composition of mirror and translation. It generates successive 

elements reflected about a plane or line and translated along the same line. It is achieved 

by means of simultaneous composition of regulators (Section 4.4). Sub-types include: a 

glide in 2D, along a glide line, and in 3D, about a glide plane. 

The Screw rotation is a composition of a rotation and a translation. It generates 

successive elements rotated about the axis defined by a point p  and a vector t  together 

with a translation along this same axis. It is achieved by means of  the simultaneous 

composition of regulators (Section 4.4). 

The Curve regulator organizes the output elements along a curve in space. Ideally, curves 

should be described by their equations, but for ease, we identify them by their subtypes, 

for example, elliptical eCΔ , hyperbolic hCΔ , or trigonometric curves sCΔ . A Curve 
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regulator can also be achieved through simultaneous composition. 

4.2.2. VARIATION REGULATORS 

Variational regulators, symbolized by Ξ , are composed with generative regulators to 

create a variation in the output shapes. This is achieved by controlling shape attributes or 

regulator parameters. Variation regulators are depicted by a point indicating their 

presence. Table 4.3 illustrates the variation regulators and their corresponding notation. 

Exception ])(},{[ n0 shapeshapeva −Ξ  E  

 )]s}( [{ va,n,d,,t,pETΞΔ  

Rhythm/Grad
ation 

])(},,{[ n0 shapeshapeca −Ξ f G  

 )]s}( [{ cf,a,n,d,,t,pGTΞΔ  

 

Differential
  

])(},,{[ n0 shapeshapeca −Ξ f F  

 )]s-s}( [{ n1cf,a,n,d,,t,pFTΞΔ  

 
 

TABLE 4.3  - REGULATORS BASED ON VARIATION FORMULAE 

 

The Exception regulator sets a shape to be an exception to the output set by overriding an 

attribute a , (for instance, position) with a value v . 

The Rhythm regulator creates a rhythm/gradation effect within the output shapes, by 

applying a formula f  and coefficient c  to an attribute a  of output elements (for 

instance, color), or to an attribute a  of the generative regulator (for instance, the 

GTΞΔ  

G TΞΔ  

E TΞΔ  

s  TΔ  

F TΞΔ  
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translation distance) as it is applied to the output shapes. The formula f  defines the type 

of rhythm, whether it is alternating or gradual, or follows the undulations of a curve. 

The Differential regulator creates a variation in the output, by sweeping-copying the 

elements of input set differently. It applies a formula f , and coefficient c , to attribute a  

of the generative regulator as it is applied to the input shapes. This regulator is effective 

only when there are many input shapes. 

4.2.3. CONSTRAINT REGULATORS 

Constraint regulators, symbolized by Φ , are not generative; they restrict shapes or define 

relations between input shapes or points. Constraints can be defined independently or in 

composition with generative regulators. Constraint regulators are based on an evaluation 

function that determines whether or not the input element is within the constraints. Table 

4.4 illustrates the constraint regulators and their corresponding notation. 

The Equivalence regulator assigns and maintains a value v  to an attribute a  (for instance 

color) of a shape/s. 

The Alignment regulator restricts the position or motion of elements with respect to 

itself. There are several subtypes of alignments: 0AΦ  defined by a point p ,  1AΦ  

defined by p  and a vector t , and 2AΦ  defined by p  and vectors, t  and v . These 

regulators are depicted by a point, line, and plane respectively. The Alignment regulator 

can also restrict elements to a circle or curve. This regulator is depicted by  cAΦ   and its 

parameters are defined by curve type and include the point p , the vectors t , and the 

radius r .  

There are three subtypes for the Size regulator: 1VΦ  restricts length, 2VΦ  restricts area, 

and 3VΦ  restricts volume. The parameters are minimum/maximum value and an 

incremental module. These regulators are depicted by one, two, or three dimension lines, 

respectively. 

The Angle regulator sets the angle within a shape or between two shapes. A variant  pLΦ  

sets shapes as being parallel. The Angle regulator is depicted by an arc joining the two 
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shapes or a line in the case of pLΦ . 

Equivalence   
 

])(},{[ k0 shapeshapeva −Φ  Q  

 
Alignment ])(}{[ k0

0 shapeshapep −ΦA

])(},{[ k0
1 shapeshapetp −ΦA

])(},,{[ k0
2 shapeshapevtp −ΦA  

])(},,{[ k0
C shapeshapertp −ΦA  

 

Size ])(},,{[ shapemodmaxminVΦ   

 

Angle   
 

])(},,{[ k1 shapeshapemodmaxmin −ΦL
 

 
Proportion  
 

])(},,{[ shapedtp1PΦ  

 
TABLE 4.4 - REGULATORS BASED ON GEOMETRIC CONSTRAINTS 

 

The Angle regulator sets the angle within a shape or between two shapes. A variant  pLΦ  

sets shapes as being parallel. The Angle regulator is depicted by an arc joining the two 

shapes or a line in the case of pLΦ . 

The Proportion regulator controls the aspect ratio of a shape through a diagonal line, 

which also depicts the regulator. A variation of this regulator, aPΦ , controls the 

proportion through an arc. 

VΦ

1PΦ  
aPΦ  

AΦ  

QΦ  

LΦ
pLΦ  
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4.2.4. TOPOLOGICAL REGULATORS 

Topological regulators, symbolized by Π , are mostly binary and non-generative. Table 

4.5 illustrates the topological regulators and their corresponding notation. 

The Distance regulator, +ΠJ , defines the proximity between shapes, irrelevant of their 

geometry. Variations of this regulator are adjacency 0JΠ , defined by a zero distance and 

overlap -JΠ , defined by a negative distance. This regulator is depicted as a dimension 

line.  

The Boundary regulator defines a legal region for a shape, with an offset o , in other 

words, it restricts a shape to be inside another. It inputs the boundary shape as well as the 

bounded shapes and is depicted by a thicker boundary shape. 

The Connection regulator determines whether two shapes are connected and ensures that 

these remain connected upon manipulation.  

Distance 
 

]),(},,{[ 21 shapeshapemodmaxminJΠ  

 

Boundary )](}{[ k1bound shape,shapeshapeo −ΠB   

 

Connection ]),({}[ 21 shapeshapeCΠ  

 

TABLE  4.5 - REGULATORS BASED ON TOPOLOGICAL RELATIONS 

 

4.2.5. HIERARCHICAL REGULATORS 

Hierarchical regulators, symbolized by Ψ , define hierarchies of shapes; these can be 

defined independently, or in composition with other regulators. Table 4.6 illustrates the 

0JΠ -JΠ  

BΠ

CΠ  
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hierarchical regulators and their corresponding notation.  

Containment ])({}[ n0 tconstituennt constituecontainer, −Ψ  H  

 

Subshape 
 

])(sup{}[ n0 subshapeubshapeershape, s −Ψ  S  

 

TABLE  4.6 - REGULATORS BASED ON HIERARCHICAL RELATIONS 

 

The Containment regulator creates a container-constituent relationship, irrelevant of 

geometry. Typically, containment inputs the container and constituents, however, it can 

input the container and generate the constituents, or vice versa. The containment 

regulator can be composed with the Subdivision and the Boundary regulators to introduce 

geometrical and topological dependencies in the hierarchy. 

The Subshape regulator creates a geometric dependency between shapes (or more 

precisely between their generative regulators). 

4.2.6. OPERATION REGULATORS 

Operational regulators, symbolized by Ω , are generative regulators that  define complex 

shapes from simpler ones by means of discrete transformations. Table 4.7 illustrates the 

operation regulators and their corresponding notation.  

The Subdivision regulator, ZΩ  inputs a shape, subdivides it n  times and allocates a 

spacing s  between the subdivisions. The subdivisions produced are normal to the shape’s 

direction (i.e., to the generative regulator’s direction). A variant of subdivision, the 

Cutting regulator, PZΩ , subdivides a shape according to a splitting plane. 

The Boolean operations regulators input two or more objects, and generate their union, 

intersection, or difference. Boolean regulators have no parameters. 

HΨ  

SΨ  
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Subdivision ])(},{[ shapensZΩ   

 
 

Cutting ])(},{[ eshape,plannsPZΩ  

Merging ])({}[ BA, shapeshapeGΩ   

 

 

Boolean Operations 

Union:  ])({}[ k0 shapeshape −ΩU  

 

Intersection:   ])({}[ k0 shapeshape −ΩI   

Difference:   ])({}[ k0 shapeshape −ΩD   

Symmetric 
Difference:   

])({}[ k0 shapeshape −ΩM  

 

TABLE  4.7 - REGULATORS BASED ON OPERATIONS 

 

 

pZΩ  

ZΩ  

IΩ  

DΩ  

MΩ  

UΩ  

GΩ  
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4.3. REGULATOR GENERATION METHODS 

In order to represent the various types of shapes and patterns observed in architectural 

compositions, the ICE framework allows for several methods of generation. These 

include continuous, discrete, combination, subset, and pattern generation. This feature, 

which is only applicable to generative regulator, is indicated by superscripts, for instance, 
>−><−<Δ 9630)p(T . Brackets group continuous parts together, and the dash indicates that all 

shapes/points within the range are generated. Table 4.8 illustrates the generation methods 

supported in ICE.  

Discrete 
generation 
 

><−><Δ 20s)(T  
>><><<Δ 210s)(T  

 
Continuous 
generation  
 

>−<Δ 20s)(T   
><Δ 210s ,,)(T  

 
Combined 
generation  
 
  

>−><><−<Δ 65430s)(T  
>><><<Δ 6543210s ,,,,)(T    

 
Subset 
generation 
 

>><<Δ 65210s ,,,)(T   
>−><−<Δ 6520s )(T  

 
 

Pattern 
generation 
 

φ><∴Δ iims )(T  

 

 
Non-
generative 
regulators  
 

><Δ i)(s1T  

])(},,{[ i><Δ sdtp1T  
 

Motion 
regulators  

)(s⎯→⎯Δ 1T  

])}(,,[{ sd0tp ⎯→⎯Δ 1T  

)]}([{ s0 θ⎯→⎯φ 1L   

TABLE 4.8 - GENERATION METHODS 

TΔ  

s  

TΔ  

s

TΔ  

s

TΔ  
s  

TΔ  
s

TΔ  
s

TΔ  

s  
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The discrete generation method generates individual separate output elements, none 

connected. All previous examples were generated discretely. 

The continuous generation method generates output elements that are connected and the 

loci of points in-between the output-elements are also generated.  Continuous generation 

is used for creating shapes from connected vertices. The shape examples in Section 4.7 

are generated continuously. 

Combined generation includes both continuous and discrete parts. It is used for 

generating shapes that have disconnected parts. 

In subset generation, only some indices (from the range, n−0 ) are generated; thus, gaps 

are created, not by discontinuity as in the previous method, but by the absence of an 

output shape/point. 

Pattern generation is intended to describe repetitive patterns, for instance a dashed line, 

in a concise manner. The symbol ∴  indicates the start of the pattern, i  denotes a 

generated index, m  indicates the number of times the cycle is repeated, φ  indicates an 

absent index, and the brackets indicate continuity. 

Transformation regulators can be non-generative, i.e., these transform the input shape 

and are characterized by the absence of the n  parameter, and by the presence of only one 

index for the new position in the superscript bracket.   

Transformation regulators can also be used to describe the motion of the input shape. 

This is shown by the superscript arrow, which indicates the shape moving from position 

0  to position n . 
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4.4. REGULATOR COMPOSITION 

A fundamental functionality of the ICE framework is the various ways of composing 

regulators in order to represent the diverse types of structures observed in architectural 

configurations. Composition of regulators is the primary method for connecting the 

“regulator building blocks” of the ICE notation. A variety of complex configurations can 

be specified through the composition of simple regulator units. Table 4.9 illustrates the 

composition methods in supported in ICE and Table 4.10 shows its corresponding graph 

representation. Composition strategies can be combines to define intricate schemata (see 

Section 4.9).  

Simultaneous composition of regulators allows multiple regulators to be applied to the 

same set of element, i.e. multiple formulae to act simultaneously. This method allows 

complex regulators to be defined by composing simple ones, therefore, significantly 

extending the repertoire of regulators. There are no limits to the number, or type, of 

regulators for the composition. Glide and screw rotation, for instance, are defined by 

means of simultaneous composition. Notationally, the composed regulator symbols are 

placed in juxtaposition and the parameters for the composite are the union for the 

individual regulator parameters, with duplicates differentiated by subscripts. 

In the successive form of composition, a regulator is applied to the output shapes of 

another regulator, forming a nested relationship. There are no limits to the number of 

regulators in the succession. Notationally, successive compositions correspond to nested 

parenthesized strings in which inner regulators are applied before outer regulators. 

In the partial composition method, a regulator is applied to a subset of the previously 

generated output. This allows complex and irregular shapes/patterns to be defined. 

Notationally, this is indicated by a subscripted string comprising the #  symbol followed 

by the indices of the output shape. 

Sharing allows a regulator to regulate multiple input shapes, and a shape to be regulated 

by multiple regulators. The former allows the reuse of regulators for multiple shapes and 

the later allows for multiple constraints to act on a single shape. Such a situation is likely 

to cause conflicts. There are no limits to the number of shapes shared by a regulator or to 

the number of regulators shared by a shape.  
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Simultaneous 
Composition     
 

])(},,,,,{[ shapendktpp DT
01 DT ΔΔ  

])(},,,{[ shapendtp11 AM ΦΔ  

Successive 
Composition   
 

)])](},,,{[(},,,{[ shapentpndtp αΔΔ 11 RT  

Partial 
Composition  
  

)])](},,,{[(},,,{[ ,# 43shapentpndtp αΔΔ 11 RT

 

Sharing 
 

]),}(,,,[{ 40 ><−><Δ BA shapeshapendtp2T  

 

])}(,,,[{

)],,,}(,,[{
40 ><−><Δ

∧Φ

A

DCBA

shapendtp

shapeshapeshapeshapedtp

R

A
 

Aggregation 
 

]]))(},,,[{}(,,,[{

]]))(},,,[{}(,,,[{
>−<>−<

>−<>−<

ΔΔ

∧ΔΔ
1010

1010

qndtpndtp

sndtpndtp

12

12

TR

TT
 

 
Multiple 
Control 

])(},,,{[

])(},,,{[
>><<

>><<

Δ

∧ΔθΔ
30

i

20

shapendtp

ntp

1i

1

T

TR
 

TABLE 4.9 - COMPOSITION METHODS 

 

TΔ  

AΦ  
RΔ  

TΔ  

TΔ  

RΔ  

TΔ  

RΔ  

1TΔ  

2TΔ  
q

2RΔ  

1TΔ  
s  

10TΔ  
12TΔ  

11TΔ  

RΔ  
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T D

s s2s1 s3 sn  

 

Simultaneous Composition 
 

 

T

R

s0 s1 s2

s01 s0n

s11 s1n

s3 s4

s21 s2n

s31 s3n

s41 s4n

 

T

R

s0 s1 s2 s3 s4

s31 s3n

s41 s4n

 
Successive Composition 
 

Partial Composition 

sB
T

sB2sB1 sB3 sB3

sA sA2sA1 sA3 sAn

 
sB

R

s1 snsC sAsD

A

 
Sharing: Multiple Shapes Sharing: Regulators Shapes 

 

T1A

T2A

p p1

p01

p11

p0n

p1n

T1B

R2B

p p1

p01

p11

p0n

p1n

 

R

T T1 Tn

sA sA1

sAn

sb1

sBn

sC1

sCn

sB sC

 
 

Aggregation Multiple Control 
 

TABLE 4.10 - GRAPH REPRESENTATION OF COMPOSITION METHODS 
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In the aggregation method, two independent strings are joined together to describe a 

complex shape. Notationally, this is indicated by the conjunction ∧ . 

The multiple control composition method allows regulators to be regulated, therefore, 

regulators can be generated just like shapes and points and regulators can be constrained 

or related topologically or hierarchically. This method allows relations to be regulated as 

well as shapes, thus describing complex behaviors. When regulators control shapes, these 

define only one level of control for the configuration. Alternatively, when regulators 

control other regulators, these augment the complexity of the configuration by defining 

multiple levels of control. Although there are no limits on the number of levels for the 

regulation control hierarchy, the complexity of the configuration is directly proportional 

to the number of the control levels. Regulators are always regulated discretely. 

Notationally, generated regulators have an additional subscript to indicate its position in 

the generation. The multiple control mechanism allows the visionary scenario of 

functional regulators that control geometric regulators, which in turn regulate shapes.  
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4.5. ICE CONVENTIONS 

For the purpose of consistency and simplification, the following conventions are used in 

the ICE notation throughout this document. 

4.5.1. SHAPE ENCAPSULATION 

In order to simplify the description of complex configurations, the ICE notation supports 

the notion of shape encapsulation, regulator encapsulation, parameter encapsulation and 

schemata (Section 4.9) encapsulation. This enables complex definitions to be captured in 

a simpler nomenclature, and reused within other shape definitions. For instance, in the 

shape encapsulation shown in Table 4.11, the circle  object can then be used as an input 

for another string. Such encapsulation hierarchies can have infinite depths.  

Shape 
Encapsulation 
 

]]))s(},,,{[(},,,{[ >−<>−<ΔθΔ= n0n0ndtpntpcircle 12 TR      

])(},,,{[ >−<Δ= n0circlendtppipe 3T  

 

Regulator 
Encapsulation 
 

])(},,,{[])(},,,{[ >−<>−< ΔΔ=Δ n0n0 sndtpsndtp MTG

])(},,,{[])(},,,{[ >−<>−< ΔΔ=Δ n0n0 sndtpsndtp MTG  

Parameter 
Encapsulation  
 

])(},,,{[])(},,{[

}{
>−<>−< Δ=Δ

×=
n0n0 sndtpslentp

ndlen

TT  

Schemata 
Encapsulation  
 

])(},,,,,{[])(},,{[

}{},{
>−<>−< θΔΔΔ=Δ

×θ=×=
n0n0 snkdtpslenhip

nlenndhi

DRTSPIRAL
 

TABLE 4.11 - ENCAPSULATIONS 

 

4.5.2. INDICES AND SHAPE DIMENSION 

In the context of ICE, the dimension of a shape is determined by the number of regulators 

defining it. Therefore, one continuous regulator defines a linear 1D shape; two 

continuous regulators define a planar 2D shape, and three continuous regulators define a 

volumetric 3D shape. As a preferred convention, regulator indices are used to indicate 

their position with respect to the dimension of a shape. 
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Special cases exist where the addition of a regulator does not imply a change in 

dimension. These include coplanar discrete applications such as in the case of the 

rhombus, or partial successions such as in the case of the polyline (Table 4.12). 

Therefore, in most configurations, numerical indices are used for regulators that augment 

dimension, while alphabetical indices are used for regulators that operate within the same 

dimension. However, some configurations determine special conventions for shape and 

regulator indices. In such cases, letters denoting vertical or horizontal may be used 

instead of numbers, and numbers denoting order of applications can be used instead of 

lowercase letters. Furthermore, complete words may be used instead of letters. 

Indices for distinct shape are depicted as uppercase letters or even words, such as Ashape  

or Bshape . Shapes generated by a common regulator are denoted by the indices 1 to n, 

0shape  or nshape . Similarly, regulators generated by a common regulator such indices, 

concatenated to their own indices: 10TΔ  to 1nTΔ . Regulator indices, denoting different 

shapes, are inherited from the shape index. These are depicted as uppercase letters and 

positioned before the dimension index. A11 TT Δ=ΔAshape . 

])

])

])(},,,{[

(},,,{[

(},,,{[

>−<

>−<

>−<Δ

Δ

Δ=

10

10

10sndtp

ndtp

ndtpcube

1

2

3

T

T

T

 

 

])

])

])(},,,{[

(},,,,{[

(},,{[

>><<

>−<

>−<Δ

Δ

Δ=

10

10

10sndtp

nkdtp

ntprhombus

1

2a

2b

T

TD

M

 

 

])

])

])(},,,{[

(},,,{[

(},,,{[

>−<

>−<

>−<Δ

Δ

Δ=

10

10

10sndtp

ndtp

ndtppolyline

#1

#11a

1b

1c

T

T

T

 

 

TABLE 4.12 – SHAPE DIMENSION  

1TΔ  

2TΔ  
3TΔ  

s

1TΔ  

2aDTΔΔ  

s
2bMΔ

1aTΔ  

s  
1bTΔ  

1cCΔ  
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4.5.3. SHAPE ACCESS 

The ICE notation supports the concept of accessing key elements inside shapes by using 

“brackets.” This enables the application of regulators to certain part of a shape. For 

instance, an alignment can be applied to the midpoint of a shape, or a value constraint can 

be applied to a specific parameter of a regulator.  

• To access a regulator of a shape: 1TΔAshape  

• To access many regulators of a shape: 31 TT ΔΔ ,Ashape  

• To access parameter n  of the regulator 1RΔ : { }n1RΔ  or 
1Rn  

• To access parameter n of the regulator 1RΔ within a shape: 
1RnshapeA   

• Key-points ( e : endpoint,  m : midpoint,  s : start-point) 

• To access key-points (such as the midpoint): 1mshapeA  

4.5.4. SHAPE RESOLUTION 

Every regulator has a resolution that is determined by the factor ( )kt ,,θ  multiplied by the 

parameter, n . This can be increased or decreased by manipulating either ( )kt ,,θ  or n . 

The same line can be generated by means of two points, which are six units of distance 

apart, ])(},,,{[ >−<Δ= 10s16tpline 1T , or six collinear points, which are one unit distance 

apart, ])(},,,{[ >−<Δ= 50s51tpline 1T . Typically, the former is the convention for 

continuous shape generation, but in the case of certain operations, the latter is used to 

provide access to intermediate key points. To increase the resolution, multiply the factor 

by λ
1  and multiply n  by λ . 
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4.5.5. DISTRIBUTION AND IDENTITY 

The ICE notation supports the following distributive property, 

)()s(),s( 2121 shapehapeshapehape TTT Δ∧Δ=Δ , where the conjunction ∧  joins the two 

related notation strings.  

The ICE notation supports the following cancellation property. Generating only the zeroth 

element, is equivalent to the identity operation in ICE and can cancel the regulator in 

question from a complex string. 

s])s(},,,{[ =Δ ><0ndtp2T     

]]))s(},,,{[(},,,{[ >−<><ΔΔ n00ndtpndtp 12 TT  = ])s(},,,{[ >−<Δ n0ndtp2T  
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4.6. GENERATION AND TRANSFORMATION IN ICE 

In addition to capturing the structure of any configuration through its regulators, the ICE 

notation captures two significant exploratory components: a step by step generative 

sequence based on structure, and a set of transformations applicable to the structure. The 

generation sequence is significant for analyzing a configuration and reproducing it, while 

the applicable transformations are significant for designating manipulation handles for 

exploring it. 

4.6.1. CAPTURING GENERATION 

The ICE notation is a vehicle for summarizing generative history, which is important for 

process analysis and data encoding. If a notation string is dissected and analyzed 

regulator by regulator, the result is a replay of the generation method. The graphic 

configuration in Table 4.13 is the logo designed specifically for the generative CAD 

systems symposium using an early version of the ICE implementation. It consists of two 

Rotation regulators applied successively, with the first one being composed 

simultaneously with Dilation and Gradation.  

 
The initial shape       

Ashape  

 

Apply a generative Rotation regulator.  
])(,,,[{ ><−><==θΔ 261

A
0
1 shape26n3pR  

 

Compose the rotation with dilation. 
])}(,,,[{0

1
><−><===θΔΔ 261

Ax shape.95k26n3p DR   

 

Compose the rotation with color gradation. 
])}(.,.,,,[{Ξ0

1
><−><+=−====θΔΔ 261

Ax shape028b058r .95,k26n3pG DR  

 

Applying another rotation successively. 

])

])shape}(.,.,,,[{Ξ0
1

}(,,[{0
2

A

><−><

><−><+=−====θΔΔ

==θΔ

91

261
x 028b058r .95,k26n3p

9n20p

G DR

 R

 

TABLE  4.13  GENERATION SEQUENCE OF THE GCAD’04 LOGO 
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Table 4.13 also illustrates the generation method that is based on the breakdown of the 

notation string considering one regulator application at a time. 

4.6.2. CAPTURING TRANSFORMATION  

The ICE notation is a vehicle for exploration. Its representation allows the 

reconfiguration of a string, therefore, the reconfiguration of a design. The   

transformations captured in the ice strings are categorized as follows:  

• Transforming the regulated element 

• Transforming the generation method  

• Transforming the regulator’s geometry and parameters  

• Transforming the regulator composition   

Transforming the regulated shape/point modifies the configuration while maintaining its 

geometric structure. Transformations in this category include moving the point, as well as 

moving-rotating-replacing the shape. 

Transforming the generated method creates variations and subshapes, but maintains the 

geometric structure of the configuration. Such transformations include changing the 

number of elements generated, changing the discrete continuous properties, changing the 

generated subset, and changing the generation pattern.. 

Transforming the parameters of the regulators modifies the configuration’s geometric 

structure but not the notation’s structure. Transformations in this category include 

changing the regulator’s geometry by moving it or rotating it, and changing the major 

parameter (such as rotation degree or minimum-maximum value). 

Transforming the composition redefines the notation string and completely alters the 

configuration’s structure. Such transformations include adding, composing, inserting, 

deleting, replacing or reordering regulators in a sequence. 

Table 4.14 illustrates how such transformations are applied to explore the GCAD logo. 

The notational manipulation and the corresponding effects on the logo are illustrated. 
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Each step in Table 4.14 is the result of applying a single transformation to the initial 

GCAD logo in Table 4.13 Notice how a simple notation changes represent significant 

changes in the geometry. Such transformation enables one to start with a configuration, 

then to modify it with a few steps, until a completely different configuration is achieved. 

When a transformation is applied to a notation string, the string is reconfigured and 

consequently, the set of applicable transformations, and as well as the generation 

sequence, are completely redefined. 

The notation string captures all applicable transformations on each of these categories. 

The various symbols, parameters, and indices of the notation represent manipulation 

handles for the ICE system. The transformation syntax listed in Table 4.15 describes 

these transformations using two complementary ways:  (i) the transformation name (in 

UPPPERCASE) and (ii) a left and right hand notation focusing on the parameters that are 

changed.   

The transformation syntax is used to document exploratory actions and transitions 

between various configurations. It presents an alternative way of describing 

configurations by means of steps. 

It is important to distinguish between the generative sequence, which is captured directly 

in ICE notation strings, and the “history” of exploration. The generative sequence is a 

parsimonious, one-time, generation, while the exploratory history may be an extensive, 

cyclic process that transforms the notation string, repeatedly, until a satisfactory 

configuration is achieved. The exploratory history can be captured in a sequence of 

configuration strings. Alternatively it can be captured by means of an initial configuration 

string and a sequence of transformations that will be applied to this string. 
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Transforming the regulated element 

REPLACE_SHAPE BA shapeshape ⇒  

])

])}(.,.,,,[{Ξ0
1

}(,,[{0
2

><−><

><−><+=−====θΔΔ

==θΔ

91

261
Bx shape028b058r .95,k26n3p

9n20p

G DR

 R

 

Transforming the generation method 

MODIFY_NUMBER  ]}4{[]}9{[ 4090
2

>−<>−< =Δ⇒=Δ nn 2RR  

])

])}(.,.,,,[{Ξ0
1

}(,,[{0
2

><−><

><−><+=−====αΔΔ

==αΔ

41

261
Ax shape028b058r .95,k26n3p

4n20p

G DR

 R

 

Transforming the regulator parameters 

MOVE_REGULATOR )}]1,2({[)}]0,0([{ −=Δ⇒=Δ pp RR  

])

])}(.,.,,,[{Ξ0
1

}(,,[{0
2

><−><

><−><+=−====αΔΔ

==α′Δ

91

261
Ax shape028b058r .95,k26n3p

9n20p

G DR

 R

 

MODIFY_FACTOR  ]}120{[]}20{[2 =Δ⇒=Δ αα 1RR   

])

])}(.,.,,,[{Ξ0
1

}(,,[{0
2

><−><

><−><+=−====αΔΔ

==αΔ

91

261
Ax shape028b058r .95,k26n1p

9n20p

G DR

 R

 

Transforming the regulator composition 

REPLACE_REGULATOR 1
1

0
1 TR Δ⇒Δ  

)]

])}(.,.,,,[{Ξ0
1

}(,,[{1
2

><−><+=−====αΔΔ

==Δ

261
Ax shape028b058r .95,k26n3p

9n25dp

G D

 

R

T

 

TABLE  4.14  TRANSFORMATIONS ON THE  GCAD LOGO 
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REGULATED ELEMENT  (applicable to point -- shape) 

INSTANTIATE_SHAPE  

MOVE_XYZ  )()( 1,0,0s0,0,0s =⇒=  

MODIFY_ATTRIBUTE battributeshapeaattributeshape =⇒=  

REPLACE_SHAPE BA shapeshape ⇒  

GENERATION METHOD 
MODIFY_CONTINUITY >−<>−<−>< Δ⇒Δ 90940 ss )()( TT  

MODIFY_NUMBER ])(}[{])}([{ >−<>−< =Δ⇒=Δ 12050 s12ns5n TT  

MODIFY_PATTERN φ><=∴φφ><=∴ Δ⇒Δ iii8mii4m ss )()( TT  

MODIFY_GENERATED  >><><<>><><><< Δ⇒Δ 4204310 ss )()( TT  

REGULATOR PARAMETERS  (applicable to regulator – and simultaneous composition) 

MOVE_XYZ   )}]11,1([{)}]1,0,0([{ =Δ⇒=Δ pp TT  

ROTATE_XYZ   )}]4,3,1([{)}]1,0,0([{ =Δ⇒=Δ tt TT  

MODIFY_FACTOR 
modmax,min,,,,,,,,, socvakd α

 

}],8[{}]5[{ =Δ⇒=Δ dd TT  
}]30[{}]10[{ =Δ⇒=Δ αα RR  

)}],.,([{)}].,,([{ 1801k2111k =Δ⇒=Δ DD  

MODIFY_FORMULA   )}]2[{}]12[{ −Ξ⇒=Ξ 2:f:f (x)x( GG  

MODIFY_DIMENSION }],,,[{}],,[{1 nvtpntp 2MM Δ⇒Δ  

MODIFY_INDEX [{}][{}] 23 RR Δ⇒Δ  

REGULATOR COMPOSITION 

ADD_SIMULTANEOUS }],,,,,[{}],,,[{ ndktppndtp DT
011 DTT ΔΔ⇒Δ  

REMOVE_SIMULTANEOUS }],,,[{}],,,,,{[ ndtpndtpp RT
111 TRT Δ⇒ΔΔ α  

SWAP_SIMULTANEOUS )][()][( shapeshape 1111 TRRT ΔΔ⇒ΔΔ  

ADD_SUCCESSIVE )])][([()][( shapeshape 111 RTR ΔΔ⇒Δ  

INSERT_SUCCESSIVE )])][([()][( shapeshape 111 RTT ΔΔ⇒Δ  

DELETE_SUCCESSIVE )]([)])]([([ shapeshape 111 TRT Δ⇒ΔΔ  

SWAP_ SUCCESSIVE )])]([([)])]([([ shapeshape 1111 TRRT ΔΔ⇒ΔΔ  

REPLACE_REGULATOR 

)]}(,,,,,[{

)]}(,,,,,[{

shapendktpp

shapendtpp

DT

RT

10

11

TD

TR

ΔΔ

⇒αΔΔ
 

)])]}(,,[{}(,,,{[

)])]}(,,,[{}(,,,{[

shapenkpndtp

shapentpndtp
01

11

DT

RT

ΔΔ

⇒αΔΔ
 

ADD_SHARED )][()][()][( shapeshapeshape 111 ATT Δ∧Δ⇒Δ  

TABLE  4.15 -  NOTATION FOR TRANSFORMATIONS IN ICE 
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4.7. SHAPE REPRESENTATION 

By using transformation regulators and the continuous generation method, the ICE 

notation has the capacity to describe a variety of shapes. In this section, ICE’s generative 

techniques are illustrated through a gallery of linear, planar, and volumetric shapes.  

4.7.1. LINEAR SHAPES 

Linear shapes are generated by the application of a single continuous regulator, or by the 

application of multiple regulators using partial composition, as is shown in Table 4.16. 

Straight line 

])(},,,{[ >−<Δ= 10sndtpline 1T  
 

Circular outline 

])(},,,{[ >−<=Δ= 10sn360θtpcirlce 1R  

])(},,,{[ >−<=Δ= 10sn98θtparc 1R  

Curved line 

])(},,{[ >−<Δ= 10snθpcurve 1C  

Complex polyline 

])])

])}(,,,{[

}(,,,[{
}(,,,[{

#

#

>−<>−<

>−<Δ

Δ
Δ=

1010
1

10
1sndtp

ndtp
ndtppolyline

                                

                    

                  

1a

1b

1c

T

T
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Regular polygon 

                                         

           

])

])}(,,,{[

}(,,,[{

#

><−><

>−<Δ

=θΔ=

40

10
1sndtp

n72tppentagon

1a

1b

T
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Irregular polygon 

)(])

]]))}(,,,{[

}(,,,[{
}(,,,[{

##

s

sndtp

ndtp
ndtpirregular

10

10
1

10
1

⎯→⎯

Δ

Δ
Δ=

>−<

>−<>−<

                  

                    

                  

1a

1b

1c

T

T
T

 

TABLE 4.16 - REPRESENTATION OF LINEAR SHAPES 

1TΔ
s

1RΔ
s  

1CΔ  

s  

1TΔ
s  

2TΔ  

3CΔ  

s  
 

1RΔ  

1TΔ  

1RΔ

s  

1TΔ  
s  

2TΔ  

3TΔ  



 

 

ARCHITECTURAL EXPLORATIONS  CHAPTER 4   114   

 

 

The straight line is generated by the Translation regulator, 1TΔ , sweeping the starting 

point s . The circle’s outline is generated by the Rotation regulator, 1RΔ , sweeping the 

point s  through 360º. If the angle is less than 360º, the result is an arc. Similarly, the 

curve regulator 3CΔ  sweeps s  to create a curved line.   

A polyline is generated by successive compositions; each regulator inputs only the last 

point of the preceding regulator. The polygon’s outline is generated by translating a point 

to construct an edge, then by rotating it, discretely, to construct the remaining sides. The 

irregular polygon is also generated by successive compositions. However, the first point 

is the same as the last one, and this is denoted by the arrow leading to the first point. 

4.7.2. PLANAR SHAPES 

Planar shapes are generated by the application of two continuous successive regulators, 

or multiple regulators using partial composition and discrete generation as is illustrated in 

Tables 4.17 and 4.18. 

A rectangle is generated by the successive composition of two Translation regulators. A 

solid triangle is generated by applying the composite regulator, 2DTΔΔ . If the dilation 

factor is increased the result is a trapezoid (or quadrilateral). A solid circle is generated 

by sweep-rotating a line through 360º. Similarly, the semicircle is rotated through 180º, 

and the pie through 270º. A solid curved surface is generated by sweeping a curved line 

along a Translation or along another curved line. 

