
PHD DISSERTATION

ARCHITECTURAL EXPLORATIONS

A FORMAL REPRESENTATION FOR THE
GENERATION AND TRANSFORMATION OF
DESIGN GEOMETRY

HODA MOUSTAPHA

CARNEGIE MELLON UNIVERSITY
SCHOOL OF ARCHITECTURE
COMPUTATIONAL DESIGN PROGRAM

THESIS COMMITTEE:

OMER AKIN
RAMESH KRISHNAMURTI
ULRICH FLEMMING
BERND BRUEGGE

ARCHITECTURAL EXPLORATION

A FORMAL REPRESENTATION FOR THE GENERATION AND
TRANSFORMATION OF DESIGN GEOMETRY

HODA MOUSTAPHA

CARNEGIE MELLON UNIVERSITY
COLLEGE OF FINE ARTS
SCHOOL OF ARCHITECTURE
COMPUTATIONAL DESIGN PROGRAM
SEPTEMBER 2005

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

ARCHITECTURAL EXPLORATIONS

A FORMAL REPRESENTATION FOR THE GENERATION AND
TRANSFORMATION OF DESIGN GEOMETRY

HODA MOUSTAPHA

CARNEGIE MELLON UNIVERSITY
COLLEGE OF FINE ARTS
SCHOOL OF ARCHITECTURE
COMPUTATIONAL DESIGN PROGRAM
SEPTEMBER 2005

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

OMER AKIN - PRINCIPAL ADVISOR

RAMESH KRISHNAMURTI - ADVISOR

ULRICH FLEMMING - ADVISOR

BERND BRUEGGE - ADVISOR

ACKNOWLEDGEMENTS

I would like to acknowledge all those who contributed to my intellectual journey at

Carnegie Mellon University.

I begin by offering my sincere thanks to my advisor Professor Ömer Akin, who provided

me with exceptional guidance throughout the years, and who always encouraged me to

pursue my interests to their full potential. I would like to thank my committee members:

Professor Ramesh Krishnamurti for his continued inspiring suggestions, as well as

Professor Ulrich Flemming and Professor Bernd Bruegge for their crucial feedback.

I offer my thanks to Darlene Covington-Davis for her constant moral support, especially

during difficult times. I thank Judith Kampert, and Elizabeth Fox for their friendship and

support. I thank my friends and colleagues in the Graduate Programs at the School of

Architecture for their constant encouragement and intellectual exchanges; in particular

Dr. Safwan Ali and Dr. Magd Donia for helping me adjust to life in Pittsburgh. I also

would like to thank Professors Kristen Kurland, Susan Finger, Mark Gross, and Ellen Do

for their friendship and encouragement.

I address my thanks to Professors Volker Hartkopf, Vivian Loftness, Azizan Abdul-Aziz,

and Khee-Poh Lam for their financial support during my Ph.D. studies.

I am greatly indebted to His Royal Highness Prince Bandar Bin Sultan and to Her Royal

Highness Princess Haifa Al-Faisal for financing the initial phases of my pursuit of

knowledge at Carnegie Mellon University.

And last but not least I would like to thank my father, Dr. Ahmed Moustapha, who has

always been a role model and a constant source of motivation. As for my mother, Dr.

Djehane Hassouna, there will never be enough words to describe all she has done and is

still doing for me, and to express my never-ending gratitude.

 ABSTRACT

Design is often described as an exploration: a search for an adequate solution amongst a

space of alternatives (Simon 1969). It involves the development and transformation of

alternatives. Composition of spatial relations such as symmetry, hierarchy, grid-

alignment, and proportion, termed “design structures,” help in the development of these

architectural alternatives, and are used as compositional principles during their

transformation.

During the exploratory, early phases of design, configurations continually evolve. Both

configuration elements and their relational structure are subject to change. Defining

structures, exploring variations within structures, and redefining structures are the

common means of transforming alternatives. Such transformations are necessary for

developing design configurations and improving their quality.

Transformations of design structures, which often yield intellectually stimulating results,

are labor intensive; they require individual modification of related elements. Such

repetitive interaction considerably slows down the exploration, and often discourages it

completely, particularly when configurations are complex and interrelations are

numerous.

My research is motivated by the following factors: (i) the necessity of flexible geometry

for early design exploration; (ii) the intellectual stimulation provided by the exploration

of structure; (iii) the difficulty involved in transforming design structures; (iv) the lack of

computational support for design exploration; and (v) the lack of comprehensive

representations for architecturally significant design structures.

I have developed a framework of strategies that allows designers to explore complex

configurations by manipulating their organizational structure. This framework, named

Interactive Configuration Exploration (ICE), consist of two parallel endeavors: a notation

and a computer implementation. The ICE notation is a formalism for describing shapes

ARCHITECTURAL EXPLORATIONS ABSTRACT 1

and configurations, by means of their generative and relational structures. The ICE

implementation is a 3D modeling system that supports the exploration of such shapes and

configurations through the transformation of their structures.

The approach used is to separate the structures from configuration elements. In this

manner, we can use structures to summarize configurations in the ICE notation, and use

structures as manipulation handles to control the configuration in the ICE system.

The principal vehicle in ICE is the regulator, which is an abstraction that captures a single

unit of structure (i.e., a single relationship within a configuration). For instance, a grid

structure is captured by alignment lines; a symmetry structure is captured by a reflection

axis or center of rotation. Regulators, which are inspired by regulating lines, encapsulate

a mathematical formula that determines the relationship between elements.

The ICE notation enumerates and classifies the various types of regulators. It defines

composition strategies and generation methods in order to represent the widest possible

range of configurations. Furthermore, it captures a method for generation as well as a set

of applicable transformations for any given configuration, based on its organizational

structure. The ICE notation is not merely a geometric descriptor. It allows the derivation

of additional geometric information, such as subshapes, boundaries, lengths, areas,

volumes, and midpoints by means of simple computations on the notation strings.

Additionally, it is possible to derive steps for transforming one configuration into

another, by means of a simple algorithm.

The ICE system, offers a higher-level of interaction with design configurations though

regulators. These regulators maintain control over configuration elements, thus imposing

relational constraints and propagating changes within the configuration. The parameters

of regulators are manipulation handles; therefore, a user can transform the configuration,

either completely or partially, by applying simple changes to the regulator. Such

explorations yield significant transformations with relatively short paths, since

manipulating a spatial relation results in the simultaneous transformation of multiple

elements.

ARCHITECTURAL EXPLORATIONS ABSTRACT 2

 TABLE OF CONTENTS

 ABSTRACT 1

CHAPTER 1 INTRODUCTION 8

1.1. Motivation 10

1.2. Scope 12

1.3. Research Synopsis 12

1.4. Thesis 14

CHAPTER 2 BACKGROUND: REPRESENTATIONS FOR DESIGN

EXPLORATION 15

2.1. Constraint Based Representation 16

2.1.1. SketchPad (Sutherland 1963) 16
2.1.2. The Sketcher (Medjdoub 1999) 17
2.1.3. CoDraw (Gross 1991) 18
2.1.4. Briar (Gleicher 1991) 20

2.2. Associative Representations 22

2.2.1. ReDraw (Kolarevic 1993) 22

2.3. Design Grammar Representations 23

2.3.1. DiscoverForm (Carlson 1991) 24

2.4. Hybrid Representations 26

2.4.1. Seed Layout (Flemming 1995) 26
2.4.2. Floor Layout/Massing Study programs (Harada 1997) 27
2.4.3. Performance Simulation Interface (Suter 1999) 29

2.5. Commercial Systems 32

2.5.1. Revit, a Parametric Building Modeler 32
2.5.2. GenerativeComponents (Aish, 2005) 34

2.6. Mathematical Representations 36

2.6.1. Shape Pattern Representation (Cha 2004) 36

ARCHITECTURAL EXPLORATIONS TABLE OF CONTENTS 3

2.6.2. A Generative Theory of Shape (Leyton 2001) 39

2.7. Comparative Analysis 44

2.7.1. Opportunities 47

CHAPTER 3 REGULATORS: A FRAMEWORK FOR DESIGN

EXPLORATION 48

3.1. Design Structures 49

3.1.1. Categories of Design Structures 49
3.1.2. Units of Design Structures 52
3.1.3. Representation of Design Structures 57
3.1.4. Transformation of Structures 58

3.2. Empirical Observation of Design Structures 63

3.2.1. Experimental Setup 63
3.2.2. Regulating Elements as Design Strategies 63

3.3. The ICE Framework for Exploring with Design Structures 69

3.3.1. Regulators 69
3.3.2. Dynamics of Regulators 78
3.3.3. Notation and Implementation 84

CHAPTER 4 THE ICE NOTATION 86

4.1. The ICE Notation Syntax 87

4.2. Regulators Categories and Types 89

4.2.1. Transformation Regulators 89
4.2.2. Variation Regulators 92
4.2.3. Constraint Regulators 93
4.2.4. Topological Regulators 95
4.2.5. Hierarchical Regulators 95
4.2.6. Operation Regulators 96

4.3. Regulator Generation Methods 98

4.4. Regulator Composition 100

4.5. ICE Conventions 104

4.5.1. Shape Encapsulation 104
4.5.2. Indices and Shape Dimension 104
4.5.3. Shape Access 106
4.5.4. Shape Resolution 106
4.5.5. Distribution and Identity 107

ARCHITECTURAL EXPLORATIONS TABLE OF CONTENTS 4

4.6. Generation and Transformation in ICE 108

4.6.1. Capturing Generation 108
4.6.2. Capturing Transformation 109

4.7. Shape Representation 113

4.7.1. Linear Shapes 113
4.7.2. Planar Shapes 114
4.7.3. Volumetric Shapes 117
4.7.4. Shape Transformations 120

4.8. Pattern Generation and Transformation 121

4.8.1. Cyclic and Dihedral Patterns 121
4.8.2. Frieze Patterns 122
4.8.3. Wallpaper Patterns 123

4.9. Representational Schemata 125

4.9.1. Simple Generative Schemata 126
4.9.2. Complex Generative Schemata 126
4.9.3. Hierarchical Schemata 127
4.9.4. Grid Schemata 128
4.9.5. Topological Schemata 130
4.9.6. Dynamic Schemata 130
4.9.7. Schema Encapsulation 131

CHAPTER 5 PROPERTIES OF THE ICE REPRESENTATION 133

5.1. Shape Information 134

5.1.1. Boundary Elements and Key-Elements 135
5.1.2. Sub-shapes 139
5.1.3. Lengths, Area, and Volumes 141

5.2. Definitions and Analogies 145

5.2.1. Equality and Equivalences 145
5.2.2. Coincidence and Extension 147
5.2.3. Coincidence-based Relations and Operations 150
5.2.4. Maximal and Subshape 151

5.3. Regulator Interrelationships 153

5.3.1. Variational Regulators 154
5.3.2. Constraint Regulators 154
5.3.3. Topological Regulators 156
5.3.4. Hierarchical Regulators 156
5.3.5. Operation Regulators 157

ARCHITECTURAL EXPLORATIONS TABLE OF CONTENTS 5

5.3.6. Conflict Identification 159

5.4. Multiple Representation 163

5.5. Determining Transformation Steps 171

5.6. Design Space in the ICE Representation 177

CHAPTER 6 ARCHITECTURAL EXAMPLES 179

6.1. Building Components 180

6.2. John Hejduk’s Half House and House10 184

6.2.1. The Generation of Half House 184
6.2.2. The Transformation of Half House to House 10 190

6.3. Calatrava’s Art Museum at Milwaukee 195

6.3.1. Describing the Roof Structure Using ICE 196

6.4. An Ethnographic Example from the Design Studio 200

6.4.1. The Annotated studio 200
6.4.2. Snapshots from the Design Studio 200
6.4.3. Multiple Representations of a Snapshot 208

CHAPTER 7 THE ICE IMPLEMENTATION SYSTEM 211

7.1. Overview 212

7.1.1. Engineering Concepts 212
7.1.2. Usability and Interaction Concepts 215

7.2. Regulated Elements 216

7.3. Regulators 218

7.3.1. Dynamic Associations 220
7.3.2. Simultaneous Composition of Regulators 222
7.3.3. Regulator Controls 224

7.4. Schemas 226

7.4.1. Successive Composition of Regulators 227
7.4.2. Regulating Continuous shapes 228
7.4.3. Regulating Regulators 229

7.5. The Model 230

7.6. History and Process Capture 233

ARCHITECTURAL EXPLORATIONS TABLE OF CONTENTS 6

CHAPTER 8 DISCUSSION 234

8.1. Comparative Analysis 234

8.1.1. ICE and Constraint Based Representations 234
8.1.2. ICE and Associative Representations 235
8.1.3. ICE and Design Grammars 235
8.1.4. ICE and Mathematical Representations 236
8.1.5. ICE and Solid Modeling 237
8.1.6. ICE and Computing Languages 237

8.2. Contributions 238

8.3. Future Work 240

8.3.1. Extending the ICE Framework 240
8.3.2. Potential Applications for the ICE Framework 241

 APPENDICES

A Bibliography 243

B Mathematical Background 254

C Pattern and Transformations 278

B The Engineering the ICE Implementation 295

ARCHITECTURAL EXPLORATIONS TABLE OF CONTENTS 7

CHAPTER 1

INTRODUCTION

The early phases of architectural design are characterized by exploratory activities and by

iterative development. During these phases, concepts evolve, and ideas are explored

through cycles of decisions, evaluations and transformations.

Among the numerous descriptive models of design, the most prominent is Simon’s model

of exploration. Simon describes the design process as a complex form of problem-

solving, and categorizes design problems as ill-structured (Simon, 1969). Design is

considered as a search for an adequate solution within a large space of alternative states.

Designers navigate though this space by means of transitions that convert one alternative

state into another, until the desired goal state is reached.

Akin (1987, p5) explains that problem structuring is a prerequisite to problem solving. It

is the phase where the vague, ill-defined description of the problem is converted into a

precisely defined, well-structured one. Archea (1987) refers to design structuring as

puzzle making. The process of exploration is an important source for understanding the

design problem (Harada 1997). The act of repeatedly generating and evaluating

alternatives lead to the definition and refinement of requirement specifications, design

relations, and constraints that need to be satisfied within the design solution.

Failure to satisfy these conditions leads to a restructuring of the problem, which takes the

form of modifying relations and redefining specifications, thus transforming the

problem's parameters (Akin 1987). Structuring defines the search space, while solving

operates within its boundaries; restructuring, on the other hand, breaks the boundaries and

redefines the search space. Restructuring represents a major iteration in design.

Architectural design products are complex geometric configurations, serving multiple

functions simultaneously. These configurations are assemblies of parts, organized by

ARCHITECTURAL EXPLORATIONS CHAPTER 1 8

means of spatial relations—such as symmetries, grids, hierarchies, and adjacencies—to

create unified coherent wholes. Compositions of such spatial relations define “design

structures” that describe complex geometries, elaborate hierarchies, and intricate

topologies within architectural configurations. Consider the Pantheon as an example

(Figure 1.1, source: Ching 1996, p.288). A radial grid, a rectangular grid, rotational

symmetry and mirror symmetry are composed together in harmony to define the design

structure of the Pantheon. In Figure 1.1, the structure is indicated by regulating lines.

FIGURE 1.1- The Design Structure of the Pantheon

Design structures are not only fundamental to design products, they are also fundamental

to the design process. The spatial relations, forming these structures, which are referred to

as ordering principles (Ching 1996) and formative ideas (Clark 1985), are an essential

part of architectural design toolkit. Designers deal with structures implicitly, by

organizing the elements of the configuration, or explicitly, through regulating lines. Le

Corbusier also prescribed the use of regulating lines to structure architectural

configurations.

During structuring, designers compose the structures of architectural configurations.

They define spatial relations and determine the boundaries of the search space. During

solving, designers investigate variations within their structures. Their transformations are

influenced by the spatial relations of the structure and remain within the limits of the

search space. They manipulate the configuration while preserving the relationships and

accentuating their structure. During restructuring, designers transform the structure of

their configuration; their transformations reformulate the spatial relations of the structure,

thus completely redefining the search space.

ARCHITECTURAL EXPLORATIONS CHAPTER 1 9

1.1. MOTIVATION

During the early phases of design, architectural configurations continually evolve. The

conceptual dimension of design is flexible, where elements, as well as spatial relations

are repeatedly being updated. However, current representations of design products,

whether traditional, in the form of drawings or scaled models, or computational, are not

flexible. These representations capture static snapshots of design states. They do not fully

capture the transitions that formulate the conversion of one alternative state to another. In

traditional media, there is no record of transformations except through inference. In

computational media, there is a linear record of generative steps, but these cannot be

captured and manipulated as such. Therefore, an essential exploratory component is

missing in these representations.

The process of exploration is a method for refining and improving the design solution. It

is a means of addressing the design problem from various perspectives. It allows more

options to be considered and evaluated. It is a vehicle for innovation and discovery, in

particular, exploration with structures. In additional to being a tool for transformation

across design alternatives, exploring with structures is an intellectually stimulating

experience. It leads to the discovery of new forms and compositions, as well as

considering avenues that would not be otherwise considered.

Consider the Floor Plan of Frank Lloyd Wright’s Lloyd Lewis House (Figure 1.2a,

source: Laseau 1992, p.7). Figure 1.2b, 1.2c, and 1.2d show the effects of changing the

directions of underlying grid lines or changing their curvatures. Furthermore, consider the

ability to control each of these grid lines individually, and to perceive the effects on a

certain group of elements. One can only begin to imagine the possibilities for such

exploration, and the range of ideas that these may bring during early conceptualization

phases.

Exploring structures is labor intensive in both traditional and computational media.

Although design structures are implicit in the arrangement of configuration elements,

transforming this implicit structure requires the designer to transform every element in

the configuration, while managing, mentally, complex spatial relations between them.

Such repetitive interaction considerably slows down the exploration, and often

ARCHITECTURAL EXPLORATIONS CHAPTER 1 10

discourages it completely, particularly when configurations are complex, and inter-

relations numerous.

a b

c d

FIGURE 1.2 - Transformation of the Structure of Lloyd Lewis House

Computational design media, such as contemporary CAD systems, are typically

conceived for representing final design products, not for exploratory activities. These do

not support user-defined design structures and spatial relations. Instead, they capture

independent design elements in the form of simple shapes and complex objects. Some

computational research prototypes capture topological and hierarchical structures;

however, these are system defined and cannot be easily transformed by users.

Furthermore, architecturally significant spatial relations, such as symmetry, proportion,

grids, etc., have not been sufficiently addressed, as exploration tools, in computational

design research.

Despite the active role that structures play in design conceptualization, and although

transformation of structures produce intellectually stimulating results, explorations by

means of structures are not practically possible. This is due to the time and labor involved

in re-organizing all elements within a structure.

Given the aforementioned motivational factors, I believe it is necessary to investigate

methods for facilitating the exploration by means of structures, and for eliminating the

labor and time involved in the transformation of structures, in order to make the

geometric product as flexible as the conceptual dimension of design.

The primary goal of this research is to make the computational design environment a

ARCHITECTURAL EXPLORATIONS CHAPTER 1 11

source for intellectual stimulation. It is important to capture, computationally, the

semantic complexity of design structures, and to provide support for transformation of

structures, in an instantaneous, real-time manner. I believe that exploration by means of

structures will allow the geometric representation to follow an evolving design concept. It

will promote the discovery of new forms, new relations, and novel configurations that

would not be otherwise explored. Furthermore, it will encourage the designer to explore a

much larger space than would be possible with current tools and representations.

1.2. SCOPE

This research addresses computational representations for supporting geometric

exploration during early phases of the architectural design process. The emphasis is on

the structuring and restructuring activities pertaining to the geometry of architectural

configurations. The focus is on using design structures as a primary construct for

generation and transformation of alternative configurations.

This multidisciplinary research incorporates topics from mathematics, computation,

software engineering and design processes. It addresses internal computational issues

such as the flexible representation of structures, and the dependency between design

structures and configuration elements. It also addresses front-end issues such as the

designer's interaction with structures, the visual display of these structures, and the ability

of structures to support exploratory iterative activities.

I do not prescribe specific methods for design. However, I suggest utilizing existing

design strategies and augmenting them with computational power, in order to make

explorations more effective.

1.3. RESEARCH SYNOPSIS

I have developed a framework of strategies that allows designers to explore complex

configurations by manipulating their organizational structure. This framework, named

Interactive Configuration Exploration (ICE), consist of two parallel endeavors: a notation

and a computer implementation. The ICE notation is a formalism for describing shapes

and configurations, by means of their generative and relational structures. The ICE

implementation is a 3D modeling system that supports the exploration of such shapes and

ARCHITECTURAL EXPLORATIONS CHAPTER 1 12

configurations through the transformation of their structures.

The approach used is to separate the structures from configuration elements. In this

manner, structures are used to summarize configurations in notation, and used as

manipulation handles to control the configuration in the implementation.

The principal vehicle in ICE is the regulator, which is an abstraction that captures a single

unit of structure (i.e. a single relationship within a configuration). For instance, a grid

structure is captured by alignment lines; a symmetry structure is captured by a reflection

axis or center of rotation. Regulators, which are inspired by regulating lines, encapsulate

a mathematical formula that determines the relationship between elements.

The ICE notation enumerates and classifies various types of regulators. It defines

composition strategies and generation methods in order to represent the widest possible

range of configurations. Furthermore, it captures a method for generation as well as a set

of applicable transformations for any given configuration, based on its organizational

structure. The ICE notation is not merely a geometric descriptor. It allows the derivation

of additional geometric information, such as subshapes, boundaries, lengths, areas,

volumes, and midpoints by means of simple computations on the notation strings.

Additionally, it is possible to derive steps for transforming one configuration into

another, by means of a simple algorithm.

The ICE system allows a higher-level of interaction with design configurations through

regulators. Regulators maintain control over configuration elements, thus imposing

relational constraints, and propagating changes within the configuration. The parameters

of regulators are manipulation handles; therefore, a user can transform the configuration,

either completely or partially, by applying simple changes to the regulator. Such

explorations through regulators yield significant transformations with relatively short

paths, since manipulating a spatial relation results in the simultaneous transformation of

multiple elements.

I envision that this work will impact the way design is carried out in numerous

disciplines, particularly in architecture, through the descriptive capacity of the notation

and the exploratory capacity of the implementation.

ARCHITECTURAL EXPLORATIONS CHAPTER 1 13

This remaining part of this document is organized as follows:

• Chapter 2: An overview of computational representations and research

prototypes addressing various aspects of design exploration.

• Chapter 3: An overview of the various types of design structures observed in

architecture, and a description of the regulator framework used for design

exploration.

• Chapter 4: A detailed description of the syntax and building blocks and of the

ICE notation, as well as an investigation of the various categories of shapes and

configurations represented with the ICE notation.

• Chapter 5: a detailed description of derivational, properties and algorithmic

additions to the ICE notation.

• Chapter 6: Architectural examples, including an ethnographic example

illustrating the evolution of designs as represented by the ICE notation.

• Chapter 7: A complete description of the features of the ICE implementation

system.

• Chapter 8: Contributions and speculations about future work.

• Appendices: These include the following: (i) the mathematical background for

regulators; (ii) the representation of geometrical pattern and their

transformations; (iii) the engineering of the ICE implementation; and (iv) the

bibliography.

1.4. THESIS STATEMENT

Regulators are defined as abstractions, which capture the spatial relations organizing

design elements into coherent configurations. In their mathematical form, regulators are

effective in describing design configurations concisely and accurately. In their

computational form, regulators are strategic tools for the iterative exploration of design

configurations.

ARCHITECTURAL EXPLORATIONS CHAPTER 1 14

CHAPTER 2

BACKGROUND REVIEW:
 COMPUTATIONAL REPRESENTATIONS

 FOR DESIGN EXPLORATION

In a computational environment, exploration is achieved by means of sharing design

tasks between the user and the system, with the user focusing on exploring higher level

ideas and the system managing lower level mechanisms. In the context of this research,

where design relationships are the primary focus, representations would capture the

relations among design entities, and systems would manage these relations.

Representation of design relations can take many forms. Relations can be represented as

constraints which can be encapsulated in grammar rules. Relations can also be captured

in dependency hierarchies. Alternatively relations can be represented through hybrid

combination of the aforementioned approaches. Additionally, relations can be

represented as mathematical notations.

In this chapter, various approaches to representations used in exploration are surveyed.

These include research prototypes (Sections 2.1 to 2.4), mathematical notations (section

2.6), and commercial systems (section 2.5). Research prototypes are further categorized

as constraint-based representations, associative representations, design grammars

representations and hybrid representations.

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 15

2.1. CONSTRAINT-BASED REPRESENTATIONS

In constraint-based representations, design relations as well as design attributes are

represented as constraints. In constraint-based systems, users explore by manipulating

design entities, while the system maintains the constraints and consequently maintains the

integrity of the design.

2.1.1. SKETCHPAD (SUTHERLAND 1963)

SketchPad, a pioneering 2D graphic system, was the first to introduce interactive

drawing, direct manipulation, and constraint satisfaction. It supports a drawing process

consisting of two steps: (1) drawing simple 2D shapes (lines and circles) by means of a

light pen; (2) refining the drawing by applying constraints to it. This process is inspired

by the way a designer turns a sketch into a precise drawing. The vision of the SketchPad

system includes the incorporation of design analysis and evaluation functionalities.

SketchPad's generality allows it to accommodate numerous design domains ranging from

artistic drawings to circuit design.

In SketchPad, design relations are defined by constraints, which are maintained upon the

manipulation of drawing elements. Changes are recursively propagated among the

repetitive subparts of the drawing. SketchPad’s uses generic structure hierarchies, which

group drawing objects, constraints, and commands according to their types. These allow

SketchPad to be extensible, and to accommodate new drawing objects and new constraint

types.

Constraint satisfaction is achieved either by the “one-pass method” or by the “relaxation

method”. Relaxation involves relaxing one or more constraints in the drawing and

solving for the remainder of the constraints. The one-pass method involves the ordering

of variables with the following principle: two variables are adjacent if both are affected

by a single constraint. A free variable is one, which has so few constraints that it can be

solved quite easily. Solving a free variable would eliminate its constraints, thus causing

its adjacent variables to become free. Due to the ordering strategy, this method solves all

the constraints of the drawing in just one pass. The one-pass method is used for complex

cases, where relaxation would be too slow to achieve real-time results.

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 16

Basic manipulation of drawing objects is achieved by means of a light pen and a few

buttons to determine the interaction mode. The graphic display of constraints, which can

be toggled on and off, allows users to view, select, and delete constraints.

SketchPad is a seminal work that introduced numerous concepts in graphical interaction

that are indispensable for design systems. These include direct manipulations, constraints

satisfaction, and augmenting drawing systems with evaluation tools as well as

experimenting with motion in drawings.

2.1.2. THE SKETCHER (MEDJDOUB 1999)

Sketcher is an interactive constraint-based prototype that supports the precise

construction and exploration of 2D geometric drawings. As users draw and manipulate

entities, the system identifies geometric relationships and generates constraints

automatically. The system maintains the constraints of the drawing upon further

manipulation. Sketcher supports two types of constraints: topological (tangents,

perpendiculars, parallels, on and concentric); and metric (fix coordinates, distances,

length and angles, and equal subdivisions within a shape). Metric constraints are applied

to geometric entities (points, lines, circles, arcs, ellipses and splines). Sketcher also

supports the division of a geometric entity into equal parts. Figure 2.1 shows how

sketcher maintains constraints when manipulated; 2.1a and 2.1b are variations of the

same model, and 2.1c and 2.1d are variations of another model.

The constructive approach is used for satisfying the constraints, which are reduced to

quadratic equations and are solved numerically. The drawing is translated into a graph,

where nodes are geometric entities and edges are the constraints. A sequence of

construction steps is derived, and these steps are carried out to obtain the solution. The

graph is created and solved upon every manipulation or creation of constraints. Well-

constrained problems are solved by choosing the solution, which best matches the mouse

position. Under-constrained problems are guided by the degrees of freedom for geometric

attributes. Ruler and compass constructions are solved using quadratic equations, while

other types of constructions are solved using numeric methods.

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 17

a b c d

FIGURE 2.1 - DRAWINGS GENERATED USING THE SKETCHER

Constraint manipulations vary according to the mouse buttons. Right-mouse interactions

create and maintain constraints, while left-mouse interactions ignore and break

constraints. User manipulation can cause a constraint to be relaxed or repositioned,

resulting in the constraint to change its type (from on to tangent) and, therefore, causes

the graph to be redefined. As the constraints are identified, they are expressed by means

of construction lines (parallel/perpendicular and tangent) and labels that appear on the

drawing. However, constraints that are established in the model are not displayed, thus

users cannot differentiate among constrained and non-constrained entities. Conflicts

result from modifications, for which the graph has no solutions. In this case the system

maintains the last solution and does not attempt to display the conflict situation.