A rhombus is generated by discretely mirroring the solid triangle, and similarly, a solid 

polygon is generated by discretely rotating the triangle. An irregular polygon is defined 

by means of quadrilaterals, using partial composition, like the polyline. The first 

quadrilateral is generated by sweep-scaling a line. The end line of each quadrilateral is 

swept to generate the subsequent quadrilateral.  
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Rectangle  

]]))(},,,{[(},,,{[ >−<>−<ΔΔ= 1010sndtpndtprect 12 TT  

 
Triangle and Trapezoid 

]]))(},,,{[(},),,(.,,{[ >−<>−<Δ=ΔΔ

=
1010sndtpnd15ktp

triangle

12 TDT
 

]]))(},,,{[(},),,(.,,{[ >−<>−<Δ=ΔΔ

=
1010sndtpnd175ktp

trapezoid

12 TDT
 

Circle and Variations 
]]))(},,,{[(},,,{[ >−<>−<Δ=Δ= 1010sndtpn360θtpcircle 12 TR  

]]))(},,,{[(},,,{[ >−<>−<Δ=Δ= 1010sndtpn180θtpsemicircle 12 TR

]]))(},,,{[(},,,{[ >−<>−<Δ=Δ= 1010sndtpn270θtppackman 12 TR  

Rhombus 
]]))(},,,{[(},,,,{[ >−<>−<ΔΔΔ= 1010sndtpndktptriangle 12a TDT

])}(,,[{ >><<Δ= 10trianglentprombus 2bM  

 
  
Solid Regular polygon  

]]))(},,,{[(},,,,{[ >−<>−<ΔΔΔ= 1010sndtpndktptriangle 12a TDT

])}(,,,[{ >><<θΔ= 40trianglentppolygon 2bR  

 
  

Irregular Polygon 

]

])

]))}(,,,{[

}(,,,,[{
}(,,,,[{

#
>−<

>−<

>−<Δ

Δ

ΔΔ=

10

10
1

10sndtp

nkdtp
nkdtpirregular

1

2

3

T

TD
DT

 

Solid curved surface  

]]))}(,,{[}(,,,[{ >−<>−<ΔΔ= 1010snθpndtpsurface 12 CT  

 

 
TABLE 4.17 - REPRESENTATION OF SIMPLE PLANAR SHAPES 

 

1TΔ  

2TΔ

s

1TΔ  

2DTΔΔ

s 1TΔ  

2DTΔΔ

s  

1TΔ  

2RΔ  

s  

1TΔ  

2RΔ  

s  

1TΔ  

2aDTΔΔ

s
2bMΔ  

2bRΔ  

1TΔ  

2aDTΔΔ

s

2bDTΔΔ  

2aDTΔΔ
1TΔ

 s

2TΔ

s
1CΔ  
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U-shape 

2part1partushape

sndtpndtp2part

sndtpndtp1part

22111

21

ninji0

i0n0

∧=

ΔΔ=

∧ΔΔ=

>−<>−><−<

>−<>−<

]]))(},,,{[(},,,[{

]]))(},,,{[(},,,[{

12

12

TT

TT

 

 
Square donut 

2part1partdonut

sndtpndtp2part

sndtpndtp1part

22111

2221

jinji0

nji0n0

∧=

ΔΔ=

∧ΔΔ=

>−<>−><−<

>−><−<>−<

]]))(},,,{[(},,,[{

]]))(},,,{[(},,,[{

12

12

TT

TT

 
 

Ring, concentric, and  radial 

]]))(},,,{[(},,,{[ >−<>−<Δ=Δ= 1010sndtpn360θtpring 12 TR  

]]))(},,,{[(},,,{[ >−<><Δ==Δ

=
n0φφiisndtp20n360θtp

concentric

12 TR
 

]]))(},,,{[(},,,{[ >><>−<Δ=Δ

=
φφiin0sndtpn180θtp

radial

12 TR
 

 

Crescent 

])

]]))}(,,,{[}(,,,,[{

}(,,[{

>><<

>−<>−<ΔΔΔ

Δ
=

10

1010sndtpnkθtp

ntp
crescent

12a

2b

TDR

M
 

 

Slice  
]]))(},,,{[(},,,[{ >−<>−<Δ=Δ= 1010sndtpn180θtpsemicircle 12 TR

)](},{[ semicirclekpDΔ  

]]))p(},,,{[(},,,{[ >−<>−<Δ=Δ= 1010ndtpn360θtpcircle TR

])(},{[ ><Δ 1circleline3Z   

Composed shapes   

)]

]]))(},,,{[(},,,{[

],]))(},,,{[(},,,{[

[{}(

>−<>−<

>−<>−<

ΔΔ

ΔΔ

Δ

1010
B

1010
A

sndtpndtp

sndtpndtp

B1B2

A1A2

TT

TT

U

 

 
TABLE 4.18 - REPRESENTATION OF COMPLEX PLANAR SHAPES 

 

 
s  2TΔ  

1TΔ  

2RΔ

s  

2RΔ
s  

1TΔ
1TΔ

s  
2RΔ

 

2DRΔΔ

3MΔ  1TΔ
s

1TΔ  3ZΩ  

s  

2RΔ

1TΔ  

DΔ  

As  

Bs  

2BTΔ

1ATΔ

1BTΔ  

1TΔ  

1j

2i  s 2TΔ

1i  



 

 

ARCHITECTURAL EXPLORATIONS  CHAPTER 4   117   

 

The U-shape is generated by means of the subset generation method. The regulators are 

applied twice from the same starting point, each time deriving part of the shape. The 

same method is applicable to the L-shape. A square with a hole is described by using the 

subset generation method. The regulators needs to be applied twice, once to generate the 

vertical sides, and once to generate the horizontal sides. There are other ways of 

generating a square with a hole, for instance the pinwheel method, however, the two-pass 

method is more flexible, and can describe variations such as rectangular holes, or many 

holes, etc. 

A ring is generated as a variant of the circle, a line (that does not intersect with the center 

of rotation) is sweep-rotated through 360 degrees. The concentric pattern is a subshape of 

a circle and defined by means of the subset generation method. The first regulator defines 

a pattern, while the other is continuous.  Similarly, the radial pattern, which is another 

subshape of the circle, is a defined by subset generation, where the first regulator is 

continuous, and the second regulator defines the pattern. A crescent is generated by 

means of a scale rotating a line, then mirroring it discretely. A solid slice is defined by 

applying the dilation 3DΔ  to a semicircle, or alternatively by subdividing a circle about a 

line.  

4.7.3. VOLUMETRIC SHAPES 

Volumetric shapes are generated by applying three successive regulators as is illustrated 

in Table 4.19, which extends through several pages. 

A cuboid is generated by sweeping a square along the Translation regulator 3TΔ . 

Similarly, a prism is generated by sweeping a triangular base along 3TΔ . A rotated prism, 

on the other hand,   is generated by sweeping the triangular base along the screw 

regulator, 3RTΔΔ , and a pyramid is generated by sweeping a square base along the 

composite regulator, 3DTΔΔ . If the scale factor is decreased, the result is a frustum. The 

octahedron is defined by discretely mirroring a pyramid.  
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Cuboid 

])])(},,,{[(},,,{[ >−<>−<ΔΔ

=
1010sndtpndtp

square

12 TT  

])(},,,{[ >−<Δ= 10squarendtpcuboid 3T  

 
Prism 

])])(},,,{[(},,,,{[ >−<>−<ΔΔΔ

=
1010sndtpndktp

triangle

12 TDT
 

])(},,,{[ >−<Δ= 10trianglendtpprism 3T  

 
Rotated Prism 

])])(},,,{[(},,,,{[ >−<>−<ΔΔΔ

=
1010sndtpndktp

triangle

12 TDT
 

])(},,,,{[_ >−<ΔΔ= 10trianglenθdtpprismRotated 3RT  

 
Pyramid and Frustum 

])])(},,,{[(},,,{[ >−<>−<ΔΔ

=
1010sndtpndtp

square

12 TT  

])(},,,,{[ >−<ΔΔ= 10squarenθktppyramid 3DT  

])(},,,,{[ >−<ΔΔ= 10squarenθktpfrustum 3DT  

 
 

Octahedron 

])])(},,,{[(},,,,{[ >−<>−<ΔΔΔ

=
1010sndtpndktp

triangle

12 TDT
 

])(},,,,{[ >−<ΔΔ= 10squarenθktppyramid 3aDT

])(},,,,,,{[ >−<Δ= 10squarenθedvtpoctahedron 3bM  

Cylinder 

]]))(},,,{[(},,,{[ >−<>−<Δ=Δ

=
1010sndtpn360θtp

circle

12 TR
 

])(},,,{[ >−<Δ= 10circlendtpcylinder 3T  

]]))p(},,,{[(},,,{[ >−<>−<ΔΔ= 1010ndtpndtprect 12 TT  

])(},,,{[ >−<Δ= 10rectndtpcylinder 3R  

 

3TΔ  

3aDTΔΔ  4bMΔ  

3DTΔΔ  
3DTΔΔ  

3RTΔΔ  

3TΔ

3TΔ  

3RΔ  
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Cone 

]]))(},,,{[(},,,{[ >−<>−<Δ=Δ

=
1010sndtpn360θtp

circle

12 TR
 

])(},,,{[ >−<Δ= 10circlendtpcone 3TD  

 

])])(},,,{[(},,,,{[ >−<>−<ΔΔΔ

=
1010sndtpndktp

triangle

12 TDT
 

])(},,,{[ >−<Δ= 10trianglendtpcone 3R  

Slinky  

]]))(},,,{[(},,,{[ >−<>−<Δ=Δ

=
1010sndtpn360θtp

circle

12 TR
 

])(},,,{[ >−<Δ= 10circlenθtpslinky 3C  

Sphere 

]]))(},,,{[(},,,{[ >−<>−<Δ=Δ

=
1010sndtpn360θtp

circle

12 TR
 

])(},,{[ >−<Δ= 10circleθ,ntpsphere 3R  

  

Torus 

]]))(},,,{[(},,,{[ >−<>−<Δ=Δ

=
1010sndtpn360θtp

circle

12 TR  
])(},,{[ >−<Δ= 10circleθ,ntptorus 3R  

Paraboloid 

]]))(},,,{[(},,,{[ >−<>−<Δ=Δ

=
1010sndtpn360θtp

slice

12 TR
 

])(},,,{[ >−<Δ= 10slicenθtpparaboloid 3R  

Football 

]]))(},,,{[(},,,{[ >−<>−<Δ=Δ

=
1010sndtpn360θtp

slice

12 TR
 

])(},,{[ >−<Δ= 10slicen,θtpfootball 3R  

TABLE 4.19 - REPRESENTATION OF VOLUMETRIC SHAPES 

 

3RΔ  

3RΔ  

3RΔ  

3TDΔ  

3CΔ  

3RΔ  

3RΔ  
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A cylinder is generated either by sweeping a circular base along a Translation regulator 

3TΔ , or by sweep-rotating a rectangle about the regulator 3RΔ . Likewise, a cone is 

generated either by sweeping a circle along the composite regulator, 3DTΔΔ , or by 

rotating a triangle about the regulator 3RΔ . Similarly a slinky is generated by sweeping a 

circle along a curve regulator, 3CΔ . A sphere is generated by sweep-rotating a circle 

about the regulator, 3RΔ , positioned along the diameter of the circle; while a torus is 

generated by sweep-rotating a circle about the regulator 3RΔ , positioned outside the 

circle. The solid paraboloid and the solid football are generated by rotating a slice about 

the regulator, 3RΔ .    

4.7.4. SHAPE TRANSFORMATIONS 

The ICE notation supports the transformation of one shape to another, just by changing 

the definition of the regulators as is illustrated in Table 4.20. 

Starting shape the cuboid 

])])])(},,,{[(},,,{[(},,,{[ sndtpndtpndtp

cuboid

123 TTT ΔΔΔ

=
 

REPLACE_REGULATOR  

}],,,[{}],,,[{ ntpndtp 2 θΔ⇒Δ RT2  

])])])(},,,{[(},,,{[(},,,{[ sndtpntpndtp

cylinder

123 TRT ΔθΔΔ

=
 

ADD_SIMULTANEOUS 

}],,,,,[{}],,,[{ ndktppndtp DTDTT3 ΔΔ⇒Δ  

)])(},,,{[(},,,{[(},,,,,{[ sndtpntpndktpp

cone

DT 123 TRTD ΔθΔΔ

=

 

REPLACE_REGULATOR  

}],,,[{}],,,[{ ndtpntp2 2TR Δ⇒θΔ  

])]))](},,,{[(},,,{[(},,,{[ sndtpndtpndtp
pyramid

123 TTTD ΔΔΔ
=

 

TABLE 4.20 TRANSFORMATION ACROSS SHAPES 

3TDΔ  

3TΔ  

3TΔ

3DTΔΔ  
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4.8. PATTERN GENERATION AND TRANSFORMATION 

By using transformation regulators and the discrete generation method, the ICE notation 

has the capacity to describe various types of patterns. In this section, I present examples 

of cyclic, dihedral, frieze, and wallpaper patterns, based on symmetry group 

classifications. The focus is on the mapping between regulators and the symmetries of the 

patterns, as well as the use of regulators to transform patterns. The complete set of cyclic, 

dihedral, frieze and wallpaper patterns, as well as the transformation among these 

patterns is presented in Appendix C. 

4.8.1. CYCLIC AND DIHEDRAL PATTERNS  

Cyclic patterns have a single center of finite rotation; dihedral patterns have, additionally, 

mirrors intersecting at the center of rotation. Table 4.21 shows an example of a Cyclic 

and a Dihedral pattern, and illustrates how to transform one to the other by means of the 

ICE notation.  

Cyclic pattern C(3) 

])(},,,{[)( ><−><=Δ= 20shapen120θtp3C aR  

 
 

Transforming pattern C(3) to D(8) 
 MODIFY_FACTOR ( θ )  
  }][{}][{ 45θ120θ =Δ⇒=Δ aa RR  

 INSERT_SUCCESSIVE ( aMΔ )  

  )])][([()][( shapeshape aba MRR ΔΔ⇒Δ  

 

Dihedral pattern D(8) 

]]))}(,,[{}(,,,[{)( ><−><>><<Δ=Δ= 7010shape1tpn45θtp8D ab MR  

 
 

Transforming pattern D(8) to C(3) 
 DELETE_SUCCESSIVE ( aMΔ )    

  )][()])[([( shapeshape aab RMR Δ⇒ΔΔ  

 MODIFY_FACTOR ( θ )  
  }][{}][{ 120θ45θ =Δ⇒=Δ aa RR  

 

TABLE 4.21 - CYCLIC AND DIHEDRAL PATTERNS 

bRΔ  

aMΔ  

aRΔ  
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The cyclic pattern C(3) is generated by using the Rotation regulator 1RΔ . The dihedral 

pattern D(8) is generated by using the Mirror regulator 1MΔ  and the Rotation regulator 

2RΔ . Although the pattern has four axes of mirror symmetry, ICE only uses one of those 

as a primary generator. 

4.8.2. FRIEZE PATTERNS  

Frieze patterns are periodic patterns consisting of infinite translations of a motif in a 

single direction. The seven frieze patterns admit half-turn rotations, horizontal and 

vertical mirrors and glide (Martin 1991, p78) A point of symmetry in the motif is a point 

of symmetry for the whole pattern and a line of symmetry in the motif is a line of 

symmetry for the whole pattern. Table 4.22 shows two examples of Frieze patterns, and 

illustrates how to transform one to the other by means of the ICE notation.  

Frieze pattern p112 

])

])(},,,{[

(},,,{[

><−><

>><<=Δ

Δ=

n0

10shape1180θtp

ndtp112p

a

b

R   

T

 

Frieze pattern p1m1 

])

])(},,{[

(},,,{[

><−><

>><<Δ

Δ=

n0

10shape1tp

ndtp1m1p

a

b

M

T

 

Transforming pattern p1m1 to p112 
 REPLACE_REGULATOR    aa RM Δ⇒Δ  

 MOVE_REGULATOR_Y     }]'[{}][{ pp aa RR Δ⇒Δ  

Transforming pattern p112 to p1m1 
 REPLACE_REGULATOR   aa MR Δ⇒Δ  

 MOVE_REGULATOR_Y   }]'[{}][{ pp aa MM Δ⇒Δ  

 

TABLE 4.22 - FRIEZE  PATTERNS 

 

 

aMΔ  

bTΔ  

 

aRΔ  
bTΔ  
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The Frieze pattern p1m1 is generated by using the horizontal Mirror regulator 1MΔ  and 

the Translation regulator 2TΔ . The pattern also has glide. The Frieze pattern p112 is 

generated by using a half-turn Rotation regulator 1RΔ  and the Translation regulator 2TΔ . 

The pattern also has another half-turn between the motifs. 

4.8.3. WALLPAPER PATTERNS 

Wall paper patterns comprise infinite translations of a motif in two distinct (non- 

collinear) directions. These form a conceptual lattice that is either rectangular, rhombic or 

parallelogram. A point of symmetry in the motif is a point of symmetry for the whole 

pattern, and a line of symmetry in the motif is a line of symmetry for the whole pattern. 

The seventeen wall paper patterns admit 2, 3, 4, or 6 centers of rotation and reflection 

line. (Martin 1991, p88)  Table 4.23 shows two examples of wallpaper patterns, and 

illustrates how to transform one to the other by means of the ICE notation. The wallpaper 

pattern P6 is generated by using the Rotation regulator 1RΔ  and the Translation 

regulators 2TΔ  and 3TΔ . The pattern has a rhombic lattice and has 6 centers, 3 centers 

and 2 centers of rotation. The wallpaper pattern p4g is generated by using the Mirror 

regulators 1MΔ  and 2MΔ , the Rotation regulator 3RΔ  and the Translation regulators 

4TΔ  and 5TΔ . The pattern has a rectangular lattice and has 4-centers, 2-centers of 

rotation as well as glide. 
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Wallpaper pattern  p6 

])

])

])(},,,{[

(},,,{[

(},,,{[

><−><

><−><

>><<=Δ

Δ

Δ=

n0

n0

50shapen60θtp

ndtp

ndtp6p

a

b

c

R

T

T

 

Wallpaper pattern  p4g 

])

])

])(},,,{[

(},,,{[

(},,,{[

><−><

><−><

>><<=Δ

Δ

Δ=

n0

n0

50shapen60θtp

ndtp

ndtp6p

a

b

c

R

TM

TM

 

 

 

 
Transforming pattern p6 to p4g 
 MODIFY_FACTOR ( θ )  }][{}][{ 90θ60θ =Δ⇒=Δ aa RR  

 ROTATE_REGULATOR ( cTΔ )  }]'[{}][{ tt cc TT Δ⇒Δ  

 ADD_SIMULTANEOUS ( MΔ )   
  )])])][([([()])])][([([( shapeshape abcabc RTMTRTT ΔΔΔ⇒ΔΔΔ  

 ADD_ SIMULTANEOUS ( MΔ )     
  )])])][([([()])])][([([( shapeshape abcabc RTMTMRTMT ΔΔΔ⇒ΔΔΔ  

 

Steps transforming pattern p4g to p6 
 MODIFY_FACTOR ( θ )  }][{}][{ 60θ90θ =Δ⇒=Δ aa RR  

 ROTATE_REGULATOR ( cTΔ ) }][{}]'[{ tt cc TT Δ⇒Δ  

 REMOVE_SIMULTANEOUS ( MΔ )  
  )])])][([([()])])][([([( shapeshape abcabc RTMTRTMTM ΔΔΔ⇒ΔΔΔ  

 REMOVE _ SIMULTANEOUS ( MΔ )  
  )])])][([([()])])][([([( shapeshape abcabc RTTRTMT ΔΔΔ⇒ΔΔΔ   

TABLE 4.23 – WALLPAPER PATTERNS 

 

 
3RΔ  bTMΔ  

cTMΔ  

 

bTΔ  

aRΔ  

cTΔ  
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4.9. REPRESENTATIONAL SCHEMATA 

The ICE notation string also encapsulates the relationships between the regulators of the 

configuration. These interrelationships form representational schemata, which are a 

higher-level classification subsuming shapes and configurations. Schemata allow us to 

identify distinct patterns of complex compositions where specific regulators, composition 

strategies and generation methods are used in combination. 

Configuration schemata are discernible patterns of regulator relationships. A schema can 

be applied to different input shapes and get variable results with similar generation and 

transformation patterns. Thus, various shapes can be derived from a single higher-level 

schema. Consequently, schemata can be used as templates to store complex generation 

sequences and constraint patterns, and can later be retrieved and modified to create 

specific shapes. A schema can store the generation and constraints for a chair, while 

another schema can store the generation and constraints for a restaurant. A user can later 

retrieve the former schema and modify it to create variations of chairs. Transforming 

regulator parameters does not alter the schema; however, transforming the regulator 

composition or sequence transforms the schemata completely, therefore the latter form of 

transformations can be used to create new schemata from existing ones.  

Configurational schemata include the following:  simple generative schemata, complex 

generative schemata, hierarchical schemata, topological grid schemata, dynamic 

schemata. These schemata are often used in combination. In this section, I present some 

examples of schemata that can be generated in ICE.  The graph representation illustrates 

how the regulators in each type of schemata are interrelated. 

The notation for schemata differs from the notation for shapes in the following manner. 

(i) Shapes are denoted in lowercase, while schemata are denoted in uppercase. (ii) 

Schemata are defined by the regulator types, composition and their generation methods, 

while shapes are defined, additionally, by the regulator parameters. Distinct shapes, for 

instance the circle and the ring, can have the same schema, 

]]))p[([( >−<>−<ΔΔ= 1010CIRCULAR 12 TR , but their actual shapes are defined by the 

parameters of their specific regulators.  
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4.9.1. SIMPLE GENERATIVE SCHEMATA 

Simple generative schemata, which describe symmetric or centralized architectural 

layouts, utilize successive and simultaneous composition methods to generate shapes and 

patterns. There are no limits on the number of regulators in the sequence, or in the 

simultaneous composition. Patterns such as 1D frieze and 2D wallpaper, as well as shape 

like the cuboids, cylinders, and cones (Table 4.24) are examples of simple generative 

schemata. The schema for the 3D cone consists of three successive regulators: 1TΔ , 2RΔ , 

and 3DTΔΔ , all of which are continuous, with the last regulator being a composite of 

Translation and Dilation.  

])])])p([([([ 101010 >−<>−<>−<ΔΔΔΔ= 123 TRDTConeSCHEME  

 

R

p p1

T

T

p01

p11

p0n

p1n

p011

p111

p0n1

p1n1

p01n

p11n

p0nn

p1nn

D

 
TABLE 4.24 -  SIMPLE GENERATIVE SCHEMATA 

4.9.2. COMPLEX GENERATIVE SCHEMATA 

The complex generative schemata utilize composition methods such as sharing, 

aggregation, and multiple-control, in addition to simultaneous and successive 

compositions. These enable the description of intricate configurations and a hierarchy of 

control that achieves complex behaviors. Table 4.25 shows a schema that consists of a 

shape shared by several Translation regulators, which are, in turn, regulated by a higher-

level Rotation regulator. 

 

 

 

 

3TDΔ  

1TΔ  2RΔ  

s  
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])s(},,,[{])(},[{ >−<>−< Δ∧ΔΔ 30
0

30 ndtptp aiab TTR  

 

Rb

Ta Ta1 Tan

s0 s1 sn

s1 sn

s1 sn

 
TABLE 4.25 - COMPLEX SCHEMATA 

4.9.3. HIERARCHICAL SCHEMATA 

Hierarchical schemata, which describe spatial organizations in buildings, utilize 

hierarchical regulators to define dependencies between hierarchical structures. These are 

combined with other regulators (such as subdivision, size, and boundary) through 

simultaneous composition in order to define topological and geometric relations within 

hierarchies. There are no limits to the number of levels in the hierarchy. Table 4.26 shows 

a two-tier hierarchical configuration, which is formed by subdividing the container shape 

and generating constituents; these are in turn subdivided into their own constituents.  

21_ tiertierSCHEMEHIERARCH ∧=

])[{}(1 30 >−<ΩΨ= containerZHtier  

])1[{}(_2 40
1#

>−<ΩΨ= tierZHtoptier  

])1[{}(_2 20
3#

>−<ΩΨ= tierZHbottomtier  

 

H Z

H Z

H Z

s11 s13 s14

s31 s32

s1 s2 s2

s12

s

 
TABLE  4.26 -  HIERARCHICAL SCHEMATA 

a1TΔ  

a0TΔ  

a3TΔ  

a2TΔ  

bRΔ  

ZHΩΨ  

ZH ΩΨ  

Z HΩΨ  
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4.9.4. GRID SCHEMATA 

Grid schemata are of particular significance because grids are a major organization tool 

in Architecture. Grid schemata consist of grid lines, which are alignment or bounding 

regulators. Grid lines are in turn regulated by Translation or Mirror regulators, which 

determine the number of grid lines, the distance between them, and the axes of symmetry 

of the grid. Grids can be manipulated in several ways. Gross (1991) explains that grids 

can be selected, composed, superimposed, and used to position design elements and 

define relations among elements. Some of these manipulations correspond to Dürer 

(source: Mitchell 1990) and Darcy Thomson’s strategies (Thomson 1971).  In Table 4.27, 

1GRID  is defined by translating the alignment regulators 1AAΦ  along 2ATΔ  and 1BAΦ  

along 2BTΔ  and 2GRID  is defined the same sequence and additionally by mirroring the 

second set of alignment lines about 3BMΔ . Table 4.28 shows variations of these grids as 

transformed by the ICE transformation syntax. When parameters of the grid are changed, 

that does not alter its schema, however, when the regulator composition is changed, this 

results in a new schema, and is indicated by a change in the grid’s name.   

])(},,,{[

])(},,,{[
>−<

>−<

ΦΔ

∧ΦΔ=
n0

n0

nθtp

nθtp1GRID

1B2B

1A1A

AT

AT

   
 

 

A11 A1n

T1

A1 A21 A2n

T2

A2

  

]]))}(,,,[{}(,,,{[

])(},,,{[
>−<>−<

>−<

ΦΔΔ

∧ΦΔ=
n0n0

n0

nθtpnθtp

nθtp2GRID

1B2B3B

1A2A

ATM

AT
 

A11 A1n

T1

A1 A21 A2n

T2

A2

A01

An1

M

A11

 

 
TABLE  4.27 - GRID  SCHEMATA 

1BTΔ  

1ATΔ

1AAΦ

2AAΦ  

1BTΔ  

1ATΔ

1AAΦ

1BAΦ

3BMΔ  
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])([])([ >−<>−< ΦΔ∧ΦΔ

=
n0n0

1GRID

1B2B1A2A ATAT
 

ROTATE_REGULATOR 2ATΔ  

])([])([ >−<>−< ΦΔ∧ΦΔ

=
n0n0

1GRID

1B2B1A2A ATAT
 

ROTATE_SCHEMA 1GRID  

 

]]))([([

])([
>−<>−<

>−<

ΦΔΔ

∧ΦΔ=
n0n0

n02GRID

1B2B3B

1A2A

ATM

AT
 

ROTATE_REGULATOR 2ATΔ  

])([

])([
>−<

>−<

ΦΞΔ

∧ΦΔ=
n0

n01GRID

1B2B

1A2A

AGT

AT
 

ADD_SIMULTANEOUS GΞ  
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TABLE  4.28 -  VARIATIONS OF GRID  SCHEMATA 
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4.9.5. TOPOLOGICAL SCHEMATA 

Topological schemata utilize topological regulators to describe proximity relationships 

between spatial entities and to determine adjacency networks of spatial configurations. 

Table 4.29 shows set of spaces in a house that are related by means of adjacencies, 

distances overlaps and boundaries.  

]),({}[ AB
0 DiningKitchenJΦ  

]),(}{max[ DC FamilyLiving100−=Φ −J  

]),({}[ CA
0 LivingDiningJΦ  

]),(}{min[ DA FamilyDining50=Φ +J  

)](}{[ CAE Dining,LivingFirstFlooro −ΠB  
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DiningA Living C
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J

J

J-J+
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TABLE 4.29 - TOPOLOGICAL SCHEMATA 

 

4.9.6. DYNAMIC SCHEMATA 

Dynamic schemata utilize motion regulators in combination with multiple control 

regulators. Some types of dynamic schemata allow the description of moving components 

in cases where architecture and mechanical design are integrated, while other types 

describe complex shapes that can only be defined by means of motion. The latter type 

combines motion with subsequent generation of output shapes, such that the outputs are 

generated while the regulator is moving. Table 4.30 illustrates two examples of dynamic 

schemata, one is the bidirectional rotation of a moving part, and the other is an elliptical 

configuration generated by means of a moving regulator.   
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TABLE  4.30 -  DYNAMIC  SCHEMATA 

 

4.9.7. SCHEMATA ENCAPSULATION  

Schemata encapsulation creates a multilevel schema hierarchy, where a schema is 

regulated like other objects. When schemata are regulated, it’s starting point/shape and 

regulators are regulated. Schemata are always regulated discretely. Table 4.31 shows a 

rectangular sub-schema mirrored about  3MΔ  creating a super-schema.  
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TABLE  4.31 -   SCHEMATA ENCAPSULATION 
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CHAPTER 5                                                                

PROPERTIES OF THE  ICE 

REPRESENTATION   

 

The ICE notational string explicitly captures the structure of a configuration as regulators 

as well as a concise generation method in the order and composition of these regulators 

together with the applicable transformations in their parameters. Moreover, it also 

captures, implicitly, additional shape information that can be derived from the notational 

string by means of simple computations and manipulations of parameters.  

In this chapter, I describe the properties and arithmetic of the ICE notation and focus on 

this category of implicit information and the corresponding methods and strategies by 

which these are be derived.  Through these properties, the ICE representation is analyzed 

in depth with a focus on the computational significance of every parameter, and its 

relevance to geometry and to further algorithmic processing. These properties could be 

easily proven due to their correspondence with the formulae of regulators, but proving 

these, formally, is beyond the scope of this dissertation.  

This chapter is laid out as follows.  In Section 5.1, I describe geometric information that 

can be further derived from ICE strings by means of simple computations of the 

parameters or generative indices. In Section 5.2, I describe definitions and shape 

analogies with respect to the regulator representation. Some of these are common 

definitions adapted to regulators, while others are established specifically for regulators. 

In Section 5.3, the focus is on the interrelationships among the various regulators, and I 

deal with  the issue of conflict in constraint-based regulators. In Section 5.4, I discuss the 

property of multiple representations. In Section 5.5, I discuss the transformations from 

one string to another. Lastly, in Section 5.6,  I conclude with a discussion of the design 

space represented in ICE. 
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5.1. SHAPE INFORMATION 

The ICE notation contains implicit geometrical information about shapes that can be 

derived through simple computation of parameters, or simple modification of the 

generated subset. The derivation of shape information, which includes key elements, 

subshapes and areas/volumes, enables the post processing of particular sub-parts or 

properties the a shape. 

Key points (such as midpoints) or key lines (such as edges), which are not explicitly 

defined as symbols in the notational string, can be identified through specific treatment of 

the generated subsets. In this way, such key elements can be directly accessed for further 

manipulation. For instance, a midpoint or a specific edge can be aligned or a specific 

edge can be made adjacent to another edge. The identification and direct access of 

subshapes allows various parts of a shape to be treated differently for example different 

parts of a circle can be extruded at different heights. Furthermore, the identification of 

key elements such as vertices and edges, allow for different views of a certain shape such 

as wire frame or the solid view. The areas/volumes of shapes, which can be determined 

by multiplying parameters of the regulators, can be constrained for instance to establish a 

minimum area requirement, or can be used in post processing computations for example 

in determining amounts of  materials or determining costs. 

5.1.1. BOUNDARY ELEMENTS AND KEY-ELEMENTS  

Key elements and subshapes can be identified by means of strategically manipulating 

certain parameters and subset definitions of the ICE string. Table 5.1 shows the 

derivation of endpoints and midpoints with respect to 1D shapes. Table 5.2 and Table 5.3 

illustrate these with respect to 2D and 3D shapes, respectively.   

A solid line is generated by continuous generation of a single regulator. Its endpoints, 

which consist of a start point s  and an endpoint e , are identified by generating discretely 

the zeroth element and the nth element of that same regulator.  

The midpoint, depicted by m , is identified by multiplying the factor ( )kt ,,θ  by ( )2
1 . 

Any intermediate point can be generated in this same way using another multiple.  The 
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dotted line is generated by increasing the resolution of the regulator. This is achieved by 

multiplying the factor by  λ
1  and by multiplying the parameter  n  by λ . 

Straight line  

])(},,,{[ >−<Δ= 10sndtpline 1T
 

Both endpoints  

])(},,,{[ >><<Δ= 10sndtpendpoints 1T
 

One endpoint 

])s(},,,{[ ><Δ= n
1 ndtpe 1T

 

 

Dotted line  

])p(},,,{[ )( >−λ<−><

λ
Δ= n10nd1tpdotted 1T  

 
Midpoint 

])s(},,,{[ ><Δ= n
1 nd

2
1tpm 1T

 

 
TABLE 5.1 -  REPRESENTATIONS OF KEY ELEMENTS IN LINEAR SHAPES 

 

A solid rectangle is generated by continuous generation of two successive regulators. Its 

vertices are identified by discretely generating the zeroth element and nth element of each 

of these regulators. The endpoint resulting from the application of a regulator, such as 

1TΔ , is denoted as 1e ; the endpoint resulting from two regulators is denoted as 21e , . 

Edges are generated by designating one regulator as continuous and one as discrete. 

Edges of each direction must be generated separately. The midpoint, depicted by 21m , , is 

identified by multiplying the factors ( )kt ,,θ  of both regulators by ( )2
1 , and the midlines, 

which are midpoints of one regulator,  extended continuously along the other regulator, 

are denoted as 1m , and 2m .  Parallel, intermediate lines are generated by one continuous 

and one discrete regulator for which the resolution is increased. 

s  1e
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1TΔ  
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1m



 

 

ARCHITECTURAL EXPLORATIONS  CHAPTER 5  136   

 

Rectangle 
]]))(},,,{[(},,,{[ >−<>−<ΔΔ= 1010sndtpndtprectangle 12 TT  

Vertices 
]]))(},,,{[(},,,{[ >><<>><<ΔΔ= 1010sndtpndtpvertices 12 TT

Specific endpoints  

])s(},,,{[ ><Δ= n
1 ndtpe 1T  

])s(},,,{[ ><Δ= n
2 ndtpe 2T  

]]))s(},,,{[(},,,{[2,1
><><ΔΔ= nnndtpndtpe 12 TT  

Edges 
verticalsshorizontaledgesOutline ∧=  

]]))(},,,[{}(,,,[{ >><<>−<ΔΔ= 1010sndtpndtpshorizontal 12 TT

]]))}(,,,[{}(,,,[{ >−<>><<ΔΔ= 1010sndtpndtpverticals 12 TT  

Parallel lines  

])

])(},,,{[

}(,,,{[

)( >−χ<−><

>−<Δ

χ
Δ=

n10

10sndtp

nd1tplines

1

2

T

T

 

Midlines  

]]))s(},,,{[(},,,{[ >−<><ΔΔ

=

n0n

1

nd
2
1tpndtp

mmidline

12 TT
 

Centroid 

]]))(},,,{[}(,,,{[

,

><><ΔΔ= nn

21

snd
2
1tpnd

2
1tp

mcentroid

12 TT
 

TABLE 5.2 -  REPRESENTATIONS OF KEY ELEMENTS IN PLANAR SHAPES 
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Parallel planes 
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TABLE 5.3 – REPRESENTATION OF KEY ELEMENTS IN VOLUMETRIC SHAPES 
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A solid cuboid is generated by continuous generation of three successive regulators. Its 

vertices are identified by discretely generating the zeroth element and nth element of each 

of these regulators. The endpoints resulting from the application of one regulator are 

denoted as 1e , the endpoints of two regulators are denoted as 21e , , and the endpoint of the 

three regulators combined is denoted as 321e ,, .  

Edges are generated by designating one regulator as continuous and two regulators as 

discrete. Edges of each direction are generated separately. Similarly, surfaces (for each 

direction) are generated by designating two regulators as continuous and one regulator as 

discrete.  

For 3D shapes, there is one centroid, three midlines and three mid-surfaces. The 

midpoint, depicted by 321m ,, , is identified by multiplying the factors ( )kt ,,θ  of all three 

regulators by ( )2
1 . The midlines, which represent the midpoint of two regulators 

extended continuously along the third regulator, are denoted as 32m , . The mid surfaces 

represent the midpoints of one regulator extended continuously across the two other 

regulators and denoted as 1m  .  Parallel, intermediate, planes are generated by two 

continuous and one discrete regulator for which the resolution is increased. 

In the ICE framework, shapes are not defined by the Cartesian coordinate system. Each 

shape has its internal coordinate system defined by its generative regulators. These can be 

polar coordinates or cylindrical, or any other curvilinear configuration determined by the 

regulator’s form. Therefore, elements are identified through the parameters defining these 

coordinate systems. 

5.1.2. SUB-SHAPES 

In the ICE framework, subshapes depend on the definition of the shape’s regulators. 

Subshape definition requires an increase in the resolution of the regulators, which is 

achieved by multiplying the factor by  λ
1  and by multiplying the parameter  n  by λ .  

Subshapes, such as the dashed line, the sub-rectangles and the sub-cubes are all defined 

by means subset generation, where the range i-j (that define the subshape) must be 

between 0 and n .  Table 5.4 shows sample subshapes and their corresponding notation.  
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TABLE 5.4 – DERIVING SUBSHAPES FROM THE ICE SHAPES 
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5.1.3. LENGTHS, AREA, AND VOLUMES 

Length and area computations are important in architecture, at various levels, from 

accommodating space requirements, to determining budgets.  The ICE notation enables 

the computation of lengths, areas, and volumes of shapes by means of multiplying the 

generative parameters of its regulators. Tables 5.5, 5.6, and 5.7, show the derivation of 

lengths, areas, and volumes, respectively. Each row focuses on one of the major 

transformation regulators. 

The basic strategy for computing the length of a shape defined by one regulator is to 

multiply the factor ( )kt ,,θ  with the parameter n , with specific considerations for certain 

regulators, such as Rotation and Dilation. The length of the curve is determined by 

integration.  The curve is subdivided into small units (by increasing the curve’s 

resolution) and the sum of these units gives the total length of the curve. For composite 

regulators, the factors of each of the composites are taken into consideration for 

computing the length. For 2D shapes, each continuous regulator determines the length of 

one side of the shape.  

For determining the area of a shape, the length of the first regulator, 1length  is multiplied 

with that of the second regulator. In case of shapes defined by additional discrete 

regulators, the area is computed by taking the resulting area of the first two regulators and 

multiplying it with the number n  of the discrete regulator. 

For determining the volume, the area of the base shape produced by the first two 

regulators, 21area , , is multiplied by the length produced by the third regulator. 
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Translation : ])(},,,{[ sndtp1TΔ ,  
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COMPOSITION OF REGULATORS 
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TABLE 5.5 – LENGTHS COMPUTATIONS 
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Shape defined by discrete generation  
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TABLE 5.6 – AREA COMPUTATIONS 
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TABLE 5.7 – VOLUME COMPUTATIONS 
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5.2. DEFINITIONS AND ANALOGIES 

In this section, I present known geometric definitions and shape analogies with respect to 

the regulator representation with an emphasis on the relevant parameters. What does it 

mean for two ICE notational strings to be equivalent for instance? Are they any 

conditions subsumed in the notation? And, are additional conditions necessary? Are their 

subclasses of equivalence based on regulators? Such definitions are particularly important 

for understanding, in depth, the regulator representation, for defining the structure of 

regulator interrelationships, and not least, for defining the fundamentals of test, or for 

further algorithmic computations.  