Sketcher's powerful features include the following: automatic specification of constraints;

precise feedback as constraints are being identified; automatic sub-division of shapes in

equal segments; and incorporation of constrained ellipses and splines. However, Sketcher

would benefit from a clear display of established constraints on the drawing, as well as

support for users directly manipulating these constraints.

2.1.3. CODRAW (GROSS 1991)

CoDraw is an interactive 2D design exploration environment based on the relational

modeling paradigm. It supports symmetric relations between model variables; this

enables the bi-directional variation of a model (any variable can be an input from which

others are derived). Users specify relations as a model is built, which are maintained by

the system as entities are manipulated. Binary and unary relations are expressed as

constraints (alignments, tangents, centering, edge offsets, dimension ratio, slopes, and

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 18

fixed sizes) which are applied to primitive geometric entities (line segments, circles, arcs,

and poly-lines). The representation in CoDraw blurs the boundary between entities and

relationships: entities can be considered a set of relations; and relations can be used to

define entities.

In CoDraw’s grid module, the grid is a design tool that can be selected, composed,

superimposed, and used to position design elements and define relations among other

elements. The grid module was not integrated to the CoDraw’s relational modeling

mechanism, so grids are used for positioning but not for transforming design. This is due

to the fact that grid management would require discrete manipulation and multiple values

that are not supported by CoDraw.

FIGURE 2.2 - THE CODRAW INTERFACE

CoDraw uses CO, a relational modeling language that integrates an object-oriented

database that organizes elements into hierarchies, and a reverse spread sheet that provides

two-way calculations. A variable is represented as a group of constraints (for example,

x=100, 4<x<10, x<5 or x =1\2y) that are stored in a term stack. Constraints also express

relations with other variables. Conflicts in CoDraw are resolved by constraint relaxation,

which is determined by the object's internal state; rigid or stretchy. CoDraw is extensible:

existing relations can be edited and new relations can be specified.

Relations are displayed on the drawing, in order to differentiate between actually

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 19

constrained objects and those that just happen to be positioned in a related way, and can

be hidden upon request. Users can query internal states of elements to find out whether

they are rigid or stretchy. This affects the behavior of the model upon manipulation.

However, there is no visual expression for this state, nor is there a visual expression for

fixed and free variables. Figure 2.2 shows the interface of CoDraw, with the hierarchic

representations for the design and the relations menu.

CoDraw's powerful features include the following: user manipulation of constraints;

extensibility in the form of user defined relations; hierarchical representations;

manipulations of the internal state of objects, and the grid module.

2.1.4. BRIAR (GLEICHER 1991)

The Briar system is an interactive program that supports the rapid construction and

manipulation of precise 2D drawings, and the simulation of kinematic behavior of those

drawings. Briar uses augmented snap-dragging to automatically establish persistent

constraints in drawings, which are maintained upon manipulation by differential methods.

Briar supports two types of constraints (point-coincident and point-on-objects) that form

the basis for a variety of relations. These correspond to two types of snaps: snap to point

(center, endpoints, or intersection); and snap to edge (or curve). Special alignment objects

(circles of various radii and lines of various orientations) are generated by the system to

establish relations among multiple objects; these exist only to be snapped at, and are used

to specify distance, orientation, and alignment. An object can be pulled away from a

constrained object and then coupled, constrained with another, making it easy for the user

to redefine the structure of the model.

Simple geometrical elements are represented by a state vector that contains their

parameters and connectors. A physical simulation method is used to maintain constraints,

which are solved differentially by reducing the non-linear equations of the constraints

into linear equations of their time derivatives. Objects are treated as particles, and user

actions as forces; the rate of change in the state of objects, as forces act on it, is computed

over time. (Gleicher 1991, p.7).

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 20

FIGURE 2.3 - THE BRIAR INTERFACE

Simple geometrical elements are represented by a state vector that contains their

parameters and both the visual vocabulary for constraints and the feedback regarding

constraint identification are clearly expressed on the model. This clarifies the state of the

drawing and promotes the predictability of its behavior upon manipulation. Figure 2.3

shows the expression of constraints of a drawing generated in Briar.

Constraints that tend to cluster are placed in an equivalence class, to avoid redundancy in

the configuration and visual clutter. As users manipulate drawing objects, the system,

guided by its snap-dragging mechanism, makes and breaks the constraints, which can be

accepted or rejected by users. Lightweight constraints, such as the tack, give the user

additional control to lock entities into position. Alignment objects are controlled

indirectly as user manipulates drawing objects.

Briar also supports experimenting with motion. Dynamic differential constraints enable

the simulation of kinematic movement in mechanical drawings, while remaining in the

interactive mode.

Briar's powerful features include the following: augmented snap-dragging; automatic

constraint recognition; a clear visual vocabulary consistent with user feedback; and

simulation of dynamic motion. However, the palettes for both forms and constraints are

limited, and users cannot directly manipulate constraints.

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 21

2.2. ASSOCIATIVE REPRESENTATIONS

In associative representations, design relations constitute dependencies that are defined

by the structure of the underlying model. Change is propagated throughout the elements

of the structure.

2.2.1. REDRAW (KOLAREVIC 1993)

ReDraw supports the transformation of 2D design compositions by means of

manipulating their underlying construction lines. These constitute the framework that

establishes formal relations among parts of the design composition. ReDraw’s

representation is based on the drafting metaphor: ink lines depend on pencil lines (infinite

construction lines), which in turn depend on relations (parallel, perpendicular, and

connected). In this way, grids, which are patterns of construction lines, and axes, which

are construction lines of specific importance, define the hierarchical structure of the

design, and regulate its behavior as parts are manipulated. Although both pencil and ink

lines are straight in ReDraw's implementation, theoretically, they can be curvilinear

(circular, elliptic, parabolic). Designs are composed by making pencil lines and assigning

relations to them. Designs are transformed by manipulating (translating and rotating)

these pencil lines. ReDraw supports the addition, deletion as well as substituting design

decisions.

Every ink line is represented by three pencil lines, one carrier line, and two bounding

lines defining its endpoints. ReDraw supports hierarchical uni-directional, or bi-

directional, dependencies. Its maintenance mechanism is based on simple direct

propagation, through recursive traversal up and down the tree data-structure. Conflicts

are resolved by either eliminating a relation, or establishing new ones within the tree

structure.

Ink and pencil lines are visually distinct; however, relations among pencil lines are not

clearly expressed and must be queried. These visual indicators influence the predictability

of the model's behavior upon manipulation. As complexity of drawings increases, pencil

lines can become too numerous and overwhelm the drawing, as is illustrated in Figure

2.4, where 2.4b is a variations of 2.4a in which the right construction lines are rotated.

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 22

The order of interaction in ReDraw is prescriptive; users must enter pencil lines first, and

then ink lines. Similarly, they must specify the type of relation as they are entering the

pencil lines; furthermore, these relations cannot be deactivated. These restrictions are

partly alleviated by the presence of an undo command.

a b

FIGURE 2.4 - DRAWINGS GENERATED IN REDRAW

ReDraw introduces the notion of construction lines into the computational environment,

which is a powerful contribution because it enables the exploration of the structure of the

configuration as a whole. However, the sequence of entering pencil lines and relations is

not flexible, and the display of pencil lines is visually complex; ReDraw does not support

a visual display for relations between pencil lines and nor does it support the deactivation

of these relations.

2.3. DESIGN GRAMMAR REPRESENTATIONS
Design grammars, which are used to describe languages of designs, are also used as

venues for design exploration, especially in generative design systems. In grammar-based

representations, designs are represented by means of a vocabulary of shapes, (defined by

lines and labels) and a set of production rules; design relations as well as design

transformations are encapsulated in those rules. Configurations are manipulated by the

application of these rules in order to change the current state of the design.

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 23

2.3.1. DISCOVERFORM (CARLSON 1991)

DiscoverForm is a rule-based program that supports the generation and exploration of

self-similar recursive forms, such as branching structures, reptiles, or space filling curves.

Forms are developed by recursively cloning a 2D motif according to a single replication

rule onto layers that are conceptually ordered along a third dimension.

The structure of these forms is defined by the transformations (translation, rotation,

reflection, scale, and shear) that map the motif to its clones. Forms are composed by the

recursive cloning of the motif; variations within forms are investigated by changing the

details of the motif; and forms are transformed by changing the clones of the motif.

The representation is based on structured grammars, where motifs are represented by

their parts and by the transformation that position, and orient, these parts. Recursive

structures are described by one motif, one rule, the depth of recursion, and a flag

“allgens” that determines whether all generations or the last generation are to be

displayed. The recursive form is represented as an ordered display list of motif primitives

and clones.

In Carlson’s structured grammars, α , is defined by means of an object, , (positioned at

the origin) and the transformation that positions and orients a with respect to the

origin. . A transformation,

a

f

),(fa=α g , applied to an object, α , is equivalent to the

external transformation, g , composed with α ’s internal transformation, . The

. Complex objects are defined by means of the union, intersection

and difference of simple structures. New forms are derived from old ones by means of

structure rewriting rules. These rules consist of a precedent and a consequent. The

precedent is further composed of an inclusive condition and an exclusive condition.

. The rule,

f

),(),()(gfafagg ==α

β⇒δα=),(r r , will apply to a form if and only if α is a subset of the form

and is not in the form. δ

Motifs and clones are displayed together to give the feeling of a single composite form.

Therefore, there is no visual distinction among the various generations of clones.

Relations among various parts [clones] are not shown. The transformations are applied

directly to the motif and clones of the first generation, by using tacks to fix points or lines

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 24

on motifs. These, combined with the mouse direction, determine the transformation that

is applicable to the motif (for instance, a fixed point yields a rotation, a fixed line yields

reflection).

The resulting forms, as well as the effect of manipulations of motif or clones, are totally

unpredictable. A small change to the motif can create an un-correspondingly large change

in the form, due to the complexity of the compounding effect of the recursion, as it is

illustrated in Figure 2.5.

FIGURE 2.5 - TWO PAIRS OF DRAWINGS GENERATED IN DISCOVER FORM

DiscoverForm's is an innovative design system. It has the ability to explore an infinite

universe of forms that were not previously possible, with a limited vocabulary (one motif

and one rule).It also has the ability to transform structures and to explore variation of

structures by direct manipulations and introduces an innovative interface for applying

such transformations. However, DiscoverForm does not provide support for altering the

recursive structure or exploring parts of the recursive form and does not provide a visual

distinction among clones of the various generations.

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 25

2.4. HYBRID REPRESENTATIONS

2.4.1. SEED LAYOUT (FLEMMING 1995)

SEED-Layout is a generative system that supports the exploration of 2D schematic layout

designs by rapidly generating and evaluating alternatives, using grammar rules in

combination with constraint satisfaction. Schematic layouts capture critical architectural

information such as circulation patterns, zoning, and the overall massing configuration, as

well as numerous performance factors.

The spatial containment structure in SEED-Layout is predetermined. It is defined by

Functional Unit hierarchies consisting of buildings, massing elements, floors, zones, and

rooms (Figure 2.6). When the Functional Units are allocated in a layout, these form a

hierarchy of spatially nested sub-layouts. Each Functional Unit, allocated in a layout, has

a corresponding Design Unit, which captures its geometry. The underlying 'topological'

structure is strictly orthogonal, and captures the left-right/above below relations between

rectangular Design Units within a layout. Variations in layouts can be investigated by

generating layouts with alternative structures. SEED-Layout offers three modes of layout

generation to the designer: under the designer's control, semi-automated generation, and

complete automated generation. All three modes use grammar rules to introduce new

Functional Units (or remove existing ones) in the layouts by expanding or contracting the

underlying structure. After each modification, the Design Units are re-dimensioned and

repositioned, taking the changed structure into account. The hierarchical structures in

SEED-Layout cannot be transformed.

SEED-Layout uses subdivision and pinwheel rules to generate designs. SEED-Layout

supports complex requirements and prescriptive constraints. The latter are either value

constraints (upper and lower bounds on dimensions, areas, and aspect ratios) or relational

constraints (required adjacency, minimum or maximum distance, and preferred

directions). Prescriptive constraints, which are satisfied automatically by constraint

solvers, are formulated explicitly at the Functional Unit and Design Unit levels.

Functional Unit constraints generate Design Unit constraints as corresponding Design

Units are generated. Additional constraints are computed directly from the layout to

guarantee non-overlap between Design Units. The resulting constraints--taken together--

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 26

form a system of simultaneous equations and inequalities, which are solved by constraint

propagation in numerical intervals, and a disjunctive constraints mechanism, adapted

from Baykan (1997).

FIGURE 2.6 -THE HIERARCHAL STRUCTURE OF SEED-LAYOUT ILLUSTRATED BY A FIRE STATION

SEED-Layout's elaborate interface supports navigation in a complex design space with

numerous alternatives. The layout's structure is clearly displayed on the main Layout

view. It is also displayed in the constituent hierarchy and the design space windows.

SEED-Layout is unique in its generative capabilities. It has the capacity to generate

alternative configuration under the designer’s control and a mechanism for managing

alternatives in a large search space. It also provides a higher-level description of

constraints from which lower-level descriptions are generated and maintained. However,

there is no support for direct manipulation of Design Units or their structures.

2.4.2. FLOOR LAYOUT AND MASSING STUDY PROGRAMS (HARADA 1997)

Harada's research integrates continuous and discrete transformations in constrained

design spaces. Physically-based modeling is used for continuous transformation, while

design grammars are used for the discrete transformation within a design search space.

The user directly manipulates the design model (by moving and dragging) causing it to

undergo continuous transformations until a conflict is reached. This triggers a discrete

search for a solution that accommodates both the user's desired changes and the

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 27

constraint specification. During this search, the model is transformed by swapping,

moving, rotating elements in order to generate alternatives, which are then evaluated in

order to select the best one.

The system displays the transformation from the model's state prior to the search, to the

resulting state, by a smooth animation that shows elements moving into their new

position (Figure 2.7). Continuous and discrete transformations are seamlessly integrated

in the system, and the details of the discrete search are hidden from the user. To maintain

interactivity, large combinatorial searches are avoided by limiting the discrete search to a

couple of elements (the ones adjacent to the selected element) and to minimal

transformation steps. Topological and hierarchical structures are determined by the

representation of the system; an additional structure is defined by constraints; the user

can explore variations within the structure, but only the system can transform it.