5.2.1. EQUALITY AND EQUIVALENCES 

Besides equality (Figure 5.1), the ICE notation supports several types of equivalences: 

directional-equivalence, factor-equivalence, and continuity-equivalence for regulators 

(Figure 5.2); as well as distance-equivalence, angular-equivalence, and proportional-

equivalence for shapes (Figure 5.3).   

Regulator equality: Two regulators, aTΔ  and bTΔ , are equal whenever (i) they are of the 

same type, (ii) their parameters aaa ndt ,,  and bbb ndt ,,  are respectively equal, and  

(iii) the continuity pattern of aTΔ  is identical that of bTΔ . The parameter p  denoting the 

starting point of the regulator needs not to be equal. Additionally, in order to achieve 

equality, curvilinear regulators need to have same formula.  

Shape equality: Ashape and Bshape  are equal, whenever (i) their defining regulators 

AnA1 TT Δ−Δ  and BnB1 TT Δ−Δ  are respectively equal and (ii) the distances between 

regulators and the starting point s  of the shapes are respectively equal. Note that this 

definition of shape equality does not address multiple representations. 

   
FIGURE 5.1 - EQUAL REGULATORS, EQUAL SHAPES, AND UNEQUAL SHAPES 
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Directional-equivalence: Two regulators, aTΔ  and bTΔ  are directionally-equivalent if (i) 

they are of the same type, and (ii) their directional parameter at  and bt  are equal.  Since 

the formula defines the direction for curvilinear regulators, their formula must be 

identical.  

Factor-equivalence: The regulators aTΔ  and bTΔ  are factor-equivalent whenever (i) they 

are of the same type, and (ii) their distance factors d   are equal. Factors include the angle 

θ  for Rotation and scaling k  for Dilation regulators.  

Continuity-equivalence: The regulators aTΔ  and bTΔ  are continuity-equivalent 

whenever (i) they are of the same type and (ii) the continuity pattern of aTΔ  is identical 

to the pattern in bTΔ . 

Inverted-equivalence: Two regulators, aTΔ  and bTΔ , are inverse-equivalent to one 

another, whenever they are of the same type, and the parameters at  and bt  are equal, but 

the factors ad  and bd  are opposites (one is the negative of the other).  

    

FIGURE 5.2 – DIRECTIONAL, FACTOR, CONTINUITY, AND INVERTED EQUIVALENCE 

 

Shape equivalence:  Ashape and Bshape  are equivalent, whenever (i) their defining 

regulators AnA1 TT Δ−Δ  and BnB1 TT Δ−Δ   are respectively equivalent.  Shapes maintain 

the same geometric integrity and preserve angles if their regulators are directionally-

equivalent; they maintain the same dimensions if their regulators are factor-equivalent; 

and they maintain the same continuity patterns if their regulators are continuity-

equivalent. Shape schema describes shapes that are continuity equivalent. 
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Distance-equivalence: Ashape and Bshape  are distance-equivalent whenever the distances 

between the starting points s  of the shapes and their regulators are respectively equal.  

Angular-equivalence: Ashape and Bshape  are angular-equivalent whenever the angles 

between the constituent regulators for each shape are equal.  

Proportional-equivalence: Ashape and Bshape  are proportionally-equivalent whenever 

the regulator factors and the distance between the starting point s  and the regulators are 

proportionally related. 

 
  

FIGURE 5.3 – DISTANCE, ANGULAR , AND PROPORTIONAL EQUIVALENCE 

 

These definitions of shape and regulator equivalences do not address multiple 

representations. 

5.2.2. COINCIDENCE AND EXTENSION 

Coincidence in ICE depends on regulator operations. A point  q  is coincident on Ashape , 

whenever (i) q  can be generated by Ashape ’s defining regulators using its starting point 

As , and  (ii) q  is within the range defined by >−< n0  of Ashape . This is achieved by 

means of a multiple applied to the main factor of the regulator.  If As  can be obtained by 

applying the inverse of the regulators’ matrices to q  with the factor multiple λ  between 

0 and 1, then q  is coincident on Ashape . If Ashape  is discontinuous, the factor must be 

verified  with respect to the continuity patterns of its regulators.  

Table 5.8 shows coincidence as it applies to linear, planar and volumetric shapes. For 

linear shapes, coincidence describes points anywhere on the line. If the factor multiple 1λ  

equals 0, then the point q  is coincident to the start point and if the multiple equals 1, it’s 
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coincident to the endpoint. For planar shapes, coincidence describes points that are either 

inside the plane or on its boundary. If the both multiples 1λ  and 2λ  equal 0, then the 

point q  is coincident to the start point, if one multiple equals 0 or equals 1 then the point 

q  is on the boundary. For volumetric shapes, coincidence describes points inside the 

shape, on its surfaces, edges or vertices. If the all three multiples 1λ , 2λ  and 3λ  equal 0, 

then the point q  is coincident to the start point, if one or two multiple equal zero or equal 

one then the point q  is on an edge of the volume, if one multiple equals 0 or equals 1, 

then the point q  is on the surface of the volume. 

Coincidence on linear shapes  
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Coincidence on volumetric shapes  
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TABLE 5.8 – LINEAR, PLANAR , AND VOLUMETRIC COINCIDENCE 

 
Internal-coincidence: A point q  is internal-coincident on Ashape  (linear, planar, or 

volumetric) whenever its entire factor multiples λ  are greater than 0 and less than 1.  

Boundary-coincidence: A point q  is boundary-coincident on Ashape  (linear, planar, or 

volumetric) whenever its one of its factor multiples λ  is equal to 0 or 1. 

Primary-coincidence: A point q   is primary-coincident on Ashape  whenever it can be 

generated by only one of its regulator. For a linear shape, coincidence is always primary. 

For planar shapes, primary-coincidence is contingent on one of  λ  multiples to be equal 
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to 0. For volumetric shapes, primary-coincidence is contingent on two of λ  multiples to 

be equal to 0. 

Secondary-coincidence: A point q   is secondary-coincident on Ashape  whenever it can 

be generated by only two regulators. For planar shapes, coincidence is secondary if none 

of the λ  multiples are equal to 0. For volumetric shapes, secondary-coincidence is 

contingent on one λ  multiples to be equal to 0. 

Directional-coincidence: A regulator aTΔ  is directionally coincident on Ashape  

whenever (i) aTΔ ’s starting point p  is on the boundary of Ashape  and (ii) aTΔ  generates 

points that are inside ashape . 

Extension: A point q  is an extension of a Ashape , whenever q can be generated by 

Ashape ’s defining regulators using its starting point As , and q  extends beyond the range 

defined by >−< n0  of Ashape .  The factor multiple 1λ  can be negative or can be greater 

than 1.  Extension can be primary or secondary as illustrated in Figure 5.4.  

Primary-extension: Primary-extensions are defined by a single regulator. Linear shapes 

can only describe primary extensions. For planar shapes, a primary extension is defined if 

one of the λ  multiples is equal to 0. For a volumetric shape to define a primary 

extension, two of the λ multiples must equal 0. 

Secondary-extension: Secondary extensions are defined by two regulators. Planar shapes 

define secondary extension if none of the λ  multiples are zero, and volumetric shapes 

define secondary extensions if only one of the λ  multiples equals zero. 

 

 
FIGURE 5.4 – PRIMARY AND SECONDARY EXTENSIONS 
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5.2.3. COINCIDENCE-BASED RELATIONS AND OPERATIONS 

Complex relations and operations can be simply defined by means of coincidence with 

respect to regulators. These include collinearity, coplanarity, connectedness. Computing 

intersections and are illustrated in Figures 5.5 and 5.6.  

Collinear: Two linear shapes, Ashape and Bshape  , are collinear whenever (i) their 

defining regulators are directionally-equivalent and (ii) the starting point of Bshape  is 

primary-coincident or a primary-extension with respect to Ashape . This definition is 

applicable to curvilinear lines as well. 

Coplanar: Two planar shapes, Ashape  and Bshape , are coplanar whenever (i) their 

defining regulators are respectively directionally-equivalent, and (ii) the starting point of 

Bshape  is primary (or secondary) coincident, or a primary (or secondary) extension with 

respect to Ashape .  This definition is also applicable to curvilinear surfaces. 

Connectedness: Two shapes, Ashape  and Bshape , are connected whenever the starting 

point of Bshape  (or is coincident to) Ashape . The shapes are primary-connected if the 

starting point of Bshape  is primary-coincident to Ashape  

 

FIGURE 5.5 – COLLINEAR, COPLANAR, CONNECTED, AND PRIMARY CONNECTED 

 

Point of intersection: A point of intersection of two linear shapes Ashape  and Bshape , is 

a point  q  which is coincident on both Ashape  and Bshape . This means that it can be 

generated by regulators of Ashape  using the start-point As and by regulators of Bshape  

using the starting point Bs . 
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FIGURE 5.6 – POINTS OF INTERSECTION 

 

5.2.4. MAXIMAL AND SUBSHAPE  

Maximal regulators: A regulator  CTΔ  is the maximal of the regulators ATΔ  and BTΔ  

whenever (i) all three regulators are directionally and continuity-equivalent and (ii) the 

factor ( )kθd ,,  multiplied by the parameter n  of CTΔ  equals the sum of the factor ( )kθd ,,  

multiplied by the parameter n  of ATΔ  and those of BTΔ . A maximal regulator can 

replace several regulators and produce a maximal shape. Figure 5.7 shows maximal 

regulators and shapes. 

Maximal shape:  Cshape  is the maximal of the shapes Ashape  and Bshape , whenever (i) 

at least one set of corresponding regulators are equivalent, (ii) the regulator of Cshape  is 

the maximal of the regulator of Ashape  and Bshape , (iii) Ashape  is primary-connected to 

Bshape  (along the equivalent regulator) (iv) Ashape  and Bshape  are subshapes of Cshape  

and (v) the start-point of Cshape  is coincident with the start-point of Ashape , and (vi) the 

endpoint of Cshape  is coincident with the endpoint of Bshape . 

 
a  

b 

FIGURE 5.7 – MAXIMAL REGULATOR AND MAXIMAL SHAPE 
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Sub-regulator: BTΔ  is a sub-regulator of ATΔ   whenever (i) both are directionally and 

continuity equivalent, (ii) the factor ( )kθd ,,  multiplied by the parameter n  of BTΔ  is less 

than the factor ( )kθd ,,  multiplied by the parameter n  of ATΔ . Figure 5.8 shows sub-

regulators and subshapes. 

 

Subshape: Bshape  is a sub-shape of  Ashape  whenever (i) their corresponding defining 

regulators are sub-regulators and (ii) the starting point and the endpoints Bshape  are 

coincident or internally-coincident on Ashape . 

  
FIGURE 5.8 – SUB-REGULATOR AND SUBSHAPE 
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5.3. REGULATOR INTERRELATIONSHIPS 

The categories of regulators (transformational, variational, operational, constraints, 

hierarchical, topological) are significantly different in their technique for regulating 

shapes.  These regulators can be further categorized into three sets: the primary 

generative set, the secondary constructive set, and the ternary relational set. The primary 

generative regulators, consisting of transformation regulators, define the geometry. The 

secondary set, consisting of variational and operational regulators affect the geometry and 

are used in conjunction with the primary set to create complex forms. The ternary set, 

consisting of constraint, hierarchical, and topological regulators, define relationships and 

establish order among shapes. These are applied to shapes defined by the primary and 

secondary sets.  Figure 5.9 shows these sets of regulators and their interrelationships.  

Δ
Transformations

  Ω
Operations

Π
Topological

  Ξ
Variations

Ψ
Hierarchies

Φ
Constraints

Generative: define geometry

Affect Geometry

Define relationships and establish orders

Primary
regulators

Secondary
regulators

Ternary
regulators

 
FIGURE 5.9 - REGULATOR INTERRELATIONSHIPS 

Since the secondary and ternary sets of regulators are applied to shapes defined by 

primary regulators, they are in fact controlling parameters of generative regulators. 

Understanding regulator interrelationship in detail is significant for understanding the 

consequences of applying regulators; it is critical for the identifying conflicts within 

configurations and for system implementation. In this section, I describe how secondary 

and ternary regulators control primary regulators. 
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5.3.1. VARIATIONAL REGULATORS 

Variational regulators are composed simultaneously with transformation regulators and 

thus control their transformational factors. 

The Exception regulator, EΞ , affects an output shape by making it non-responsive to the 

transformation regulator’s influence, therefore, creating an exception to the set of outputs.  

The Rhythm/Gradation regulator, GΞ , creates a variation by multiplying a coefficient, 

c , to an attribute of the output shape/points, or to the factor ( )kθd ,,  of its composed 

generative regulator as is applied to the output shapes/points.  

The Differential regulator, FΞ , creates a variation by multiplying a coefficient c  to the 

factor ( )kθd ,,  of its composed generative regulator as it is applied to various input 

shapes.  

5.3.2. CONSTRAINT REGULATORS  

When constraint regulators are applied to a shape, they are actually applied to the 

parameters of the generative regulators of this shape. Constraint regulators restrict 

parameters to a maximum or minimum value, or to a value defined by an incremental 

module. Constraint regulators are applicable to one or many shapes at a time.  

The attribute Equivalence regulator,  QΦ , controls shape attributes. These include the 

factor ( )kθd ,, , the parameter n  and the direction vector t  of any of the generative 

regulators. This regulator is also applicable to non-geometric attributes of shapes.  

The Alignment regulator has several variations: 0AΦ , 1AΦ , and 2AΦ .  0AΦ  restricts the 

starting point s  (or any key-point k ) of the shape to be coincident to an alignment point 

p . 1AΦ  restricts the point k  and the directional vector t  (of one the defining regulators 

of the shape). k  becomes coincident to the alignment line (defined by p  and t ) and t  

becomes directionally-equivalent to the vector t  of the alignment regulator. 2AΦ  

restricts the point k  and the vector t  (of two the defining regulators).  k  must be 

coincident to the alignment plane (defined by p , t , and v ) and t  must be coplanar to 
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the plane defined by the vectors t  and v  of the alignment regulator. cAΦ  restricts the 

point k  and the vector t  of two the defining regulators to align with the tangent and 

radius of the circle. The desired key-point and regulators needs to be specified, otherwise, 

the alignment will apply to the starting point, s , and the first regulator 1TΦ .  

• ])shape(}{[ A 1
0 mpAΦ  

• ]),shape.(},{[ 3TA ΔΦ stp1  

• ]),,shape(},,{[ 21 TTA ΔΔΦ svtp2  

• ]),,shape(},,{[ 21 TTA ΔΔΦ srtpc  

The Size regulator, VΦ , restricts the lengths of the shape by means of restricting the 

factor ( )kθd ,,  and the parameter n   of the constituent regulator. 1VΦ  applies to one 

regulator, thus restricting the length, 2VΦ  applies to two regulators, thus restricting the 

area, and 3VΦ  applies to three regulators, thus restricting the volume.  

• 
])shape(},,{[ 2

1 TV ΔΦ modmaxmin
 

• ]),shape(},,{[ 31
2 TTV ΔΔΦ modmaxmin  

• ])shape(},,{[3 modmaxminVΦ  

The Angle regulator restricts the angle between two directional vectors t  of constituent 

regulators. These two regulators can be pertaining to a single shape, or these can be 

pertaining to two distinct shapes.  

• ]),shape(},,{[ 31 TTL ΔΔΦ modmaxmin  

• 
])shape,shape(},,{[ 31 TTL ΔΔΦ modmaxmin
 

The Proportion regulator restricts the aspect ratio of a shape determined by the factor 

( )kθd ,,  and the parameter n  of two (or three) of its defining regulators. 

]),shape(},,{[ 31
1 TTP ΔΔΦ dtp
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5.3.3. TOPOLOGICAL REGULATORS 

Topological regulators are mostly binary regulators that establish a relationship between 

two shapes, Ashape  and Bshape , by controlling their key points. 

The Distance regulator, +ΠJ , restricts a key-point from Ashape  and a key-point from 

Bshape  to be within a specific distance. The Adjacency regulator, JΠ , restricts a key-

point or key element of Ashape  and a key-point of Bshape to be coincident. The Overlap 

regulator, −ΠJ , restricts at least one key-point of Bshape  to be internally-coincident  

Ashape . 

• ])shape,shape({}[ B,A se 21
+ΠJ  

• ])shape,shape({}[ B,A se 21
0JΠ  

• ])shape,shape({}[ BA s−ΠJ  

The Boundary regulator restricts the start-point, endpoint and all key-points of bounded 

shape to be internally-coincident the boundary shape.  

• )]shape,shape(}{[B 1boundaryo2Φ  

The Connected regulator, CΠ , restricts a key-point of Ashape to be coincident with a 

key-point of Bshape .  

• ])shape,shape({}[ B2,1A seCΠ  

5.3.4. HIERARCHICAL REGULATORS  

Hierarchical regulators establish order between shapes.  

The Containment regulator, HΨ , is independent of geometry therefore does not affect 

the parameters of the generative  regulators.  

The Subshape regulator, SΨ , ensures that the following conditions are always satisfied 

(i) the defining regulators of the shapes are directionally-equivalent by controlling their 

directional parameter t  (or formula), (ii) the start point of the Subshape is internally 
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coincident or coincident with respect to the Super-shape, and (iii) the factor ( )kθd ,,  

multiplied by the parameter n of the each regulator in the Subshape is always less than 

the corresponding ones of the Super-shape:  

• ]]))s(},,,{[(},,,{[superShape >−<>−<ΔΔ= n0n0ndtpndtp 12 TR  

• ]]))s(},,,{[(},,,{[    subShape >−<>−<ΔΔ= n0n0ndtpndtp 12 TR  

5.3.5. OPERATION REGULATORS 

The operation regulators apply a discrete operation to the input set, and create a resultant 

set of output shapes. 

The Subdivision regulator, ZΩ , divides a shape into sequentially connected subshapes 

(Table 5.9a). In order to subdivide a shape, it is necessary to subdivide at least one of its 

defining regulators. The original regulator is a maximal with respect to its sub-regulators; 

similarly the original shape is the maximal with respect to its subshapes.  

The regulator AΔR  of the original Ashape  will be replaced by subn  directionally 

equivalent sub-regulators BΔR , CΔR , etc. The n  parameter of each sub-regulator 

remains the same as the n  parameter of AΔR . The factor ( )kθd ,,  of AΔR is scaled 

according to the number of subdivisions. For each subshape, a new start point will be 

created at the position determined by the scale factor, and the remaining regulators 

(which are not subdivided) will be duplicated.  

Another form of subdivision by means of the Cutting regulator, CΩ ,  is achieved by a 

cutting line or cutting surface, which is not directionally-equivalent to the regulators of 

the shape (Table 5.9b).  The points of intersection between the shape and the plane are 

identified and a new shape is created. Its starting point is determined by the points of 

intersection with the plane, and its regulators are directionally-equivalent to original 

regulator.  A Differential variation regulator is applied to each of the subdivided 

regulators to create the slanted effects in the subdivided shapes. 

The Merging regulator is the inverse of the subdivision regulator (Table 5.9c). It replaces 

a primary-connected shape with their maximal representation. To merge a set of 
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connected shapes, it is necessary to merge at least one corresponding set of their defining 

regulators. These must be directionally-equivalent.  

The original regulators AΔT  and BΔT  are replaced by their directionally-equivalent 

maximal regulator CTΔ . The n  parameter of CTΔ  is the sum of the parameter n  of the 

original regulators.  The factor ( )kθd ,,  of the maximal CTΔ  is the average of the factor 

of the original regulators, AΔT  and BΔT . Start-points and regulators of the original 

shapes will be deleted. The starting point of the first shape is the starting point of the 

maximal shape, and the endpoint of the last shape is the ending point of the maximal 

shape.  

a - Subdivision 
{ } { } { }nnn CBA RRR Δ=Δ=Δ  
{ } { } { }θθθ CBA RRR Δ+Δ=Δ  

 
 

b- Subdivision by plane 

 
c - Merging 

{ } { } { }nnn BAC TTT Δ+Δ=Δ  

{ } { } { }
2

ddd BA
C

TTT Δ+Δ
=Δ

  
 

 

TABLE 5.9 – SUBDIVISION AND MERGING REGULATORS 

 
The Boolean operation regulators control the generated subsets of input shapes to create 

a new output shape. The Boolean regulator determines the resultant shapes by (i) 

identifying boundary vertices of intersected shape, (ii) increasing the resolution of the 

inputs, and (iii) generating the output based on subsets of the original input shape. 

The vertices bounding the intersected shape are identified by computing the points of 
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intersection between the input shapes and computing the key-points of Ashape  that are 

coincident in Bshape  and vice versa. The output shape is generated by increasing the 

resolution of the input shapes, and as the output shape is generated, each intermediate 

point is tested to determine its coincidence with Ashape  and Bshape .  

• Union: All points internally-coincident to shape A, or internally-coincident to 

shape B, are generated.  

• Intersection: All points internally-coincident to shape A, and internally-

coincident to shape B, are generated. 

• Difference: All points internally-coincident to shape A, and not coincident to 

shape B, are generated. 

 
The linear boundary of the intersected shape is constructed by taking each boundary 

vertex as a starting point of the intersected shape and applying a regulator from the input 

shape. The applicable regulators are determined by testing the boundary vertex with all 

the regulators. If the regulator test generates line with is directionally-coincident to both 

shapes, the regulator is applied to create a valid boundary line. If there are directionally-

equivalent (or inverted-coincident) regulators, only one will be considered per bounding 

point.  The process is illustrated in Figure 5.10. 

 
FIGURE 5.10 - GENERATION OF THE LINEAR BOUNDARY OF THE INTERSECTION 

 

5.3.6. CONFLICT IDENTIFICATION  

Since the ICE notation supports constraints among its many regulator types, there is  

potential for conflicting situations. This is particularly the case in an implementation 

environment intended for design exploration where conflicts can cause annoying 

interruptions. From the perspective of the ICE framework, conflicts can occur when 
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multiple regulators control a common shape (or point), each restricting its attributes in a 

different and opposing way.  

ICE notational strings contain explicit information about constraints and constrained 

shapes, and therefore, these strings contain implicit information about possible conflicts 

for every constrained shape. In this section, I present a strategy for identifying conflicts, 

and the parameters involved, from an ICE notational string. 

Constraints on shapes can be categorized as positional, directional or dimensional or a 

combination. Positional constraints control the starting point s  of a shape or the starting 

point p  of a regulator. Directional constraints control the vector t  of one (or many) of 

the constituent regulators. Dimensional constraints affect the factor ( )kθd ,,  of one the 

constituent regulators.  

The following steps constitute the strategy for identifying conflicts as well as the shapes 

and parameters involved, by analyzing the notational string: 

• Identify the constraining regulators (These include topological and hierarchical 

regulators). 

• Identify the constraint type, and the parameters that it typically controls.  

• Identify constrained shapes, their constrained key-points and parameters.  

• Identify other regulators controlling the constrained shape. 

• Identify possible transformations that may change the constrained key-points and 

parameters (This includes regulator transformation or user manipulations)  

Table 5.10 shows examples of simple conflicts that can be identified using this strategy. 

The first example shows a Rotation regulator controlling a set of bounded shapes. 

Potential conflicts can occur if the shapes are moved beyond their boundary. The conflict 

causing parameters are identified as follows. 

• Positional constraint regulator: BΦ  

• Constrained shapes: shapeshape −0   

• Constrained key-points: 2,12100 ,,,shape eees  
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• Other control regulators: RΔ , 1TΔ and 2TΔ  

• Possible transformation parameters that can cause conflicts:  { }pRΔ , { }θRΔ , 

{ }nd ,1TΔ , { }nd ,2TΔ   
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TABLE 5.10 – EXAMPLES OF CONFLICTING SITUATIONS  

 

The second example shows a shape with a fixed angle controlled by an Alignment 

regulator. Potential conflicts can occur if the angle is changed beyond the alignment, or if 

the alignment is rotated beyond the allowable angle range. The conflict causing 

parameters are identified as follows. 

• Directional constraint: LΦ  

• Positional constraint: AΦ  

RΔ  

BΦ  

AΦ  

LΦ  

VΦ  

PΦ  
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• Constrained objects: 0shape  

• Constrained parameters: 

By angle: 
1TΔt0shape , 

2TΔt0shape  

By alignment: 
1TΔt0shape , 

1TΔp0shape  

• Possible transformation causing conflicts: { }pAΦ , { }tAΦ , { }θΦL   

The third example shows a shape with a minimum dimension on one side, controlled by a 

Proportion regulator. Potential conflicts can occur if the proportion line is rotated, thus 

causing a change in the length beyond the allowable range. The conflict causing 

parameters are identified as follows. 

• Dimensional constraint: { }θPΦ  and { }θ1VΦ  

• Constrained objects: 0shape  

• Constrained parameters: 

 By proportion: 
11 TT ΔΔ nd ,shape0 , 

22 TT ΔΔ nd ,shape0  

 By length: 
11 TT ΔΔ nd ,shape0  

• Possible transformation causing conflicts: { }tPΦ , { }minVΦ  

This strategy can be developed further into an algorithm that not only identifies potential 

conflicts, but deactivates the responsible regulators when the conflicts occur.   
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5.4. MULTIPLE REPRESENTATION 

Although the ICE notation is not ambiguous, it is also not unique: the same configuration 

can be represented by different notation strings.  For a given configuration, these strings 

would capture different processes of generation, and a different set of applicable 

transformations. This property of multiple representations allows for different options for 

generating a shape, as well, different options for manipulating it. Therefore, the ICE 

framework supports different exploration paths leading to the same configuration, thus 

allowing users to select variable strategies for their exploration. 

The simplest example is the solid square, which can be defined using ICE in several 

ways. Table 5.11  illustrates the possible generations of the square using continuous 

generation only. The square can be defined by two continuous Translations; it can be 

defined by two continuous Mirrors; or alternatively, it can be defined by one Translation 

and one Mirror, both continuous, in any order.  

The number of possible generations is greatly augmented when the continuous and 

discrete generation methods are combined, as shown is Table 5.12. Notice that this latter 

form of representation is recursive.  A square can be defined by two continuous 

Translations then a discrete Mirror; it can be defined by two continuous Translations then 

two discrete Mirrors; it can be defined by two continuous Translations then four discrete 

Mirrors. Notice how recursive this representation can be. Alternatively, the square can be 

defined by two continuous Translations then a discrete Rotation; it can be defined by 

Translation then a Translation composed with a Dilation (both continuous) then a discrete 

Mirror or the last regulator can be a discrete Rotation. 

Multiple representations result in multiple schema for the same configuration, one 

scheme for every exploration path. Therefore, each representation for the square is a 

separate schema.   

Equivalent configurations having a different set of defining regulators, allow for different 

applicable transformations. Each configuration will have shared as well as distinct 

regulators. The distinct regulators will provide a distinct set of manipulations. 

Furthermore, the shared regulators provide manipulations that produce different results. 

Table 5.13 and 5.14 illustrate the difference in manipulation effects for distinct 
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representations of the square. Table 5.13 shows continuous representations, while Table 

5.14 shows continuous-discrete examples. In Table 5.13,  manipulating 1TΔ  results in a 

parallelogram for one representation, and it results in a trapezoid for the other. In Table 

5.14, manipulating the shared Regulator 2TΔ , results in a quadrilateral symmetric 

configuration for one representation, and a pinwheel for the other.  In both tables, the 

third row shows manipulations of distinct (not shared) regulators. 
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TABLE 5.11 - REPRESENTATIONS OF  THE SQUARE  (CONTINUOUS GENERATION) 

 

1TΔ  
s

2MΔ  

1TΔ  

2TΔ  

s

1MΔ  s

2MΔ  

1MΔ  s

1TΔ  



 

 

ARCHITECTURAL EXPLORATIONS  CHAPTER 5  165   

 

]])

]))(},,,{[(

},,,{[(

},,{[

>><<>−<

>−<Δ

Δ

Δ

1010

10sndtp

ndtp

ntp

1

2a

2b

T

T

M

 

 

]])])

]))(},,,{[(

},,,{[(

},,{[(

},,{[

>><<>><<>−<

>−<Δ

Δ

Δ

Δ

101010

10sndtp

ndtp

ntp

ntp

1

2s

2b

2c

T

T

M

M

 

 

]])])])])

]))(},,,{[(

},,,{[(

},,{[(

},,{[(

},,{[(

},,{[

>><<>><<>><<>><<>−<

>−<Δ

Δ

Δ

Δ

Δ

Δ

1010101010

10sndtp

ndtp

ntp

ntp

ntp

ntp

1

2a

2b

2c

2d

2e

T

T

M

M

M

M

 

 

]])

]))(},,,{[(

},,,{[(

},,,{[

>><<>−<

>−<Δ

Δ

Δ

1010

10sndtp

ndtp

n90tp

1

2a

2b

T

T

R o

 

 

]])

]))(},,,{[(

},,,,{[(

},,{[

>><<>−<

>−<Δ

ΔΔ

Δ

1010

10sndtp

nkdtp

ntp

1

2a

2b

T

DT

M

 

 

]])

]))(},,,{[(

},,,,{[(

},,,{[

>><<>−<

>−<Δ

ΔΔ

Δ

1010

10sndtp

nkdtp

n180tp

1

2a

2b

T

DT

R o

 

 
TABLE 5.12 - REPRESENTATIONS OF  THE SQUARE  (CONTINUOUS AND DISCRETE GENERATION) 

 

2bMΔ  

2aTΔ  

s 1TΔ  

2bMΔ  

2aTΔ

s  1TΔ  

2cMΔ  

2dMΔ  

2aTΔ
s  1TΔ  

2eMΔ  
2bMΔ  

2cMΔ  

2aTΔ

s  1TΔ  

2bRΔ  

1TΔ  

2aTDΔ

s  
2bMΔ  

2bRΔ  

1TΔ  

2aTDΔ

s  
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ROTATE_REGULATOR 1TΔ  

)}].,([{)}],([{ 2501t01t =Δ⇒=Δ 11 TT  

ROTATE_REGULATOR 1TΔ  

)}].,([{)}],([{ 2501t01t =Δ⇒=Δ 11 TT  

  
ROTATE_REGULATOR 2TΔ  

)}],.([{)}],([{ 1250t10t −=Δ⇒−=Δ 22 TT  

ROTATE_REGULATOR 2MΔ  

)}],([{)}],([{ 11t01t −=Δ⇒=Δ 22 MM  

TABLE 5.13 - TRANSFORMATIONS FOR DISTINCT CONTINUOUS  REPRESENTATIONS OF THE SQUARE 
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2TΔ  

s  

1TΔ  

2TΔ  

s  

1TΔ  

2TΔ  

s  1TΔ  
s

2MΔ  

1TΔ  
s

2MΔ  

1TΔ  
s

2MΔ  
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ROTATE_REGULATOR 2TΔ  

)}],.([{)}],([{ 130t10t −=Δ⇒−=Δ 12 TT  

ROTATE_REGULATOR 2TΔ  

)}],.([{)}],([{ 130t10t −=Δ⇒−=Δ 12 TT  

  
ROTATE_REGULATOR  

)}],([{)}],([{ 11t10t =Δ⇒=Δ 2b2b MM  
MODIFY_FACTOR  

}][{}][{ 12090 =θΔ⇒=θΔ 2b2b RR  

TABLE 5.14 - TRANSFORMATION FOR DISTINCT DISCRETE REPRESENTATIONS OF THE SQUARE 

 

Multiple representations are caused by equivalent relationships between the generative 

regulators as illustrated in Tables 5.15 and 5.16. The symbol ≈   is used for 

representational equivalence. 

2bMΔ  

2aTΔ

s  1TΔ  

2cMΔ  

2bMΔ  

2aTΔ

s  1TΔ  

2cMΔ  

2bMΔ  

2aTΔ

s  1TΔ  

2cMΔ  2aTΔ

s

2bRΔ  

2aTΔ

s 1TΔ  

2bRΔ  

2aTΔ

s 1TΔ  

2bRΔ  
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Two Translations  ≈  

]))s(},,{[(},,{[ ><>><<ΔΔ 110
1aabb dtpdtp #ab TT

 

One Translation 

])(},,{[ >><<
++Δ 10

baba sdtp1T
 

 
Two Rotations (same center) ≈  

]))s(},,{[(},,{[ #
><>><<θΔθΔ 110

1ab tptp ab RR  

One Rotation 

])(},,{[ 10 >−<
+Δ stp baθ1R

 

 
Two parallel Mirrors 

]))s(},{[(},{[ #
><>><<ΔΔ 110

1ab tptp ab MM  

One Translation 

])(},,{[ 10 >−<Δ sdtp1T
 

 
Two intersecting Mirrors 

]))s(},{[(},{[ #
><>><<ΔΔ 110

1aabb tptp ab MM  

One Rotation 

])(},{[ 10 >−<Δ sp θ1R
 

 
TABLE 5.15 - EXAMPLES OF EQUIVALENCES IN TRANSFORMATION REGULATORS IN 2D 

 
 
 
 
 
 
 
 

≈
aΔT  bΔT  1ΔT  

≈ 1ΔR
aΔR  

bΔR  

≈  aΔM bΔM
1ΔT  

≈
aΔM  1ΔM  1ΔR  
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Combined generation 

])s(},,,[{ >−><−><−<Δ 543210ndtp1T  

Two successive regulators (of the same type) 
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Boolean union  

])s,s({}[ BA hapehape ΩU  

Boolean difference 

])s,s({}[ DC hapehape ΩD  

 
TABLE 5.16- EXAMPLES OF EQUIVALENCES IN VARIATION, AND OPERATION REGULATORS 

 

 

1ΔT  

s

aΔT  
bΔT  

s
≈

≈ΔR
DΔRΔ  1GΔR Ξ  

s  

1ΔT  

2ΔT  
As

A1ΔT  

A2ΔT  

Bs

B1ΔT  

B2ΔT  

≈

UΩ  DΩ

≈
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Two consecutive Translations, aΔT  and bΔT  are equivalent to a single Translation 1ΔT , 

where the factors and the direction vectors are related as follows: 1ba ddd =+  and 

1ba ttt =+ . Two consecutive Rotations about the same center, aΔR  and bΔR , are 

equivalent to a single Rotation 1ΔR , where the factors are related as follows: 

1ba θ=θ+θ . Two parallel Mirrors, aΔM  and bΔM  are equivalent to a single translation 

1ΔT , where the direction vector }{t1TΔ  is perpendicular to }{t1MΔ  and the factor  is 

equal to twice the distance between the two mirror lines: )(2}{ ba ppd −×=Δ 1T . Two 

intersecting Mirrors, aΔM  and bΔM  are equivalent to a single Rotation 1ΔR , where the 

rotation point }{p1RΔ  is the intersection of the mirror lines }{t1aMΔ  and }{t1bMΔ , and 

the rotation degree }{θ1RΔ  equals twice the angle between }{t1aMΔ  and }{t1bMΔ . 

The capacity of ICE to determine equivalent representations (same shape different 

generation method) depends on the regulators chosen as well as on the generation method 

chosen. It also varies if the representation is recursive. 

If maximal representations are used to eliminate the recursive factor, and if isometric 

regulators are considered exclusively, it would be possible to algorithmically determine 

equivalent representations for an ICE string. Two consecutive isometric transformation 

regulators can be replaced by a single equivalent regulator or vice versa. However, once 

other regulators (such as affine transformations, variations or operations) are used, and 

once generation methods are combined, additional representational options are 

introduced. Consequently, determining equivalences becomes increasingly complex, and 

it would be extremely difficult to determine, algorithmically, possible equivalences for a 

given configuration.   
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5.5. DETERMINING TRANSFORMATION STEPS 

The ICE notation provides a flexible representation that supports transformation from one 

configuration into another.  Determining the precise transformation sequence is not 

always a simple task, especially when the configurations are very different. However, it is 

critical to identify a strategy for achieving a goal shape or configuration from an initial 

one. In his section, I introduce a computational algorithm that automates the derivation 

“sequential steps” for such transformations, provided both configurations are represented 

using the ICE notation. 

Given an initial and a goal string, a precise sequence of individual transformations can be 

determined by using simple string operations such as juxtaposition, insertion, deletion, 

and replacement. The objective of the Transformation Steps (TS) algorithm is to make 

the initial string identical to the goal string, with the minimum number of steps. These 

steps are a list of transformations based on the ICE transformational syntax (Table 4.15). 

The algorithm cycles through the strings several times, each time addressing a different 

element, identifying a particular transformation step and updating the working string 

(which is the intermediate string going from the initial to the goal). Earlier iterations or 

phases consider the whole string, while focusing on regulator types, and later phases 

consider individual regulators, and focus on particular attributes.  If the strings are broken 

down into levels of encapsulations, each of these levels is compared, using the same 

algorithm, recursively. 

The algorithm’s major iterations are as follows 

• Match the strings    

• Adjust the regulator sequence (# of regulators changes) 

• Adjust the regulator sequence (same # of regulators) 

• Adjust the regulator composition 

• Update indices 

• Adjust the regulator parameters  

• Adjust the generation method 

• Adjust the regulated element (points) 
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Table 5.18 describes each step of the algorithm in detail with an example of transforming 

a 2D pattern into a 3D shape, using the initial and goal configuration strings in Table 

5.17.  

Initial String  
))))(((( psmm6p 1abc CMRT ΔΔΔΔ=  
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Goal String 
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TABLE 5.17 - INITIAL AND GOAL CONFIGURATIONS 

 
 

 

 

 

 

 

3TDΔ  
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Match the strings    

Initial =       dTΔ  cTΔ  bRΔ  aMΔ  1CΔ  ps  

Goal   =             3TDΔ  2RΔ  1TΔ  cs  
Working =   dTΔ  cTΔ  bRΔ  aMΔ  1CΔ  ps  

 

Adjust the regulator sequence (# of regulator 
changes) 
Working =  dTΔ  cTΔ  bRΔ  aMΔ  1CΔ  ps  

Goal     =          3TDΔ  2RΔ  1TΔ  cs  

New Working =  cTΔ  bRΔ   1CΔ  ps  

DELETE_SUCCESSIVE aMΔ  

  
DELETE_SUCCESSIVE dTΔ  

 
Adjust the regulator sequence (# of regulator 
is the same) 

Working =  cTΔ  bRΔ   1CΔ  ps  

Goal =           3TDΔ  2RΔ  1TΔ  cs  

New Working =  cTΔ  bRΔ   1TΔ  ps  
 

REPLACE_REGULATOR 11 TC Δ⇒Δ  

 

Adjust the regulator composition  

Working = cTΔ  bRΔ   1TΔ  ps  

Goal =  3TDΔ  2RΔ  1TΔ  cs  

New Working =  cTDΔ  bRΔ  1TΔ  ps  
 

ADD_SIMULTANEOUS cc TDT Δ=>Δ  

 

Update indices and dimensions 

Working =  c
01DTΔ  b

1RΔ  1
1TΔ  ps  

Goal =   3
01DTΔ  2

1RΔ  1
1TΔ  cs  

New Working =  3TDΔ  2RΔ  1TΔ  ps  

MODIFY_INDEX 3c TDTD Δ=>Δ  

MODIFY _INDEX 2b RR Δ=>Δ  
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Adjust the regulator parameters  

Working = },),0,0,1(,{ ndtp =Δ 3TD        }5,º60,,{ ==Δ ntp θ2R  },,{ np θ1TΔ  ps  

Goal  =     },),1,0,0(,{ ndtp =Δ 3TD         }1,º360,,{ ==Δ ntp θ2R  }),0,0,1(,{ ntp =Δ 1T  cs  

New Working = },),1,0,0(,{ ndtp =Δ 3TD  }1,º360,,{ ==Δ ntp θ2R  },,{ np θ1TΔ  ps  
 
ROTATE_XYZ    ),,(.),,(. 100t001t =Δ⇒=Δ 33 TDTD  

MODIFY_FACTOR º.º. 36060 =θΔ⇒=θΔ 22 RR  

INSERT_PARAMETER ),,(. 001t =Δ 1T  

MODIFY_NUMBER, 1n5n =Δ⇒=Δ .. 22 RR  

Adjust the generation method 

Working =    
><−><Δ n0

3TD  
><−><Δ n0

2R  
>−<Δ 10

1T  ps  

Goal  =     
>−<Δ 10

3TD  
>−<Δ 10

2R  
>−<Δ 10

1T  cs  

New Working =   
>−<Δ 10

3TD  
>−<Δ 10

2R  
>−<Δ 10

1T  ps  

MODIFY_CONTINUITY  
>−<><−>< Δ⇒Δ 100

22 RR n

 

 

MODIFY_CONTINUITY  
>−<><−>< Δ⇒Δ 100

33 TDTD n
 

 
 

Adjust the regulated element (points and their attributes) 

Working =  cTΔ  bRΔ  1TΔ  ps  

Goal  =    3TDΔ  2RΔ  1TΔ  cs  

Final =   cTDΔ  bRΔ  1TΔ  cs  
REPLACE_SHAPE  cp ss ⇒  

TABLE 5.18 - THE TRANSFORMATION STEPS ALGORITHM 

 

The “Match the strings” phase of the TS algorithm considers the whole regulator 

sequence and focuses on regulator types.  It is a process of alignment where the working 

string is moved with respect to the goal string until the greatest number of regulators is 
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matched. Two regulators such as cTΔ  and 3TDΔ  are considered as a semi-match. 

The first “Adjust the regulator sequence” phase consists of an alignment operation that 

recursively moves the non-matching regulators to derive the greatest match between the 

working and goal strings. It focuses on the whole string at the regulator level of 

abstraction, and identifies regulators that need to be deleted and creates empty spaces for 

insertions. ADD_SUCCESSIVE, INSERT_SUCCESSIVE, DELETE_SUCCESSIVE are 

the possible transformations that could be identified in this phase.   

The second “Adjust the regulator sequence” phase compares both strings, focusing on 

one regulator at a time, and replacing or swapping non-matching regulators. The possible 

transformations that could be identified in this phase are SWAP_SUCCESSIVE and 

REPLACE_REGULATOR.   

The “Adjust the regulator composition” phase focuses on individual semi-matching 

regulators, adding or removing types from their composition.  ADD_SIMULTANEOUS, 

REMOVE_SIMULTANEOUS, and SWAP_SIMULTANEOUS are the possible 

transformations of this phase.   

The “Update indices and dimensions” phase focuses on the subscripts and superscripts of 

individual regulators. At the end of this phase, the sequence of regulators in the working 

string and goal string are identical. The possible transformations for this phase are 

ADJUST_INDEX and ADJUST_DIMENSION. 

The “Adjust the regulator parameters” phase focuses on the parameters inside the curly 

brackets, of individual regulators. Transformations for this phase are MOVE_XYZ, 

ROTATE_XYZ, MODIFY_FACTOR, MODIFY_NUMBER, and 

MODIFY_FORMULA.   

This “Adjust the generation method” phase focuses on the generation methods (inside the 

subscript brackets) of individual regulators.  Transformations for this phase are 

MODIFY_CONTINUITY, MODIFY_PATTERN, and MODIFY_GENERATED.  

The “Adjust the regulated element” phase focuses on regulated elements, which are the 

innermost elements in a regulator sequence. Transformations identified are MOVE_XYZ, 



 

 

ARCHITECTURAL EXPLORATIONS  CHAPTER 5  176   

 

MODIFY_ATTRIBUTE, REPLACE_SHAPE.   

With this algorithm, not only can the ICE framework be used for interactive exploration 

towards an unknown goal, it can also be used to identify precise strategies to reach a 

desired goal.  
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5.6. DESIGN SPACE IN THE ICE REPRESENTATION 

In the context of Simon’s cognitive model of design (Simon, 1969), the ICE notational 

string, which capture a generation method and the applicable transformations, presents a 

snapshot within the exploration process. A string represents one state in an immense 

space of possibilities. The applicable transformations represent the possible transitions 

from this state to other states. The generation method is one non-cyclic exploration path 

that leads to this state from an initial start state (the point).  

In the ICE representation there is no distinction between terminal and non-terminal 

symbols. Consequently, there is no classification of intermediary and final states. All 

symbols can be transformed at anytime. All states can be transformed at any time, 

although these same states are considered final at any time.  

There are implicit rules for transitions in ICE, establishing the way element in the string 

are transformed. Only regulators can replace regulators; only generation methods can be 

reconfigured within the brackets, and only parameters can change in value.  These rules 

are encoded in the well defined structure of the ICE string and in the transformation 

syntax of the ICE notation. 

For each state, there are numerous possible transformations, each leading to another other 

design state. However, in certain states not all transformations are applicable: for 

instance, DELETE_REGULATOR is not applicable to the initial state consisting of a 

single point. Design transformations, which are manipulations on the ICE string, can 

have variable effects, depending on the parameter values. REPLACE_REGULATOR 

will produce different states if the new regulator is a Rotation or a Dilation; similarly, 

MODIFY_FACTOR will produce different states for different values.  

Because of continuous parameter values, it is not possible to enumerate all design states 

that can be generated from a given state, thus making the design space an infinite space. 

Furthermore, since every object can be transformed into every other object using the TS 

algorithm, the infinite design space encompasses all objects that could be generated in 

ICE.  
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The universe described by the ICE notation is two fold: the universe of shapes and 

configurations, and the universe of manipulations. These are determined by the regulators 

in use, as well as on the generation method.   

Transformation regulators applied continuously define a universe of 1D, 2D and 3D 

shapes in 3D space. Translation regulators, used exclusively, define a universe of 

rectilinear shapes, while isometric regulators (Translation, Rotation and Mirror) define a 

universe consisting of Euclidean shapes. Affine regulators such as Dilation, and Shear, 

significantly increase the universe of possible shapes and so do Curve and Deformation 

regulators.  

Generation methods also influence the resulting universe. Discrete generation, used 

exclusively, the result would be a universe of points. If the generation were restricted to 

one continuous regulator and unlimited discrete regulators, the resulting universe would 

consist of linear objects in a 3D Space. If continuous and discrete generation were used in 

combination, irregular shapes and shapes with holes could be produced.   

Variation and operation regulators significantly increase the universe of possible shapes 

as well as the complexity of the shapes generated; while constraint, topological and 

hierarchical regulators influence ICE’s universe of manipulations. 

Since the set of regulators described in this document is not an exhaustive list. The 

universe of the configurations and the universe of manipulations described in ICE are not 

clearly determined. As more regulators are added according to the necessity, the universe 

is redefined.  

 

 



 

CHAPTER 6                                                                

ARCHITECTURAL EXAMPLES 

 

In this Chapter, I demonstrate the capacity of the ICE notation to describe architectural 

configurations and transformations across these, through architectural works. These 

include the representation of architectural components (Section 6.1), a hypothetical 

generation and transformation of Hejduk’s half house (Sections 6.2), the roof structure of 

Calatrava’s Art Museum in Milwaukee, and an ethnographic observation in a design 

studio (Section 6.4). Each of these examples represents a different aspect of design. Some 

are finished products, while others are snapshots of actual evolving designs. Yet others 

represent hypothetical generations. 

The strategy for describing effectively using ICE depends on the properties of the 

configuration represented. Most architectural configurations are constructed by means of 

repetitive elements, and often such configurations have repetitive relations. It is important 

to capture these repetitions in ICE in order to define the most effective and parsimonious 

description and the shortest generation path.  Most configurations can be divided into 

smaller units, and represented in a top-down or bottom-up manner. Shape encapsulation 

in ICE allows the representation of such configurations at multiple levels of abstraction, 

including detailed descriptions, as well as higher-level ones.  
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6.1. ARCHITECTURAL ELEMENTS 

In this section, I illustrate architectural components, such as arches, domes, vaults, stairs, 

roofs, and trusses, as they are described with the ICE notation. This section serves as a 

preamble to the more elaborate and exploratory examples of the following sections.   

Table 6.1 shows round and pointed arches. The round arch is described by rotating the 

unit bricks while the pointed arch is described by rotating then mirroring these bricks. In 

addition, these bricks are constrained by an Adjacency regulator composed with the 

generative rotations and translations. The curved bricks are described by continuous 

Translation and Rotation regulators, while the keystone of the pointed arch is described 

by a Mirror, composed with Cutting and Adjacency regulators.  
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TABLE 6.1 – ARCHES  (SOURCE CHING 1997, P14) 

 

The Roofs in Table 6.2 are described by means of Translation and Mirror regulators 

composed with adjacencies. 
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TABLE 6.2 – ROOFS  (SOURCE CHING 1997, P208) 

 

The truss in Table 6.3 is described by means of Alignment regulators. The start-point of 

each inclined member is aligned to the horizontal post, and its endpoint is aligned to the 

diagonal post. The horizontal Alignment regulator is composed with a Translation 

regulator in order to generate the inclined members.  
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TABLE 6.3 – TRUSSES (SOURCE CHING 1997, P261) 
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The domes in Table 6.4 are described by means of compound rotations of their unit 

structural members. Additionally, horizontal structural members are kept adjacent, and 

diagonal structural members are aligned to both horizontal and vertical members. 
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TABLE 6.4 – DOMES (SOURCE CHING 1997, P60) 

 
 

Table 6.5 shows two vaults. The quadripartite vault is described by creating the curved 

surface, then mirroring it, rotating it, and cutting all surfaces beyond the intersection. The 

annular vault is defined by rotating the arch-like cross section.  
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TABLE 6.5 – VAULTS (SOURCE CHING 1997, P263) 

 

In Table 6.6, half turn stairs are described by means of translations and one 180º screw 

rotation, while spiral stairs are described by means of only screw rotations.  
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TABLE  6.6 – STAIRS (SOURCE CHING 1997, P234) 
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6.2. HALF HOUSE TO HOUSE 10 

In this section, the ICE notation is used to describe two of John Hejduk’s architectural 

endeavors: Half House and House 10 (Figure 6.1, sources: Ching p.187 and p.12). Both 

houses have simple, non-repetitive parts, yet include repetitive relationships. Both consist 

of semi-primary shaped rooms linked by common spaces. These houses were chosen for 

their simplicity and elegance. The global asymmetry of these houses illustrates ICE’s 

descriptive capacity in encapsulating local symmetries and geometrical constraints. A 

hypothetical exploratory-generation of Half House is presented in Section 6.2.1, and a 

hypothetical transformation of Half House to House 10 is presented in Section 6.2.2. 

          

 
FIGURE 6.1 – HALF HOUSE AND HOUSE 10 

 

6.2.1. THE GENERATION OF HALF HOUSE 

Table 6.7 shows the exploratory step by step generation of Half House from an initial 

rectangle.  An exploratory generation allows users to explore while modeling. Therefore, 

it includes intermediate exploration steps that are not captured in the final generation 

sequence.  Each step in the table shows the current state of generation, its corresponding 

notation and the operation that resulting in this state, from the previous one. 

In the 1st step of Table 6.7, the outline of the rectangular unit, , is generated from Aunit
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two Translation regulators,  and , and one Mirror regulator, . This sequence 

is strategically chosen, among the multiple representations of the rectangle to describe the 

local bilateral symmetry of each space.  

vTΔ hTΔ MΔ

In the 2nd step,  and  are generated by applying the Translation regulators, 

 and , respectively to .  

Bunit Cunit

BTΔ CTΔ Aunit

In the 3rd step, alignments between the three rectangles are identified.  is aligned 

vertically to , along ,  and  is aligned horizontally to , along . 

Cunit

Aunit vAΦ Bunit hAΦ

In the 4th step, the rectangular units are defined as being composed of an enclosure and a 

line, and the thickness for the enclosure is incorporated by means of the Dilation 

regulator, . The enclosure and the line are defined to be adjacent.  DΔ

In the 5th step, the structural constraint between the midpoints of the three shapes 

( Ap , Bp  and Cp ) is identified as a right triangle, which is represented by the Angle 

regulator . Each midpoint of the shape is actually the endpoint of the line defined by 

the regulator  and is constrained to the Mirror regulator, 

LΦ

hTΔ MΔ . The directional 

parameters, t , of both Translation regulators,  and , are adjusted to be 

consistent with this right angle. 

BTΔ CTΔ

In the 6th step,  is rotated 90 degrees from its midpointBunit Cp . This manipulation is 

equivalent to replacing the Translation regulator , which relates  to , with 

the Rotation regulator . 

BTΔ Aunit Bunit

BRΔ

In the 7th step, the window, column, beams, terrace, and the corner square are integrated 

into the representation to create more detailed units. The window and its opening are 

defined as subshapes of the enclosure.  

In the 8th step, the elements joining the three basic units, namely the corridor, the 

staircase and the walkway, are added to the representation. 

In the 9th step, the configuration is explored by changing the rectangular units into 
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triangular ones. This involves removing the regulator , and rotating the regulator hTΔ

vTΔ  by 45º. Since the window is a subshape of the enclosure, it is redefined according to 

the new regulators of the enclosure. Furthermore, the window is moved from one side to 

another by moving its starting point, 5s .  

In the 10th step the configuration is explored, once more, by changing the triangular units 

into semicircular ones. This involves replacing the regulator  by the regulator vTΔ RΔ . 

The last step of Table 6.7 shows the completed configuration, emphasizing the 

differences between the individual units and their relational constraints. The regulators 

 and  relate only the starting points and specific regulators, not the whole units 

as in previous configurations.  
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9 DELETE_REGULATOR ( hTΔenclosure ) 
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11 COMPLETE CONFIGURATION (summary) 
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FIGURE 6.7 – HYPOTHETICAL GENERATION OF HALF HOUSE  

 

6.2.2. THE TRANSFORMATION OF HALF HOUSE TO HOUSE 10 

Table 6.7, which extends through several pages, shows a set of exploratory manipulations 

used while generating Half House. These include instantiation of elements, replacing 

elements, increasing in the levels of details, identification of constraints, and adjusting to 
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fit constraints. Table 6.8 uses similar manipulations to transform Half House to House 10. 

The 1st step of Table 6.8 represents the abstraction of Half House into its basic primary 

shapes and their relations. In the 2nd step, half house is rotated 180 degrees. This involves 

rotating the direction vectors of the shape’s defining regulators.  

In the 3rd step, the dimension of the corridor is changed and the rectangular and triangular 

units,  and ,  are moved to new positions.  Resizing the corridors involves 

changing the distance factor of its horizontal regulator, and moving the units involves 

moving their starting points. The vertical alignment is broken, and the triangle connecting 

all three units is no longer a right angle. 

Aunit Bunit

In the 4th step, the shapes of the three units are transformed by rotating their mirror lines 

45 degrees. The rotation degree of  is updated to 135º, the regulator  is inserted 

in  to achieve the trapezoidal shape, and the right angle is re-established when the 

midpoint of   is repositioned.  

Cunit hTΔ

Bunit

Aunit

In the 5th step, the walls thickness is defined by means of a Dilation regulator. In the 6th 

step, the corridor is redefined to accommodate the curvilinear spaces, using the technique 

of partial succession of regulators (used for polylines). All the regulators defining the 

corridor are either Translation or Curve regulators. These are referred to as   or 

. The last step of Table 6.8 shows House 10 in its final form, emphasizing the 

units and their relationships.  
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6.3. CALATRAVA’S ART MUSEUM AT MILWAUKEE 

In this section, I use the ICE notation to describe the winged roof structure of Calatrava’s 

Art Museum at Milwaukee (Figure 6.2, source: Tzonis 2004, p.291, p.298, p.299). This 

building was chosen because of its visual appeal, and because, in its concepts and 

technology, it symbolizes Calatrava’s poetics of structure and movement (Tzonis 2004, 

p.290).  

Overlooking Lake Michigan, Calatrava’s Art museum at Milwaukee is exceptional for its 

visual connection with its environment.  The sculptural elements of the roof create the 

impression of a great seagull landing on the shore, while the remaining parts of the 

building (with the bridge supported by a single inclined mass) are reminiscent of another 

marine image, a ship.  The towering glass roof over the main hall and the system of 

movable wings allow one to control the light and temperature of the interior, while 

completely transforming its character. When closed, it is a covered protected space, and 

when open, it is a vast open air installation in which the distinction between interior                                          

and exterior dissolves. (Molinari 1999, p.142) 

The folding roof structure, consisting of a brise-soleil, is constructed out of steel plates 

which are welded and stiffened inside. The two winged elements, each formed by 36 fins 

whose length ranges from 32 to 8 meters, are cantilevered by a rotating spine joined by 

five rows of tying tubular sections. The angle at which each spine meets the rotating 

spine is different so that when closed the brise-soleil forms a ruled surface with a conical 

shape. The spine and the parallel mast of the bridge are both 47º incline. The brise-soleil 

is controlled either manually, to accommodate the requirements of the museum, or 

automatically through a computer system, which responds to bad weather and excessive 

wind speeds by closing the brise-soleil. (Tzonis 2004, p.290). 
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a- Closed wings b- Open wings, side view 

 
c- Back view against Lake Michigan d- Brise-soleil in operation 

FIGURE 6.2 - THE ART MUSEUM AT MILWAUKEE 

 

6.3.1. DESCRIBING THE ROOF STRUCTURE USING ICE 

Table 6.9 describes the step by step description, using the ICE notation, of the roof 

structure and mast of Calatrava’s Art Museum at Milwaukee. The figures in the table are 

all generated using the ICE-3D implementation. 

The 1st step of Table 6.9 describes the beam means of its generative regulators. The 2nd 

and 3rd steps describe the generation of the conic roof structure, by using circular and 

diagonal Alignments to define the half-conic, then a Mirror regulator to generate the 

whole conic structure. Within these Alignment regulators, the diagonal line, which is 

composed with a generative translation, aligns the start-point of the beams, while the 

circle aligns the endpoints.  

The 4th and 5th steps describe the wings, by using Translation composed with Alignments 

and Gradation regulators to define one wing, then a Mirror regulator to generate both 
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wings. The Gradation includes both a gradual rotation factor and gradual scale factor.  

The 6th step describes the connection between the conic beams and the wings. The 7th step 

describes the constraints tying each beam of the conic with its corresponding beam of the 

wing thought its connection object. Notice that the mirror of the wings, the mirror of the 

connection axis, and the mirror of the conic is the same, axisMΔ  regulator.  

The 8th step describes the mast of the bridge by means of its generative regulators and the 

9th step describes the linear supports of the bridge aligned to both the mast and the 

horizontal thought their endpoints.  

The 10th step describes the constraint defining the inclination of both the mast and the 

wings-connection-conic diagonal axis to be at 47º.  

The last step of Table 6.9 describes the motion of the brise-soleil by means of motion 

regulators, which sets the angle of the wing beams with respect to the connection axis. 

When the brise-soleil is closed the angle is at its minimum; when it is open the angle is at 

its maximum. The gradual rotation factor determines angle of each beam differently. 

 

1 

]])]))}(,,,[{

(},,,{[

(},,,{[

>−<>−<>−<Δ

Δ

Δ
=

101010
beamsndtp

ndtp

ndtp
beam

1

2

3

T

T

T
 

 

2 
 

])(},,{[

)(},,{[

_

º

º

><−><

><−><

=Φ

=ΔΦ

=

180
conic0

180
conic47

ebeam18ntp

sbeam18ntp

conichalf

circ

diag

A

A T

 

 

ARCHITECTURAL EXPLORATIONS CHAPTER 6  197   

 



 

3 ])_(},,{[ >><<Δ= 10conichalfntpconic  Maxis  

4 

])(},,,,[{ ><−><ΦΞΔ

=
n0

wingeamb36θktp

wing

AG T
 

5 

])(},,{[

_
>><<Δ

=
10wingntp

wingsboth

axisM
 

6 

pointedEnd

connectionndtp

ntp
axisconnection

10

n0

∧

Δ

Δ
=

>><<

><−><

])

])(},,,{[

(},,{[
_

T

Maxis
 

 

7 

]),,(

},,{[

iwingiconici beambeamconnection

ntp

t_constrainconnection

−−

Φ

=

i
0A

 

 

8 

])

])(},,,{[

(},,{[
_

>><<

><−><Δ

Δ
=

10

n0
mastsnθtp

ntp
axismast

R

TD
 

 

ARCHITECTURAL EXPLORATIONS CHAPTER 6  198   

 



 

9 

])(},,{[

])(},,{[

º

º

><−><

><−><

=Φ

∧=Φ

=

90
0

90
47

esupport9ntp

ssupport9ntp

portslinear_sup

horizontal

diag

A

A  

10 
)]_)(_(}[{ axisconnectionaxisastm47

ntn_constraiinclinatio
°=θΔ

=
L  

 

11 

]))((}{[

])

])}(,,,,{[

(},,{[
__

connectionwing

10

360
wing

beambeamθ0

eamb36nθ0ktp

ntp
MOTIONINwingsboth

°⎯→⎯Δ

∧

=°⎯→⎯ΦΞΔ

Δ
=

>><<

><−><

L

AG T

Maxis

 

  

 

TABLE 6.9 - THE ART MUSEUM AT MILWAUKEE 
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6.4. ETHNOGRAPHIC EXAMPLE 

In this example, the ICE notation is used for describing snapshots from an annotated 

design studio, in which the entire graphic output of a student and the annotations of her 

faculty have been ethnographically recorded. This is a realistic design situation, in which 

the configuration is evolving and several ideas are explored. The ICE notation enables the 

formal and unambiguous codification the design process in stages, which are defined by 

each drawing in the sequence of the design development, as well as the codification of 

transitions between those drawings.  

6.4.1. THE ANNOTATED STUDIO 

A vertical design studio in the School of Architecture, at Carnegie Mellon University was 

offered during the summer of 2002, by Professor Omer Akin, where students ranged from 

2nd year, to 5th year of their college education. The entire studio work was recorded 

through digital photographs of student work brought to each class session and the 

midterm and final reviews (Akin, 2004). These graphic records were accompanied by 

daily diary annotations kept by the instructor for each student’s progress as well as the 

overall progress of the studio. Three different problems emerged: international housing 

prototype, dormitory housing, and a toy manufacturer’s headquarters building. 

6.4.2. SNAPSHOTS FROM THE DESIGN STUDIO 

In this section, I present a sequence of sketches and models created by Subject-W for her1 

dormitory housing project. This sequence starts about a quarter of the way into the studio 

and runs through to the end, highlighting all major formal solutions produced. The ICE 

description is a hypothetical analysis of each drawing after the completion of the project; 

these designs have been generated by Subject-W independent of ICE. Subject-W’s 

project was selected mainly because she constantly changes directions in her 

development. It gives the opportunity to illustrate how the ICE notation represents 

changes in actual design exploration paths.  

                                                           
1 We used “she” or “her” to refer to all subjects--students and critics--of the annotated studio for the purpose of 
anonymity. No gender implications are intended. 
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In Subject-W’s project, the main design constructs repeated throughout the drawing 

sequence are rooms, dorm units, entrances and common spaces. Subject-W’s repeatedly 

reorganizes these elements and further details are not completely resolved in most of her 

drawings. Therefore, the ICE notation is used to represent these elements and the 

evolving relations between them. 

Table 6.10 shows the sequence of Subject-W’s drawings, their corresponding ICE 

representation, and steps to transform one drawing to the next.  Notice how Subject-W 

alternates between the sketchy mode and the refined drawings/models, with the sketchier 

ones expressing re-organization of ideas.  

In the 1st step of Table 6.10, “Subject-W begins by drawing her housing hierarchy of 

rooms, units, unit-clusters, wings, buildings, and building-clusters by means of a 

seemingly unstructured swirling shape” (Akin 2004). With the assumption that the whole 

drawing represents a building and its individual flower-like objects are abstractions of 

dorm units, it is possible to identify the underlying structure, which can be described in 

ICE by means of Rotation, Curve, and Dilation regulators.  In the 2nd step of Table 6.10, 

“Subject-W presents a rectilinear scheme in which the modular bays of the dormitory are 

clustered to create a large and integrated form on the site, creating a ‘beads-on-a-string’ 

type scheme” (Akin 2004). The building’s structure can be generated in ICE through the 

following steps: (1) reflecting the dorm unit to create the dorm cluster, (2) translating and 

rotating the dorm cluster (4) and reflecting these to generate the whole building. 

Similarly, the entrance is defined by sweeping points along a curve, then reflecting the 

curved lines. 

The configuration in steps 3 and 4 go back to the curvilinear theme. In the 3rd step, “the 

beads-on-a-string type arrangement has yielded to a “serpentine” form that curves with 

the contours, creating a concave edge for the public and a convex one for the private side 

of the site lot” (Akin 2004). This serpentine form is described by sweeping a point along 

two consecutive Curve regulators,  then 1CΔ 2CΔ . Both common spaces are described in 

the same way. In the 4th step, “the serpentine form is refined. Curves turn into rotations 

and the central axis of symmetry from the previous configuration is reinstituted” (Akin 

2004). The building is generated by means of Reflection and Rotation regulators. To 

achieve the curved axis (from the rectilinear configuration in step 2), the Translation 
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regulator is deleted and Rotation regulator is adjusted.  The dorm units are refined and re-

oriented, while the dorm cluster’s reflection axis, 1MΔ , is rotated thought 45º.

In the 5th step of Table 6.10, “the next formal overhaul involves one end of the 

‘serpentine’ form bifurcating into two wings, allowing the development of a ‘commons’ 

area and lobby from one of the major access edges of the site” (Akin 2004). In this 

configuration, the curve is broken into segments, and the rotation is replaced by a 

reflection, which becomes the dominant relationship in all parts of the drawing. This 

building is defined by reflecting the dorm cluster twice, then reflecting the individual 

dorm units to achieve the bifurcations.  The central axis is slightly rotated and several 

local axes emerge.  

“During midterm review, Subject-W’s work shows little development over the previous 

critique” (Akin 2004). The most significant development is the layout of the dorm units 

illustrated in the 6th step. The Containment regulator, HΨ , indicates that the dorm unit 

consists of two successive reflections for the rooms and one for the bathroom, as well as 

a kitchen and a balcony.  

The configurations in steps 7 and 8 are variations suggested during the midterm review. 

The 7th step is achieved by moving the common space, and the 8th step is achieved by 

rotating the dorm cluster 180 degrees and converting the Mirrors, 4MΔ  and , into 

Rotations. 

5MΔ

In step 9, the configuration shows a return to the curvilinear axis through rotation.  “A 

new aspect of the scheme emerges. Drawings lack architectonic qualities, such as 

material, construction and structural specificity” (Akin 2004). Although, this is 

speculation, it appears that Subject-W has created this configuration not by developing 

the midterm solution, but by working from the drawings in step 2, while pair-wise 

integrating the common spaces from the midterm’s configuration. To achieve this 

configuration from the midterm configuration in step 5, the bifurcation Mirro 4Mrs, Δ  

5MΔ , are removed, and the secondary reflection, 3Mand Δ , is replaced by a R tioota n 

RΔ .  

“The configuration in the 10th step is a mixed bag. While the dorm units gain 

 

ARCHITECTURAL EXPLORATIONS CHAPTER 6  202   

 



 

architectonic clarity, the main entrance, circulation and commons areas continue to 

resemble spaghetti” (Akin 2004). This configuration has the same underlying structure as 

the previous configuration (step 9), but with the incorporation spaghetti region of the 

public spaces. 

 to t one in step 10, with the secondary Rotation, 

In the 11th step, “the development is along the same lines as before. The “spaghetti” 

scheme dominates the formal development. Circulation paths are configured as tubes 

without incorporating circulation and social hubs” (Akin 2004). The general structure of 

this configuration is similar he RΔ , being 

replaced by the reflection, 

rallel dorm wings” 

(Akin 2004). Its structure is the same as the configuration in step 11.  

It h elopment in the dorm cluster, 

where a glide relationship, depicted by

3MΔ . 

“The 12th step marks a significant return to architecture and architectonics. The 

“spaghetti” is gone, dissolved in the interstitial space between two pa

The 13th step represents the submission two days prior to the final review, where “there 

are still basic issues of development and resolution, including the incorporation of the 

other building systems” (Akin 2004). as a slight dev

 GΔ , is explored.  

usters. Thi

and nce

The final review, illustrated in the 14th step of Table 6.10, “does not bring any surprises 

or further development of the scheme” (Akin 2004). However, it still shows some signs 

of exploration in the dorm cl s time the units are slightly sheared. The 

Reflection  Glide seque  ))((  MG 1ΔΔ  is replaced by a composition of Translation 

and Shear  regulators. 

1 

TSΔ

ecommonSpac

rdormCluste,n,t,p

building

∧Δ

=
><−>< ])(}[{ 70

3 αC  

])(,[ 30 ><−><Δ

=

eflowerShap,nk,t,p

rdormcluste

}{RD θ
 

])(,[ 40 ><−><Δ

=

room,nk,t,p

eflowershap

}{RD θ
 

])([ 0
1

>−<Δ= ns,n,t,proom }{C1 α  

 
Thursday, May 23, 2002 
Extract from Design The Art and 
Science of the Synthetic unpublished 
manuscript by Ömer Akin © 

 

ARCHITECTURAL EXPLORATIONS CHAPTER 6  203   

 



 

])([ 0
2

>−<Δ= ns,n,t,pecommonSpac }{C2 α  

 

EPLACE_REGULATOR (

1 2 
REPLACE_SHAPE ( rdormCl ) uste

R 3CΔ )  

 ])])])[([([()][( 1#3 rdormClusterdormCluste TRMC ΔΔΔ⇒Δ  

])

])

])}(,[{

}(,,[{
}([{

10

10
1#

10

2

>><<

>><<

>><<Δ

Δ
Δ

=

rdormClusten,dt,p

nt,p
,nt,p

building

T

R
M

θ

])([ 10
1

>><<Δ= dormUnit,nt,prdormcluste }{M

])

])([

([

0

0
2

>−<

>−<Δ

Δ
=

n

ns,n,t,p

,nt,p
Entrance

}{C

}{M

2 α
 

 

2 

Tuesday, June 4, 2002 

 
E_REGULATOR (

2
DELET

4 
TΔ ) 

 [([( RM2 )])][([(])])])[( 1# rdormClusterdormCluste RMT 2Δ Δ⇒  

ODIFY_FACTOR (

ΔΔΔ

M }R{θΔ )  

30 }R{ 90 }R{⇒=Δ Δ =θθ  

ecommonSpac ) INSERT_SHARED (

REPLACE_SHAPE ( dorm ) Unit
ROTATE_REGULATOR( 1MΔ ) 

 }{M}{M 11 )1,1()1,0( Δ =⇒=Δ tt  

3 

21 ecommonSpacecommonSpac
serpentinebuilding

∧
∧=

 

])

])(,[

(,[

0

0
11

2

>−<

>−<Δ

Δ
=

n

ns,nt,p

,nt,p
serpentine

}{C

}{C

α

α
 

])

])(,[

(,[

0

0
11

2

>−<

>−<Δ

Δ
=

n

ns,nt,p

,nt,p
ecommonSpac

}{C

}{C

α

α
 

 
Thursday, June 6, 2002 

 

ARCHITECTURAL EXPLORATIONS CHAPTER 6  204   

 



 

4 

])}((,,[{

])

])}((,,[{

}([{

20

10

10

>><<

>><<

>><<

Δ

∧

Δ

Δ
=

ecommonSpacnt,p

rdormClustent,p

,nt,p
building

θ

θ

R

R

M2

])([ 10
1

>><<Δ= dormUnit,nt,prdormcluste }{M
 

 
Thursday, June 6, 2002 

 4 5 
REPLACE_REGULATOR ( RΔ ) 
 )])][([()])][([( 3 rdormClusterdormCluste MMRM 22 ΔΔ⇒ΔΔ  

5 

ecommonSpac

dormUnitnt,p

dormUnitnt,p

rdormClustent,p

,nt,p
building

∧Δ

∧Δ

∧

Δ

Δ
=

>><<

>><<

>><<

>><<

])}((,[{

])}((,[{

])

])}((,[{

}([{

10
5

10
4

10

10
1#1

5

4

3

2

M

M

M

M

 

])([ 10
1

>><<Δ= dormUnit,nt,prdormcluste }{M
 
 

 
Wednesday, June 12 

 5 7 
MOVE_SHAPE ( ) ecommonSpac

5 8 
ROTATE_SHAPE ( ) rdormCluste
MOVE_SHAPE ( ) ecommonSpac

REPLACE_REGULATOR ( 4MΔ , 5MΔ )  

 
)]}((,,[{])}((,[{

)]}((,,[{])}((,[{

55

44

dormUnitnt,pdormUnitnt,p

dormUnitnt,pdormUnitnt,p

θ

θ

55

44

RM

RM

Δ⇒Δ

Δ⇒Δ
 

 

ARCHITECTURAL EXPLORATIONS CHAPTER 6  205   

 



 

6 

]

]

, ][ M

[ M

[ H 

1

)
,

)

)( },,{

( },,{

( {}

10

10
2

1

balconykitchen

bathroom

roomntp

ntp

dormUnit

∧

Δ

Δ

Π
=

>><<

>><<

 
 

Monday, June 17, 2002: MIDTERM 

7 

ecommonSpac

dormUnitnt,p

dormUnitnt,p

rdormClustent,p

,nt,p
building

∧Δ

∧Δ

∧

Δ

Δ
=

>><<

>><<

>><<

>><<

])}((,[{

])}((,[{

])

])}((,[{

}([{

10
5

10
4

10

10
1#1

5

4

3

2

M

M

M

M

 

])([ 10
1

>><<Δ= dormUnit,nt,prdormcluste }{M
 
 

 
Monday, June 17, 2002: MIDTERM 

8 

ecommonSpac

dormUnitnt,p

dormUnitnt,p

rdormClustent,p

,nt,p
building

∧Δ

∧Δ

∧

Δ

Δ
=

>><<

>><<

>><<

>><<

])}((,[{

])}((,[{

])

])}((,[{

}([{

10
5

10
4

10

10
1#1

5

4

3

2

R

R

M

M

 

])([ 10
1

>><<Δ= dormUnit,nt,prdormcluste }{M
 

 
Monday, June 17, 2002: MIDTERM 

 5 9 
DELETE_REGULATOR( 4MΔ , 5MΔ )  

REPLACE_REGULATOR( 3MΔ ) 

 )])][([()])][([( rdormClusterdormCluste RMMM 232 ΔΔ⇒ΔΔ  
 

 

ARCHITECTURAL EXPLORATIONS CHAPTER 6  206   

 



 

9 

])}(,,[{

])

])}(,,[{

}([{

])

])}(,,[{

}([{

0

10

10
1#24

10

10
1

>><<

>><<

>><<

>><<

>><<

Δ

∧

Δ

Δ

∧

Δ

Δ
=

necommonSpacnt,p

rdormClustent,p

,nt,p

rdormClustent,p

,nt,p
building

θ

θ

θ

R

M

M

R

M

2

2

([ 111 Δ= dormUnit,nt,prdormCluste }{M

])([ 10
22

>><<Δ= dormUnit,nt,prdormCluste }{M3

 

 
Friday, June 21, 2002 
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Monday, June 24, 2002 
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Wednesday June 26, 2002 

 11 12 
SAME STRUCTURE 
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Tuesday, July 10, 2002 

TABLE 6.10 – SUBJECT W’S DESIGN SEQUENCE ILLUSTRATED IN ICE 

 

6.4.3. MULTIPLE REPRESENTATIONS OF A SNAPSHOT  

Each step in Table 6.10 represents a stage of Subject-W’s development. Although each of 

these steps is represented using ICE in a single manner, it is possible to represent it in 

multiple ways using ICE’s property of multiple representations. Table 6.11 shows the 
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abstraction of Subject-W’s midterm submission (see Table 6.10 step 5) as it is 

represented by distinct generation paths, and consequently yielding different ICE notation 

strings and distinct applicable transformations. Each of these steps is generated using the 

ICE implementation.  In steps 1 and 2, a dorm unit is created then reflected about 1MΔ . 