Harada implemented two separate software prototypes, one for 2D floor layout and one

for 3D massing studies. Both the layout and the massing programs support orthogonal

configurations. In the floor-planning program, the rectilinear configuration is represented

by a sub-region tree. The geometry is represented by means of the length and width of the

top-most rectangle. Child rectangles are represented as a fraction of the parent's length. In

the volumetric study program, the configuration is represented by an adjacency graph,

which encapsulates both primary attachment relations and secondary (relative coordinate

position) relations. Geometry is represented by means of (x, y, z), the block's center, and

(lx, ly, lz), half of the blocks width and height. The constraints are represented as forces

acting on the design objects and are satisfied by differential numerical methods. In the

floor-planning program, constraints are minimum or maximum width, height, area, aspect

ratio, and the nail constraint. In the volumetric program, constraints are all the above,

plus the non-interpenetration constraint.

In both programs, length, area and volume constraints are visually clear. These appear

when the user pushes the spaces to their limits. When the discrete search is taking place,

alternatives are counted and the number is displayed to the user. The migration from the

old state to the new state is shown by smooth animation, which promotes the

predictability of the models behavior. However, since the system chooses among a set of

hidden alternatives, the user may not get an expected result.

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 28

FIGURE 2.7- RE-ARRANGEMENT OF FUNCTIONS UPON MANIPULATION IN HARADA’S PROTOTYPES

Both implementations present an innovative approach to conflict resolution by integrating

physically-based modeling and design grammars. Powerful features include a clear

expression of constraints on the model, and a smooth animation to express the discrete

transformation. However, in both programs, only one scenario for manipulation is

supported, and users cannot perform discrete manipulations.

2.4.3. PERFORMANCE SIMULATION INTERFACE (SUTER 1999)

Suter’s prototype supports the interactive generation and manipulation of building models

in the performance simulation/analysis environment, SEMPER. It incorporates grammar-

based generation, dimensional constraints and change propagation. The prototype

assumes a subdivision approach in design. A designer builds a model by subdividing an

initial cube, and then explores variations in the model by moving/rotating or

adding/removing the partitions. Adjusting dimensions of the model, results in redefining

the positions of partitions. Relationships between various parts of the model are

established by means of link structures.

The prototype supports orthogonal and slanted geometric entities as well as topological,

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 29

hierarchical and geometric structures. The former two are automatically defined by the

hybrid representation, while the latter is defined by link styles. Changing the link styles

transforms the geometric structure.

The representation combines space-based, grammar-based, and sub-region

representations. Therefore, spaces are considered voids surrounded by surfaces, and these

are subdivided into subspaces by means of grammar rules. Entities are partitioned though

a set of partitioning rules and articulated through refinement rules. Each entity has a

maximum and minimum bounding partition and a partitioning direction. Volumes are

partitioned by surfaces, which are partitioned by lines, which are in turn partitioned by

points, resulting in separate hierarchies for volumes, surfaces, and lines.

FIGURE 2.8 - THE PERFORMANCE SIMULATION INTERFACE

Refinements, for which there are many types, produce non-orthogonal surfaces such as

shed and gable roofs. Constraints for dimensions, offsets, and partitioning directions are

controlled by users. Constraint satisfaction consists of conflict detection and change

propagation, provided there is no conflict. Conflict resolution is not supported. Changes

are propagated in a top-down manner starting from the selected entity.

Links relate distinct entities in the model such that they become identical and are

modified (manipulated or partitioned) in the same way. Links are applicable to entities

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 30

across various levels of the hierarchies. Link styles provide patterns of links in the model,

such as symmetric or rhythmic patterns.

The interface is elaborate. There are several methods to interact with model abstraction

and navigate through the model's entities: a component view and a tree view. However,

there is no direct manipulation with the model 3D view (Figure 2.8).

Suter’s program provides a coherent representation that supports design subdivision and

manipulation of configurations and integrates with performance simulation. It also

provides link structures that support the definition of higher level design notions of

symmetry and rhythm. However, the complex interaction scheme limits exploration, and

the fixed hierarchy prevents parts from being manipulated as units, these cannot be pulled

away or rotated. Furthermore, the system does not support direct manipulation and does

not provide a clear expression of constraints and links on the model.

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 31

2.5. COMMERCIAL SYSTEMS

Most industry-standard CAD systems have numerous powerful features for making

precise 3D models. However, among the many systems surveyed, only two provide

adequate support for design exploration: GenerativeComponents (Bentley systems) and

Revit (AutoDesk).

2.5.1. REVIT, A PARAMETRIC BUILDING MODELER

AutoDesk’s Revit is a parametric modeler for architectural design. It supports design

phases ranging from early conceptual design to construction scheduling.

Revit supports the investigation of variations within architectural configurations by

combining change propagation with constraint satisfaction on two levels of abstraction:

(i) for relating elements in the design and (ii) for relating the various drawings of the

design. Revit’s shared building database ensures the propagation of changes among all

the drawings in a given design by means of automatic bi-directional associativity. For

instance, if the roof type is changed from shed to gable, the connection to the walls is

automatically updated to admit the new configuration, in all drawings.

Revit has a component-based representation, which enables the designer to work directly

with walls, floors, doors, windows, roofs etc. Each building component encapsulates its

own parametric information as well as the information for integrating with other

components. Revit supports both straight and curved geometries. However, spaces,

functions, and other abstract design entities are not represented in Revit.

Revit automatically recognizes design constraints, such as connectedness, dimensions,

and alignments. These can be accepted or rejected by users. Constraints are preserved

upon manipulation; and conflicts are reported to users. Revit's recognition and

manipulation of constraints is better suited for rectilinear configurations, including

rotated rectilinear grids. Although it supports other angular configurations, it does not

recognize some of their special constraints, such as 60-degree relationships or corners

where two coordinate systems join. Therefore, the behavior of such configurations tends

to be less effective as rectilinear configuration.

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 32

FIGURE 2.9 - AN EXAMPLE OF A PLAN AND 3D MODEL GENERATED BY REVIT

As model entities are being created, precise angle, dimension and dotted construction

lines are directly displayed on the model. The construction lines show perpendicular,

parallel, tangent and endpoint relationships. This information, as well as persistent

constraint information, appears on the model view when an entity is selected, (Figure 2.9)

and disappears when the entity is deselected. In this way, visual clutter is avoided.

However, manipulating multiple constraints is not possible. Revit also supports reference

planes, which are shown as dotted lines in plan view, used for visual as well as dynamic

alignment. When walls are constrained to reference lines, moving reference lines will

move walls. However, rotating reference lines will often create conflicts.

Revit uses a sketching metaphor to support conceptual design activities such as massing.

It has a massing sketch mode and allows the switching between massing and modeling

modes. A mass is first sketched then incorporated into the main model. There are three

modes for sketching masses: by extrusion, by revolution, or by extension. Massing prior

to planning is preferable in Revit, because masses can be readily converted into their wall

components, but walls cannot be converted to masses.

Overall, Revit is a powerful system that supports the design drawing and documentation

process as a whole. It has numerous powerful exploratory features such as the built-in

architectural logic, the automatic recognition of constraints and a clear visual vocabulary

for constraints expressed on the model without visual clutter. Revit, however, does not

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 33

support the ability to control multiple constraints or to specify new constraints on a

model. Furthermore, creating new component is cumbersome.

2.5.2. GENERATIVECOMPONENTS (AISH, 2005)

GenerativeComponents supports the creation and exploration of user-defined complex

3D building elements and integrates interactive manipulation with visual programming

techniques.

As the user creates the model, the system keeps track of input parameters and identifies

their dependencies, which form a directed and acyclic dependency graph, displayed in a

separate window. Geometrical entities are represented by input parameters. Design

structures are represented by dependencies. Variations in design structures are

investigated by manipulating model entities. Structures are transformed by manipulating

the dependency graph, and by locking or freeing values in the graph.

GenerativeComponents is based on a change propagation mechanism. Since the graph is

directed, change propagates only in one direction, from upstream components to

downstream components. The graph captures the history or sequential development of the

modeling operations, with earlier operations forming the upstream components and later

operations forming the downstream components. This sequence of operations is re-

executed when an input is changed.

In GenerativeComponents design relations are expressed visually in the dependency

graph, and numerically in the spreadsheet. All visual representations can be manipulated.

However, dependencies and constraints are not directly apparent on the model.

GenerativeComponents models are flexible, but the allowable manipulations depend on

the input parameters. For instance, a circle entered by its center and radius will be

manipulated differently from a circle entered by three points on the circumference.

GenerativeComponents includes a library of abstract geometrical components, point, line,

Arc, B-splines and as well as Booleans operation and is further extensible to

accommodate new complex user-defined components without programming from the part

of the user, such as in Figure 2.10. GenerativeComponents automatically generates

programmatic modules that capture the novel components and add them to the object

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 34

library. Users can compose, for example, a banana truss, and then use it in repetition to

compose a roof structure. This makes two nested levels of dependency structures, one for

manipulating the truss, and one for manipulating the roof.

FIGURE 2.10 THE DEFINITION OF A RADIAL ARRAY OF A GENERATIVE COMPONENT

Models created in generative components can be further analyzed with typical Bentley

tools such as Bentley Architecture and Bentley Structures.

GenerativeComponents presents a novel approach to CAD systems: It encourages

strategic design exploration. Strategic planning is required to define the complex

dependency structure, and to determine the desired set of desired manipulations and their

consequences. Its powerful features include the ability to create very complex curvilinear

geometry from simple components, the capture of operation sequence, and the

extensibility to create custom components. However, the complexity of the dependency

graph is significant and it is directly proportional to the number of elements in the model.

GenerativeComponents lacks architectural components, the support for re-definition of

input parameters and bi-directional association.

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 35

2.6. MATHEMATICAL REPRESENTATION OF SHAPES AND PATTERNS

In this section configurations are represented by means of their mathematical properties.

Design relations are considered as transformations that map one part to another. Although

the goals of these representations are not design exploration, but rather design description

and design analysis, the approaches presented here focus on relationships which are a

fundamental ingredient in design exploration.

2.6.1. SHAPE PATTERN REPRESENTATION (CHA 2004)

Cha’s and Gero’s “Shape Pattern Representation” is a notation for describing patterns by

capturing relations between repetitive parts. These relations are organized in a

hierarchical tree structure. The goal of this representation is to provide a language for

style learning, shape analogies and shape complexity measure.

This representation, which is based on predicate calculus, captures formative ideas in

design. It captures the implicit design knowledge of shape organizations, by means of

explicit predicates and arguments.

A shape is represented by lines to .The shape pattern representation syntax

supports transformation based relations, depicted by

S 1P nP

τ , and topological relations,

depicted by . For transformation-based relations: σ 1τ = translation, = rotation, 2τ 3τ =

mirror and =scale. For topological relations: 4τ 1σ = over, 2σ = under, = right, 3σ 4σ =

left, and = between = inside, 5σ 6σ 7σ = outside, and 8σ = center.

A shape pattern consisting of two shapes is represented by the following

string: . The referent shape and the parameters and are

arguments for the predicate

)},(,{ 31112 aaee τ= 1e 1a 3a

1τ , which is the translation relation between the two shapes

(Figure 2.11a). A composite pattern defined by two relationships such as the translation

 and scale is represented by the following composite predicates:

 (Figure 2.11b). A shape pattern consisting of multiple shapes

uses the nesting operator to indicate recursive nature of the pattern, for instance:

 (Figure 2.11c). A multiple level pattern, such as the pattern

1τ 4τ

)},(],,[{ 3141412 aaaee ττ=

⊆

)},(,{ 31i1
n

1i aaeS τ⊆= =

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 36

consisting of two translation relations acting on the same referent shape, is represented by

multiple nesting predicates: (Figure 2.11d). The

notation also supports super relationship acting on sub relationships, independently of

shapes; each sub-relation has a different referent shape such as

and illustrated in (Figure 2.11e).

)},()],,(,[{ 3131i1
m

1i1
n

1i2 aaaaee τ⊆τ⊆= ==

)},(,{ 5i2
6

1i a60SS τ⊆= =

)},(,{ 31i1
4

1ii aaeS τ⊆= =

FIGURE 2.11 SUMMARY OF THE SHAPE PAT

a

Shape pattern schemas represent the sp

Each shape pattern is an instance of a s

analysis where the following are key con

• Analogy: Shape analogy is achie

shape. Analogous shapes have id

shape as is illustrated in Figure 2

• Embedding: One scheme can be

schema/super-schema relationsh

• Sharing: two schemas can share

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAP

b

TERN REPRESENTATION FEATURES

atial characteristics for a set of shape patte

hape schema. Shape schemas are used for sh

cepts:

ved by comparing the predicates defining eac

entical pattern schema but not the same refer

.12.

 embedded in another one, making a sub-

ip.

the same sub-schema.

TER 2
d

c
 e
rns.

ape

h

ent

37

• Recursion: A recursive scheme embeds within itself.

• Complexity: Shape complexity is proportional to the composites levels of the

representation tree.

• Style: Styles are identified by identifying specific patterns in the tree

representation.

• Multiple representations: A single pattern can be represented in several ways.

Such multiple representations provide various interpretations for a single shape

pattern as is shown in Figure 2.13.

FIGURE 2.12 - ANALOGOUS SHAPES

FIGURE 2.13 - MULTIPLE REPRESENTATION

Cha’s shape pattern representation introduced several significant issues pertaining to

shape pattern analysis and their application in architectural designs. The powerful

concepts in the representation include shape description through relational knowledge,

shape pattern schema, and the various strategies for shape analysis. Although this

representation is used for 2D repetitive patterns, and the scope of relations is limited to

transformation and topological relations, the syntax is difficult to read. This is due to the

following factors: (i) the inconsistent use of brackets and parentheses in nested shapes;

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 38

and (ii) the naming convention for relations and other objects is not mnemonic, with the

same symbol representing numerous objects.

2.6.2. A GENERATIVE THEORY OF SHAPE (BASED ON GROUP THEORY) (LEYTON 2001)

Leyton’s generative theory of shape describes simple and complex shapes by means of

group structures. The approach is to maximize transfer and the goal is to maximize

recoverability. In Leyton’s theory, there are no objects; every shape is described using

actions (Leyton 2001, p.29). Transfer is the ability to re-use previous actions as part of

subsequent actions; recoverability is the ability to recover the sequence of actions that

lead to generating the shape. The applicability of the theory ranges from Architectural

Design, to Mechanical Engineering to Robotic Manipulation, and many others.

The theory is based on the assumption that complex shapes are generated by means of

symmetry breaking or more precisely asymmetry building (Leyton 2001, p.40). The

shape creation (or shape designing) process begins with a series of actions defining the

symmetries of the shape, and proceeds with a set of actions that break these symmetries.