In step 3, the same arrangement is obtained (step 3A) by a reflection about , and in 

(step 3B) a rotation about 

2MΔ

1RΔ . The generation sequence continues in distinct paths 

though steps 4 and 5, yielding different arrangements. In step 6, however, two different 

actions, reflecting about  and reflecting about 5MΔ 6MΔ , bring the arrangement back to 

equivalence. At this point the two shapes are identical, but not the notation, since it also 

captures the way in which each shape was generated.  

 A B 

1 
  

2 

  
3 

  
4 

  
5 

  
6 
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TABLE 6.11 - TWO GENERATIVE REPRESENATIONS OF SUBJECTW’S DESIGN  
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 A B 

1 

  

 Move mirror  upward 1MΔ Move mirror 1MΔ  upward 

2 

  
 Rotate mirror  counterclockwise 1MΔ RotateMirror 1MΔ  counterclockwise 

3 

  
 Move rotation point RΔ  to the right Rotate mirror  counterclockwise 3MΔ

TABLE 6.12 - TWO SETS OF APPLICABLE TRANSFORMATION OF SUBJECTW’S DESIGN 

 

The notation clearly expresses the difference(s) between the two generative sequences.  

The resulting configuration (step 6) in Sequence B of Table 6.11 has different handles 

than the same one in Sequence A. These results are illustrated in steps1-3 of Table 6.12. 

Identical manipulation-actions (for instance moving shared regulators) would result in 

totally different graphic configurations. The different handles (non-shared regulators) 

allow for a different set of manipulations per graphic configuration, such as moving the 

rotation point or rotating the mirror line 1RΔ 3MΔ . There are numerous possible 

manipulations for each sequence; those shown were just a few. Additionally, redefining 

the notation string by insertion, deletion, or replacement would expand the manipulation 

possibilities even further and redirect the exploration paths. 
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CHAPTER 7                                                                

THE ICE IMPLEMENTATION   

 

 

In this chapter, I describe the implementation of the ICE framework, which is a software 

environment that supports real-time exploration of 3D shapes and configurations by 

means of regulators. 

The ICE implementation supports creation of structures, integration of structure, 

preservation of structure, transformation of structure, as well as breaking of structure. 

Creation of structure is achieved by designing regulators (the axes, centers and 

alignments) and associating them to the elements of composition. Integration of structure 

is the superimposition of several local and global sub-structures, within a single 

composition, by integrating distinct sets of regulators and elements.  Preservation of 

structure is achieved by propagating changes though regulators. Transformation of 

structures is achieved by manipulating regulators. Breaking of structures is achieved by 

dissociating and deactivating regulators, in order to explore the configurations without 

their corresponding relationships.  
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7.1. OVERVIEW 

In the ICE implementation, the design configuration is represented as two levels of 

abstraction: one for the regulated elements and the other for the structure encapsulated by 

regulators. Although the point is only element in ICE, and all shapes are defined by 

points and regulators, the implementation includes additional pre-programmed primitive 

elements. These are introduced for the purpose of processing speed. The regulators 

control the behavior of elements and propagate changes across the configuration. 

Elements and regulators can be dynamically associated with each other. This allows 

superimposed structures, and enables multiple elements per regulator as well as multiple 

regulators per element. Furthermore, regulators can control other regulators, defining 

structure hierarchies with multiple levels of control. 

Flexibility is the primary goal for the ICE implementation in both its engineering and 

usability components. Flexibility is necessary to support an exploration that begins with 

one configuration, and proceeds by means of gradual transformations in order to arrive at 

a different configuration. The absence of flexibility would confine this exploratory 

process and limit exploratory directions.  

In the ICE implementation, flexibility is expressed in the interaction of users with 

structures. To create structures, users must be able to associate regulators with elements 

at any time during the exploration. Conversely, to break structures, users have the ability 

to dissociate regulators from elements. To momentarily explore without specific 

structures, users must be able to deactivate and reactivate regulators. To transform 

structures, user must be able to manipulate all parameters of regulators and regulated 

elements at any given time. Furthermore, users must be able to interchange regulators 

(and interchange regulated elements) anytime during exploration without reworking the 

configuration, such that they may never be “stuck” to a specific situation.  

Additional goals for the ICE implementation include efficiency, ease of use, and user 

control of all elements as well as attributes of the configuration. 

7.1.1. ENGINEERING CONCEPTS  

The ICE implementation was designed using an object oriented software engineering 
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approach; use-cases, interaction diagrams, and an object model were developed. 

Appendix D presents selected use-cases and interaction diagrams for creating and 

transforming elements and regulators. 

Figure 7.1 shows the object model for the ICE implementation (see Appendix D for an 

enlarged version). The main objects include Shape, Regulator, Association, Schema, 

which represents the groups of associated elements and regulators, and the IceModel, 

which represents the whole configuration. Polymorphism has a primary role in all the 

constructs of the ICE implementation, and particularly, in the way lists are implemented 

and objects are interchanged. IceObject is the primary abstraction that subsumes all other 

objects of the implementation, and IceList is a list that organizes all these objects. 

 

   
FIGURE 7.1 -  THE ICE OBJECT MODEL 
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There were several significant issues in the design of the object model. The bidirectional 

associativity between regulators and associated elements resulted in an adaptation of the 

Observer mechanism (Gamma 1997, p293). The need to interchange elements and 

regulators during exploration resulted in an adaptation of the Bridge pattern (Gamma 

1997, p151). The numerous possible combinations of regulators resulted in a strategy for 
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combining simple mathematical modules to define complex formulae for regulators. This 

modular approach extends the notion of describing complex shapes though simple 

regulator modules of the ICE framework. 

Regulators control elements though the observer mechanism. A regulator 'observes' the 

elements (inputs and outputs) that are associated with it. When an element is changed, it 

notifies its regulator; some regulators constrain the change, while others propagate the 

change to other elements. When a regulator's parameters are changed, the elements that it 

regulates are updated accordingly. The observer pattern, which encapsulates the 

dependencies between elements and regulators, is adapted to accommodate the control 

functionality of the regulator in addition to the observation functionality. This allows 

bidirectional associative networks to be constructed at run-time. Figure 7.2 shows the 

observer in the context of the ICE implementation. IceElement subsumes the objects of 

the observation mechanism, which are the shape, the regulator and the association. This 

allows the association object to include shapes and regulators, such that regulators can be 

regulated, and enables regulators and associations to act as observers/controllers. When 

the regulators and shapes are associated in succession, these form a tree; when shapes 

share regulators or regulators share shapes, these form an acyclic graph.  

    
FIGURE 7.2 -  OBSERVER MECHANISM 
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Replacing regulators (or shapes), while these are associated to numerous elements, can 

lead to reconfigurations numerous reassignment of associations. This is an error prone 

process, which affects the robustness of the implementation. Such internal 

reconfigurations are significantly simplified by using the Bridge pattern, which, in the 
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context of the ICE implementation, uses polymorphism to interchange a specific formula 

(or geometry) at run-time, without changing additional parameters or reassigning any of 

the numerous associations.  

7.1.2. USABILITY AND INTERACTION CONCEPTS 

in the ICE implementation can be accessed through the interface. Shapes, 

The implementation starts up with the model. A user instantiates shapes as well as 

Modes of interaction include drawing modes, and selection modes (Figure 7.3). Drawing 

Every object 

regulators associations, schemata, and models, have specialized windows housing their 

controls. Interaction with structures is achieved by manipulating the regulator's 

parameters.  Direct manipulation is implemented for selection and moving, but other 

operations, such as rotation, scaling and changing attributes, are achieved through value 

sliders. Furthermore, every element in the ICE implementation – shapes, regulators, 

associations, schemata and models—can be either viewed or hidden in order to provide 

focused views as well as integrated views of the configuration.  

regulators by choose and click.  Associations and schemata are generated by the system, 

when users associate regulators and elements. Every element in the ICE implementation, 

whether it is instantiated by users generated by the system, can be selected and 

manipulated separately. 

modes are for instantiating, copying, and moving elements and regulators. Selection 

modes include single selection, multiple selection, and specialized selections. The latter 

form selection includes selecting all shapes of an association, all shapes of a regulator, 

and all associations of a regulator, efficiently, with just a single click.  Additionally, when 

an object is selected, its relevant interface widgets appear on its window.  

   
FIGURE 7.3 -  MODES OF INTERACTION 
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7.2. REGULATED ELEMENTS 

The vocabulary of regulated elements consists of the point and a finite set of 3D shapes. 

These can be manipulated in various ways, including common manipulations such as 

translation, scaling, rotation, and shear, and manipulation specific to each shape such as 

adjusting holes sizes, smoothness of surface, and dimensions of upper and lower faces. 

Additionally, all the shape’s physical properties such as color, fill, line width, and 

transparency are adjustable. Shapes are regulated thought their key points, which include 

their centroids, or their upper or lower midpoints. 

In the ICE implementation, shapes can be interchanged at any time. The shape 

abstraction is separated from its specific geometry by means of the bridge pattern (Figure 

7.4), allowing the geometry to be changed without disrupting any of the intricate 

associations. 

    
 

FIGURE 7.4 -  SHAPE BRIDGE PATTERN 
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Figure 7.5 shows the shape window, the shape controls, and illustrates examples of ICE 

primitive shapes, for which the proportion can be manipulated in many ways. 
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a      b  

FIGURE 7.5 -  SHAPE WINDOW AND SHAPE EXAMPLES 
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7.3. REGULATORS 

A regulator has generative as well as manipulative capabilities: it generates one or more 

outputs from a (user-defined) input; it maintains a persistent relation between outputs and 

corresponding inputs upon manipulation. Changes to regulators transform outputs, and 

may change the classification of the configuration, for instance its symmetry group. 

Transformation-based regulators (for example, translation, rotation, mirror, and dilation) 

control the relation between an input and its outputs. Each regulator computes the 

position/orientation of outputs according to its specific transformation matrix. It is used 

to generate outputs from an input, and to update outputs when the input is manipulated. 

The inverse transformation is used to update the input when the outputs are manipulated. 

Variation regulators control elements by means of a formula, and constraint regulators 

control elements by means of an evaluation function. 

Only a subset of the regulators of the ICE framework is realized in the ICE 

implementation. In the transformation category, Translation, Rotation, Mirror, Dilation, 

and Shear are implemented. In the variation category, Rhythm/Gradation and Exception 

are implemented. In the constraint category, Alignment is implemented. All regulators 

function in 3D space. The regulator parameters described in the ICE notation are the 

manipulation handles in the ICE system. 

Transformation-based regulators work by multiplying the regulated elements by the 

regulator’s main transformation matrix. When their geometry is updated the 

transformation matrix is pre- and post- multiplied by the rotation and translation matrices, 

therefore modifying the regulator’s main transformation matrix. Transformation 

regulators (Figure 7.6) include translation along a line, rotation about a line, mirror about 

a point, line, plane, dilation about a point in the xyz direction and shear about a point 

along one direction. 
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a- Translation  b- Rotation c- Mirror 

  

 

d- Dilation e- Shear  

FIGURE 7.6 -  TRANSFORMATION-BASED REGULATORS 

 

The Rhythm/gradation regulator can only be used in composition with other 

transformation regulators.  These work by applying a formula to a specific attribute of the 

shape or point. For instance, position, relative rotation, color and relative scale. There are 

several version of this regulator, including a gradual rhythm, a cyclic rhythm, a sine 

curve rhythm, and an upwards and downward rhythm. The gradual and cyclic Rhythm 

types are illustrated in Figure 7.7. The exception regulator works by overriding the value 

of a specific attribute of the regulated shape or point.   

a  b   

FIGURE 7.7 -  RHYTHM  

 

The Alignment regulator can be generative or can be used in combination with generative 

transformation regulators. Alignment works by constraining the position of the key-point 

in the regulated shape about a point or along a line, plane, or circle.  Key-points include 

the shape’s centroid, or its upper or lower midpoints. Alignment regulators can be 

combined to regulate different points in a set of shapes. Figure 7.8 illustrates a linear 
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element regulated by two simultaneous alignment regulators, with its upper midpoint 

aligned by a line and its lower midpoint aligned by a line (7.8a), point (7.8b), or circle 

(7.8c). 

   
FIGURE 7.8 -  ALIGNMENT  

 

7.3.1. DYNAMIC ASSOCIATIONS 

Elements can be associated with regulators at any stage of the exploration. An element 

supporting multiple regulators maintains a list of its regulators. Likewise, a regulator 

supporting multiple elements maintains a list of associations, each consisting of an input 

and  outputs.  n

Within associations, images are indexed, and the index is treated as an active variable in 

its regulator formula. Each association has a positive and negative output list, one on each 

side of the input (Figure 7.9). An association traverses though the list of images, updating 

these according to the transformation matrix or constraint of its regulator. The index 

(positive or negative) is combined with the active parameter of the regulators 

transformation matrix and therefore, determines the precise transformation for each 

output. 

s0

Association

s1 s2 s3 sn

Input Positive Output listNegative output list

s-1s-2s-3s-n

  
FIGURE 7.9 -  THE ASSOCIATION OBJECT  
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The number of outputs generated is a function of the association, in this way, distinct 

associations belonging to the shape regulator can have a different number of outputs. The 

user can adjust the number of elements within an association anytime. Furthermore, the 

user can choose whether to update all properties of the associated elements or just to 

update the geometry. 

Associations of non-generative regulators transform the input, and do not have any 

outputs. Associations can also accommodate several inputs, thereby supporting regulators 

that input several objects to output one resultant object, such as the union or intersection 

regulators. 

On the model, associations are displayed by means of a line linking associate elements 

together and emphasizing the input elements (Figure 7.10a). Therefore, in a multiple 

regulator schema, associations can be traced (Figure 7.10b) 

 

a 

    
b 

 
FIGURE 7.10 -  ASSOCIATION DISPLAY 

 

There are several types of associations: a user can associate one element (or regulator) to 

a regulator, or associate all elements (of a schema) to a regulator (Figure 7.11). An 

association can also associate a schema, thus creating multiple output schemata from an 
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input schema. Additionally a user can relate separate elements to a regulator, thus 

establishing a relation between them and creating an association.  This functionality 

serves when structures are discovered within configuration elements.   

    
FIGURE 7.11 -  ASSOCIATION TYPES 

 

7.3.2. SIMULTANEOUS COMPOSITION OF REGULATORS 

Simultaneous composition takes advantage of the regulator’s bridge pattern, where the 

regulator object is separated from its formula or matrix, which is encapsulated in a 

RegulatorIdentity object (Figure 7.12). This strategy enables various combinations of 

regulators to be defined at runtime. Regulators can be composed, added, removed, or 

replaced, and therefore, changing the regulation formulae and the behavior of the 

regulated elements, without disrupting any associations. 

    

 
FIGURE 7.12 -  BRIDGE PATTERN FOR REGULATORS  
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The regulator object contains all the regulator’s parameters and associations. The 

RegulatorIdentity object encapsulates the formula as well as the geometry of the 

regulator, therefore, enabling distinct geometries per identity. For example, in a 
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composition of mirror and translation, the mirror is a plane while the translation is a line, 

and each of these can be manipulated separately.  

The regulator has a list of RegulatorIdentity objects, which accommodates multiple 

matrices or formulae. Upon regulation, the regulator goes thought this list and combines 

all the matrices of formulae of these RegulatorIdentity objects. Transformation-based 

regulators produce a single composite transformation matrix (and its inverse) by means of 

matrix multiplication of all the unit matrices in the list as illustrated in Figure 7.13. The 

composite matrix controls the positive list in the association, while its inverse controls the 

negative list. Variation and constraint regulators produce a compound formula by 

combining the formulae of their regulator identities.  
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FIGURE 7.13 -  SIMULTANEOUS COMPOSITION 

 

Direction vectors and transformation matrices are implemented as Expression objects that 

store compound numerical expressions and trigonometric functions as well as numbers 

(Figure 7.14) 
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FIGURE 7.14 -  THE MATRIX-VECTOR OBJECT MODEL 
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7.3.3. REGULATOR CONTROLS 

The ICE implementation supports both the geometric manipulation of the composition of 

regulators and the geometric manipulation of the single regulator.  

Regulators are controlled thought the regulator window (Figure 7.15). The user selects a 

regulator (or multiple regulators) from a list, and then positions these on the model to be 

instantiated. The user can add, remove, or replace regulators from a simultaneous 

composition at any time. Each category of regulators, transformations, constraints, and 

variations are listed in a separate box. The user can select single regulators from this box 

in order to manipulate them separately. The geometric parameters of the regulators as 

well as regulator-specific parameters and factors are controlled by means of sliders.  The 

regulator identity objects are hidden form the user. The interface gives the impression of   

composing whole regulators objects. When a regulator is selected, only the applicable 

widgets appear in the regulator window. 
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FIGURE 7.15 -  REGULATOR CONTROLS 

 
 

Associations are also manipulated thought the regulator window, where the numbers of 

positive and negative output elements, as well as the property to update all associated 

elements, are adjusted.  
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7.4. SCHEMATA 

Schemata encapsulate configurations comprising of elements associated to regulators. In 

addition to allowing multiple shapes to share a regulator, and multiple regulators to shape 

a shape, schemata facilitate the interaction by allowing the manipulation of the structure 

as a whole and the superimposition of distinct structures.  

Schemata encapsulate a sequence of regulators. Regulators can be inserted in a sequence, 

deleted from a sequence, or two regulators can be swapped within a sequence, thereby 

redefining configurations, especially those with non-commutative regulators.  

Such discrete manipulations of schemata (as well as the continuous geometric 

manipulations of moving, rotating, and scaling) are achieved through the schema window 

(Figure 7.16).  

    
FIGURE 7.16 -  SCHEMA WINDOW 

 

Regulators use polymorphism to regulate shapes, points, and other regulators in a 
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seamless manner. Points are the simplest elements to regulate, with only position as the 

regulated property. Shapes need additional properties to be regulated, such as their 

orientation, scale, and physical and formal properties. Regulators, on the other hand are 

the most complex to regulate, because their matrices need to be regulated as well as their 

geometric and physical properties. 

Once an element is regulated, it can be momentarily deleted, but it will not be completely 

discarded. If a schema is reset, all the deleted points, shapes and regulators are re-

activated.  

7.4.1. SUCCESSIVE COMPOSITION OF REGULATORS 

In a multiple regulator schema, elements can take on the role of both inputs and outputs 

simultaneously (Figure 7.17). The root of the tree is the first input; intermediate nodes are 

outputs of the regulator above and inputs of the level below; and leaf nodes are outputs of 

the last regulator. For a multiple element and multiple regulator schemata, this tree 

becomes an acyclic graph. 
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FIGURE 7.17 -  THE REGULATOR TREE 
 

When an element is associated with multiple regulators, its outputs are subject to a 

composition of transformations. In principle, there is no limit to the number of regulators 

that can be composed successively.  

For multiple regulator schemata, a change in one element will initiate a chain reaction of 

changes that propagate across all the regulators. Changes in regulators are recursively 
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propagated “forward” so that they affect outputs of subsequent regulators. Changes in 

elements are recursively propagated "forwards and backwards" and affect outputs of 

subsequent, as well as antecedent, regulators.  The user can select whether the change 

propagation is to proceed forwards, backwards, or in both directions. 

7.4.2. REGULATING CONTINUOUS SHAPES 

Complex shapes are regulated through continuous generation of points. When a regulator 

is updated, the shape is redefined in a virtually plastic manner. The resolution of the 

shapes can be adjusted by increasing or decreasing the number of points.  

In OpenGL, 3D shapes are rendered as surfaces. So it is necessary to map every ICE 

shape representation to a representation of its outer surfaces in order to display it 

properly. Such surfaces can be displayed or hidden at will. 

The ICE implementation supports the selection of various subsets of a shape, whether it’s 

a sub-point, sub-line, sub-surface, or sub-volume. 

When defining a 3D shapes (with 3 regulators), it is possible to specify any combination 

of discrete or continuous regulators to define a shape with its constituent linear or planar 

components (Figure 7.18). Furthermore, it is possible to define subshapes within a shape 

by indicating the indices to be generated (Figure 7.19). 

a  
b   

FIGURE 7.18 -  COMBINATION OF DISCRETE AND CONTINUOUS REGULATORS  
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a     b  

FIGURE 7.19 – COMPLETE SHAPE GENERATION AND SUBSET  GENERATION 

 

7.4.3. REGULATING REGULATORS 

Regulators can be regulated creating multiple levels of control. When regulators are 

regulated, the transformation matrix of the super-regulator influences the matrix of the 

sub-regulators. This matrix is pre- and post- multiplied by the conjugates (the matrix and 

its inverse) of the super-regulator in order to produce the correct regulation matrix for the 

sub regulator.   

Furthermore, the ICE implementation supports the regulation of schemata, therefore 

enabling a regulator to input a shape (described by regulators) and create a novel 

configuration by means of discrete generation. Regulating schemata involves regulating 

the constituent regulators. 

 

ARCHITECTURAL EXPLORATIONS CHAPTER 7 229   

 



 

7.5. THE MODEL 

In the ICE implementation, the model has two major components: the configuration 

component consisting of the elements and regulators of the ICE framework, and the 

graphic component, consisting of viewing, camera, and lighting. The controls for the 

model display can be considered as view regulators. 

The user can select between one, two, and four simultaneous view-ports, (Figure 7.20) 

allowing the display of several views of the model simultaneously. These can be 

axonometric, perspective, top, front, back, or side views.  Each view-port can be selected 

and manipulated independently. The user can move, rotate or scale, the model as a whole 

and can control the camera to focus on particular aspects of the configuration model. 

Additionally, wire frame views as well as shaded views of the model are available.  The 

views and camera controls are located on the right side of the main model window, which 

is designated for common manipulations (Figure 7.20), or alternatively, on the view 

window (Figure 7.21a) where less frequent manipulations are placed. The main model 

window also serves for setting interaction modes and accessing other windows.  

 
FIGURE 7.20 -  THE MAIN MODEL WINDOW 
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Since the ICE implementation is in 3D, it is important to have adequate lighting to shade 

the model elements properly. Lights can be turned on and off, and the position, 

orientation, intensity, and color of the lights, are adjustable, as well as their ambient, 

diffuse, and secular components. All lighting controls are located in the light window 

(Figure 7.20b). 

                               
FIGURE 7.21 -  VIEW AND LIGHTING CONTROLS 

 

Additional model elements include the coordinate axes, and the positioning plane (Figure 

7.22). The coordinate axes intersect at the origin, forming the three coordinate planes; 

each has a corresponding grid with adjustable resolution. The plane serves as a 

positioning device for direct input. A point on the 2D screen corresponds to infinitely 

many positions (forming a line) in its 3D model projection. The intersection of this line 

with the input plane serves to determine the precise position of the input on the 3D 

model. The plane can be set parallel to any of the 3D coordinate planes or can be set to 

any orientation by changing its direction vectors.  
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c 

FIGURE 7.22 -  THE AXES, THE POSITIONING PLANE, AND THEIR CONTROLS 
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7.6. HISTORY AND PROCESS CAPTURE 

In the ICE implementation, every exploratory action, whether it is generative or 

transformative is recorded, in order to track the process.  The current history controls, 

located in the history window (Figure 7.23) include playback, playback speed, loading, 

saving history and displaying the history list. In this way the whole process of exploration 

can be recorded and analyzed for further studies.  

 

    
FIGURE 7.23 -  HISTORY WINDOW 
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CHAPTER 8                                                                

DISCUSSION  

 

This chapter concludes the dissertation by a discussion of the ICE framework in 

comparison to other representations, as well as a review the contributions of this work, 

and a presentation on the future directions for the ICE framework. 

8.1. COMPARATIVE ANALYSIS 

This section presents a comparative analysis of the ICE framework with constraint-based, 

grammar-based, associative, and mathematical representations.  

8.1.1. ICE AND CONSTRAINT-BASED REPRESENTATIONS 

The ICE representation differs from constraint-based representations in its capacity to 

encapsulate lower-level constraints into higher-level regulating constructs. While 

constraint-based representations operate with basic unary and binary constraints, ICE 

operates with more complex, yet more, intuitive entities. From a usability perspective, 

regulators overcome some of the problems found in typical constraint-based systems. 

Constraints are either system-defined (Briar, Sketcher) or user-defined (SketchPad, 

CoDraw). System defined constraints can lead to misinterpretation of user intent. On the 

other hand, users specifying and updating every constraint can become increasingly 

cumbersome with complex configurations, and can distract from the major design task. 

Regulators simplify user interaction with multiple constraints by grouping related 

constraints, and enabling users to generate and manipulate them simultaneously. Users 

interact with higher-level regulators, while regulators manage lower-level constraints. In 

this manner, users are relieved from the burden of specifying and updating numerous 

lower-level constraints. Still, users maintain control over the constraint definitions of 

their configuration though regulators. 
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Through this higher-level regulation, composing, transforming and redefining structures, 

both in a continuous and discrete manner, provide a more stimulating exploratory 

experience. 

8.1.2. ICE AND ASSOCIATIVE REPRESENTATIONS 

The ICE representation is an associative representation. However, unlike 

GenerativeComponents, ICE supports bi-directional change propagation; and unlike 

ReDraw with its three-tier hierarchical structure, ICE support multiple levels of control 

structures. Although ReDraw’s pencil lines can be considered a primitive form of an 

alignment regulator, the ICE regulators are more diverse, and compositions strategies are 

more elaborate. Furthermore, ReDraw imposes an order on the drawing sequence (pencil 

lines first, then ink lines), while ICE requires no order for generation or manipulation.  

8.1.3. ICE AND DESIGN GRAMMARS 

ICE differs from design grammars in its representation for configurations, as well as in its 

strategy for transformations.  

In grammars, the configuration is represented by shapes, which are in turn represented by 

lines and points. The shape itself does not recall its generation path nor does it capture 

relations between its parts. The only exception is Carlson’s structured grammars that 

capture a transformation, which maps a shape from the origin to its intended position and 

orientation. ICE, on the other hand, represents the shape by means of relations among its 

parts. These relations determine the way the shape is generated, and their corresponding 

parameters guide further transformations. This representation makes the shapes 

themselves much richer in information.  

In grammars, configurations are transformed through the application of production rules 

in a sequential manner; transformations (as well as relations and constraints) are 

implicitly encapsulated in those rules. In ICE, however, transformations are explicitly 

encapsulated in regulator parameters. The transformation syntax in ICE is comparable to 

grammar rules, but the recognition process (for which the left hand of the rule is matched 

to the configuration) is much simpler in ICE, where the recognition process is explicitly 

built in the string definition. In grammars, the recognition process is based on spatial 
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algorithms mapping the points and lines of the left hand side of the rule to the 

configuration. In ICE, however, there is no process for recognizing spatially equivalent, 

yet, notationally different configuration. 

8.1.4. ICE AND MATHEMATICAL REPRESENTATIONS  

Although both ICE and Cha’s representation of shape patterns use predicate and 

arguments, the purpose of Cha’s representation is shape analysis, while the purpose of the 

ICE representation is design exploration. ICE differs from Cha’s shape patterns in 

numerous ways. ICE is a 3-Dimensional representation that includes a description for 

individual shapes as well as patterns. ICE is broader in scope (more relationships are 

supported) and more diverse in generation methods (continuous discrete and subpart 

generation are supported). From a syntactic perspective, the ICE’s representation for 

output sequences is iterative, but it allows variations within the iterations, while Cha’s 

representation for each element in the sequences is recursive. ICE uses mnemonic 

symbols to denote its relations, and it uses brackets and indices consistently, thus 

promoting readability. ICE also has a shape encapsulation strategy that simplifies the 

description. In addition to the configuration syntax, ICE has a complementary syntax for 

transformations.  

The ICE representation and Leyton’s representation are based on the same mathematical 

principles, however, their respective goals and approaches are different. Leyton’s purpose 

is to represent existing shapes and configurations with a rigorous theoretic foundation. 

His objective is to maximize transfer and maximize recoverability. ICE’s objective is to 

maximize the exploratory potential of design configurations, and to minimize the 

complexity of their corresponding descriptions. In Leyton’s representation there are no 

objects, just actions. ICE has the opposite approach. In ICE, actions are encapsulated by 

objects (regulators), therefore, allowing these to be grabbed and manipulated after the 

action initially takes place. This approach converts actions, which are typically one time 

events, to persistent controllable events. 

Leyton represents all shapes and configurations by means of symmetry groups and 

transfer structures. He claims that all design processes are effectively asymmetry 

building. In his effort to maximize transfer and recoverability, Leyton imposes an order 
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of symmetry, then asymmetry, on the action sequences for shape generation. This often 

complicates the generation of the shape. ICE, on the other hand, has a significant amount 

of recoverability, but does not impose a specific sequence on the generation process. ICE 

allows for multiple representations in order to maximize the options for shape generation. 

Leyton always uses transfer structures as necessary constructs for describing all parts of a 

configuration; ICE, however, use transfer structures for describing shapes and promoting 

exploration, but transfer is not a necessary condition for all parts of the configuration. For 

instance, two distinct cubes can be described in ICE without transfer.  

ICE’s regulator structure can also be described by groups; however, not all shapes can be 

described simply by means of groups. For instance, a regular hexagon has a dihedral 

group, but not the semi-hexagon because it does not satisfy the group property of closure 

under composition. ICE supports the generation of such a shape (by three steps) in the 

same way the hexagon is generated, but with different parameters. Leyton needs to create 

the symmetrical hexagon first, then, define other groups to remove parts of it, therefore 

lengthen the process of generation.     

From a syntactic perspective, Leyton’s notation does not denote all the necessary 

parameters for shape generation. Additionally, the syntax for unfolding groups is quite 

complex.  

The ICE representation simplifies the process of shape generation as much as possible 

and the syntax uses a minimum number of steps (motions) to create shapes. These steps 

are comparable to a sequence of pen motions in 3-Dimensional space. 

8.1.5. ICE AND SOLID MODELING 

The ICE framework differs from solid modeling and constructive solid geometry 

representations in that ICE relies on compositions of relations to define forms rather than 

a fixed set of components and operations. 

8.1.6. ICE AND COMPUTING LANGUAGES  

ICE resembles a computing language in its functional approach as well as object oriented 
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quality. It has input and output parameters, functional nesting as well as object 

encapsulation. However, it is not quite a language, because it does not have explicit 

conditional and procedural definitions nor does it explicitly support inheritance. Although 

some of these are captured within the regulators — for example, constraints encapsulate 

conditionals, while operations encapsulate procedural algorithms — the ICE notation 

itself cannot be used to define conditionals or procedures, explicitly.  

8.2. CONTRIBUTIONS 

This research describes a novel way of representing and exploring design configurations 

by means of generative and relational structures. It advances the state of the art in 

computational design representations through the following contributions:  

A Modular Approach to Organizing Lower-Level Relations into Higher-Level 

Structures. Regulators of the ICE framework capture design relations as simple building 

blocks that are composed (in parallel and in sequence) to define the structure of complex 

configurations.  

The Support for Iterative Explorations. Regulators, in their capacity to be decomposed, 

modified (in various ways), and replaced, offers the ability to completely  transform and 

redefine configurations by changing a few structural parameters, thus reducing the labor 

involved in exploring with structures. 

The Encapsulation Design Descriptions. The ICE notation introduces syntax for 

representing geometric configurations, completely, accurately and succinctly by means of 

a string. Its short form and shape encapsulation mechanism augment the notation with 

flexibility and enhance readability. Furthermore, describing complex geometrical 

configurations by means of a concise string has the additional computational advantages 

of minimizing the size of storage, maximizing the speed of file transfer, and facilitating 

the analysis of configurations. 

The Encapsulation Design History. The ICE notation string, in its capacity to capture 

parsimoniously the generative process of a configuration, encapsulates its generative 

history. In its capacity for recording transformations, the ICE notation captures the 

exploratory history for a configuration. 

Deleted: a syntax
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The Derivation of Additional Information from Notational Descriptions. The notational 

description allows for the derivation of additional shape information, such as volumes 

and subshapes, by simple computation of regulator parameters. Furthermore, with some 

algorithmic interpretation, the notational description enables the deduction of the precise 

steps for transforming an initial configuration to the goal configuration. This derivational 

mechanism allows an unprecedented level of detail to be stored in such a concise string. 

A Novel Method of Interaction with Design Configurations. The ICE implementation 

supports direct-manipulation of structures, while providing instantaneous visualization of 

the effects for these manipulations. It enables designers to transform structures, discretely 

and continuously, thus allowing the complete redefinition of configurations with 

minimum steps. Such iterative manipulation, coupled with visualization, facilitates the 

modification of earlier decisions, and provides a new exploratory experience in design. 

Strategic Exploration. The ICE implementation allows users to define their manipulation 

handles for any object, based on the relationships they choose. Therefore, they are able to 

influence the direction of the subsequent explorations that will occur during design. In 

this way users can strategically compose their regulators with the intention of specific 

future explorations. 
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8.3. FUTURE WORK 

The ICE framework, both in its notation and implementation forms, has potential for 

future investigation. Several venues for extension as well as potential applications are 

discussed below.  

8.3.1. EXTENDING THE ICE FRAMEWORK 

Regulators Representing Non-Geometric Information. Although regulators were 

described as geometric in nature, the vocabulary of the ICE framework can be extended 

to include non-geometric design information.  These include physical/material properties 

(such as light reflectance, thermal transmission, and acoustic absorption), budgets 

constraints and design requirements (such as privacy or climatic considerations). With 

such semantic additions, the ICE framework would evolve into a complete design 

language relating semantics to geometry, and therefore, enabling the control of a design 

through its requirements and through its semantic property.  

Regulators in Other Design Domains. Although regulators were primarily conceived for 

architectural design, this concept can be utilized in other domains, such as mechanical, 

industrial, and graphic design. Geometric regulators are easily applicable, while other 

domain specific regulators can be further developed, in particular, motion regulators can 

be of great potential in exploring mechanical and industrial design. Furthermore, by 

adapting non-geometric regulators to semantic properties, the regulator approach can be 

applied to domains that do not rely on geometry.  

Recognition of Implied and Emergent Structures. Gero (1998) and others investigated 

recognition of emergent structures in design. Although recognizing structures in ICE is a 

complex task, a module for recognizing design structures would complement the ICE 

implementation, and would uncover implied and hidden structures in any configuration. 

Therefore, it would enable the identification of the geometrically equivalent, yet 

notationally different, representations, in cases where multiple representations exist.  

Two-way Integration between the Notation and the Implementation. The interaction 

between the notation and the 3D model is not sufficiently integrated. A parser that 

converts the notational string into a 3D model and converts a model into a string would 
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provide the two-way integration, where a change in the notation would appear on the 

model, and a change in the model would be updated on the notation. Furthermore, an 

editor for the notation, where the syntax (brackets, commas, superscripts, etc) is managed 

automatically would greatly enhance the usability of the notation.  

Usability. Although ICE represents complex geometric relationships in a simple way, 

interaction with the ICE models in 3-dimension is not ideal. Complexities of converting 

2D interaction in 3D space are still prevalent. A significant research venue would be to 

investigate novel interaction hardware applicable to the design exploration activities of 

the ICE system. The ICE generation sequences can be mapped to gestures of drawing 

with the pen in a 3D sketch environment. Manipulation would also be mapped to 

gestures, without intermediate windows and widgets.  

Cognitive Implications and Predictability. Predictability of the behavior of the ICE 

models upon manipulation is proportional to the complexity of the configuration and 

depends on whether the manipulations are discrete or continuous. Discrete manipulations 

are far less predictable and more surprising than continuous ones. Predictability is also 

affected by the type of transformation that is applied. A user study documenting factors 

in ICE that influence predictability, as well as the cognitive implication of predictably, is 

worthy of further investigation.  

8.3.2. POTENTIAL APPLICATIONS FOR THE ICE FRAMEWORK 

Process Analysis. ICE captures history on two levels: (1) the generative sequence 

captured in the shape definition; and (2) a record of transformations that occurred in the 

process of creating the design. Keeping track of the history is a valuable tool in analyzing 

the course of design processes precisely, and completely. Furthermore, history can be 

used effectively as a multidimensional element of the exploration. Users can step through 

their history, forwards and backwards, and change the course of the exploration while 

replaying their design actions. This would result in a history tree of branching exploration 

paths, instead of a linear history list. 

Case-base Adaptation. The ICE representation can be integrated to case base systems, 

where cases are represented by means of the ICE notation, and the adaptation of a case to 

a new problem can be achieved readily through regulator transformations.  As novel 
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shapes and configurations are defined by regulators, these can be stored in the 

configuration library, then later retrieved, re-used, and manipulated, as part of other 

configurations. 

Application of the ICE Notation to Genetic Algorithms. The ICE representation can be 

used as the basis for genetic algorithms. Configurations would be represented in ICE and 

the evolution patterns would be based on patterns of random ICE transformations. These 

would result in more intricate evolution patterns than those produced by typical binary 

mutations used in genetic algorithms. 

Integration with Evaluation Systems. ICE can be integrated with a design evaluation 

system: as a user explores alternate solutions, his/her design can be evaluated in real time, 

thereby enabling him/her to continuously compare the results of the exploration. In this 

scenario, regulators and evaluators work together to guide users in transforming design 

configurations in ways that improves the quality of the design. 

Integration with Generative Systems. Regulators can be augmented to generative 

systems, in order to enable users to further manipulate the generated results. Shape 

configurations can be represented as ICE strings, while generative rules would be 

represented as ICE transformations. In the present context, users generate and control 

regulators. In a generative context, the system can generate regulators as part of 

configurations, therefore making generated configurations very flexible. Furthermore, 

generative systems can focus on the use of specific regulators, in order to promote 

exploration within certain styles.  
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APPENDIX B                                                                

THE MATHEMATICS OF 

REGULATORS 

 

Regulators encapsulate a formula, a polynomial equation, for controlling its associated elements. 

In most cases, this formula is determined by the geometry of the regulator. In this Appendix, I 

discuss the geometric representation of regulators in general, and the specific mathematical 

properties for each regulator type, as well as for transforming and compositing regulators.  

 

B.1. THE GEOMETRY OF REGULATORS  

The geometry of regulators is based on vector mathematics. Point regulator, line regulator and 

plane regulators are represented as vectors in 3D space. 

B.1.1. REPRESENTATION OF POINTS 
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B.1.2. REPRESENTATION OF LINES 

A line l  with starting point p  and end point q  and direction along t  
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Where φθψ ,,  are the angles of vector t  with the x, y, z axes respectively. 

 
Midpoint of a line: 
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if s < d then the point  is on the line 
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B.1.3.  REPRESENTATION OF PLANES 

Given three points in a plane 0P , 1P  and 2P . 

 
)()( 120100 PPePPdPvetdPP −+−+=++=  

The plane’s normal [ ]zyx NNNN =  

)()( 1201 PPPPvtN −⊗−=⊗=  

0=• tN      
0)( 10 =−• PPN  

0=++ zzyyxx tNtNtN  

If [ ]CBAN =  and [ ] the Plane equation =zyxt = 0=+++ DCzByAx  

 
To determine the angle between a plane and the major coordinate planes (e.g. x-y plane), it is 

necessary to compute the angle between the normal of both planes. 

 

B.2. TRANSFORMATION REGULATORS  

Transformation regulators are based on isometry and affine transformations. An isometry 

transformation is a collineation i.e. it preserves linearity.  It also preserves, distances, angles, 

areas, parallels, perpendiculars, between-ness and midpoints. The determinant of the 

transformation matrix for an isometry transformation is 1± . Even isometries preserve orientations 

(determinant = ), while odd isometries reverse orientations (determinant = ). A similarity 

transformation is any combination of an isometry with a uniform scaling.  Together, these form 

the group of similarities, (every similarity has an inverse, which is also a similarity, and the 

product of two similarities is a similarity). The group of similarity transformations subsumes the 

group of isometries.  Affine transformations subsume similarity transformations. These preserve 

collinearity and parallelism.  The inverse of an affine transformation is affine, and the product of 

two affine transformations is also affine. Distances and angles, however, are not preserved.  The 

determinant of its coefficient matrix is 

1+ 1−

0≠ .  

Transformation regulators operate by applying an equation (or transformation matrix) to the input 

element to derive the output set of elements. These regulators use the properties of their respective 

transformations to preserve points, lines, and planes, as a visual depiction for the regulators. 

Transformations in space have a polynomial equation. Their arguments are expressed by the 
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coefficients of the (4x4) transformation matrix (using homogenous coordinates). In order for a 

transformation to apply to a shape, it must be multiplied to every vertex. A vector v  is 

transformed by T  resulting in v ′  

Function notation: ')( vvT =   Vector/matrix notation: vTv ='  
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B.2.1. GROUP PROPERTIES OF TRANSFORMATIONS (MORTENSON 1995) 

In general, a group consists of a set of elements and an operator acting on these elements.  In this 

case, the transformations are the elements, and the operator is the composition of transformation.  

In order for a set of transformations to form a group it needs to have the following properties. 

• Closure: SBASBSA ∈⇒∈∧∈ o  if two transformations are in a group then their 

composition is also in the group.  

• Identity: AAIAIAI =∧=∴∃ oo . There exists an identity transformation I, such that A 

composed with I leaves A unchanged. 

• Inverse: . For every transformation A in the group, there 

exists an inverse A-1 such that A composed with A-1 results in the identity 

transformation. 

IAAASA =∴∃∈∀ −− 11........ o

• Associativity:  CBACBA oooo )()( =

• Commutativity: (only for Abelian groups) ABBA oo = . 

The following is a description for each transformation that corresponds to a regulator. It is applied 

about the origin and uses the xyz-coordinate axes.  The common strategies for transforming about 

arbitrary points, lines and planes, are described in section B.3. 
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Translation  ])shape(},,,{[ ndtp1T∆  

Translation is an even isometry. The determinant of its 

coefficient matrix is +1. Translations form an Abelian group 

because of the following: 

The product of two or more translations is a translation 

  czbyaxcbazyx TTT +++= ,,,,,, o

The inverse of a translation is a translation.  

  zyxzyx TT −−−
− = ,,

1
,,

Composition of translation is commutative (the order of 

application is immaterial)  

  Translation Matrix 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢

⎢

⎣

⎡

1000
100
010
001

tz
ty
tx

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

=
⎢
⎢  

 

Rotation    

])shape(},,,{[ ntp α1R∆   or ])])shape(},,{[ np α0R∆  

 
Rotation is an even isometry. Its coefficient matrix has a determinant of 1. Furthermore, a rotation 

matrix is an orthogonal matrix; therefore, its inverse is equal to its transpose. An improper rotation 

is a rotation that has a determinant of –1, and is actually a combination of a rotation and a 

reflection. Any rotation in space can be achieved by means of successive rotations along the three 

principal axes.  All rotations form a group because of the following:  

The inverse of a rotation is a rotation:   θφ −= RR -1

The product of two rotations is a rotation.  θφθφ += RRR o

Composition of rotations is not commutative; except for the product of two rotations with the same 

axis, which yields a rotation about the same axis.  ψθφ RRR

About the z axis (yaw)  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎡

1
'
'
'

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢

⎢

⎣

⎡ −

1000
0100
00cossin
00sincos

φφ
φφ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢

⎢

⎣

⎡

−
1000
0cos0sin
0010
0sin0cos

θθ

θθ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

1000
0cossin0
0sincos0
0001

ψψ
ψψ  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

⎣ 

=
⎢
⎢  

About the y axis (pitch) 

=
⎢
⎢  

About the x axis (roll) 

=  
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Mirror    (Reflection) 

])shape(},{[ np0M∆   ])shape(},,{[ ntp1M∆  ])shape(},,,{[ nvtp2M∆  

Reflections are odd isometries, their determinant is –1.  

A reflection is an involution, meaning it is its own inverse. and  MM-1 = IMM =o

There are three types of reflections: (1) Reflection about a point, also called an inversion, (2) 

Reflection about a line, which in 3D space, is equivalent to a half turn about the line and is not 

really a reflection because the determinant is +1, and (3) Reflection about a plane. Reflection is 

considered the building block of all isometries: a translation can be described using two parallel 

reflections and a rotation can be described using two intersecting reflections.  

• The product of two inversions is a translation. 

• The product of three inversions is an inversion.  

• The product of reflection of parallel planes is a translation 

• The product of reflection of intersecting planes is a rotation about the line of intersection 

of the two planes. 

Inversion about a point      

=  
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x − x

− −

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0100
0010
0001

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎡

−

1000
0100
0010
0001

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎡−

1000
0100
0010
0001

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

1000
0100
0010
0001

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y

  
 

Reflection about the x-axis 

=  
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

1000
0100
0010
0001

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

Reflection about the y-axis 

=  
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0100
0010
0001

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

Reflection about the z-axis 

=  
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

1000
0100
0010
0001

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

Reflection about the x-y plane 

=  

Reflection about the x-z plane 

= ⎣  

Reflection about the y-z plane 

= ⎣  
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Screw Rotation ])shape(},,,,{[ ndtp α11 TR ∆∆  

Screw rotation is a composition of rotation and translation along 

the rotation axis. It can be achieved by matrix multiplication. The 

translation factor is the pitch of the screw. It is also an even 

isometry meaning its determinant is 1. 

 

Screw rotation matrix  

 =  
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

1000
100

00cossin
00sincos

φ
φφ
φφ

t
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

Glide ])shape(},,,{[ ndtp11 MT ∆∆   

 ])shape(},,,,,{[ nedvtp21 MT ∆∆  

Glide reflection is a composition of translation and reflection, 

with the translation vector on the reflection plane. It can be 

achieved by matrix multiplication. 

Glide matrix  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

=  
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0100

010
001

ty
tx

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

Dilation (scale) ])shape(},,{[ nkp0D∆  

 
Isotopic Dilation is a similarity transformation, which has a 

uniform scaling factor k.  

• If  k>1 then its an expansion;  

• If 0<k<1 then it is a contraction,  

• If k < 0 then it is a scaled inversion (or half turn in 

2D space).  

Anisotropic dilation is a non-uniform scaling. It is an affine 

transformation. If the scaling is unidirectional, (only in the x-

direction for instance), it is referred to as strain. Negative factors 

in the dilation matrix’s diagonal coefficients act as a scale 

coupled with a reflection. 

The product of two dilations is a dilation. 

 
 
Isotropic dilation fixing the 
origin 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

=   
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
000
000
000

k
k

k

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

 
 
 
 
 
Anisotropic dilation fixing the 
origin 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

=  
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
000
000
000

z

y

x

k
k

k

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x
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Shear  ])shape(},{[ nk S∆

Shear is an equiareal affine transformation, i.e. it preserves the 

area of shapes it transforms. In general an affine transformation 

multiplies the area by the absolute value of the determinant. In 

case of equiaffine or equiareal transformations, such as shear, 

the determinant of +1.  

Rotation can be expressed as the product of three shears. The 

product of two shears is a shear, and the inverse of a shear is a 

shear. 

 
 

Shear fixing the y-z plane 

= ⎢  
⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣1
'
'

z
y ⎥
⎤

⎢
⎡ 'x ⎤

⎢

⎣

⎡

1000
0100
0010
001 1s

⎥
⎤

⎢
⎡x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢

⎢

⎣

⎡

1000
0100
010
001

2

1

s
s

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

⎥
⎥
⎥
⎥

⎦
⎢
⎢

⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣1
z
y

 

Two shears simultaneously 

=
⎢
⎢  

  
Curve  ])shape(},,,{[ ntp αeC∆       

 ])shape(},,,{[ ntp αhC∆  

 Parametric Implicit 

Circle θ+=θ+= sincos rbyrax 02222 =+++ rzyx

θ=θ= sincos byax

  

Ellipse 
 

 
01

2

2

2

2
=−+

b
y

a
x

ptyptx == 2 042 =− pyx

θ

 

Parabola   

Hyperbola θ
tan
sec

by
ax

=
=

012

2

2

2
=−−

b
y

a
x  

Trigonometric curves θθθθ tan,sin,cos, ==== yyyx   

    
Deformations (Nonlinear transformations) 

Curves Surfaces Volumes 

)('
)('
)('

ufzz
ufyy
ufxx

=
=
=

),('
),('
),('

vufzz
vufyy
vufxx

=
=
=

),,('
),,('
),,('

wvufzz
wvufyy
wvufxx

=
=  
=

 

univariate bivariate trivariate 

C(t) = u(t) C(t) = u(t), v(t) C(t =u(t), v(t), w(t) 

 
Tapering produces a global tapering about the z-axis 
Twisting produces a global twist about the z-axis 

 
Tapering 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

=  
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
0100
00)(0
000)(

zfy
zfx

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

 
Twisting 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

=  
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

1000
0100
00)(cos)(sin
00)(sin)(cos

zfzf
zfzf
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B.3. TRANSFORMING THE GEOMETRY OF REGULATORS 

In order to apply a regulator about an arbitrary, point, axis, or plane, it is necessary to pre and post 

multiply by conjugate translations and rotation matrices.  Below is an example of using this 

strategy to convert a reflection regulator M.  

In order to reflect about a plane parallel to a principal axis, it is necessary to pre and post multiply 

the reflection by the translation matrix. The reflection matrix is translated to the origin then it is 

translated back to its position (The conjugate pair consists of a matrix and its inverse):  -1TMT

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
100
010
001

tz
ty
tx

   
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0100
0010
0001

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

1000
100
010
001

tz
ty
tx

In order to reflect through a rotated plane that passes through the origin, it is necessary to pre and 

post multiply the reflection by the three successive rotation matrices.  

-1-1-1 RRRM RRR ψθφφθψ  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

1000
0100
00cossin
00sincos

φφ
φφ

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0cos0sin
0010
0sin0cos

θθ

θθ

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

1000
0cossin0
0sincos0
0001

ψψ
ψψ  

 ×  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0100
0010
0001

×  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0cossin0
0sincos0
0001

ψψ
ψψ  

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

1000
0cos0sin
0010
0sin0cos

θθ

θθ

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

1000
0100
00cossin
00sincos

φφ
φφ

  

If the rotated plane does not pass through the origin, it is necessary to pre and post multiply the 

above equation by a pair conjugate translations.     
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   -1-1-1-1 T R R R M  R R R T ψθφφθψ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
100
010
001

tz
ty
tx

 ×
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

1000
0100
00cossin
00sincos

φφ
φφ

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0cos0sin
0010
0sin0cos

θθ

θθ

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

1000
0cossin0
0sincos0
0001

ψψ
ψψ  

×  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0100
0010
0001

×  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0cossin0
0sincos0
0001

ψψ
ψψ  

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

1000
0cos0sin
0010
0sin0cos

θθ

θθ

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

1000
0100
00cossin
00sincos

φφ
φφ

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

1000
100
010
001

tz
ty
tx

 

This is a commonly used strategy to define complex transformations though simpler matrices. It is 

applicable to the other regulators, such as Rotation and Dilation as well. For Dilation to fix any 

point in space, it needs to be pre and post multiplied by conjugate translation matrices . For 

the Anisotropic dilation to be applied with respect to any three mutually orthogonal axes, the 

dilation matrix needs to be pre and post multiplied by the conjugate rotation matrices.  

-1TDT
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B.4. VARIATION REGULATORS 

Variational regulators are composed with generative regulators to create a variation in the output 

shapes, by applying a formula to the shape attributes or regulator parameters.  

Exception   ])shapeshape(},{[ n0 −Ξ va E

The exception regulator allows a shape to be controlled differently from the rest of the output set. It 

gives this shape an exclusive formula. 

Rhythm/Gradation  ])shapeshape(},,{[ n0 −Ξ ca f G

The Rhythm regulator applies an additional formula to an attribute of the output set (or to an attribute 

of the regulator).  The rhythm formula uses a coefficient, and ranges from simple to complex. 

Examples include  and  ciaa oldnew ×+= )sin( ciaa oldnew ×+=

Differential   ])shapeshape(},,{[ n0 −Ξ ca f F

The Differential regulator an additional formula to the attribute of the regulator making vary across the 

different inputs.  The differential formula uses a coefficient, and ranges from simple to complex.  

Examples include  and  ciaa oldnew ×+= )sin( ciaa oldnew ×+=
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B.5. CONSTRAINT REGULATORS  

Constraint regulators are based on an evaluation function or formula that determines whether or 

not the input element is within the geometric constraints. These are applied to input shapes.  

Angle   ])shapeshape(},,{[ k1 −Φ modmaxminL

To derive the angle between two shapes, it is necessary to derive the angle between the direction-

vectors of the defining regulators. Since these can be points, lines or planes, we use the following 

formulae to determine the angles between regulators. 

The angle between two lines:  

Dot product of the line vectors 
 

Line1 :  tdpl += 11            

Line1 :  vepl += 22  
θcosvtvt =•  

)/cos( vtvtar •=θ  
 
The angle between two planes: 

Dot product of the plane normals m n and  

θcosnmnm =•  

)/arccos( nmnm •=θ  

 

 
The angle between a line and a plane: 

The complementary angle to the line vector and the plane normal 
 

line : tdpl +=  
plane : n  

For complementary anglesα  and β  
ααβ sin)90cos(cos =−=  

Atntn sin=•  
)/arcsin( tntn •=α   
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Proportion ])shape(},,{[1 dtpPΦ  

The proportion regulator controls a shape by means of its diagonal lines. The proportion can 

control volumetric shapes as well as planar ones. Although proportion regulator is intended for 

rectilinear shapes, it can also be used on non-rectilinear ones.  

The diagonal is the diagonal vector, while the vectors defining the shape are the component 

vectors. For volumes there are additional surface diagonals that can be used for controlling the 

shape.  The surface diagonals have two of the components of the volume diagonal. These are 

computed by means of the direction cosines.  

zyxxyz tttPDt +++= 0  

yxxy ttPDt ++= 0  

zxxz ttPDt ++= 0  

zyyz ttPDt ++= 0  

 xzyzxyxyz DtDtDtPDt +++= 0  

 

Equivalence   ])shapeshape(},{[ n0 −Φ va Q

This is achieved by setting an equivalence relationship between a specific attribute of several 

shapes. 

Dimension     ])shape(},,{[ modmaxminVΦ

The dimension regulator restricts length, area and volume. The dimension regulator computes the 

dimensions of a shape based on the (  and  or n d θ ) parameters of its defining regulators.  

y 

z 

x 
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Boundary    )]shapeshape,shape(}{[B k1bound
2 −Φ o

The boundary regulator controls the position of shapes within the allowable region of a boundary 

shape. It is based on the half space representation.  The boundary regulators tests the shapes with 

the implicit function of the boundary shape’s defining regulators, in order to classify 

whether the bounded shapes are  “in”, “outside” or “on” the boundary shape.  

),,( zyxf

0),,( =zyxf   on  ⇒

0),,( <zyxf   in  ⇒

0),,( >zyxf   out  ⇒

Alignment  ])shapeshape(}{[ k0
0 −Φ pA      

  ])shapeshape(},{[ k0
1 −Φ tpA      

  ])shapeshape(},,{[ k0
2 −Φ vtpA  

  ])shapeshape(},,{[ k0 −Φ rtpCA  

 
The alignment regulator restricts the position of shapes with respect to a point, line, plane or 

circle. 

• If it’s a point alignment, the xyz coordinates of the (starting point) of the shape is 

restricted to this point. 

• If it’s an orthogonal line alignment, for example parallel to the x-axis, y and z 

coordinates of the (starting point) of the shape is restricted, while the x coordinate is 

free. If it is an arbitrary line, it is necessary to determine the closest distance between the 

shape and the line. This is derived by the foot of the perpendicular between the initial 

shape and the line. 

• If it’s an orthogonal plane alignment, for example parallel to the x-plane, the z 

coordinates of the (starting point) of the shape is restricted, and the x and y coordinates 

are free. If it is an arbitrary plane, it is necessary to determine the closest distance 

between the shape and the plane. This is derived by the foot of the perpendicular 

between the initial shape and the plane.  

• A circle alignment restricts elements by determining the closest distance between the 
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shape and the circle (or sphere), and computing the intersection point of circle (or 

sphere) with the line connecting the shape and the center of the circle or sphere.  

 
The foot of perpendicular between a point and a line 

  

),( 21 pplline =          

tdpp ft += 1   

)( 121 ppdpp ft −+=   

0)()( 12 =−•− pppQ ft  

0)()))((( 12121 =−•−+− ppppdpQ  

The distance between Q and the line is the distance between Q and P2. 

2
12

2
12

2
12

121121121

)()()(
))(())(())((

pzpzpypypxpx
pzpzpzQpypypyQypxpxpxQd zx

−+−+−
−−+−−+−−

=  

)(

)(

)(

121

121

121

pzpzdpzpz

pypydpypy

pxpxdpxpx

ft

ft

ft

−+=

−+=

−+=

 

 
Foot of perpendicular between a point and a plane: 

Plane defined by normal [ ]zyx NNNN ,,=  

Point (away from the plane) [ ]zyx QQQQ ,,=  

Point (on the plane) [ ]zyx PPPP 0000 ,,=  

The perpendicular projection of  onto the plane is found by computing the 

perpendicular line (same direction as normal vector) that passes thought ,  then 

finding its intersection with the plane. 

Q

Q

Q 

p1 pft p2

P0

Q 

Pft
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Perpendicular line that passes thought : Q sNQPft +=  

Line on the plane:  0PPft −

Perpendicular point:  0)( 0 =−• PPN ft

222
0 )()(

zyx

zzyyxx

NNN

qNqNqN
NN

PQNs
++

++
=

•
−•−

=  

N
NNN

qNqNqN
QP

zyx

zzyyxx
ft 222

)(

++

++
−=  

Perpendicular distance θcos)( 0PQPQ ft −=−  

Intersection between a line and a circle 
Line  )( 12 QQdQP −+=

)(
)(
)(

zQzQdzQPz
yQyQdyQPy
xQxQdxQPx

121

121

121

−+=
−+=
−+=

 

Sphere centered at  with a radius r described by  ),,( CzCyCxC

2222 rCzPzCyPyCxPx =−+−+− )()()(  

Substituting the equation of the line into the sphere gives a quadratic equation of the 

form 

02 =++ cbdad  

[ ]
[ ] 2

111
2

1
2

1
2

1
222

112112112

2
12

2
12

2
12

rzCzQyCyQxCxQ2zQyQxQCzCyCxc

CzzQzQzQCyyQyQyQCxxQxQxQ2b
zQzQyQyQxQxQa

−++−+++++=

−−+−−+−−=
−+−+−=

))(())(())((
)()()(

 

P 

C 

Q1

Q2
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a
acbb

2
42 −±−

  

• if  then the line does not intersect the sphere 042 <− acb

• if  then the line is tangent to the sphere 042 =− acb

• if  then the line intersect the sphere in two places 042 >− acb
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TOPOLOGICAL REGULATORS 

Topological regulators are also based on an evaluation function or formula that determines 

whether or not the input element is within the topological constraints. 

Distance   ])shape,shape(},,{[ k1modmaxminJΠ

Adjacency test: The distance is a binary relation that is determined by computing the position of 

each shape. The following shows the computation for adjacency along the x axis for rectilinear 

shapes. Non rectilinear shapes are tested thought their bounding volumes.  The end point of the 

shape can be derived from the definition of the regulator.  

Exactly face adjacent along x 

zendszendszstartszstarts
yendsyendsystartsystarts

xendsxstartsxstartsxends

..2..1..2..1
..2..1..2..1
..2..1..2..1

=∧=
=∧=
<∧=

 

 

 
 
 

y 

z 

x 

Face adjacent along x with shift along y 

zendszendszstartszstarts
yendsyendsystartsystarts

xendsxstartsxstartsxends

..2..1..2..1
..2..1..2..1

..2..1..2..1

=∧=
<∧>=

<∧=
 

 
 

Face adjacent along x with shift along y and shift 

along z  

zendszendszstartszstarts
yendsyendsystartsystarts

xendsxstartsxstartsxends

..2..1..2..1
..2..1..2..1

..2..1..2..1

<∧>=
<∧>=

<∧=
 

 

Line adjacent about x – y  

zendszendszstartszstarts
yendsystartsystartsyends
xendsxstartsxstartsxends

..2..1..2..1
..2..1..2..1
..2..1..2..1

=∧=
<∧=
<∧=

 

 

y 

z 

x 

y 

z 

x 

y 

z 

x 
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Point adjacent about x, y, z 

zendszstartszstartszends
systartsyends
sxstartsxends

.1..2..1
.1..2..1
.1..2..1

∧=
∧= yendsystart

xendsxstart

..2.
..2.
..2.

<
<
<∧=

 

 

Interlock Test: The interlock test determines whether the two shapes are interlocking or 

overlapping in 3D. 

 
Interlock along the x 

zendszendszstartszstarts
yendsyendsystartsystarts

xendsxstartsxstartsxends

..2..1..2..1
..2..1..2..1
..2..1..2..1

=∧=
=∧=
<∧>

 

 

 

Interlock along the x and y 

zendszendszstartszstarts
yendsyendsystartsystarts

xendsxstartsxstartsxends

..2..1..2..1
..2..1..2..1
..2..1..2..1

=∧=
=∧=
<∧>

 

 

 

y 

z 

x 

y 

z 

x 

y 

z 

x 

Interlock along x, y, and z 

zendszendszstartszstarts
yendsyendsystartsystarts
xendsxstartsxstartsxends

..2..1..2..1
..2..1..2..1
..2..1..2..1

<∧>
<∧>
<∧>

 

 

 

y 

z 

x 

Connectedness  ])shape,shape({}[ k1CΠ

A shape is connected if and only if it is adjacent. The connectedness regulator ensures that 

connected shapes remain connected, by constraining their endpoints and freeing their other 

variables. 
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B.6. HIERARCHICAL REGULATORS 

Hierarchical regulators define hierarchies of elements.  

Containment  

 ])tconstituentconstituen container,({}[ n0 −Ψ  H

Defines a relationship between entities that is irrelevant of 

geometry. When it is composed with other constraint 

regulators, such as boundary of subdivision, it will have 

geometric implications.  

 Ψ H 

Subshape  

 ])subshapesubshape ,supershape({}[ n0 −Ψ  S

The subshape regulator ensures that the generative 

regulators of both shapes are equivalent and that the 

constraints of the supershape are maintained along the 

subshapes. 

 Ψ S 

 

B.7. OPERATION REGULATORS  

Operational regulators define shapes by means of discrete transformations. These are processing 

intersections of the inputs, in order  to determine the output shapes. 

B.7.1. INTERSECTION OF TWO LINES 

Line ;  ),( 211 PPl = )( 1212 PPaPQ −+=

Line ;  ),( 432 PPl = )( 3432 PPbPQ −+=

21 QQ =  gives the intersection points with two unknowns 

)()( 343121 PPbPPPaP −+=−+  
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)()( 343121 xxbxxxax −+=−+   

)()( 343121 yybyyyay −+=−+   

)()( 343121 zzbzzzaz −+=−+  

))(())(/())(())(( 1234123431343134 yyxxxxyyxxyyyyxxa −−−−−−−−−−=  

))(())(/())(())(( 1234123431123112 yyxxxxyyxxyyyyxxb −−−−−−−−−−=  

You can substitute either of these in their corresponding equations 

)( 121 xxaxx −+=  

)( 121 yyayy −+=  

)( 121 zzazz −+=  

B.7.2. INTERSECTION OF TWO PLANES 

22

11

dpN
dpN

=•
=•

 

The equation of the line of intersection is 

212211 NeNNcNcp ⊗++=  

Substituting: 

22211122

22211111

NNcNNcdpN
NNcNNcdpN
•+•==•
•+•==•

 

2
2122112111122

2
2122112122211

)())(/()(

)())(/()(

NNNNNNNNdNNdc

NNNNNNNNdNNdc

•−•••−•=

•−•••−•=
 

Note: also check if the planes are not parallel: if they are parallel then NN ⊗1 = 0 
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B.7.3. INTERSECTION BETWEEN A LINE AND A PLANE  

Line  dtpQ += 11

Plane  bwavpQ ++= 22

Intersection is when dtpbwavp +=++ 12  

twv
pwvpwv

d
•⊗

•⊗−•⊗
=

)(
)()( 12  

vtw
ptwptwa

•⊗
•⊗−•⊗

=
)(

)()( 21  

wtv
ptvptvb

•⊗
•⊗−•⊗

=
)(

)()( 21  

 

Subdivision      ])shape(},{[ nsZΩ ])planeshape,(},{[ nsPZΩ

The subdivision regulator inputs a shape and generates many subshapes of this shape. The first 

version, , operates by subdividing the generative regulators. It duplicates them and adjusts 

their parameters in order to determine their new position and sizes. It also acts as a super 

regulator that controls these sub regulators.  

ZΩ

The second version, , subdivides the shape according to a cutting plane. The intersections 

are computed, and then the sub-regulators are generated and adjusted to produce the subshapes 

defined by this plane. Differential sweeping regulators are used to define slanted of curved 

planes. 

PZΩ
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Boolean operations 

Union    ])shapeshape({}[ k0 −ΩU

Intersection:     ])shapeshape({}[ k0 −ΩI

Difference:     ])shapeshape({}[ k0 −ΩD

Symmetric Difference:    ])shapeshape({}[ k0 −ΩM

The Boolean regulators input several shapes and output the union, difference or intersection of 

these. The Boolean regulators rely on the half space representation and to determine whether 

the key intersection points are “in”, “on” and “out” of the input shapes.  

0),,( =zyxf  on the plane or curve 

0),,( <zyxf  in the plane or curves 

0),,( >zyxf  out of the plane or curve 

Union = MIN ( , ) ),,( zyxf ),,( zyxg

Intersection = MAX ( , ) ),,( zyxf ),,( zyxg

Difference = MAX ( ,- ) ),,( zyxf ),,( zyxg
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B.8. COMPOSITION OF REGULATORS  

The internal mechanism for composition of regulators depends on the regulator types. 

Composition of transformation regulators is achieved by means of matrix multiplication. 

Composition of the other types of regulators is achieved by means of the sequence of the 

evaluation functions. 

Simultaneous composition    ])shape(},,,,,{[ ndktpp DT
01 DT ∆∆  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

=  
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
100
010
001

tz
ty
tx

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
000
000
000

z

y

x

k
k

k

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

In case of composing regulators of various types  or  the 

transformations are computed, then the operations are computed, then the constraints are 

evaluated.  

)(sAM 11Φ∆ )(sUR1Ω∆

Successive  and partial composition  )])]shape(},,,{[(},,,{[ ntpndtp α∆∆ 11 RT  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

=   and then =  
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

1000
0100
00cossin
00sincos

φφ
φφ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
''
''
''

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
100
010
001

tz
ty
tx

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

B.9. REGULATING REGULATORS 

The formula for the regulator is affected when the regulator is regulated by other regulators. This 

is also achieved by matrix multiplication. For example, if a mirror is rotated, the formula for the 

translation will incorporate the mirror factors.  

)]shape(},,,{[])(},,,{[ 3210 ndtpnθtp 111 TTR ∆∧∆∆ >><><><<  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

=  
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

1000
0100
00cossin
00sincos

φφ
φφ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
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⎢

⎣

⎡

−
1000
0100
0010
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⎦
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⎢
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⎣

⎡
−
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0100
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x
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APPENDIX C                                                                

PATTERN REPRESENTATION AND 

TRANSFORMATION   

 

In this appendix, I illustrate the capacity of the ICE notation to represent all symmetry group 

patterns, and to transform each pattern to every other pattern with the Cyclic, Dihedral, Frieze and 

Wallpaper groups.  In the following examples, the notation is abbreviated to show only relevant 

parameters; and since the generation method is always discrete, it is not depicted. Furthermore, for 

the purpose of brevity, the following regulators will be encapsulated in shorter notations.  

Horizontal translation    HTT ∆=∆ ()]},[{ 01  

Vertical translation    VTT ∆=∆ ()]},[{ 10  

30º translation     30TT ∆=∆ ()]},[{ 13  

60º translation     60TT ∆=∆ ()]},[{ 31  

45º translation     45TT ∆=∆ ()]},[{ 11  

-45º translation     45-TT ∆=−∆ ()]},[{ 11  

Horizontal Mirror    HMM ∆=∆ ()]},[{ 01  

Vertical Mirror:    VMM ∆=∆ ()]},[{ 10  

Horizontal Glide (translation + Mirror): HTMMT ∆=∆∆ ()]},[{ 01  

Vertical Glide (translation + Mirror): VTMMT ∆=∆∆ ()]},[{ 10  
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C.1. CYCLIC AND DIHEDRAL PATTERNS 

 

    
C(2) 

)](}[{ s180R∆  

C(3) 

)](}[{ s120R∆  

C(4) 

)](}[{ s90R∆  

   
C(6) 

)](}[{ s60R∆  

C(8) 

)](}[{ s45R∆  

C(12) 

)](}[{ s30R∆  

   
D(2) 

)])](}[{(}[{ st180 MR ∆∆  

D(3) 

)])](}[{(}[{ st120 MR ∆∆  

D(4) 

)])](}[{(}[{ st90 MR ∆∆  

   
D(6) 

)])](}[{(}[{ st60 MR ∆∆  

D(8) 

)])](}[{(}[{ st45 MR ∆∆  

D(12) 

)])](}[{(}[{ st30 MR ∆∆  

TABLE C.1 - CYCLIC AND DIHEDRAL PATTERNS 

 
 
 
 
 
 

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX C 281   

 



 

 
}{180R∆   

}{120R∆   
}{90R∆   

}{60R∆   
}{45R∆   

}{30R∆  

 }{180R∆  

 }{}{ 120180 RR ∆⇒∆ {}{ 90180 RR 

 
}∆⇒∆  

 
}{}{ 60180 RR ∆⇒∆  

 
}{}{ 45180 RR ∆⇒∆ }{}{ 30180 RR 

 
∆⇒∆  

 

}120{R∆   

}{}{ 180120 RR ∆⇒∆  

 
 }{}{ 90120 RR ∆⇒∆  

 
}{}{ 60120 RR ∆⇒∆  

 
}{}{ 45120 RR ∆⇒∆ {}{ 30120 RR 

 
}∆⇒∆  

 

}{90R∆  

}{}{ 18090 RR ∆⇒∆ {}{ 12090 RR 

 
}∆⇒∆  

 
 }{}{ 6090 RR ∆⇒∆  

 
}{}{ 4590 RR ∆⇒∆ }{}{ 3090 RR 

 
∆⇒∆  

 

}{60R∆  

}  {}{ 18060 RR ∆⇒∆ {}{ 12060 RR

 
}∆⇒∆ {}{ 9060 

 
}RR ∆⇒∆  

 
 }{}{ 4560 RR ∆⇒∆ {}{ 3060 RR 

 
}∆⇒∆  

 

}{45R∆  

}  {}{ 18045 RR ∆⇒∆ {}{ 12045 RR

 
}∆⇒∆ {}{ 9045 

 
}RR ∆⇒∆  

 
}{}{ 6045 RR ∆⇒∆  

 
 }{}{ 3045 RR ∆⇒∆  

 

}{30R∆  

} {}{ 18030 RR ∆⇒∆ {}{ 12030 RR

 
}∆⇒∆ {}{ 9030 

 
}RR ∆⇒∆  

 
}{}{ 6030 RR ∆⇒∆  

 
}{}{ 4530 RR ∆⇒∆  

 
 

MR ∆∆ },{180  

M∆DELETE M 

 
∆DELETE  

}{}{ 120180 RR ∆⇒∆  
M∆DELETE  

}{}{ 90180 RR ∆⇒∆  
M∆DELETE  

}{}{ 60180 RR ∆⇒∆  
M∆DELETE M 

}{}{ 45180 RR ∆⇒∆  
∆DELETE  

}{}{ 30180 RR ∆⇒∆  

MR ∆∆ },{120  

M∆DELETE M 
}{}{ 180120 RR ∆⇒∆  

∆DELETE M 

 
∆DELETE  

}{}{ 90120 RR ∆⇒∆  
M∆DELETE  

}{}{ 60120 RR ∆⇒∆  
M∆DELETE M 

}{}{ 45120 RR ∆⇒∆  
∆DELETE  

}{}{ 30120 RR ∆⇒∆  

MR ∆∆ },{90  

M∆DELETE  
}{}{ 18090 RR ∆⇒∆  

 

M∆DELETE  
}{}{ 12090 RR ∆⇒∆  

M∆DELETE M ∆DELETE  
}{}{ 6090 RR ∆⇒∆  

M∆DELETE M 
}{}{ 4590 RR ∆⇒∆  

∆DELETE  
}{}{ 3090 RR ∆⇒∆  

 

MR ∆∆ },{60  

M∆DELETE M 

}  {}{ 18060 RR ∆⇒∆

∆DELETE  

}{}{ 12060 RR ∆⇒∆  
M∆DELETE  

}{}{ 9060 RR ∆⇒∆  
M∆DELETE M∆DELETE  

}{}{ 4560 RR ∆⇒∆  
M∆DELETE  

}{}{ 3060 RR ∆⇒∆  

 

MR ∆∆ },{45  

M∆DELETE M 

}  {}{ 18045 RR ∆⇒∆

∆DELETE  

}{}{ 12045 RR ∆⇒∆  
M∆DELETE  

}{}{ 9045 RR ∆⇒∆  
M∆DELETE  

}{}{ 6045 RR ∆⇒∆  
M∆DELETE M ∆DELETE

}{}{ 3045 RR ∆⇒∆  

MR ∆∆ },{30  

M∆DELETE M 

}  {}{ 18030 RR ∆⇒∆

∆DELETE  

}{}{ 12030 RR ∆⇒∆  
M∆DELETE

}{}{ 9030 RR ∆⇒∆  
M∆DELETE  

}{}{ 6030 RR ∆⇒∆  
M∆DELETE  

}{}{ 4530 RR ∆⇒∆  
M∆DELETE  

 TABLE C.2  - TRANSFORMATION ACROSS CYCLIC AND DIHEDRAL PATTERNS  
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MR ∆∆ },{180   