The symmetry breaking actions are recorded in the shapes themselves. Consider the

asymmetric shape in Figure 2.14a: one can infer that a rectangular piece was subtracted

from the symmetric square; however, one cannot infer from a square all possible

asymmetric actions that may have been negated to obtain the symmetric square. Consider

the tilted parallelogram in Figure 2.14b: According to Leyton, its generation steps are as

follows (1) creating the square, (2) stretching the square to form a rectangle, (3) applying

shear to the rectangle to form a horizontal parallelogram, and finally (4) rotating the

horizontal parallelogram to obtain the tilted parallelogram. Therefore, the sequence from

symmetry to asymmetry allows shapes to record generative actions and, therefore,

maximizing recoverability.

 a b

FIGURE 2.14 - (A) MODIFIED SQUARE (B) GENERATING A ROTATED PARALLELOGRAM

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 39

In Leyton’s theory, structures are mathematical groups, which are combined by means

wreath products . A line, for instance, is denoted by the group of real numbers , and

the occupancy group . The square is denoted by and by the 4-fold rotation

group , which includes the rotation transformations which are

subgroups of the symmetries of the square (Leyton 2001, p.9). The parallelogram is

generated by applying the general linear group

w

2 w

4 },,,{ 270r180r90re

(),2GL to the wreath structure of the

square.

• Line: w

• Square: 4 ww

• Parallelogram:),2GL(www 4

In Leyton’s syntax, is used to describe continuous generative actions, while is

used to describe discrete actions. Typically, the first group in the wreath product is the

fiber group and the subsequent group is the control group, where control groups move

(preceding) the fiber groups around.

Leyton (2001, pp.229-238) represents the basic 3D surface shapes as follows. All other

shapes are generated by using these as primitives, either by means of spatial combination

or Boolean operations. is the continuous group of rotation in the plane.)(2O

• Plane: w

• Sphere and Torus: w2Ow2O)()(

• Cylinder and Cone:)()(2Ow2Ow

• Cube: ww

Both the Sphere and the Torus are represented by the same wreath structure

. However, the difference is in the distance between the rotation axes with

respect to each other. This is referred to as the control radius depicted by ; changing it

breaks the symmetry of the sphere and generates the Torus. Similarly, the Cylinder and

the Cone are represented by the wreath structure ; with the main difference

)()(2Ow2O

)(2Ow

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 40

being the angle between initial line and the rotation axis, which is the control angle,

depicted by .)(2O

Typically, when shapes are combined, the symmetry of each one is broken and only

combined symmetries remain. In Leyton’s approach (p.241), the symmetries of each

shape are stored in their group definition as well as the affine transformation that relate

them. is the affine group on the 3D real space and the initial set of primitives

are referred to the alignment kernel.

(,3AGL)

• Combined cylinder and cube: ⎣ ⎦ (),3AGLwcubeGcylinderG ×

Boolean operations are represented in a similar manner (Leyton 2001, p.252). Union,

intersection, and difference share the same spatial group structure as spatial combination;

however, these are further distinguished by means of the occupancy group . 2

Unfolding groups constitute the mechanism that allows control groups to treat various

shapes within a fiber group differently. (Leyton 2001, p.250)

• Unfolding group: ⎣ ⎦ () () ()1n21Tn21 GCwGCwGCwGGG −×× ...

Leyton (2001, p.365) claims that Architectural Design is a process of asymmetry building

and can be represented by means of unfolding groups. In the massing study in Figure

2.15, masses are created by unfolding transfer structure of three basic primitives, the

sphere, the cylinder and the cube. Each primitive being copied and each copy being

treated differently by affine transformations to obtain the desired mass, as is illustrated in

Figure 2.15.

FIGURE 2.15 (A) A MASSING CONFIGURATION (B) ITS CORRESPONDING NOTATION

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 41

Material choices are represented by color groups, while stairs, column grids and gable

roofs are conveniently represented by transfer group structures.

In Leyton’s theory (2001, p.397) solid structures, which are more complex than their

surface counterparts, are presented by means of hyper-octahedral wreath Hyperplane

groups, which combine the infinite translations in space to produce a solid with the

surface definition of a shape. The cylinder and its corresponding notation are illustrated

in Figure 2.16.

[][] []

}
[]

4847648476444 8444 76
ttomtop and bo

w
nelsurface

2P

structuresolid
1P

nelalignment

1P2P
21wwwwu2O /

kerker

)(
2

 ×

FIGURE 2.16 - THE REPRESENTATION FOR A SOLID CYLINDER

Sweep structures are conveniently represented by the fiber control group structure:

 (2001, p.430). The profile and path are splines denoted by

 where is the group representation of the Hermite cubic

spline.

pathwprofilesweep =

[]

wwww
0

210 /

 Σ

Leyton’s theory is applicable to many domains; Robotic motion can be described using

these fiber groups. For instance the motion of cutting machines can be described as

follows.

• Rotating blade to create a hole is described by a rotation movement and the

movement in the z axis. () w2O

• Rotating blade to create a slot is described by a rotation movement and the

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 42

movement in the x and z axes. () ww2O

• Rotating blade to create a pocket is described by a rotation movement and the

movement in the x, y, and z axes. () www2O

Leyton’s notation gets very complex as configurations become elaborate. Furthermore,

the syntax does not capture parameters for shape generation, for instance translation

distance; neither does the group notation show which transformation are part of the

group. , for instance, may be representing a 4-fold discrete rotation or a 4-fold

discrete translation. Similarly, can be a reflection or a 2-fold discrete rotation.

4

2

Leyton’s description of design (Leyton 2001, p.365) equates the design process with the

drafting process of using AutoCAD or ProEngineer. This surface view of design is not

comprehensive and does not include essential exploratory activities of the process.

Although the theory is indented as an underlying computational representation, not for

exploration, its basic assumptions cannot be applied to an iterative design process.

Leyton’s approach is based on maximizing transfer in generating all parts of the

configuration. This does not necessarily match with the designer’s intentions. A designer

may want to relate some parts, while keeping other parts independent. Leyton imposes a

specific order of symmetry, then asymmetry, on the generative sequence with the purpose

of maximizing recoverability. Although, this prescriptive approach organizes the

representation, it limits the options for generating configurations, and does not

necessarily match the designer’s methods for defining and exploring shapes.

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 43

2.7. COMPARATIVE ANALYSIS
The representations reviewed in this section include seminal as well as novel

computational approaches to design exploration. The representations have in common the

encapsulation and management of relations among design entities and expressing these

either theoretically in the form of a notation or practically in the form of an interactive

system. Each has its focus, contributions and opportunities for further research. The key

issues that are relevant to describing and exploring configurations through their relational

structures are described below.

Design structures: Flemming and Harada investigated hierarchical and topological

structures. Sutherland, Gleicher, Medjdoub and Gross investigated topological and

(some) geometric structures in the form of unary and binary constraints. Carlson dealt

with hierarchical and geometric structures. Kolarevic worked with a subset of geometric

structures (grid structures). Suter investigated hierarchical structures and a limited

version of bilateral symmetry and rhythm in subdivisions by defining them in link styles.

However, his investigations were restricted by the nearly orthogonal universe of

configurations defined by his representation. Cha worked with topological and

symmetrical structures, while Leyton’s approach dealt with isometric and affine group

structures.

Transformation of structures: Kolarevic investigated the transformation of grid

structures, defined by alignments, parallel, and perpendicular relations. However, these

structures were not flexible, and could not be redefined. Furthermore, Kolarevic’s

explorations were restricted to the universe of straight-line configurations. His sequential

approach of interaction, influenced by the drafting metaphor, greatly limits the

exploration. Carlson investigated transformations of structures within the universe of

self-similar recursive forms, defined by one motif and one rule. The structure was

regenerated upon the manipulations of motifs. However, transformations of recursive

structures are not intuitive and the universe of self-similar forms is quite limited. Harada's

systems supported discrete transformation of topological structures, but supported only

one scenario of exploration.

Dynamic structures: Dynamic constraints, used in Briar, are useful for designing

movable building components. This approach is valuable for reconfigurable architectural

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 44

configurations and mechanical parts. Leyton also addressed the representation for the

motion of robotic components in his theory.

Extensibility and Customizable structures: In most systems, the structure can be defined

from a predefined set of relations. However, CoDraw and GenerativeComponents

provide extensibility by supporting users defined types of structures.

Discrete explorations within structures: Discrete exploration is essential to design, since

the design search space is a hybrid (continuous and discrete) space. Harada's prototypes

used system-initiated discrete transformations to complement user-initiated continuous

transformations.

Automatic identification of structures: Automatic constraint generation, used in Briar,

Sketcher and Revit, relieves the user from the additional burden of specifying constraints.

However, this mechanism relies on the interpretation of user intent, which, in case of a

misinterpretation, can generate unintended constraints leading to undesirable behavior.

Alternatively, Seed-Layout, as well as Harada’s and Suter’s prototypes, have predefined

structures that are automatically established as users define their models.

Conflict resolution: Sutherland addresses conflict resolution by relaxing constraints.

Medjdoub addresses conflict resolution by a constructive method. Gleicher's model

always satisfies the constraints; consequently, there is no need for conflict resolution.

GenerativeComponents uses uni-directional associativity, therefore avoiding conflicts.

Harada addresses conflict resolution in an innovative way by using discrete search

mechanism to find an alternative solution that avoids the conflict. Other systems, such as

Revit, and Suter's system, notify users as conflicts are detected.

Interaction with structures: Some systems (SEED-Layout, Harada's system, Suter's

system, and CoDraw) support user manipulation of structures; this is usually achieved

through creating and breaking constraints or relations. Others manage the making and

breaking of structures solely by the system (Briar, Sketcher). Revit, on the other hand,

combines system generation of constraints with users breaking constraints. Although the

user manipulation of constraints is essential for redefining structures (Akin 1987), it

becomes more cumbersome as configurations increase in complexity, and constraints

increase in number.

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 45

Visual display of structures: The clear display of structure is a crucial usability issue that

affects predictability among other factors. Some of the reviewed systems provide a clear

display of the structure directly on the model (Briar, SEED-Layout, Harada's systems,

and CoDraw); while others provide separate displays (GenerativeComponents, Suter).

Revit provides a selective display that shows constraints bound to selected objects. In

addition, the systems that provide automatic identification of constraints (Gleicher,

Medjdoub, and Revit) provide a clear feedback to users regarding the creation of

constraints.

Predictability of structural manipulations: Each of the system surveyed has a different

level of predictability, depending on the system's intent. Carlson's recursive structures,

for instance, are very unpredictable, due to the non-intuitive characteristic of recursive

structures. Carlson's intended DiscoverForm as a tool for the discovery of unanticipated

avenues of inquiry (Carlson 1991). The predictability of Kolarevic's models depends on

their complexity; Kolarevic's also intended ReDraw to produce surprising results, which

can trigger innovation and creativity (Kolarevic 1997). Harada, on the other hand,

effectively used smooth animation to provide predictability.

Complexity of the syntax: In both Leyton and Cha’s representation, the notation is quite

complex. Cha’s notation, based on predicates and arguments, captures a lot of relations in

the design; however, the facts that the naming convention is not mnemonic, the

inconsistency of the brackets and the extensive use of subscripts, make the notation

difficult to read. The complexity of Leyton’s representation is due to the necessity to

describe every shape by means of group constructs. The use of unfolding increases the

complexity and therefore decreases the readability of the notation. However, essential

parameters in the description of the shapes are not captured in the notation string, but are

subsumed in the group definition.

Capturing history of generation: On the theoretical level Leyton’s theory is motivated

by capturing a unique generative process for any shape. However, because symmetry

actions need to precede asymmetry actions in order to maximize recoverability, this

approach imposes a sequential application on the design process, thus limiting the options

for design generation. This prescriptive sequence does not necessarily match the

designer’s approach. On the systems level, GenerativeComponents captures all actions

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 46

leading to creating a form; this sequence is later used to modify and explore the form.

2.7.1. OPPORTUNITIES

Each of the aforementioned representations focused on a particular aspect of exploration,

however, none of them investigated exploration in a comprehensive way in order that

determine ingredients, strategies and techniques for maximizing exploration.

• None of these representations addressed the complete set of higher-level

geometric relations such as symmetry, hierarchy, proportion, and rhythm, which

are essential compositional tools in architecture, and which play a fundamental

role in architectural design exploration.

• None of these representations had a scheme for organizing lower level

dependencies at higher levels of abstractions.

• Some of these representations addressed transformation of structures at a limited

level, but none addressed the redefinition, deactivation, replacement of structures

that is necessary for achieving the maximum flexibility or interaction and for

discovering new structures.

• Although Harada addressed discrete transformations, none of the representations

supported users making their own discrete transformations such as swapping or

inserting.

ARCHITECTURAL EXPLORATIONS - 8/15/2005 CHAPTER 2 47

CHAPTER 3

APPROACH: A FRAMEWORK FOR

DESIGN EXPLORATION

The representations surveyed in the previous chapter, “Background: Representations for

Design Exploration,” addressed several aspects of design exploration independently.

Each aspect focused on a specific method of exploration within a specific class of

configurations. However, there has been no comprehensive framework investigating the

variety of exploratory activities for the complete range of configurations that exist in

architectural design.

In this chapter, I present the premise of this dissertation from a normative perspective, as

well as from an empirical perspective. I describe the approach for developing a

framework for design exploration, from the computational perspective. In section 3.1, I

discuss the classification, representation, and use of design structures as observed in

notable architectural endeavors, and as explained in architectural theory. In section 3.2, I

illustrate the representation and strategic use of structure in early design processes,

through the results of an empirical study. In section 3.3, I describe a framework for

representing and exploring architectural configurations. The framework, named

Interactive Configuration Exploration (ICE), uses relational and generative structures, as

a means for concisely describing, rapidly generating, and interactively transforming

design configuration.

ARCHITECTURAL EXPLORATIONS CHAPTER 3 48

3.1. DESIGN STRUCTURES

Design structures are abstractions encapsulating compositions of spatial relations, which

organize simple architectural elements into coherent complex configurations.

Architectural compositions consist of numerous elements, which can be spatial entities

(spaces or zones) or building components (walls, windows, columns, etc). A structure

organizes such individual elements by determining formal properties such as position,

orientation, sizes and form. Design structures are of special significance in architecture,

because they utilize ordering principles to relate elements within complex configurations

as well as elements within various resolutions.

Design structures play an important role in design conceptualization. These are the

implicit vehicles used to compose and refine complex configurations of spatial entities.

For every design problem there are numerous possible solutions and, therefore, several

possible structural organizations. Hence the need for exploring structures. Through

design structures, one can explore design configurations globally, rather than manipulate

numerous individual elements, locally.