MR ∆∆ },{120   
MR ∆∆ },{90   

MR ∆∆ },{60   
MR ∆∆ },{45   

MR ∆∆ },{30  

}{180R∆  

M∆INSERT M 
 

∆INSERT  
}{}{ 120180 RR ∆⇒∆  

M∆INSERT  
}{}{ 90180 RR ∆⇒∆  

M∆INSERT  
}{}{ 60180 RR ∆⇒∆  

M∆INSERT M 
}{}{ 45180 RR ∆⇒∆  

∆INSERT  
}{}{ 30180 RR ∆⇒∆

}{120R∆  

M∆INSERT M 
}{}{ 180120 RR ∆⇒∆  

∆INSERT M 
 

∆INSERT  
}{}{ 90120 RR ∆⇒∆  

M∆INSERT  
}{}{ 60120 RR ∆⇒∆  

M∆INSERT M 
}{}{ 45120 RR ∆⇒∆  

∆INSERT  
}{}{ 30120 RR ∆⇒∆

}{90R∆  

M∆INSERT  
}{}{ 18090 RR ∆⇒∆  

M∆INSERT  
}{}{ 12090 RR ∆⇒∆  

M∆INSERT M 
 

∆INSERT  
}{}{ 6090 RR ∆⇒∆  

M∆INSERT M 
}{}{ 4590 RR ∆⇒∆  

∆INSERT  
}{}{ 3090 RR ∆⇒∆  

}{60R∆  

M∆INSERT M 
}{}{ 18060 RR ∆⇒∆  

∆INSERT  
}{}{ 12060 RR ∆⇒∆  

M∆INSERT  
}{}{ 9060 RR ∆⇒∆  

M∆INSERT M∆INSERT 
 

 
}{}{ 4560 RR ∆⇒∆  

M∆INSERT  
}{}{ 3060 RR ∆⇒∆  

}{45R∆  

M∆INSERT M 
}{}{ 18045 RR ∆⇒∆  

∆INSERT  
}{}{ 12045 RR ∆⇒∆  

M∆INSERT  
}{}{ 9045 RR ∆⇒∆  

M∆INSERT  
}{}{ 6045 RR ∆⇒∆  

M∆INSERT M 
 

∆INSERT  
}{}{ 3045 RR ∆⇒∆  

}{30R∆  

M∆INSERT M 
}{}{ 18030 RR ∆⇒∆  

∆INSERT  
}{}{ 12030 RR ∆⇒∆  

M∆INSERT  
}{}{ 9030 RR ∆⇒∆  

M∆INSERT  
}{}{ 6030 RR ∆⇒∆  

M∆INSERT  
}{}{ 4530 RR ∆⇒∆  

M∆INSERT  
 

MR ∆∆ },{180  

 }{}{ 120180 RR ∆⇒∆ }{}{ 90180 RR 
 

∆⇒∆  
 

}{}{ 60180 RR ∆⇒∆  
 

}{}{ 45180 RR ∆⇒∆ }{}{ 30180 RR 
 

∆⇒∆

 

MR ∆∆ },{120  

}{}{ 180120 RR ∆⇒∆  
 

 }{}{ 90120 RR ∆⇒∆  
 

}{}{ 60120 RR ∆⇒∆  
 

}{}{ 45120 RR ∆⇒∆ }{}{ 30120 RR 
 

∆⇒∆

 

MR ∆∆ },{90  

}{}{ 18090 RR ∆⇒∆ }{}{ 12090 RR 
 

∆⇒∆  
 

 }{}{ 6090 RR ∆⇒∆  
 

}{}{ 4590 RR ∆⇒∆ }{}{ 3090 RR 
 

∆⇒∆  
 

MR ∆∆ },{60  

}{}{ 18060 RR ∆⇒∆ }{}{ 12060 RR 
 

∆⇒∆ }{}{ 9060 
 

RR ∆⇒∆  
 

 }{}{ 4560 RR ∆⇒∆ }{}{ 3060 RR 
 

∆⇒∆  
 

MR ∆∆ },{45  

}{}{ 18045 RR ∆⇒∆ }{}{ 12045 RR ∆⇒∆ }{}{ 9045 
 

RR ∆⇒∆  
 

}{}{ 6045 RR ∆⇒∆  
 

 }{}{ 3045 RR ∆⇒∆  
 

MR ∆∆ },{30  

}{}{ 18045 RR ∆⇒∆ }{}{ 12030 RR 
 

∆⇒∆ }{}{ 9030 
 

RR ∆⇒∆  
 

}{}{ 6030 RR ∆⇒∆  
 

}{}{ 4530 RR ∆⇒∆  
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C.2. FRIEZE PATTERNS 

 

 

 

p111 

)](},[{ s01T∆  

 

  
p1m1 

)])](},[{(},[{ s0101 MT ∆∆  

pm11 

)])](},[{(},[{ s1001 MT ∆∆  

  
pmm2 

)])])](}1,0[{(

(}0,1[{(}0,1[{

sM

MT

∆

∆∆
 

p112 

)])](}[{(},[{ s18001 RT ∆∆  

  
p1a1 

)](},[{ s01MT∆∆  

pma2 

)])](},[{(},[{ s1001 MMT ∆∆∆  

TABLE C.4 - FRIEZE PATTERNS 
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HT∆  

 
HH TM ∆∆ ,  

 
HV TM ∆∆ ,  

 
HVH TMM ∆∆∆ ,,  

 
HTR ∆∆ },{180  

 
 

HTM∆  
 

HV TMM ∆∆ ,  

 
HT∆  

 

 HM∆INSERT VM 
 

∆INSERT M 
 

V∆INSERT

HM

 
∆INSERT

{180INSERT R
 

 

}∆  
 

HM∆COMPOSE VM 
 

∆INSERT  
 

HM∆COMPOSE  
 

 
HH TM ∆∆ ,

HM∆DELETE

 

 

 
 

 VH MM ∆⇒∆  
 

VM∆INSERT  
 }{180

REPLACE
RMH ∆⇒∆

 

 
 

HM∆DELETE

HM∆COMPOSE

VH MM 
 

 
 

∆⇒∆  
 

HM∆COMPOSE  
 

 
HV TM ∆∆ ,

VM∆DELETE HV MM ∆⇒∆

 

 

 
 

 
 

 HM∆INSERT  
}{180

REPLACE
RMV ∆⇒∆

 

 
 

VM∆DELETE

HM∆COMPOSE

HM 
 

 
 

∆COMPOSE  
 

 
HVH TMM ∆∆∆ ,,

M∆DELETE

HM∆DELETE
HM∆DELETE HM

 

 

V
 
 

 

 
 

∆DELETE  
 

 HM∆DELETE  
 

}{180
REPLACE

RMV ∆⇒∆
 

 

VM∆DELETE

HM∆DELETE

HM∆COMPOSE

HM 
 

 
 

 

∆DELETE  
 

HM∆COMPOSE  
 

 
HTR ∆∆ },{180

}{180DELETE R∆

 

 

 
 HMR ∆⇒∆ }{180

REPLACE  

 
VMR ∆⇒∆ }{180

REPLACE  

 

HM∆INSERT  
 

VMR ∆⇒∆ }{180
REPLACE  

 

 } {180DELETE R∆

 
HM∆COMPOSE  

VMR ∆⇒∆ }{180
REPLACE  

 
HM∆COMPOSE  

 
HTM∆

HM∆REMOVE HM∆INSERT VM

 

 
 

 
 

HM∆REMOVE  
 
 

∆INSERT  
 

HM∆REMOVE  
 

HM∆INSERT

VM

 
∆INSERT  

 
HM∆REMOVE  

 

}{180INSERT R∆  
 

HM∆REMOVE  
 

 VM∆INSERT  
 

 
HV TMM ∆∆ ,

VM∆DELETE HV MM ∆⇒∆ HM

 

 

 
 

HM∆REMOVE  

 
 

HM∆REMOVE  
 

∆REMOVE HM 
 

∆INSERT  
 

HM∆REMOVE  
 
 

}{180
REPLACE

RMV ∆⇒∆
 

 
HM∆REMOVE

VM∆DELETE
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C.3. WALLPAPER PATTERNS  

 
 

 
 

p6 

)])]

)](}[{

(},[{(},[{

  

s60

0131

R

TT

∆

∆∆
 

p6mm 

)])]

)])](},[{(}[{

(},[{(},[{

   

s1060

0131

MR

TT

∆∆

∆∆

 

 

   
p3 

)])]

)](}[{

(},[{(},[{

  

s120

0131

R

TT

∆

∆∆
 

 

p3m1 

)])]

)])](},[{(}[{

(},[{(},[{

   

s10120

1310

MR

TT

∆∆

∆∆

 

p31m 

)])]

)])](},[{(}[{

(},[{(},[{

   

s10120

0131

MR

TT

∆∆

∆∆

 

 
 

  

p4 

)])]

)](}[{

(},[{(},[{

  

s90

0110

R

TT

∆

∆∆
 

p4mm 

)])]

)])](},[{(}[{

(},[{(},[{

  

s1090

0110

MR

TT

∆∆

∆∆

 

p4g 

)])]

)](}[{

(},[{(},[{

  

s90

0110

R

TMTM

∆

∆∆
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p2 

)])]

)](}[{

(},[{(},[{

  

s180

0110

R

TT

∆

∆∆
 

cmm 

)])]

)])](},[{(}[{

(},[{(},[{

  

s10180

0110

MR

TT

∆∆

∆∆

 

pmm 

)])]

)])](},[{(},[{

(},[{(},[{

  

s1001

0110

MM

TT

∆∆

∆∆

 

   
pmg 

)])]

)])](},[{(}[{

(},[{(},[{

  

s10180

0110

MR

TTM

∆∆

∆∆

 

pgg 

)])]

}0,1[{(}1,0[{

  

TMTM ∆∆
 

pg 

)])]

}0,1[{(}1,0[{

  

TTM ∆∆
 

 

   
p1 

)])]

},[{(},[{

  

0110 TT ∆∆
 

 

pm 

)])]

)](},[{

(},[{(},[{

   

s10

0110

M

TT

∆

∆∆
 

cm 

)])]

)](},[{

(},[{(},[{

   

s10

1111

M

TT

∆

∆−∆
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p6 

60H TT
R

∆∆
∆

,
}{60  

 

p6m 

60H

V

TT
R ,M

∆∆
∆∆

,
}{60  

p3 

60H TT
R

∆∆
∆

,
}{120  

p3m1 

V30

V

TT
RM

∆∆
∆∆

,
}{, 120  

 
p31m 

60H

V

TT
RM

∆∆
∆∆

,
}{, 120  

 
 

 
p6 

60H TT
R

∆∆
∆

,
}{60  

 VM∆INSERT  }{}{ 12060 RR ∆⇒∆  VM∆INSERT

}{}{ 12060 RR ∆⇒∆  
30H TT ∆⇒∆  
V60 TT ∆⇒∆  

VM∆INSERT  
}{}{ 12060 RR ∆⇒∆  

 

 

 
p6m 

60H

V

TT
R ,M

∆∆
∆∆

,
}{60  

VM∆DELETE   VM∆DELETE  
}{}{ 12060 RR ∆⇒∆  

}{}{ 12060 RR ∆⇒∆  
30H TT ∆⇒∆  
V60 TT ∆⇒∆  

}{}{ 12060 RR ∆⇒∆  
 
 

 

 
p3 

60H TT
R

∆∆
∆

,
}{120  

}{}{ 60120 RR ∆⇒∆  
VM∆INSERT  

}{}{ 60120 RR ∆⇒∆  
 VM∆INSERT  

30H TT ∆⇒∆  
V60 TT ∆⇒∆  

VM∆INSERT  
 
 

 

 
p3m1 

V30

V

TT
RM

∆∆

∆∆

,
}{, 120  

VM∆DELETE

}{}{ 60120 RR ∆⇒∆  
H30 TT ∆⇒∆  

60V TT ∆⇒∆  

}{}{ 60120 RR ∆⇒∆  
H30 TT ∆⇒∆  

60V TT ∆⇒∆  

VM∆DELETE  
H30 TT ∆⇒∆  

60V TT ∆⇒∆  

 H30 TT ∆⇒∆  
60V TT ∆⇒∆  

 

 
p31m 

60H

V

TT
RM

∆∆
∆∆

,
}{, 120  

VM∆DELETE

}{}{ 60120 RR ∆⇒∆  
 
 
 
 

}{}{ 60120 RR ∆⇒∆  
 
 

VM∆DELETE  
 
 

30H TT ∆⇒∆  
V60 TT ∆⇒∆  
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p6 

60H TT
R

∆∆
∆

,
}{60  

 

p6m 

60H

V

TT
R ,M

∆∆
∆∆

,
}{60  

 
p3 

60H TT
R

∆∆
∆

,
}{120  

 
p3m1 

V30

V

TT
RM

∆∆
∆∆

,
}{, 120  

 
p31m 

60H

V

TT
RM

∆∆
∆∆

,
}{, 120  

 
 

 
p4 

VH TT
R

∆∆
∆

,
}{90  

}{}{ 6090R R  ∆⇒∆

60V TT ∆⇒∆  
 

VM∆INSERT  
}{}{ 6090 RR ∆⇒∆  

60V TT ∆⇒∆  
 

}{}{ 12090 RR ∆⇒∆  
60V TT ∆⇒∆  

 

VM∆INSERT  
}{}{ 12090 RR ∆⇒∆  

30H TT ∆⇒∆  
 

VM∆INSERT  
}{}{ 12090 RR ∆⇒∆  

60V TT ∆⇒∆  
 

 

 
p4m 

VH

V

TT
R ,M

∆∆

∆∆

,
}{90  

VM∆DELETE  
}{}{ 6090 RR ∆⇒∆  

60V TT ∆⇒∆  
 

}{}{ 6090 RR ∆⇒∆  
60V TT ∆⇒∆  

 

VM∆DELETE  
}{}{ 12090 RR ∆⇒∆  

60V TT ∆⇒∆  
 

}{}{ 12090 RR ∆⇒∆  
30H TT ∆⇒∆  

 

}{}{ 12090 RR ∆⇒∆  
60V TT ∆⇒∆  

 

 

 
p4g 

VH TMTM
R

∆∆
∆

,
}{90  

}{}{ 6090 RR ∆⇒∆  
60V TT ∆⇒∆  

 
HM∆REMOVE  
VM∆REMOVE  

 

VM∆INSERT  
}{}{ 6090 RR ∆⇒∆  

60V TT ∆⇒∆  
 

HM∆REMOVE  
VM∆REMOVE  

 

}{}{ 12090 RR ∆⇒∆  
60V TT ∆⇒∆  

 
HM∆REMOVE  
VM∆REMOVE  

 

VM∆INSERT  
}{}{ 12090 RR ∆⇒∆  

30H TT ∆⇒∆  
 

H
 M∆REMOVE

VM∆REMOVE  
 

VM∆INSERT  
}{}{ 12090 RR ∆⇒∆  

60V TT ∆⇒∆  
 

HM∆REMOVE  
VM∆REMOVE  

 

 

 
p2 

VH TT
R

∆∆
∆

,
}{180  

}{}{ 60180 RR ∆⇒∆  
60V TT ∆⇒∆  

 

VM∆INSERT  
}{}{ 60180 RR ∆⇒∆  

60V TT ∆⇒∆  
 

}{}{ 120180 RR ∆⇒∆  
60V TT ∆⇒∆  

 

VM∆INSERT  
}{}{ 120180 RR ∆⇒∆  

30H TT ∆⇒∆  
 

VM∆INSERT  
}{}{ 120180 RR ∆⇒∆  

60V TT ∆⇒∆  
 

 

 
cmm 

VH

V

TT
R ,M

∆∆
∆∆

,
}{180  

VM∆DELETE  
}{}{ 60180 RR ∆⇒∆  

60V TT ∆⇒∆  
 

}{}{ 60180 RR ∆⇒∆  
60V TT ∆⇒∆  

 

VM∆DELETE  
}{}{ 120180 RR ∆⇒∆  

60V TT ∆⇒∆  
 

}{}{ 120180 RR ∆⇒∆  
30H TT ∆⇒∆  

 

}{}{ 120180 RR ∆⇒∆  
60V TT ∆⇒∆  

 

 

 
pmm 

VH

HV

TT
MM

∆∆
∆∆

,
,  

VM∆DELETE  
 

}{60
REPLACE

RMH ∆⇒∆
 

 
60V TT ∆⇒∆  

 
 

}{60
REPLACE

RMH ∆⇒∆
 

 
60V TT ∆⇒∆  

 
 

VM∆DELETE  
 

}{120
REPLACE

RMH ∆⇒∆
 

 
60V TT ∆⇒∆  

 

}{120
REPLACE

RMH ∆⇒∆
 

 
30H TT ∆⇒∆  

 
 

}{120
REPLACE

RMH ∆⇒∆
 

 
60V TT ∆⇒∆  
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p6 

60H TT
R

∆∆
∆

,
}{60  

 

p6m 

60H

V

TT
R ,M

∆∆
∆∆

,
}{60  

p3 

60H TT
R

∆∆
∆

,
}{120  

p3m1 

V30

V

TT
RM

∆∆
∆∆

,
}{, 120  

 
p31m 

60H

V

TT
RM

∆∆
∆∆

,
}{, 120  

 
 

 
p1 

VH TT ∆∆ ,  

}INSERT R∆ {60  
60V TT ∆⇒∆  

 

}{60INSERT R∆  
VM∆INSERT  

60V TT ∆⇒∆  
 

}{120INSERT R∆  
60V TT ∆⇒∆  

 

}{120INSERT R∆  
VM∆INSERT  

30H TT ∆⇒∆  
 

}{120INSERT R∆  
VM∆INSERT  

60V TT ∆⇒∆  
 

 

 
pm 

VH

V

TT
M

∆∆
∆

,

 

VM∆DELETE  
}{60INSERT R∆  

60V TT ∆⇒∆  
 

}{60INSERT R∆  
60V TT ∆⇒∆  

 

VM∆DELETE  
}{120INSERT R∆  

60V TT ∆⇒∆  
 

}{120INSERT R∆  
30H TT ∆⇒∆  

 

}{120INSERT R∆  
60V TT ∆⇒∆  

 

 

 
cm 

45-45

V

TT
M

∆∆
∆

,

 

VM∆DELETE  
}{60INSERT R∆  

H45 TT ∆⇒∆  
6045- TT ∆⇒∆  

 

}{60INSERT R∆  
H45 TT ∆⇒∆  
6045- TT ∆⇒∆  

 

VM∆DELETE  
}{120INSERT R∆  

H45 TT ∆⇒∆  
6045- TT ∆⇒∆  

 

}{120INSERT R∆  
3045 TT ∆⇒∆  
V45- TT ∆⇒∆  

 

}{120INSERT R∆  
H45 TT ∆⇒∆  
6045- TT ∆⇒∆  

 

 

 
pmg 

VH

V

TMT
RM

∆∆
∆∆

,
}{, 180  

VM∆DELETE  
}{}{ 60180 RR ∆⇒∆  

60V TT ∆⇒∆  
 

VM∆REMOVE  
 

}{}{ 60180 RR ∆⇒∆  
60V TT ∆⇒∆  

 
VM∆REMOVE  

 

VM∆DELETE  
}{}{ 120180 RR ∆⇒∆

60V TT ∆⇒∆  
 

VM∆REMOVE  
 

}{}{ 120180 RR ∆⇒∆

 
30H TT ∆⇒∆  

 
VM∆REMOVE  

 

}{}{ 120180 RR ∆⇒∆

 
60V TT ∆⇒∆  

 
VM∆REMOVE  

 

 

pgg 

VH TMTM
R

∆∆
∆

,
}{180  

}{}{ 60180 RR ∆⇒∆

60V TT ∆⇒∆  
 

VM∆REMOVE  
HM∆REMOVE  

 

VM∆INSERT  
}{}{ 60180 RR ∆⇒∆  

60V TT ∆⇒∆  
 

VM∆REMOVE  
HM∆REMOVE  

 

}{}{ 120180 RR ∆⇒∆

60V TT ∆⇒∆  
 

VM∆REMOVE  
HM∆REMOVE  

 

VM∆INSERT  
}{}{ 120180 RR ∆⇒∆

30H TT ∆⇒∆  
 

VM∆REMOVE  
HM∆REMOVE  

 

VM∆INSERT  
}{}{ 120180 RR ∆⇒∆

60V TT ∆⇒∆  
 

VM∆REMOVE  
HM∆REMOVE  

 

 

pg 
VH TMT ∆∆ ,  

}{60INSERT R∆  
60V TT ∆⇒∆  

 
VM∆REMOVE  

 

VM∆INSERT  
}{60INSERT R∆  

60V TT ∆⇒∆  
 

VM∆REMOVE  
 

}{120INSERT R∆  
60V TT ∆⇒∆  

 
VM∆REMOVE  

 

VM∆INSERT  
}{120INSERT R∆  

30H TT ∆⇒∆  
 

VM∆REMOVE  
 

VM∆INSERT  
}{120INSERT R∆  

60V TT ∆⇒∆  
 

VM∆REMOVE  
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p4  

VH TT
R

∆∆
∆

,
}{90  

 

p4m 

VH

V

TT
R ,M

∆∆
∆∆

,
}{90  

p4g 

VH TMTM
R

∆∆
∆

,
}{90  

p2 

VH TT
R

∆∆
∆

,
}{180  

 
cmm 

VH

V

TT
R ,M

∆∆
∆∆

,
}{180  

pmm 

VH

HV

TT
MM

∆∆
∆∆

,
,  

 
p6 

60H TT
R

∆∆
∆

,
}{60  

}{}{ 9060 RR ∆⇒∆  
V60 TT ∆⇒∆  

 

VM∆INSERT  
}{}{ 9060 RR ∆⇒∆  

V60 TT ∆⇒∆  

}{}{ 9060 RR ∆⇒∆  
V60 TT ∆⇒∆  

 
VM∆COMPOSE  
HM∆COMPOSE  

 
 

}{}{ 18060 RR ∆⇒∆  
V60 TT ∆⇒∆  

 

VM∆INSERT  
}{}{ 18060 RR ∆⇒∆  

V60 TT ∆⇒∆  
 

VM∆INSERT  
 

HMR ∆⇒∆ }{60
REPLACE  

 
V60 TT ∆⇒∆  

 

 
p6m 

60H

V

TT
R ,M

∆∆

∆∆

,
}{60  

VM∆DELETE  
}{}{ 9060 RR ∆⇒∆  

V60 TT ∆⇒∆  
 

}{}{ 9060 RR ∆⇒∆  
V60 TT ∆⇒∆  

 

VM∆DELETE  
}{}{ 9060 RR ∆⇒∆  

V60 TT ∆⇒∆  
 

VM∆COMPOSE  
HM∆COMPOSE  

 

VM∆DELETE  
}{}{ 18060 RR ∆⇒∆  

V60 TT ∆⇒∆  
 

}{}{ 18060 RR ∆⇒∆  
V60 TT ∆⇒∆  

 
HMR ∆⇒∆ }{60

REPLACE  

 
V60 TT ∆⇒∆  

 

 
p3 

60H TT
R

∆∆
∆

,
}{120  

}{}{ 90120 RR ∆⇒∆  
V60 TT ∆⇒∆  

 

VM∆INSERT  
}{}{ 90120 RR ∆⇒∆  

V60 TT ∆⇒∆  
 

}{}{ 90120 RR ∆⇒∆  
V60 TT ∆⇒∆  

 
VM∆COMPOSE  
HM∆COMPOSE  

 

}{}{ 180120 RR ∆⇒∆

V60 TT ∆⇒∆  
VM∆INSERT  

}{}{ 180120 RR ∆⇒∆

V60 TT ∆⇒∆  
 

VM∆INSERT  
 

HMR ∆⇒∆ }{120
REPLACE  

 
V60 TT ∆⇒∆  

 

 
p3m1 

V30

V

TT
RM

∆∆

∆∆

,
}{, 120  

VM∆DELETE  
}{}{ 90120 RR ∆⇒∆  

H30 TT ∆⇒∆  

}{}{ 90120 RR ∆⇒∆  
H30 TT ∆⇒∆  

VM∆DELETE  
}{}{ 90120 RR ∆⇒∆  

H30 TT ∆⇒∆  
 

VM∆COMPOSE  
HM∆COMPOSE  

 
 

VM∆DELETE  
}{}{ 180120 RR ∆⇒∆

H30 TT ∆⇒∆  

}{}{ 180120 RR ∆⇒∆

H30 TT ∆⇒∆  
HMR ∆⇒∆ }{120

REPLACE  

 
H30 TT ∆⇒∆  

 
p31m 

60H

V

TT
RM

∆∆
∆∆

,
}{, 120  

VM∆DELETE  
}{}{ 90120 RR ∆⇒∆  

V60 TT ∆⇒∆  
 

}{}{ 90120 RR ∆⇒∆  
V60 TT ∆⇒∆  

 

VM∆DELETE  
}{}{ 90120 RR ∆⇒∆  

V60 TT ∆⇒∆  
 

VM∆COMPOSE  
HM∆COMPOSE  

 
 

VM∆DELETE  
}{}{ 180120 RR ∆⇒∆

V60 TT ∆⇒∆  
 

}{}{ 180120 RR ∆⇒∆

V60 TT ∆⇒∆  
 

HMR ∆⇒∆ }{120
REPLACE  

 
V60 TT ∆⇒∆  

TABLE C.11 - TRANSFORMATIONS ACROSS  WALLPAPER PATTERNS 
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p4  

VH TT
R

∆∆
∆

,
}{90  

 

p4m 

VH

V

TT
R ,M

∆∆
∆∆

,
}{90  

p4g 

VH TMTM
R

∆∆
∆

,
}{90  

p2 

VH TT
R

∆∆
∆

,
}{180  

 
cmm 

VH

V

TT
R ,M

∆∆
∆∆

,
}{180  

pmm 

VH

HV

TT
MM

∆∆
∆∆

,
,  

 
p4 

VH TT
R

∆∆
∆

,
}{90  

 VM∆INSERT  
 

VM∆COMPOSE  
HM∆COMPOSE  

 

}{}{ 18090 RR ∆⇒∆  
 

VM∆INSERT  
}{}{ 18090 RR ∆⇒∆  

 

VM∆INSERT  

HMR ∆⇒∆ }{90
REPLACE  

 

 
p4m 

VH

V

TT
R ,M

∆∆

∆∆

,
}{90  

VM∆DELETE  
 

 VM∆DELETE  
 

V
 M∆COMPOSE

HM∆COMPOSE  
 

VM∆DELETE  
}{}{ 18090 RR ∆⇒∆  

 

}{}{ 18090 RR ∆⇒∆  
 HMR ∆⇒∆ }{90

REPLACE  

 

 
p4g 

VH TMTM
R

∆∆
∆

,
}{90  

VM∆REMOVE  
HM∆REMOVE  

 

VM∆INSERT  
 

VM∆REMOVE  
HM∆REMOVE  

 

 }{}{ 18090 RR ∆⇒∆  
 

VM∆REMOVE  
HM∆REMOVE  

 

VM∆INSERT  
}{}{ 18090 RR ∆⇒∆  

 
VM∆REMOVE  
HM∆REMOVE  

 

VM∆INSERT  
 

HMR ∆⇒∆ }{90
REPLACE  

 
V

 M∆REMOVE

HM∆REMOVE  
 

 
p2 

VH TT
R

∆∆
∆

,
}{180  

}{}{ 90180 RR ∆⇒∆  
 

VM∆INSERT  
}{}{ 90180 RR ∆⇒∆  

 

}{}{ 90180 RR ∆⇒∆  
 

V
 M∆COMPOSE

HM∆COMPOSE  
 

 VM∆INSERT  
 

VM∆INSERT  
 

HMR ∆⇒∆ }{180
REPLACE  

 

 
cmm 

VH

V

TT
R ,M

∆∆
∆∆

,
}{180  

VM∆DELETE  
}{}{ 90180 RR ∆⇒∆  

 

}{}{ 90180 RR ∆⇒∆  
VM∆DELETE  

 
}{}{ 90180 RR ∆⇒∆  

 
V

 M∆COMPOSE

HM∆COMPOSE  
 

VM∆DELETE  
 

 
HMR ∆⇒∆ }{180

REPLACE  

 
pmm 

VH

HV

TT
MM

∆∆
∆∆

,
,  

VM∆DELETE  
 

}{90
REPLACE

RMH ∆⇒∆
 

 

}{90
REPLACE

RMH ∆⇒∆
 VM∆DELETE  

 

}{90
REPLACE

RMH ∆⇒∆
 

 
VM∆COMPOSE  
HM∆COMPOSE  

 

VM∆DELETE  
 

}{180
REPLACE

RMH ∆⇒∆
 

 

}{180
REPLACE

RMH ∆⇒∆
  

TABLE C.12 - TRANSFORMATIONS ACROSS WALLPAPER PATTERNS 
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p4  

VH TT
R

∆∆
∆

,
}{90  

 

p4m 

VH

V

TT
R ,M

∆∆
∆∆

,
}{90  

p4g 

VH TMTM
R

∆∆
∆

,
}{90  

p2 

VH TT
R

∆∆
∆

,
}{180  

 
cmm 

VH

V

TT
R ,M

∆∆
∆∆

,
}{180  

pmm 

VH

HV

TT
MM

∆∆
∆∆

,
,  

 
p1 

VH TT ∆∆ ,  

}{90INSERT R∆  
 

VM∆INSERT  
}{90INSERT R∆  

 

}{90INSERT R∆  
 

VM∆COMPOSE  
HM∆COMPOSE  

 

}{180INSERT R∆  
 

VM∆INSERT  
}{180INSERT R∆  

 

VM∆INSERT  
HM∆INSERT  

 

 
pm 

VH

V

TT
M

∆∆
∆

,

 

}{90
REPLACE

RMV ∆⇒∆
 

 

}{90INSERT R∆  
 }{90

REPLACE
RMV ∆⇒∆

 

 
VM∆COMPOSE  
HM∆COMPOSE  

 

}{180
REPLACE

RMV ∆⇒∆
 

 

}{180INSERT R∆  
 

HM∆INSERT  
 

 
cm 

45-45

V

TT
M

∆∆
∆

,

 

}{90
REPLACE

RMV ∆⇒∆
 

 
H45 TT ∆⇒∆  
V45- TT ∆⇒∆  

 

}{90INSERT R∆  
H45 TT ∆⇒∆  
V45- TT ∆⇒∆  

 

}{90
REPLACE

RMV ∆⇒∆
 

 
H45 TT ∆⇒∆  
V45- TT ∆⇒∆  

 
VM∆COMPOSE  
HM∆COMPOSE  

 

}{180
REPLACE

RMV ∆⇒∆
 

 
H45 TT ∆⇒∆  
V45- TT ∆⇒∆  

 

}{180INSERT R∆  
 

H45 TT ∆⇒∆  
V45- TT ∆⇒∆  

 

HM∆INSERT  
 

H45 TT ∆⇒∆  
V45- TT ∆⇒∆  

 

 
pmg 

VH

V

TMT
RM

∆∆
∆∆

,
}{, 180  

VM∆DELETE  
}{}{ 90180 RR ∆⇒∆  

 
VM∆REMOVE  

 

}{}{ 90180 RR ∆⇒∆  
 

VM∆REMOVE  
 

VM∆DELETE  
}{}{ 90180 RR ∆⇒∆  

 
HM∆COMPOSE  

 

VM∆DELETE  
 

VM∆REMOVE  
 

VM∆REMOVE  
 HMR ∆⇒∆ }{180

REPLACE  

 
VM∆REMOVE  

pgg 

VH TMTM
R

∆∆
∆

,
}{180  

}{}{ 90180 RR ∆⇒∆  
 

VM∆REMOVE  
HM∆REMOVE  

 

VM∆INSERT  
}{}{ 90180 RR ∆⇒∆  

 
VM∆REMOVE  
HM∆REMOVE  

 

}{}{ 90180 RR ∆⇒∆  
 

VM∆REMOVE  
HM∆REMOVE  

VM∆INSERT  
 

VM∆REMOVE  
HM∆REMOVE  

 

VM∆INSERT  
 

HMR ∆⇒∆ }{180
REPLACE  

 
VM∆REMOVE  
HM∆REMOVE  

pg 
VH TMT ∆∆ ,  

}{90INSERT R∆  
 

VM∆COMPOSE  
 

VM∆INSERT  
}{90INSERT R∆  

 
VM∆REMOVE  

 

}{90INSERT R∆  
 

HM∆COMPOSE  
 

}{180INSERT R∆  
 

VM∆REMOVE  
 

VM∆INSERT  
}{180INSERT R∆  

 
VM∆REMOVE  

 

VM∆INSERT  
HM∆INSERT  

 
VM∆REMOVE  

 

TABLE C.13 -TRANSFORMATIONS ACROSS  WALLPAPER PATTERNS 
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p1 

VH TT ∆∆ ,  

 
pm 

VH

V

TT
M

∆∆
∆

,

 

 
cm 

45-45

V

TT
M

∆∆
∆

,

 

 
pmg 

VH

V

TMT
RM

∆∆
∆∆

,
}{, 180  

pgg 

VH TMTM
R

∆∆
∆

,
}{180  

pg 
VH TMT ∆∆ ,  

 
p6 

60H TT
R

∆∆
∆

,
}{60  

}{60DELETE R∆  
V60 TT ∆⇒∆  

 

VM∆INSERT  
}60DELETE R{∆  

V60 TT ∆⇒∆  
 

VM∆INSERT  
}{60DELETE R∆  

45H TT ∆⇒∆  
45-60 TT ∆⇒∆  

 

VM∆INSERT  
}{}{ 18060 RR ∆⇒∆  

V60 TT ∆⇒∆  
 

VM∆COMPOSE  

}{}{ 18060R ∆⇒ R∆  
V60 TT ∆⇒∆  

 
HM∆COMPOSE  
VM∆COMPOSE  

 
 

}{60DELETE R∆  
V60 TT ∆⇒∆  

 
VM∆COMPOSE  

 
 

 
p6m 

60H

V

TT
R ,M

∆∆
∆∆

,
}{60  

VM∆DELETE  
}{60DELETE R∆  

V60 TT ∆⇒∆  
 

}{60DELETE R∆  
V60 TT ∆⇒∆  

 

}{60DELETE R∆  
45H TT ∆⇒∆  
45-60 TT ∆⇒∆  

 

}{}{ 18060 RR ∆⇒∆  
V60 TT ∆⇒∆  

 
VM∆COMPOSE  

 

VM∆DELETE  
}{}{ 18060 RR ∆⇒∆  

V60 TT ∆⇒∆  
 

HM∆COMPOSE  
VM∆COMPOSE  

 
 

VM∆DELETE  
}{60DELETE R∆  

V60 TT ∆⇒∆  
 

VM∆COMPOSE  
 

 
p3 

60H TT
R

∆∆
∆

,
}{120  

}{120DELETE R∆  
V60 TT ∆⇒∆  

 

VM∆INSERT  
}{120DELETE R∆  

V60 TT ∆⇒∆  
 

VM∆INSERT  
}{120DELETE R∆  

45H TT ∆⇒∆  
45-60 TT ∆⇒∆  

 

VM∆INSERT  
}{}{ 180120 RR ∆⇒∆

 
V60 TT ∆⇒∆  

 
VM∆COMPOSE  

 
 

}{}{ 180120 RR ∆⇒∆

V60 TT ∆⇒∆  
 

HM∆COMPOSE  
VM∆COMPOSE  

 
 

}{120DELETE R∆  
V60 TT ∆⇒∆  

 
VM∆COMPOSE  

 

 
p3m1 

V30

V

TT
RM

∆∆
∆∆

,
}{, 120  

VM∆DELETE  
}{120DELETE R∆  

H30 TT ∆⇒∆  
 

}{120DELETE R∆  
H30 TT ∆⇒∆  

 

}{120DELETE R∆  
45H TT ∆⇒∆  
45-60 TT ∆⇒∆  

 

}{}{ 180120 RR ∆⇒∆

 
H30 TT ∆⇒∆  

 
VM∆COMPOSE  

VM∆DELETE  
}{}{ 180120 RR ∆⇒∆

 
H30 TT ∆⇒∆  

 
HM∆COMPOSE  
VM∆COMPOSE  

 

VM∆DELETE  
}{120DELETE R∆  

H30 TT ∆⇒∆  
 

VM∆COMPOSE  
 
 

 
p31m 

60H

V

TT
RM

∆∆
∆∆

,
}{, 120  

VM∆DELETE  
}{120DELETE R∆  

V60 TT ∆⇒∆  
 

}{120DELETE R∆  
V60 TT ∆⇒∆  

 

}{120DELETE R∆  
45H TT ∆⇒∆  
45-60 TT ∆⇒∆  

 

}{}{ 180120 RR ∆⇒∆

 
V60 TT ∆⇒∆  

 
VM∆COMPOSE  

VM∆DELETE  
}{}{ 180120 RR ∆⇒∆

V60 TT ∆⇒∆  
 

HM∆COMPOSE  
VM∆COMPOSE  

 

VM∆DELETE  
}{120DELETE R∆  

V60 TT ∆⇒∆  
 

VM∆COMPOSE  
 

TABLE C.14 -TRANSFORMATIONS ACROSS  WALLPAPER PATTERNS 
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p1 

VH TT ∆∆ ,  

 
pm 

VH

V

TT
M

∆∆
∆

,

 

 
cm 

45-45

V

TT
M

∆∆
∆

,

 

 
pmg 

VH

V

TMT
RM

∆∆
∆∆

,
}{, 180  

pgg 

VH TMTM
R

∆∆
∆

,
}{180  

pg 
VH TMT ∆∆ ,  

 
p4 

VH TT
R

∆∆
∆

,
}{90  

}{90DELETE R∆  
 VMR ∆⇒∆ }{90

REPLACE

VMR ∆⇒∆ }{90
REPLACE 

 

 

 
45H TT ∆⇒∆  
45-V TT ∆⇒∆  

 