In this section, I present a classification for design structures, and discuss the basic units

for each of these classes. I also review visual representations of structures, and describe

the concept of “transformation of structures” as an exploration tool.

3.1.1. CATEGORIES OF DESIGN STRUCTURES

There are numerous classifications of architectural configurations; Most rely on style;

others base their categories on plan-shape (Curtis 1935, and Krier 1988a,), spatial

organization (Ching 1996), and formative ideas (Clark 1985). Curtis (1935, pp.189-195)

and Krier’s (1988a, pp.43-67) classifications, based on plan shape include square, round,

octagonal, cross, L-shaped, U-shaped, T-shaped, and many others. Ching’s (1996, p.189),

classification, based on spatial organizations, include centralized, linear, radial, clustered,

grid organizations. Each of these can be further classified according to their main

ordering principles of symmetry, hierarchy, rhythm, datum (Ching 1996, p.320). Clark

(1985, p.137) presents an elaborate classification based on formative ideas. These include

plan to section, unit to whole, repetitive to unique, additive to subtractive, symmetry,

balance, geometry, configuration patterns, progressions, and reduction. Each of these is

ARCHITECTURAL EXPLORATIONS CHAPTER 3 49

further classified into its own subcategories. For instance, configuration patterns are

classified as being linear, central, double-center, cluster, nested, and concentric.

Wong (1993, p.59), on the other hand, classified abstract 2D design configurations

according to their structure. He identifies formal, semiformal, informal structures, as well

as active, inactive, visible and invisible structures. Within formal structures, Wong

includes repetition, gradation, and radiation.

In this context, architecturally significant structures are used to classify architectural

design configurations. These structures, which are applicable to any level of abstraction

in design configurations (such as plan organization, 3D massing, 2D façade, etc.) can be

categorized as topological, hierarchical or geometric.

Topological structures define networks of relations between spatial entities. These are

typically used in adjacency diagrams of early architectural conceptualizations to

determine the location of spaces with respect to each other. March (1974) studied graph

networks as an interpretation of space arrangement. Figure 3.1 shows three of Frank

Lloyd Wright's houses, Life (1938), Jester (1938), and Sundt (1940) that differ in

geometry, but share the underlying topological structure (March 1974, p.27). They also

share a similar geometric coherence among their parts expressed by regular forms.

FIGURE 3.1 - FRANK LLOYD WRIGHT’S LIFE, JESTER, AND SUNDT HOUSES, AND THEIR SHARED

TOPOLOGICAL STRUCTURE

Hierarchical structures define grouping and organizational hierarchies of spatial entities.

Figure 3.2 shows the hierarchical decomposition of a fire station into wings, zones, and

spaces.

ARCHITECTURAL EXPLORATIONS CHAPTER 3 50

FIGURE 3.2 - THE HIERARCHICAL STRUCTURE FOR A FIRE STATION

Geometric structures define formal relationships between elements. These are the most

versatile types of structures. Even with the same topology and hierarchy, a configuration

can have many geometrical alternatives as was illustrated by the three Frank Lloyd

Wright Houses in Figure 3.1. These can be further categorized as grid structures,

repetitive structures, variational structures, and non-regular structures.

Symmetry structures define symmetrical mappings between elements. Grid structures

organize proportions, alignments, and angles between configuration elements. Figure 3.3

shows the reflectional symmetry and grid structures of Andrea Palladio's Villa Capra

(source: Ching 1996, p.195). Variational structures form rhythm and gradation pattern

within elements. Non-regular structures define subtractive and additive configurations

achieved by operations such as adding, cutting or slicing, thereby breaking the regularity

of a configuration. Figure 3.4 illustrates the variational structure of the Guggenheim

museum in its gradation, and its non-regular structure in the union of its distinct parts

(source: Laseau 1992, pp.121-127).

FIGURE 3.3 - THE GRID AND SYMMETRY STRUCTURE OF PALLADIO’S VILLA CAPRA

ARCHITECTURAL EXPLORATIONS CHAPTER 3 51

FIGURE 3.4 - VARIATIONAL AND NON-REGULAR STRUCTURE OF THE GUGGENHEIM MUSEUM

Typically the total structure of a building is composed of several superimposed

substructures, consisting of topological, hierarchical and geometric abstractions. One can

consider early design conceptualization as a process in which these multiple layers of

structures are developed either simultaneously or separately then integrated.

3.1.2. UNITS OF DESIGN STRUCTURES

Complex design structures are compositions of simple spatial relations. The following

relations, which constitute the smallest units defining topological, hierarchical, and

geometric structures, are classified according to their mathematical properties.

3.1.2.1 TOPOLOGICAL RELATIONS

Topological relations, determined by design requirements, define the proximity between

two design elements. The most common is the adjacency relation, followed by the

overlap, inside, and distance (or separated) relations. Some spaces need to be adjacent

due to circulation, whilst others need to be far apart due to thermal or acoustic

circumstances. The inside relation defines a boundary: For instance, the site and its

setbacks form a boundary that defines the region where a building can be located.

Figure 3.5 illustrates examples of adjacent spaces in Fisher von Erlach’s Pavilion Design,

and overlapping spaces in Balthazar Neumann’s’ Pilgrimage church (source: Ching 1996,

pp.185-187).

ARCHITECTURAL EXPLORATIONS CHAPTER 3 52

A - Adjacency

B - Overlaps

FIGURE 3.5 - TOPOLOGICAL RELATIONS

3.1.2.2 HIERARCHICAL RELATIONS

Hierarchical relations relate elements in an organizational hierarchy. These consist of the

containment, or subshape relations. A container can have many constituents, and

containment hierarchies can have indefinite depths. For example, a building contains

several zones, which in turn contain many spaces. A space can be further decomposed

into floor, wall, and ceiling components. Similarly, windows and doors are contained

within the walls. In its abstract form, the containment relation is independent of

geometry; however, when spaces become actual architectural elements, topologies and

geometries become significant factors. The subshape relation, on the other hand, is purely

geometric. It defines shapes that are “sub-part” of others, for instance, a façade

articulation is a subshape of the façade.

3.1.2.3 GEOMETRIC RELATIONS FORMING SYMMETRY STRUCTURES

Symmetry relations organize repetitive elements in a configuration. Symmetry is a very

common formal organization tool in architecture. It can be observed in floor plans,

façades, gardens, and decorative articulations. These include translational, reflectional,

and rotational symmetry. Other forms of repetitive structures can be defined by

curvilinear relations.

Figure 3.6 illustrates examples of symmetry and repetitive relations used in plan

organizations. 3.6a - Two major axes of reflection join to form the structure in the church

in S. Vitale Ravenna (source: Ching 1996, p.247). 3.6b - Rotational symmetry globally

defines the structure in St. Mark’s Towers (source: Ching 1996, p.76). 3.6c - The

ARCHITECTURAL EXPLORATIONS CHAPTER 3 53

rotational and reflectional symmetry define the pentagonal plan of Vignola’s Pallazo

Farnese (source: Ching 1996, p.194). 3.6d - The curvilinear repetition defining the

structure of Alvar Alto’s Baker House (source: Ching 1996, p.207).

a - Reflectional Symmetry

b - Rotational Symmetry

c - Rotational Symmetry

d - Curve Repetition

FIGURE 3.6 - SYMMETRY AND REPETITIVE RELATIONS

3.1.2.4 GEOMETRIC RELATIONS FORMING GRID STRUCTURES

Grid structures are the most common ordering strategies in architecture. Relations

defining grid structures can be considered as positional, directional, and dimensional

constraints. Positional constraints, such as alignments, define positions of elements in the

configuration. Directional constraints define the orientation of elements and angles

between them. Dimensional constraints, such as proportion, restrict the sizes of elements.

These are used to define proportion systems.

Alignment defines reference lines and planes to align elements. Typically buildings are

aligned with their surroundings; windows are aligned on façades, etc. Many architectural

schools of thought are based primarily on proportion systems, for instance, the Golden

ARCHITECTURAL EXPLORATIONS CHAPTER 3 54

Section, Ken, Modulo, just to name a few. Proportion restricts the relation between two

sides of an element or group of elements. The Size constraint, which restricts the length,

area or volume of elements, is particularly significant for area requirements in space

allocation. The angle relation, which restricts the angle between two elements, can be

used to define minimum roof slopes, for instance.

a - Alignment

b - Proportion

c - Size

d - Angle

FIGURE 3.7 - RELATIONS DEFINING GRID STRUCTURES

Figure 3.7 illustrates the use of constraint relations. 3.7a - Parallel planes are aligned to

form le Corbusier’s Sarabhai House (source: Ching 1996, p.144). 3.7b - The Parthenon’s

Golden proportions are indicated by diagonal lines (source: Ching 1996, p.288). Notice

the reflectional and translational symmetry in the Parthenon as well. 3.7c - The modular

size constraint is maintained by the Ken proportion in the Japanese residence (source:

Ching 1996, p.308). 3.7d - The 60º angle relations are consistently maintained in Frank

Lloyd Wright’s Sundt house (source: Ching 1996, p.40).

3.1.2.5 GEOMETRIC RELATIONS FORMING VARIATIONAL STRUCTURES

Variational relations such as rhythm and gradation introduce variations into repetitive

structures. These bring perceived dynamism in configurations that would otherwise be

ARCHITECTURAL EXPLORATIONS CHAPTER 3 55

considered static. Figure 3.8 shows the rhythm in Luis Khan’s Indian Institute of

Management, and the gradation in Alvar Alto’s Church at Vuoksennisk (source: Ching

1996, p.318 and p.369). Notice the overlapping relation in Alvar Alto’s Church as well.

a - Rhythm

b - Gradation

FIGURE 3.8 - VARIATION STRUCTURES

3.1.2.6 GEOMETRIC RELATIONS FORMING NON-REGULAR STRUCTURES

Relations forming non-regular structures are realized through operations. Additive

structures are defined by union operation of overlapping elements, while subtractive

structures are generated by a subtraction of minor elements from a major element. Other

non-regular forms can be defined by subdividing a form or cutting it. Figure 3.9 shows

the subtractive structure in Mario Botta’s House at Stabio (source: Ching 1996, p.53)

and the structure of the cut sphere in the proposal of the Turkish pavilion (source: Onat

1995, p.59).

a - Subtraction

b- Cutting

FIGURE 3.9 - NON REGULAR STRUCTURES DEFINED BY OPERATIONS

ARCHITECTURAL EXPLORATIONS CHAPTER 3 56

The diversity of the examples illustrating structures and spatial relations suggest that the

concept of structure exist in architecture across the boundaries of time and culture.

3.1.3. REPRESENTATION OF DESIGN STRUCTURES

It is common practice in architecture to visually express geometric relations among

elements by using regulating lines. According to Le Corbusier, “A regulating line is an

inevitable element of Architecture …. It is an assurance against capriciousness … it

confers on the work the quality of rhythm …. The regulating line is a satisfaction of a

spiritual order, which leads to the pursuit of ingenious and harmonious relations. … The

choice of regulating line fixes the fundamental geometry of the work.” (Le Corbusier

1960, p.71).

Regulating lines are visual abstractions used to represent relations. These are used as

guidelines that determine the basic geometric structure in an architectural composition.

Regulating lines are used to control proportions and indicate common alignments of

elements. Regulating lines can be straight or curved; in fact, regulating arcs and circles

have been widely used to represent relations among elements in plans as well as in

facades. Figure 3.10 illustrates the use of regulating lines to organize the circular plan of

the Pantheon (source: Ching 1996, p.288), and the use of circular lines to regulate the

Achaemenian cupolas (source: Le Corbusier 1960, p.72).

a - Straight regulating lines

b - Circular regulating lines

FIGURE 3.10 - REGULATING LINES

From Le Corbusier 's description of regulating lines, it is evident that he promotes their

use in design. This can be interpreted as a prescriptive approach toward establishing a

ARCHITECTURAL EXPLORATIONS CHAPTER 3 57

geometric structure to define an order within architectural compositions. He also refers to

“the choice of the regulating line,” implying that it defines the geometry of the work and

the character of the architectural composition.

JNL Durand, in an effort to systemize the architectural design process, introduced a

“method to follow in the composition of any project” (Madrazo 1994, p.16). Although his

method was widely criticized, it is worthy of mention, because it relies on establishing

the structure as a primary design step.

Durand's method begins by establishing the basic structure by regulating lines. It then

proceeds by further developing the structure at a higher resolution (Figure 3.11). “Durand

has actually described a transformation of a rough scheme into a detailed representation

of a building, a transformation of geometry into architecture,” (source: Madrazo 1994,

p.17).

FIGURE 3.11 - DURANT’S PRESCRIPTIVE METHOD FOR DESIGN

Durand’s approach highlights the importance of the design structure in the course of

design development. However, he uses this structure to restrict the design process, not

only to organize the composition. His method overlooks the fact that structures can be

identified anytime during the course of design and could be derived from other elements

or even discovered as emergent forms.

3.1.4. TRANSFORMATION OF STRUCTURES

In a design space where each configuration is considered a state, transformations are the

primary vehicles used to navigate through these states. Transformations can be

continuous or discrete. Continuous transformations, which include isometries

(translation, rotation, mirror, glide), affinities (scaling, stretching, shearing) and

ARCHITECTURAL EXPLORATIONS CHAPTER 3 58

projections (perspective), preserve the essential properties of elements to which they are

applied. Discrete transformations change fundamental properties of their elements and

often vary the number of elements in a configuration. Discrete transformations include

instantiation, deletion, subdivision, replacement, and Boolean operations. Subdivision

takes one element and converts them to many; Boolean operations, which include union,

intersection, difference and symmetric difference, take many elements and convert them

into one. Replacement, which is the most versatile transformation, takes away one/many

element/s from a configuration and returns another/others (perhaps with a completely

different form).

Although structures are used as composition tools, these have rarely been used as

exploration tools. This is due to the complexity involved in exploring compound

structures. Transforming a structure is equivalent to transforming the numerous elements

forming that structure, thus, it is equivalent to transforming the whole configuration.

Nevertheless, the concept of transforming structures was investigated within various

domains as analytical or generative tools. Dürer, Thompson (1971), Laseau (1992)

investigated continuous transformations of structures, while Steadman (1998)

investigated discrete transformations of the structure of an archetypal building to generate

other building types.

Dürer described transformations of the human profile by introducing variations in the

underlying grid structure (Mitchell 1990, p.116). By varying the coordinates of the grid

lines, he varied the proportions of the profile. By varying the angle of the grid lines, he

introduced shear or perspective in the profile (Figure 3.12). Therefore, the corresponding

profiles were changed according to new grids, and Dürer was able to produce various

caricatures (source: Mitchell 1990, p.116).

ARCHITECTURAL EXPLORATIONS CHAPTER 3 59

FIGURE 3.12 - DÜRER’S HUMAN PROFILES

D'Arcy Thompson (1971, pp.268-325) extended this concept further by using radial

coordinates to vary the curvature of the grid lines. In his study of related forms,

Thompson developed a systematic method of transforming grid lines that corresponded

with natural growth patterns. He was able to develop a deformation scheme that allowed

him to trace the similarities and difference in proportions between species. By varying the

curvature of each line of the coordinate system differently, he was able to map one the

skeleton or profile of one species into another. Figure 3.13 shows examples using this

system to compare fish and crustacean forms. Thompson also applied this technique to

transform skulls and bones of various mammals.

FIGURE 3.13 - D'ARCY THOMPSON’S TRANSFORMATIONS OF FISH SPECIES

Laseau and Tice (1992, p.7) emulated Thompson’s approach of varying grid curvatures to

determine the transformation mappings for two of Frank Lloyd Wright’s Usonian Houses

(Figure 3.14).

ARCHITECTURAL EXPLORATIONS CHAPTER 3 60

FIGURE 3.14 - LASEAU’S ANALYSIS OF LLOYD LEWIS AND DAVID WRIGHT HOUSE PLANS

Steadman (1994, pp.S7-S30) presents a classification of built form based on lighting

(natural, and artificial), and average room size (cellular, open space, and hall). This yields

six categories, further classified by the number of stories and by the type of natural

lighting (side or top). He also investigated a method of transforming built form from a

standard parametric “archetype” into any configuration within these classifications

(Steadman 1998, p.98). The method included discrete transformations of suppressing

parts, connecting parts, as well as dimensional transformations such as scaling (Figure

3.15).

FIGURE 3.15 - STEADMAN’S DISCRETE TRANSFORMATION OF STRUCTURES

Figure 3.16 illustrates a hypothetical example of transforming Life House to Jester

House, by using discrete transformations of replacing forms. The process begins with

Life house. It then proceeds by replacing the square spaces by circular ones and the

ARCHITECTURAL EXPLORATIONS CHAPTER 3 61

rectilinear masses by curvilinear ones, whilst adjusting their positions and sizes.

FIGURE 3.16 THE HYPOTHETICAL TRANSFORMATION FROM LIFE HOUSE TO JESTER HOUSE

As these examples illustrate, slight transformations of structures can greatly affect

configurations, and are undoubtedly a source for intellectual stimulations and therefore,

are powerful venues for design exploration.

ARCHITECTURAL EXPLORATIONS CHAPTER 3 62

3.2. EMPIRICAL OBSERVATION OF DESIGN STRUCTURES

In this section, I describe an empirical observation based on a protocol experiment that

illustrates the use of structures in early phases of design. The goal of this study was

motivated by the need to discover whether design structures are merely theoretical

constructs, or whether they are practical entities playing an active role in design

development. It led to evidence of the use of regulating elements, not only to express and

compose structures of architectural configurations, but also as strategic devices in guiding

the design process. Further analysis of the data indicates that these devices play a

significant role in defining strategies for structuring sub-problems, managing part-whole

hierarchies, organizing topology-geometry, scaffolding the design process, and

restructuring of problem parameters. In this section, I present the abridged version of

results; for the complete results the reader is referred to Akin, Ö. and H. Moustapha

“Strategic Use of Representation in Architectural Massing” (Design Studies, 25, 1, 2003,

pp31-50).

3.2.1. EXPERIMENTAL SETUP

The protocol experiment consisted of observing six architects while they designed a

three-dimensional massing model of a dormitory building on the Carnegie Mellon

campus. Each session lasted two hours on the average, and was recorded on videotape.

All participants, who are professional architects, with experiences ranging from 5 to 25

years, are referred to as P1 to P6. The corresponding protocol sessions are referred to as

S1 to S6, where the first three were carried out in the sketch medium (pencil and paper)

and the three others in the computing medium (CAD system). Alternatives generated by

each participant are referred to as Ai1 to Ain, where ‘i’ corresponds to the participant ID.

3.2.2. REGULATING ELEMENTS AS DESIGN STRATEGIES

The principal mechanism utilized in structuring massing activities was the use of

regulating elements such as axes of symmetry, alignment axes, and bounding lines. All

participants maintained geometric order in their designs using such mechanisms.

Although they freely manipulated (added and removed) massing elements, through the

use of regulating elements they were able to preserve their underlying structures and even

ARCHITECTURAL EXPLORATIONS CHAPTER 3 63

accentuate them.

3.2.2.1 REPRESENTING STRUCTURES

In the protocol sessions, participants used external representations, whether

verbalizations, sketches, or computational records, with the apparent purpose of carrying

on a design dialogue with themselves. They used regulating elements to express their

design organization, either explicitly or implicitly. The explicit expression took either a

graphic or verbal form. In the implicit expression, the relation was defined by the position

of elements, but no lines were drawn nor discussed, as in the case of P2 (Table 3.1a).

Participants also made verbal references to regulating axes as in the case of P4 (Table

3.1b), who defines the geometric structure verbally prior to any drawing activity. Even

though the axis is not explicitly depicted, its verbal presence serves, just as successfully,

the same function that the explicit axes serve in other protocol episodes.

1.9.1 “One possibility is to make it a

continuing line from Margaret Morrison
and then design at the corner a
transition into the new coordinate
system.”

1.9.2 “The same way in which the dormitories

use the octagon to transition between
the Carnegie Mellon grid and the dorms
grid, which happens to be 45° such
that an octagon can do it very
nicely.”

a - Implicit representation of axes b - Verbal representation of axes

TABLE 3.1 - IMPLICIT AND VERBAL REPRESENTATION OF REGULATING AXES

3.2.2.2 STRUCTURING THE SUB-PROBLEM

One of the most straightforward ways of structuring an ill-structured problem is to break

it into more and more specialized parts. In the case of massing, the decomposition of the

design problem is graphically driven. The participants appear to create local problem sub-

structures by adding sub-division lines into the massing representation as for the case of

P1 and P3 (Figure 3.17).

ARCHITECTURAL EXPLORATIONS CHAPTER 3 64

FIGURE 3.17 - P1 AND P3 DEVELOPING SUBSTRUCTURES

3.2.2.3 MANAGING PART -WHOLE HIERARCHY

A popular regulating element, observed during the protocol sessions is the alignment line

that aligns individual design elements with respect to it. Aside from the compositional

orders that result from such use, the alignment axes represent meta-elements that control

the spatial organization of other, lower-level elements. The evidence suggests that the

massing strategies defined here, establish a two-tier hierarchy between the regulator

(super-node) and the regulated (sub-node). Nested regulating elements of massing can

then create indefinitely deep hierarchies.

3.2.2.4 SCAFFOLDING THE DESIGN PROCESS

Another view of the protocol data relies on the scaffolding metaphor (Akin et. al. 2003).

Just as a scaffold provides a structure for accommodating construction activities, the

physical massing activities of design elements relies on the framework created by the

regulating elements. There appears to be a two-way interaction between the regulating

and massing elements, particularly in the manner in which regulating elements are

derived from masses and, inversely, masses are guided by regulating elements. Scaffold

creation seems to be based on the extension of alignments in the current design. This is

particularly evident in P1 (Table 3.2), and P4 (Table 3.3).

ARCHITECTURAL EXPLORATIONS CHAPTER 3 65

5.1.1 P1 draws the courtyard.
5.1.2 She draws the public (administration & restaurant) around the

courtyard.
5.1.3 Then she draws the central axis line.
5.2 P1 develops the dorm zone.
5.2.1 She starts by drawing 3 blocks.
5.2.2 She then divides one of them along the central axis ending with 4

blocks.

TABLE 3.2 - P1 DERIVING AN AXIS FROM A MASSING ELEMENT

 P4 uses the strategy of extending two lines from an existing

building’s external protrusion, and utilizes these as guides to
create a protrusion onto her own proposed building. She then
discovers a novel relation (Akin 1996) between these lines and her
own buildings sub-structure. She says “Ahaaa … I found a very
interesting relationship”. This causes an adjustment to the proposed
massing configuration.

TABLE 3.3 - EXTENDING A SUBDIVISION LINE

3.2.2.5 ORGANIZING TOPOLOGY AND GEOMETRY

Regulating elements of massing also appear to be representing the topology of a given

geometric composition. For instance, axes are used to represent associations and

alignments of spaces, independent of shape and size. Spaces can be strung along an axis

creating a linear topological structure. Alternatively, multiple axes can be used to create

much more complex relationships, like grids and urban road patterns. Table 3.4 shows

P1’s sketches for determining the topological relationships.

ARCHITECTURAL EXPLORATIONS CHAPTER 3 66

1.2 P1 identifies patterns in the
program.

1.3 She divides the program into zones
(Entrance, administration zone,
study zone, dorm zone, etc.)

1.4 She analyses relationships between
the zones by drawing arrows.

1.5 Adjacencies, Accessibility (public,
semipublic, private), Exits.

1.6 Start developing concepts based on
these relations.

TABLE 3.4 - P1 DERIVING TOPOLOGY FROM PROGRAM RELATIONS

3.2.2.6 RESTRUCTURING OF PROBLEM PARAMETERS

One of the behavioral characteristics of expert designers is a skill and propensity to

restructure design problems (Akin and Moustapha 2003). The protocol data showed

several forms of restructuring. A frequent form of restructuring is through the

development of alternatives such as in the case of P1 (Figure 3.18). However,

restructuring the problem does not always mean a wholesale redesign, or the generation

of an entirely new alternative. Occasionally, the participants achieved the same effect by

modifying key elements or secondary regulating element in the solution domain, as in the

case of P4 (Figure 3.19).

FIGURE 3.18 - P1’S ALTERNATIVES ILLUSTRATING MAJOR CHANGES IN STRUCTURE

ARCHITECTURAL EXPLORATIONS CHAPTER 3 67

FIGURE 3.19 - P4 CHANGES THE GEOMETRIC STRUCTURE OF THE ROOF CONFIGURATION.

The protocols results illustrated several situations where designers handled the geometric

structure of a massing configuration in such a way that they seemed to be doing more

than just composing forms. Repeatedly and consistently, the data showed behaviors that

structure and manage the design development process. This evidence highlights the

importance of structures in early design activities and emphasizes the strategic and active

nature of regulating elements for design exploration.

ARCHITECTURAL EXPLORATIONS CHAPTER 3 68

3.3. THE ICE FRAMEWORK FOR EXPLORING WITH DESIGN

STRUCTURES

After surveying the types of design structures in notable architectural configurations, and

after establishing their strategic role in early design development through empirical

observation, I introduce the Interactive Configuration Exploration (ICE) framework. The

ICE framework is a comprehensive mechanism that relies on architecturally significant

structures for design representation, and relies on transformation of structures for design

exploration. The ICE framework supports transformation of structures conceptually,

formally, and computationally, with the purpose of maximizing the exploratory potential

of design configurations. Conceptually, ICE is an exploratory venue in the domain of

architecture. Formally, ICE is a notational representation. Computationally, ICE is an

interactive real time experience.

The approach used in the ICE framework is to separate the organizational dimension of

design structures from the physical dimension of architectural elements. Therefore, each

dimension can be addressed separately. Through design structures, one can explore a

design configuration as a whole, while maintaining its integrity. By manipulating

individual elements, one can explore variations within the same structure. By

manipulating the structure itself, one can all redefine all elements organized by the

structure, and thus transform configurations completely.

3.3.1. REGULATORS

The principal vehicles used in the ICE framework, are regulators, which are abstraction

that capture the spatial relations of design structures. Each regulator is associated to a

specific set of elements in the configuration and is augmented with control over these

elements. Regulators, which are inspired by regulating lines, are expressed

computationally analogous to the way spatial relations are expressed traditionally.

However, these are extended to include regulating points, planes and volumes, which, in

combination, express the structure of the architectural configurations in three dimensions.

• Regulating points include intersections of lines and centers of rotations.

• Regulating lines or arcs include intersections of planes, axes of rotations, axes of

ARCHITECTURAL EXPLORATIONS CHAPTER 3 69

symmetry, alignment lines, bounding lines and diagonal proportion lines.

• Regulating planes include axis of symmetry for volumes, alignment planes and

bounding planes.

• Regulating volumes include bounding volumes.

In the ICE framework, there is a regulator corresponding to each of the spatial relations

described in Section 3.12. Regulators convert relations into dynamic, reconfigurable

entities rather than static entities. Regulators control their associated elements according

to specific mathematical properties. Each regulator type encapsulates a formula (a

polynomial equation), by which it controls the attributes of its associated elements. The

parameters of equation can be set and modified by users. These modifications result in

changing position, orientation, curvature or other factors of the regulators which, in turn,

influence positions, orientations, curvatures, or other factors of regulated elements.

Regulators are not merely visual abstractions, but computational abstractions that

represent handles for the structure of the configuration. Therefore, regulators allow the

use of the structure as an exploratory venue in order to promote intellectual stimulation.

A designer explores an architectural configuration with regulators in the following

manner. He/she composes structures by generating regulators of various types and

associating various configuration elements to them. He/she investigates variations within

structures by manipulating configuration elements; regulators ensure that relations among

elements are preserved. He/she transforms structures of configurations by manipulating

regulators and modifying their parameters; regulator transforms the configuration

accordingly.

Regulator are conceived with transformation of structure in mind and are designed to

capture the most basic relations that, when composed together, define complex structures.

In the following section, I describe exploratory patterns for preserving as well as for

transforming configurations defined by each regulator type.

ARCHITECTURAL EXPLORATIONS CHAPTER 3 70

3.3.1.1 TOPOLOGICAL REGULATORS

Topological regulators (Figure 3.20) correspond to topological relations. These binary

regulators ensure that the two topologically related elements always maintain their

relations even when one of them is manipulated. Elements controlled by the Adjacency

regulator are always adjacent; when one is moved, the other one follows. The Distance

regulator maintains a specific minimum, or maximum, distance by preventing the

elements from moving beyond that distance. Elements controlled by the Overlap

regulator always remain overlapping; motions that disjoin these elements are prevented.

In the case of the Boundary (or inside) regulator, one element always remains inside the

other. The internal element is not allowed to move beyond the boundary element. When

the boundary element is moved, the internal element follows. Also the internal element

cannot be resized beyond the size of its boundary.