VM∆INSERT  
}{}{ 18090 RR ∆⇒∆  

 
VM∆COMPOSE  

 

}{}{ 18090 RR ∆⇒∆  
 

HM∆COMPOSE  
VM∆COMPOSE  

 

}{90DELETE R∆  
 

VM∆COMPOSE  
 

 
p4m 

VH

V

TT
R ,M

∆∆
∆∆

,
}{90  

}{90DELETE R∆  
VM∆DELETE  

 

}{90DELETE R∆  
 

}{90DELETE R∆  
 

45H TT ∆⇒∆  
45-V TT ∆⇒∆  

 

}{}{ 18090 RR ∆⇒∆  
 

VM∆COMPOSE  
 

VM∆DELETE  
}{}{ 18090 RR ∆⇒∆  

 
HM∆COMPOSE  
VM∆COMPOSE  

 

VM∆DELETE  
}{90DELETE R∆  

 
VM∆COMPOSE  

 

 
p4g 

VH TMTM
R

∆∆
∆

,
}{90  

}{90DELETE R∆  
 

HM∆REMOVE  
VM∆REMOVE  

 

VMR ∆⇒∆ }{90
REPLACE  

 
HM∆REMOVE  
VM∆REMOVE  

 

VMR ∆⇒∆ }{90
REPLACE  

 
45H TT ∆⇒∆  
45-V TT ∆⇒∆  

 
HM∆REMOVE  
VM∆REMOVE  

 

VM∆INSERT  
}{}{ 18090 RR ∆⇒∆  

 
HM∆REMOVE  

 

}{}{ 18090 RR ∆⇒∆  
 

}{90DELETE R∆  
 

HM∆REMOVE  
 

 
p2 

VH TT
R

∆∆
∆

,
}{180  

}{180DELETE R∆  
 VMR ∆⇒∆ }{180

REPLACE  

 
VMR ∆⇒∆ }{180

REPLACE  

 
45H TT ∆⇒∆  
45-V TT ∆⇒∆  

 

VM∆INSERT  
 

VM∆COMPOSE  
 

HM∆COMPOSE  
VM∆COMPOSE  

 

}{180DELETE R∆  
 

VM∆COMPOSE  
 

 
cmm 

VH

V

TT
R ,M

∆∆

∆∆

,
}{180  

VM∆DELETE  
}{180DELETE R∆  

 

}{180DELETE R∆  
 

}{180DELETE R∆  
45H TT ∆⇒∆  
45-V TT ∆⇒∆  

 

VM∆COMPOSE  
VM∆DELETE  

 
HM∆COMPOSE  
VM∆COMPOSE  

 

VM∆DELETE  
}{180DELETE R∆  

 
VM∆COMPOSE  

 

 
pmm 

VH

HV

TT
MM

∆∆
∆∆

,
,  

VM∆DELETE  
HM∆DELETE  

 

HM∆DELETE  
 

HM∆DELETE  
45H TT ∆⇒∆  
45-V TT ∆⇒∆  

 

}{180
REPLACE

RMH ∆⇒∆
 

 
VM∆COMPOSE  

 

VM∆DELETE  
 

}{180
REPLACE

RMH ∆⇒∆
 

 
HM∆COMPOSE  
VM∆COMPOSE  

 

VM∆DELETE  
HM∆DELETE  

 
VM∆COMPOSE  
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p1 

VH TT ∆∆ ,  

 
pm 

VH

V

TT
M

∆∆
∆

,

 

 
cm 

45-45

V

TT
M

∆∆
∆

,

 

 
pmg 

VH

V

TMT
RM

∆∆
∆∆

,
}{, 180  

pgg 

VH TMTM
R

∆∆
∆

,
}{180  

pg 
VH TMT ∆∆ ,  

 
p1 

VH TT ∆∆ ,  

 VM∆INSERT  
 

VM∆INSERT  
45H TT ∆⇒∆  
45-V TT ∆⇒∆  

 

VM∆INSERT  
}{180INSERT R∆  

 
VM∆COMPOSE  

 

}{180INSERT R∆  
 

VM∆COMPOSE  
HM∆COMPOSE  

 

VM∆COMPOSE  
 

 
pm 

VH

V

TT
M

∆∆
∆

,

 

VM∆DELETE  
 

 45H TT ∆⇒∆  
45-V TT ∆⇒∆  

 

}{180INSERT R∆  
 

VM∆COMPOSE  
 

}{180
REPLACE

RMV ∆⇒∆
 

 
VM∆COMPOSE  
HM∆COMPOSE  

 

VM∆DELETE  
 

VM∆COMPOSE  
 

 
cm 

45-45

V

TT
M

∆∆
∆

,

 

VM∆DELETE  
H45 TT ∆⇒∆  
V45- TT ∆⇒∆  

 

H45 TT ∆⇒∆  
V45- TT ∆⇒∆  

 

 }{180INSERT R∆  
H45 TT ∆⇒∆  
V45- TT ∆⇒∆  

 
VM∆COMPOSE  

 

}{180
REPLACE

RMV ∆⇒∆
 

 
H45 TT ∆⇒∆  
V45- TT ∆⇒∆  

 
VM∆COMPOSE  
HM∆COMPOSE  

 

VM∆DELETE  
H45 TT ∆⇒∆  
V45- TT ∆⇒∆  

 
VM∆COMPOSE  

 

 
pmg 

VH

V

TMT
RM

∆∆
∆∆

,
}{, 180  

VM∆DELETE  
}{180DELETE R∆  

 
VM∆REMOVE  

 

}{180DELETE R∆  
 

VM∆REMOVE  
 

}{180DELETE R∆  
45H TT ∆⇒∆  
45-V TT ∆⇒∆  

 
VM∆REMOVE  

 

 VM∆DELETE  
 

HM∆COMPOSE  
 

VM∆DELETE  
}{180DELETE R∆  

 

pgg 

VH TMTM
R

∆∆
∆

,
}{180  

}{180DELETE R∆  
 

HM∆REMOVE  
VM∆REMOVE  

 

VMR ∆⇒∆ }{180
REPLACE  

 
HM∆REMOVE  
VM∆REMOVE  

 

VMR ∆⇒∆ }{180
REPLACE  

 
45H TT ∆⇒∆  
45-V TT ∆⇒∆  

 
HM∆REMOVE  
VM∆REMOVE  

 

VM∆INSERT  
 

HM∆REMOVE  
 

 }{180DELETE R∆  
 

HM∆REMOVE  
 

pg 
VH TMT ∆∆ ,  

VM∆REMOVE  
 

VM∆INSERT  
 

VM∆REMOVE  
 

VM∆INSERT  
45H TT ∆⇒∆  
45-V TT ∆⇒∆  

 
VM∆REMOVE  

 

VM∆INSERT  
}{180INSERT R∆  

 

}{180INSERT R∆  
 

HM∆COMPOSE  
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APPENDIX D                                                          

THE ENGINEERING  OF THE ICE 

IMPLEMENTATION 

 

This appendix illustrates the UML diagrams used to engineer the ICE implementation.  Section 

D.1 shows the object models, and section D.2 shows use cases and interaction diagrams for the 

various functionalities of regulators.   

D.1. OBJECT MODELS 

D.1.1. Shape Bridge Object model 
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D.1.2. Regulator Bridge Object model 
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D.1.3. Observer Object Model 
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D.1.4.  ICE Implementation Object Model 
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D.1.5. Matrices Object Model 
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D.2. USE-CASES AND INTERACTION DIAGRAMS 

All use-cases are designed for the developer as the main actor, in the future theses will be refined 

and intended for designers. All use-cases assume the presence of shape and scheme libraries, a 

history list, a graph view, and a string view, which are not currently implemented. The following 

use-cases include are for instantiation, deletion, selection, shape modification, associations, and 

regulator modification. 
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Instantiation Use-cases D.2.1. 

D.2.1.1 Instantiate a new shape 

Entry condition: The model view is available, the shape controls are available
Flow of events:

The user chooses the shape from a shape library  
The system sets the interaction mode for the chosen shape        

 or 
  The user defines a new shape by composing regulators 
  The system sets the interaction mode as “define new shape’  
  The selected or defined shape appears in the shape pre-view  
  The user positions the cursor clicks the model view 
 
  A new shape is instantiated and added to the model’s element list. 
  The new shape is selected 
  The system updates the history
 Exit condition: The new shape appears on the model view, graph view and the string view. 
 

Model ShapeShapeLibraryuserInterface

3: set_position

2: set_interaction_mode

1: choose_shape

1.1: appear in preview

8: update_all_views

7: add_to_selectedt_list

6: set_select_mode_primary

5: add_to_element_list

4: instantiate
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D.2.1.2 Define a new shape by composing regulators 

Entry condition: The model view and shape controls are available 
Flow of events:  
 The user selects the start vertex (or start shape) 
 The user chooses to define a new shape 

The user chooses a regulator (from a list) and  
The system associates it to the start vertex (or shape) 
The shape preview displays the resulting shape (in progress) 

Optional steps: 
 The user manipulates the parameters of the regulator  
 The user chooses the subset of the shapes to generate 
 The user chooses the subset of generates shapes to be applied to the next regulator  

The user can repeat choosing a regulator and associating it to the vertices as many times 
as needed to define the new shape 

Exit condition: The user types the name and terminates the definition of the new shape 
  The system saves the new shape in the shape library 
 

 

ModeluserInterface Vertex_shape NewShape Regulator Shape_library

5: modify parameters

3: choose_regulator

2: set_interaction_mode_define_new_shape

1: select_start_ shape

7: set_name

8: Save_shape_in_library

4: Preview

2.2: set_start_shape

3.2: associate_to start_vertex

3.1: intantiate

2.1: instantiate

7.1: terminate_shape
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D.2.1.3 Instantiate a new regulator  

Entry condition: The model view is available, the regulator controls are available
Flow of events:  
 The user chooses the regulator (from the list of possible regulator types) 
 The system sets the create-regulator mode 
 The user points and clicks on the model view 

A new regulator is instantiated (with the chosen identities) and added to the model’s 
element list. 

 The new regulator is selected 
Exit condition: The new regulator appears on the model view, graph view and the string view. 
Special requirements: The user can set parameters and identities before or after the instantiation of 
the regulator.  
 

Model RegulatorUserInterface

4: update_all_views

5: modify_parameters

3: set_position

2: choose_id

1: set_interaction_mode_instantiate_regulator

3.3: add_to_element_list

3.4: set_selected_reg

3.2: set_id

3.1: instantiate
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D.2.2. Selection Use-cases 

D.2.2.1 Select a shape or a regulator  

Entry condition: There exits at least one shape or regulator in the model 
Flow of events:  
 The system default interaction mode is “select an element “
 The user points and clicks the mouse over the shape/regulator on the model view. 
 The system matches the coordinates, identifies the shape or regulator and 

If it’s a regulated element it is placed in the model’s element list. 
If it’s a regulator it becomes the selected regulator. 

 Shift clicking allows the user to select multiple shapes 
 The system traverses the regulator tree to identify all associated shapes and regulators. 
 The system updates the history
Exit condition:

The selected shape/regulator will appear highlighted (with primary highlights) on the 
model-view, the graph view, and the string view.   
The shapes and regulators associated directly and those associated by transitivity will also 
be highlighted in secondary and ternary highlights respectively.  
Associations are highlighted on the graph view. 
The shapes or regulator controls become available

Special requirements:
The system relies on OpenGL selection mechanism to match the coordinates with the 
shape/vertex and return a shape/vertex ID 
Variations of “select a regulator” include (i) selecting all the shapes of a regulator by 
clicking on the regulator, (ii) selecting all associations of a regulator by clicking on the 
regulator 
 

User_interface Model Regulated_elemen Regulator Reg_tree

7: set_selected_regulator

5: Add_to_selected_list

4: set_select_mode_primary
3: Matches_ccordinates

1: Set_interaction_mode_select

2: Select

6: Set_select_mode_primary

8: Traverse_10

8.1: Set_associated_elements_select_mode_secondary
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D.2.2.2 Select an association 

Entry condition:
 A shape or a regulator is selected and its direct associations are highlighted on the model. 
 The associations are depicted and highlighted on the graph view. 
Flow of events:
 The user points and clicks the mouse over the association on the graph view 
 The system identifies it as the selected association  
 Shift clicking allows the user to select multiple shapes 
 The system updates the history 
Exit condition:  
 The shapes and the regulator of the selected association will appear highlighted (with 
 primary highlights) on the model-view and the string view. 
 The association controls become available. 
Special requirements:

A variation of “select an association” include selecting all shapes of a specific association 
by clicking on the association. 

 

RegulatorElementAssociationModelUser_interface

2: set_select_mode_primary

3: set_selected_association

5: set_select_mode_secondary

4: set_select_mode_secondary

1: select_from_graph_view
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D.2.2.3 Select a vertex, an internal-regulator, or an internal-association 

Entry condition: A shape or regulator is selected 
Flow of events:
 The user makes a second click on the shape 

All the vertices and internal regulators and internal associations appear on the model, and 
the graph view and the string view. 
The user selects the vertex or internal regulator in the same way as select a shape or 
regulator  
The user selects a subshape-association in the same was as select an association 
The system updates the history 

Exit condition:
 The user deselects the shape. 
 

User_interface Shape Vertex Internal_regulato

3: Set_visual_mode_structure

5: Select_04

4: Select_04

2: Second_click

1: Select
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D.2.3. Viewing Usecases 

D.2.3.1 Show/hide/emphasize shapes and regulators  

Entry condition: There are shapes and regulators in the model 
Flow of events:  

The user selects one of the following 
a shape 
a regulator 
an association 
all-shapes 
all regulators  
all associations  

The user turns on/off the visibility of the selected item 
The system sets the visibility flag for the selected item 
The user adjusts the transparency level of the selected item 
The system sets the alpha value for the selected item 
The user adjusts the line thickness of the selected item 
The system sets the line thickness for the selected item 
The system updates the history 

 

ElementUser_interface

4: set_line_thickness

3: set_transparency

2: set_visibility

1: select_04
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Deletion Use-cases D.2.4. 

D.2.4.1 Delete a vertex or a shape 

Entry condition: A shape or vertex is selected 
Flow of events:  
 The user chooses to delete the selected element 
 The system sets the interaction mode as “delete element” 
 The system deletes the shape or vertex and  
 The system traverses the regulator tree to deletes the image-shapes of this shape/vertex 

For deleted vertices, the system traverses the external regulator tree to propagate change 
to associated image shapes 
The system removes all references to it (and its image-shapes) from regulators and 
associations 
The system removes it from the models element list 
The system updates the history 

Exit condition: The model view, graph and string views are updated. 
Special requirements:  

 

User_interface Regulator shape_vertices Reg_treeModel

2: Select

9: Remove_all_references

7: Remove_all references

8: deletes_image_shapes_vertices

10: remove_from_element_list

5: remove_from_element_list

6: traverse_10

4: delete

1: set_interaction_mode_delete

3: dissociate_original_shapes
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D.2.4.2 Delete a regulator 

Entry condition: A regulator is selected 
Flow of events:  

The user chooses to delete the selected element 
The system sets the interaction mode as “delete element” 
 
If it is a non-generative regulator, all shapes are dissociated from the regulator but remain 
as independent shapes 
 
If it’s a generative regulator, Its input shapes are dissociated and Its output shapes are 
deleted  
 
If the regulator is in a sequence, the original shapes of this regulator become the original 
shapes of the succeeding regulator 
The system deletes regulator from the regulator tree and removes all references to it. 
The system traverses the regulator tree, and regenerates it starting from the deleted 
regulator. 
The system updates the history 

Exit condition: The model view, graph and string views are updated. 
 

User_interface Regulator shape_vertices Reg_treeModel

2: Select

9: Remove_all_references

7: Remove_all references

8: deletes_image_shapes_vertices

10: remove_from_element_list

5: remove_from_element_list

6: traverse_10

4: delete

1: set_interaction_mode_delete

3: dissociate_original_shapes
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D.2.5. Tree Traversal Use-cases 

D.2.5.1 Traverse a regulator tree (System use-case) 

Entry condition: The user selects or changes an element in the regulator tree 
Flow of events: 
 Traversal begins from a shape  

The shape notifies its observers (associations or regulators) 
The observers (associations or regulators) update their other shapes (based on 
the new values and the regulator’s formula) 
These other shapes notify their other observers (associations or regulators) 

 
Traversal begins from a regulator 

The regulator goes through its regulated elements (shapes or associations) 
The regulator updates its direct elements 
The associations update their shapes (based on the new values and the 
regulator’s formula) 
The shapes notify their other observers (associations or regulators) 

Exit condition: 
The notification-update process recursively continues until there are no more observers 
(associations or regulators) 
 

shape_vertex RegulatorAssociationUser_interface

2: modify

1: modify

2.2.1: update

1.2.3.1: update_other

1.1.1.1: update_others 1.1.1: regulate

2.2: update

2.1.1: update
2.1: regulate

1.2.3: update_other

1.2.2: update_other 1.2.1: regulate

1.2: notify

1.1: notify any update to shape will
cause a notify
this is a recursive process,
until there is no more
observers
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D.2.6. Shape Modifications Use-cases 

D.2.6.1 Modify a shape 

Entry condition: A shape is selected in the model, and shape controls are available 
Flow of events: 
 The user modifies an attribute of a the shape (attributes = color, alpha, line thickness ) 
 The system sets the new values for this shape  

or  
 The user modifies a vertex of the shape 

or 
 The user modifies the internal regulator of the shape  

or  
 The user replaces the shape 

or  
 The user subdivides the shape 

or 
 The user moves or rotates the shape 
 The system adjusts the position or rotation parameters 
 The system traverses the external regulator tree of the configuration and testing for the 
 constraints and propagating the replacement to all associated shapes 
 The system updates the history  
Exit condition:  

The drawing view, graph views, and the string view are updated to show the modified 
shape 

 
 

UserInterface Shape RegTree

8: Update_other_shapes

7: Traverse_10

6: subdivide_16

5: replace_15

4: modify_internal_regulator_14

3: modify_vertices_13

2: modify_attribute

1:
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D.2.6.2 Modifying the shapes controlled by constraint regulators 

Entry condition: The user modifies the shape 
Flow of events:  

The system tests the new shape configuration with the regulator’s formula 
If the new shape configuration is conforming with the regulator’s constraints 

The system updates the shape  
Otherwise 

If the system is in “keep constraint mode” (left mouse) 
The shape remains in its initial configuration 
 

If the system is in “remove constraint mode” (right mouse) 
The shape is dissociated from the regulator and 
 Its configuration is updated.  

Special requirements: 
 Each regulator will have its specific test formula and significant modifications 

This use-case is applicable to the following regulators. 
• ALIGNMENT/ BOUNDARY: Moving/rotating  
• PROPORTION/ DIMENSION/ AREA-VOLUME:  Resizing  
• ANGLE : Rotating  
• DISTANCE/ ADJACENCY/ OVERLAP: moving  
• CONTAINMENT: moving/ rotating/ resizing  

 
 

UserInterface RegulatorModel Shape

2.1.1: Evaluate

6.1: dissociate

7: execute_modification

6: dissociate

4: Ignore_modification

2.2: execute_modification

2.1: notify

5: negative_remove

3: negative_keep

2.1.2: positive

2: modify

1: select
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D.2.6.3 Modify (move) a vertex in a shape 

Entry condition: A vertex within a shape is selected in the model 
Flow of events: 
 The user moves the vertex (by dragging the mouse or by adjusting the coordinate values) 
 The system sets the new vertex position  
 
The system traverses the internal regulator tree, and propagates the vertex move, therefore 
updating the whole shape. (This can cause a change in form, dimension, and/or size of the shape) 

 
 

 

userInterface ExternalAssociatioInternalRegulatoVertex ExternalRegulatoShapeInternalAssociatio

2.1.1.1: update

2.2.1: notify 2.2.1.1: update
2.2: notify

2.1: notify
2.1.1: update

2.2.1.1.1: update:

2: move-rotate

1: select
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D.2.6.4 Modify the Internal Regulators of a Shape 

Entry condition: An internal regulator within a shape is selected in the model 
Flow of events: 

The user manipulates the regulators parameters (geometry, parameters, number, and  
variations) 
 
The system traverses the internal regulator tree and propagates these changes to the 
regulated vertices, as well as to all associated vertices, therefore updating the shape. 

 
 

InternalAssociatioInternalRegulato Vertex ShapeExternalAssociatio ExternalRegulatouserInterface

2: modify

1: select

4.1: update

2.2.1: update

4: notify

2.1.1: notify

3: notify

2.2: update

2.1: update

4.1.1: update
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D.2.6.5 Replace a shape 

Entry condition: 
 A shape is selected in the model and shape controls are available 
Flow of events: 

The user selects another shape from the shape library, which appears on the shape 
preview 
The user chooses to replace the selected shape on the model with the one in shape library  
The system replaces the internal regulator tree of the shape, while keeping its location 
(first vertex), and other attributes intact 
 

ShapeLibrary Model Shape ExternalRegulatouserInterface Association

3.2.1.1.1: update

3: replace_shape

1: select

2: choose_shape

3.2.1.1: update3.2.1: notify

3.1: get_reg tree

3.2: set_reg_tree

2.1: preview
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D.2.7. Association Use-cases 

D.2.7.1 Associate a shape, vertex, or regulator to a regulator 

Entry condition: 
There is at least one shape or item and one regulator in the model 

Flow of events: 
The user selects an item(s) to be regulated (this can be a shape, vertex, or a regulator ) 
The user selects a regulator  
The user chooses to associate  

 (press a button or drag the right mouse and drop it on the regulator) 
If it’s a non generative regulator: 

The system adds the item to the list of regulated elements pertaining to the 
selected regulator. 
The item will have a reference to the regulator 

If it’s a generative regulator: 
The regulator instantiates an association which assigns this item as the original,  
The regulator generates n number of images-items and adds them to the image 
list of the associations. 
The association will be added to the list of regulated elements pertaining to the 
regulator.  
The item will have references to the association and to the regulator. 

The system updates the history 
Exit condition: 

The regulator and the item form an associated branch in the regulator tree. 
The regulator will regulate this item for the first time indicating that the association 
succeeded. 

Special requirements: 
The regulator will regulate this item (image-shapes/vertices/regulators) every time the 
regulator tree is traversed. 
The user can set the regulators parameters before or after the association 
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UserInterface ShapeModel AssociationRegulator

1: select

13: regulate

6.1: update
6: regulate

11: add_observer

10: instantiate_images

12: add_association

9: add_observer

8: add_original

7: instantiate

5: add_observer

4: add_element

3: associate

2: select
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D.2.7.2 Associate a regulator to all the shapes in a branch of the regulator tree   

Entry condition: 
There are several generative regulators (with image shapes) in a sequence  

 
Flow of events: 

The user instantiates a new regulator or select a regulator  
The user selects a shape in the regulator tree 
The user chooses to associate the new regulator to all shapes branching from this shape    
The system updates the history 

 
Exit condition: 

The system traverse the regulator tree (from the selected shape) associating each shape 
(in this branch) to the new regulator 

 
Special requirements: 

To associate all shapes in the tree associate, the user needs to select the first shape. 
 

 

Regulator AssociationUserInterface ShapeModel

2: select

1: select

4: associate_17_for_each_reg

3: associate_shp_to_all_regs
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D.2.7.3 Associate a subset of image-shapes to a regulator  

Entry condition: 
 There is at least one generative regulator with images shapes 
 
Flow of events: 

The user instantiates a new regulator or select a regulator 
The user selects the desired images shapes (shift click) 
     or 
The user selects an association 
The user chooses to associate these shapes to the new regulator  
The system updates the history 
 

Exit condition 
The system associates each of these selected shapes to the new regulator 

 
  

UserInterface ShapeModel Regulator Association

2: select_many

3: associate_17

4: regulate

1: instantiate or select

each shape selected
will be associated
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D.2.7.4 Dissociate a shape from a regulator  

Entry condition: 
There is at least one shape or item and one regulator (associated to each other) on the 
model. 

Flow of events: 
The user selects the shape or regulated item  
The user selects the regulator  
The user chooses to dissociate these  

 
If it’s a non generative regulator: 

The shape is removed from the list of regulated elements pertaining to the regulator 
The shape’s reference to regulator is deleted 

If it’s a generative regulator: 
All image shapes remain but are dissociated from the regulator 

The original shape’s reference and image shape’s reference to regulator and to the 
association are deleted. 
The association is deleted 

These image shapes become independent shapes on the model 
Exit condition: 
 The shapes are no longer regulated by this regulator  

 

UserInterface Shape Regulator AssociationModel

9: remove_observer

8: remove_images

10: remove_association

7: remove_observer

6: remove_original

11: delete

5: remove_observer

4: remove_element

3: dissociate

2: select

1: select
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D.2.7.5 Relate a set of shapes 

Entry condition: 
There are shapes and regulators in the model,  

 
Flow of events: 

RELATE a set of shapes 
The user selects the shapes 
The user chooses to relate them 
The system generates a new regulator  
The system puts these two shapes in its association 
The user chooses the identity for this new regulator 

  Or 
RELATE a shape to an existing association 

The user selects a shape 
The user selects an association 
The user chooses to relate them 
The system puts the selected shape in the selected association 

The system traverses the regulator tree and updates the newly related shapes to fit the 
regulator’s parameters 
The system updates the history 

Special requirements: 
This use-case occurs when the user generates a configuration, then realizes that some 
objects have a relation that can benefit from regulation  
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AssociationShapeUserInterface Model Regulator

9: select

8: select

2: select

1: select

10.1: add_element

11: add_observer

5: add_observer

10: relate

3: relate

13: update

4.1: add_elements

3.1.1: instantiate

12: regulate

7.1: update
7: regulate

3.1: instantiate

4: add_elements

6: set_identity
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D.2.7.6 Modify the number/density of elements generated by the regulator 

Entry condition: 
An association is selected  

Flow of events: 
The user modifies the number of shapes/vertices generated by the regulator 

 
If the number of shapes is increased 

The system instantiates new shapes/vertices and associate them to the 
regulator. 
 

If the number of shapes is decreased  
The system deletes the extra shapes and removes reference to them 

 
The user modifies the density of shapes/vertices generated by the regulator 

The system adjusts the number as well as the factor, so that the extent 
remains the same. 

 
Special requirements: 

If a regulator is selected, all its associations are updated 
Only applicable to generative regulators  

  
 

Shape RegulatorAssociationModelUserInterface

3: decrease_number

2: increase_number

1: select

2.2: add_elements

3.2: delete_shapes

3.1: remove_elements

2.1: create new shapes

5: update 4: regulate
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D.2.7.7 Choose the subset of image-shapes to generate 

Entry condition: 
An association is selected and the association controls are available: A list of image 
shapes become available for editing  

 
Flow of events: 

The user chooses the images to be generated (checks them) 
or  
The user chooses to use the pattern mode of generation and  
The user enters the number of pattern (on-off) 
 
The system updates the generated images according to the users choices 

it deletes some images-shape and  
it instantiate other-image shapes 
The association is grouped according to the adjacent generated shapes 
 

Special requirements: 
If a regulator is selected, all its associations are updated 
Only applicable to generative regulator 

 
 

ShapeAssociationModel Asso_grpUserInterface

2: set_alternate_generation

3: choose_gen_index

1: select

2.1: set_generated_shapes

4.2: remove_groups

4.1: add_groups

4: re-organize

3.1: set_generated_shapes
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D.2.7.8 Set/modify the discrete/continuous/combination factors of an association 

Entry condition: 
An association is selected and the association controls are available: A list of image 
shapes become available for editing 

 
Flow of events: 

The user chooses the continuous/discrete/ parameters   
or 

If the user prefers the combined mode (partly continuous and partly discrete)  
The user chooses the indices that are continuous  
The system organizes the association in groups according to the indices in the combined 
mode  

 
Special requirements: 

The default is discrete for external regulators 
The default is continuous for internal regulators 
 
If a regulator is selected, all its associations are updated 
Only applicable to generative regulators 
 

ShapeAssociation Asso_grpUserInterface

3: choose_cont_index

2: set_continuity

1: select

4.2: remove_groups

4.1: add_groups

4: re-organize

3.1: set_continuous_shapes
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D.2.7.9 Set exceptions and variations within the generated set 

Entry condition: 
An association is selected and the association controls are available: A list of image 
shapes become available for editing 

 
Flow of events: 

The user chooses the image-shapes to be exceptions 
These will not be regulated as the other images, and it will behave as an exception.            
The user modifies the transformation factor for this image shape. 
The system will flag this as an exception and store its user defined factor vector. 
This factor will override the common transformation factor and will behave as exception. 

 
Special requirements: 

If a regulator is selected, all its associations are updated 
Only applicable to generative regulator 

 

ShapeAssociationUserInterface Regulator

5.2: update

5.1: get_exception_value 5: regulate

3: set_exception_value

2: choose_exception_index

1: select

4: set_exception_shapes
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Regulator Modification Use-Cases D.2.8. 

D.2.8.1 Modify the regulator 

Entry condition: 
A regulator is selected 

Flow of events: 
The user moves or rotates the regulator  

or 
The user manipulates the regulator’s endpoints 

or 
The user modifies the direction vector for the regulator 

or 
The user modifies the major parameters of the regulator  

or 
The user modifies the dimension of the regulator  
The regulator re-regulates its dependent shapes/vertices to accommodate the change in geometry 
or number or parameters of the regulator  
The system traverses the regulator tree to update all the associated shapes and vertices. 

 
Exit condition: 

The regulator and the model is updated on the model, graph and string view 
 

Regulator Association Tree ShapeUserInterface

3: select

4: modify

2: ,modify

1: select

9: update:

7.1: update7: update

6: update

8: traverse

5: regulate
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D.2.8.2 Activate/ de-activate a regulator or a category of regulators    

Entry condition: 
The model view is available  
There is at least one regulator (associated to shapes) in the model 

 
Flow of events: 

The user selects a regulator or selects all-transformation or all constraint regulators 
The user chooses to activate or deactivate the selected items  
For activation: 

The active attribute of the selected regulators is set to true   
For deactivation  
The active attribute of the selected regulators is set to false  

 
Special requirements: 

When a regulator is deactivated, changes to this regulator will not affect the shape/vertices it 
controls; similarly changes to shapes associated though this regulator will not affect the other 
shapes/vertices in the association. 

 

ShapeRegulatorUserInterface

3: set_value

2: set_target_variable

1: select

2.1: get_target_variable
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D.2.8.3 Move a regulator  

Entry condition: 
 A regulator is selected 
 
Flow of events: 

The user drags the regulator on the model view  
      or 
The user enters the x, y, z coordinates for the regulator’s position 
 
For point regulators the system resets the point’s coordinates to the new position.  
 
For line (p+dt) and plane (p+dt+er) regulators the system resets the starting point’s (p) coordinates 
to the new position.   

 

UserInterface Regulator

2: set_activation

1: select
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D.2.8.4 Rotate a regulator  

Entry condition: 
 A regulator is selected 
 
Flow of events: 

The user enters the rotation along the x, y, z axis to set the regulator’s orientation 
        or 
The user sets the arbitrary axis (x, y, z) and its rotation degree. 
 
For point regulators the system resets the point’s coordinates by multiplying the point p by the 
rotation matrix defined by the new user-defined orientation  
 
For line and plane regulators the system rotates the line/plane by multiplying the starting point and 
the direction vector/vectors by the rotation matrix defined the orientation sliders: R(p+dt) and 
R(p+dt+er) 

 

UserInterface Regulator

3: set_coordinate_p

6: rotate_coordinate_p

5: set_rotation

4: select

2: set_position

1: select

7: rotate_vectors
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D.2.8.5 Manipulate the regulator’s endpoints  

Entry condition:  A regulator’s endpoint is selected  
 
Flow of events: 

The user moves the endpoint (by dragging the mouse or by adjusting the coordinates values) 
The system moves the endpoint to the specified position and revaluates the direction vector/s.  

 
Special requirements: 

To move an edge two endpoints must be selected 
 

RegulatorUserInterface Vertex

3: adjust_vector

2: set_position

1: select

 
 

D.2.8.6 Modify the direction vectors defining the regulators 

Entry condition: A regulator is selected  
 

Flow of events: 
The user enters the coordinates for  

the start point 
the line vector 
the plane vectors 
the volume vectors 

 The system updates the regulator definition and displays the new regulator in the model view 
 

RegulatorUserInterface

3: set_vector

2: set_point

1: select
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D.2.8.7 Set (add/remove) an identity to a regulator  

Entry condition: The regulator controls are available 
 
Flow of events: 

The user selects a regulator  
The user chooses the desired identity (turns on or off) 
The system adds/removes the chosen identity into/form the regulator’s identity list  
The system updates the name of the regulator 

 
Special requirements: 

Each regulator may have one instance of a specific identity 
 

IdentityRegulatorUserInterface

5: remove_identity

2: Add_identity

1: select

6: delete

3: instantiate

7: update_regulator_name

4: update_regulator_name
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D.2.8.8 Set the dimension of the regulator 

Entry condition: The regulator controls are available 
 
Flow of events: 

The user selects a regulator  
The user chooses the desired dimension (point, line, plane, or circle if applicable) 
The system the regulator’s dimension   
 

Special requirements: 
Each regulator may have one instance of a specific identity 

UserInterface Regulator Identity

3: set_dimension

2: set_dimension

1: select
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D.2.8.9 Modify the major parameter for regulators 

Entry condition: A regulator is selected  
 
Flow of events: 

The user adjusts the transformation factor of the regulator  
 translation distance 

rotation degree 
curve factors 
dilation factors 
shear factor 

 
The user adjusts the min and max or module values for the parameters or the constraint regulators. 

  ANGLE/ DISTANCE/ DIMENSION/ AREA-VOLUME/ OVERLAP 
 
The user adjusts the attribute, types and cycles values for the variation regulators. 

   
The system set the transformation parameters 

 
Special requirements: 
 Note: reflection has no specific parameters other than geometry 

 
 

IdentityRegulatorUserInterface

6: set_offfset

4: set_min_max_mod

2: set_factors

1: select

6.1: 6.1set_offset

5: set_min_max_mod

3: set_factors
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D.2.8.10 Insert a regulator in a sequence  

Entry condition: A regulator is selected  
 
Flow of events: 

The user invokes the regulator controls  
 
The user chooses to insert a regulator 
The system creates a new regulator  
 
The system inserts the new regulator in the regulator tree  (before the selected regulator) by 
updating the pointers 
 

The original shapes of the succeeding regulator become the original shapes of the new 
regulator 
The original and images shapes of the new regulator become the original shapes of the 
succeeding regulator  

 
The regulator tree is re-generated (starting from the new regulator) 
 
The user sets the identity of the new regulator  
The user sets the parameters of new the regulator  

 

UserInterface RegulatorGraph Shape

4: rearrange_images_&_original

3: insert

2: instantiates_or_select

1: select
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D.2.8.11 Delete a regulator from a sequence  

Entry condition: 
 A regulator is selected  
 
Flow of events: 
 The user chooses to delete it   
  
The system deletes the regulator from the regulator tree updating the pointers 

The original shapes of this regulator become the original shapes of the succeeding regulator 
The images shapes of this regulator are deleted  

 
 The regulator tree is re-generated (starting from the deleted regulator) 

 

RegulatorGraph ShapeUserInterface

2: delete

1: select

3: rearrange_images_&_original
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D.2.8.12 Swap the order of two regulators 

Actors:  Developer 
 
Entry condition: 

Two regulators are selected 
The regulator controls are available 

 
Flow of events: 

The user chooses to swap the order of these two regulators  
The system swaps the order of the two regulators in the regulator tree by updating pointers 

The original shapes of the first regulator become the original shapes of the second 
regulator 
The original and image shapes of the second regulator will become the original shapes of 
the first regulator  

The regulator tree is re-generated (starting from the swapped regulators) 
 
 

UserInterface RegulatorGraph Shape

4: rearrange_images_&_original

3: swap

2: select

1: select
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D.2.8.13 Subdivide a regulator   

Entry condition:  
 A regulator is selected  

The regulator controls are available 
 
Flow of events: The user chooses to subdivide the regulator 

 
The system generates a subdivision regulator 
The initial–selected regulator is set as the original of the subdivision regulator (and it is rendered 
invisible). 
The user enters the number of subdivisions (let say k)  
The user chooses by factor or by number 
The user chooses whether the subdivisions are to be connected or independent shapes. 
 
The user can also set the formula for the subdivision regulator (the default is a form in the 
direction of the selected regulator)  
 
The system generate k new regulators (the images for the subdivision regulator) 
 
The system divides the factor/number of the selected regulator by k 
The systems sets the factor/number for each new k regulators 
The system sets the differential factor for the new regulators based on the formula of the 
subdivision regulator. 
 
Each new regulator will have its set of output shapes. 
If connected, each new regulator will have “as the original shape” (the last shape generated of the 
preceding regulator in the subdivision) 
 
If the selected regulator was in a sequence, (it is an insert) 

The system replaces the initial regulator with the subdivision regulator in the sequence. 
The output shapes of all the new regulators will become originals for the succeeding regulators  

  
Special requirements: 

Subdivision applies to all factors of the active identities of the initial regulators and all numbers in 
the regulator’s associations.  
Merging is achieved by deleting the subdivision regulator. (The original is restored) 
Number, formula, connection-flag, and subdivision type can be modified anytime. 
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Model Regulator Nested_regulatoUserInterface graph

4: chooses_number_factor

3: enter_num_k

2: subdivide

1: select

8: set_parameters

9: place_k_reg_in_nested_reg

6: instantiate_k

5: instantiate

10: replace_reg_by_nest

7: derive_factors_number_divide
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