FIGURE 3.20 - ADJACENCY, OVERLAP AND DISTANCE REGULATORS

3.3.1.2 HIERARCHICAL REGULATORS

Hierarchical regulators correspond to hierarchical relationships. The Containment

regulator defines a container and its constituent elements. The Containment regulator in

itself has no geometrical implications; however, it can be composed with other regulators

to introduce geometrical and topological restrictions to the hierarchy. For example, a

Boundary regulator prevents contained spaces from being positioned outside the

container zone. The Subshape regulator establishes geometrical coherence between

shapes, and ensures that the subshape always has the same geometry as the supershape. If

the geometry of the supershape, for instance a façade, is modified, its subshape

articulations are also updated as well.

ARCHITECTURAL EXPLORATIONS CHAPTER 3 71

3.3.1.3 GEOMETRIC – TRANSFORMATIONAL –REGULATORS

Transformational regulators are inspired by symmetry relations, which are based on

isometry transformations in 3-dimensional space such as translation, rotation, and

reflection. However, these are extended to include affine transformations, such as scale

and shear, as well as equations in space to represent additional repetitive relations, such

as curves. Transformational regulators are the primary constructs of the ICE framework

because, in addition to controlling relations between symmetrical elements,

transformational regulators generate elements based on these relations.

Transformational regulators generate multiple outputs, from a single input element.

Regulators control the position/orientation of outputs, with respect to the input.

Transformational regulators ensure that the symmetrical relation between these elements

is preserved upon their manipulation, and if the regulator’s geometry or variables are

modified, the relation is redefined.

The Translation regulator generates outputs translated along a straight line. The variables

of the Translation regulator include the distance, the orientation of the line and the

number of outputs. Figure 3.21 illustrates the effects of changing the distance and the

orientation of the Translation regulator.

FIGURE 3.21 - TRANSLATION REGULATOR

The Rotation regulator creates outputs rotated about a point/line. The variables of the

Rotation regulator are the rotation degree, the number of outputs, the position, and

orientation of the Rotation regulator. Figure 3.22 illustrates the effects of changing the

orientation and the position of the Rotation regulator.

ARCHITECTURAL EXPLORATIONS CHAPTER 3 72

FIGURE 3.22 - ROTATION REGULATOR

The Mirror regulator generates an output reflected about a line or plane. The variables of

the Mirror regulator are position and orientation of the mirror plane. Figure 3.23

illustrates the effects of changing the orientation and the position of the Mirror regulator.

FIGURE 3.23 - MIRROR REGULATOR

The Dilation regulator scales the outputs about a specific center of scale. The variables of

the Dilation regulator are the scale factor, the center of scale, and the number of outputs.

The Shear regulator creates sheared outputs. Its variables are the shear factor, and the

direction of orientation of the Shear regulator. Figure 3.24 illustrates the effects of

moving the center of scale and rotating the Shear regulator.

FIGURE 3.24 - DILATION AND SHEAR REGULATORS

The Curve regulator produces outputs along a curved line. The variables of the Curve

ARCHITECTURAL EXPLORATIONS CHAPTER 3 73

regulator are the distance between outputs, the curvature, and the direction of the curved

line. Figure 3.25 illustrates the effects of increasing the distance and rotating the Curve

regulator.

FIGURE 3.25 - CURVE REGULATOR

The basic set of transformation regulators can be composed to form more complex

relations. The Glide regulator (Figure 3.26a) is formed by composing Translation and

Mirror regulators and the Screw regulator (Figure 3.26b) is formed by the composing

Translation and Rotation regulators.

a- b-

FIGURE 3.26 - GLIDE AND SCREW REGULATORS

3.3.1.4 GEOMETRIC – CONSTRAINT – REGULATORS

Constraint regulators correspond to relations defining grid structures. Constraint

regulators restricts positions, define minimum/maximum values that must not be

exceeded, or an incremental module that must be satisfied.

The Alignment regulator restricts elements to a reference point, line, or plane. The

elements are allowed to move only along the alignment reference. If the Alignment

regulator is moved or rotated the elements are re-aligned with it. Alignment can also

restrict element along a circle or curve. Figure 3.27 illustrates the effects of linear and

circular alignments as well as rotating the Alignment regulator.

ARCHITECTURAL EXPLORATIONS CHAPTER 3 74

FIGURE 3.27 – ALIGNMENT REGULATOR

The Proportion regulator restricts the aspect ratio of an element by means of a diagonal

line. The element can only be resized within these proportions. Moving or rotating the

diagonal line redefines new proportions. Figure 3.28 illustrates the effects of

manipulating the Proportion regulator.

FIGURE 3.28 – PROPORTION REGULATOR

The Angle regulator restricts the angle between two elements. If one element is rotated

beyond the minimum/maximum range, the other element is also rotated to preserve the

angle. If the angle’s values are updated, the shapes are reconfigured. Figure 3.29

illustrates the effects of reconfiguring the angle.

FIGURE 3.29 – ANGLE REGULATOR

The Size regulator restricts the lengths, areas and volumes of elements to a maximum or

minimum value. Elements cannot be resized beyond their minimum/maximum range.

ARCHITECTURAL EXPLORATIONS CHAPTER 3 75

In addition to positional, directional, and dimensional constraint-based regulators, value

constraint regulators are introduced. The Equivalence regulator defines an equivalence

relation between attributes across many shapes. When this attribute is changed in one

element, it is changed in the others. Color, form, and size are applicable attributes. For

example, in Frank Lloyd Wright’s Jester House (Figure 3.1), most spaces are equivalent

in their circular form, yet their other attributes, including scale and position are not linked

in any other way.

3.3.1.5 GEOMETRIC – VARIATIONAL – REGULATORS

Variational regulators correspond to the relations defining variational structures. The

Rhythm regulator creates rhythmic effects with the output set; if the rhythm coefficient

and cycle are modified the configuration is updated. The Gradation regulator creates

gradual effects with the output set, as the gradation coefficient is changed, the

configuration is updated. Figure 3.30 illustrates the rhythm and gradation regulators

composed with a Rotation regulator.

FIGURE 3.30 – RHYTHM AND GRADATION REGULATORS

The variation regulators are extended to include the exception and the differential

regulators. The Exception regulator designates an element as being different from the

output set. The Differential regulator introduces a rhythm or gradation effect as the

regulator is applied to various inputs. Figure 3.31 shows two exceptions applied to a

Rotation regulator and a Differential regulator applied to the second of two successive

Translation regulators.

ARCHITECTURAL EXPLORATIONS CHAPTER 3 76

FIGURE 3.31 – EXCEPTION AND DIFFERENTIAL REGULATORS

3.3.1.6 GEOMETRIC – OPERATIONAL – REGULATORS

Operational regulators correspond to operations defining non-regular structures. These

include Boolean operations, subdivisions and cutting.

The Boolean operation regulators, inputs several elements and generates the Union,

Subtraction, or Intersection as an output. The Boolean regulator ensures that the

resultant form is redefined when the input forms are manipulated. Figure 3.32 shows the

effects of resizing the subtracted form.

FIGURE 3.32 – BOOLEAN DIFFERENCE REGULATOR

The Subdivision regulator inputs an element and subdivides it into equal subparts, which

are produced as outputs. It can be composed with variational regulators to introduce

rhythmic parts, which are gradually increasing or decreasing in size. When the original

shape is modified, the subdivisions will be redefined. The Cutting regulator cuts the

shape along a plane (or planes). If the plane is modified, the cutting pieces are redefined.

Figure 3.33 shows the effects of rotating subdivision planes and redefining the original

shape.

ARCHITECTURAL EXPLORATIONS CHAPTER 3 77

FIGURE 3.33 – SUBDIVISION REGULATORS

3.3.2. THE DYNAMICS OF REGULATORS

The ICE framework is designed with the goal of supporting cyclic/iterative exploration,

and, consequently, with flexibility as a major priority. Regulators offer the ability to

produce topological, hierarchical, symmetry and grid structures. Regulators introduce

constraints and variations in these structures, and produce non-regular forms through

operations. Regulators are intended to support transformation of structures at a

continuous, as well as at a discrete level.

To define such complex structures, it is necessary to compose regulators. Regulators can

be composed simultaneously to create complex relationships from simple ones (Figure

3.26 shows the composite regulators of Glide and Screw). Regulators can also be

composed successively to form elaborate patterns, such as in Figure 3.34, which

illustrates a linear element with the successive application of Rotation, Mirror, and

Translation regulators. Furthermore, as a flexible measure, regulators can be

decomposed.

FIGURE 3.34 – REGULATOR SUCCESSIVE COMPOSITION

ARCHITECTURAL EXPLORATIONS CHAPTER 3 78

Regulators and elements are dynamically associated and dissociated. Consequently,

elements can have multiple regulators (Figure 3.35a), regulators can have multiple

elements (Figure 3.35b), and mixed structures can be explored within a single

configuration. Furthermore, association can be terminated at anytime.

a b

FIGURE 3.35 – REGULATOR SHARING

Regulators support continuous as well as discrete generations. Points are regulated

continuously to create shapes, and shapes are regulated discretely to create patterns and

configurations. Regulators can also be regulated to create complex schema, resulting in

multiple control structure.

The overall structure of a configuration can be decomposed into a set of substructures:

topological, hierarchical, symmetrical, grid, and others. It is not possible to explore all

these structures at the same time, because the exploration space of one structure will yield

configurations that destroy relationships of another structure. Regulators offer the ability

to focus on exploring a particular structure, while deactivating the others. This activation

and deactivation of regulators allow users to define their sequence for exploring

structures, depending on the design phase and their preferences. For example, one can

explore of topological structures then geometrical structures. It also allows the

exploration of configurations with and without specific relationships.

As an additional measure of exploratory flexibility, configuration elements as well as

regulators can be replaced at any time, in order to explore different structures without

reestablishing associations. Figure 3.36a shows the successive composition of Rotation

and Translation regulators. The Translation is replaced by a Mirror in Figure 3.36b and

by a Rotation in Figure 3.36c.

ARCHITECTURAL EXPLORATIONS CHAPTER 3 79

a b c

FIGURE 3.36 –REPLACING REGULATORS

Regulators can be applied at various resolutions, including local to a part of the

configuration, and global to the whole configuration. The depth to which regulators can

be applied is theoretically infinite. Furthermore, regulators can be defined at any stage of

developing the configuration, where these can be identified with any element or extended

from any element.

Tables 3.5, 3.6, and 3.7 illustrate examples of exploring building configurations with

regulators. Table 3.5 shows the exploration of single floor layout, where curvatures and

directions of walls are investigated. Table 3.6 shows the exploration of a building mass,

where roof slopes and curvatures are investigated. Table 3.7 shows the transformation of

one simple configuration, into an elaborate Chinese pagoda, with just a series of simple

steps.

ARCHITECTURAL EXPLORATIONS CHAPTER 3 80

The initial layout consist of one Mirror
regulator and several Alignment regulators
forming a grid. The Mirror regulator
controls both the walls and the Alignment
regulators.

THE USER ROTATES ONE SIDE OF THE
ALIGNMENT REGULATOR OF THE
FAÇADE
The Alignment regulator realigns all walls
and windows according to its new
orientation. The Mirror regulator ensures
that the change is properly reflected on both
sides.

THE USER CHANGES THE
CURVATURE OF THE ALIGNMENT
REGULATOR OF THE FAÇADE
The Alignment regulator re-configures the
walls, doors, and windows, such that they
follow the curve. The regulator of the
façade also automatically reconfigures the
grid lines that are perpendicular (to the
curve).

THE USER CHANGES THE
ORIENTATION OF THE INTERNAL
ALIGNMENT REGULATOR
The central Mirror regulator ensures that the
change is properly reflected on both sides.

TABLE 3.5 - EXPLORATION OF A PLAN LAYOUT AND MASSING

ARCHITECTURAL EXPLORATIONS CHAPTER 3 81

The initial configuration consists of two Mirror
regulators and three Translation regulators, which act
as horizontal axes that control the windows as well
as the orientation of the roof.

THE USER ROTATES THE HORIZONTAL
TRANSLATION REGULATOR
The Translation regulator aligns the windows along a
slanted line, and updates the roof orientation creating
a gable roof.

THE USER REDUCES THE FREQUENCY OF
THE WINDOWS BY UPDATING THE NUMBER
IN THE TRANSLATION REGULATOR

THE USER TRANSFORMS THE CURVATURE
OF THE TRANSLATION REGULATOR
The Curve regulator realigns the windows and
changes the curvature of the roof forming a vault.

TABLE 3.6 - EXPLORATION OF A MASSING CONFIGURATION AND FAÇADE

ARCHITECTURAL EXPLORATIONS CHAPTER 3 82

The initial configuration consists of two Mirror
regulators, two Translation regulators, an area
regulator (not shown), and an adjacency
regulator.

THE USER DECREASES THE FOOTPRINT
OF THE BUILDING.
The area regulator adds floors to ensure that the
area requirement be maintained after the change.

THE USER UPDATES THE NUMBER, SIZE,
AND FORM OF THE WINDOWS ON ONE
FLOOR.
The Translation regulator ensures that the
windows of all floors are updated in the same
way.

THE USER REPLACES THE REFLECTION
REGULATORS BY A ROTATION
REGULATOR.
THE USER CHANGES THE FORM OF THE
ROOF.

THE USER ADDS ONE SUB-ROOF TO ONE
FLOOR
The Translation regulator propagates the change
to all the floors.

THE USER CHANGES THE ROTATION
DEGREE FROM 90º TO 60º.
The plan changes from a square to a hexagon.
The Translation regulator ensured that the all
floors are updated.

THE USER INTRODUCES A SCALE
FACTOR TO THE TRANSLATION
REGULATOR.
The floors gradually decrease upon ascending.

THE USER SELECTS A FLOOR AND
TREATS IT AS AN EXCEPTION AND THEN
APPLIES A SCALE TRANSFORMATION TO
MAKE IT MORE PROMINENT.
The result is a pagoda.

TABLE 3.6 - EXPLORING TRANSFORMATION ACROSS STYLES

ARCHITECTURAL EXPLORATIONS CHAPTER 3 83

3.3.3. NOTATION AND IMPLEMENTATION

The ICE framework has two major components: a descriptive component consisting of a

formal notation, and a computational component consisting of an interactive

implementation. Both use the design structure as a primary vehicle for description and

transformation.

The ICE notation uses regulators for describing shapes and configurations, as a concise

string, by means of its generative and relational structure. Through its symbolic

representation of regulators, the ICE notation describes the generation path and

transformable parameters for every configuration. For instance, in Figure 3.37, Palladio’s

Villa Capra is described – and can be generated discretely – by means of Mirror

regulators composed successively with its top left corner as an input. The ICE notation is

described in greater detail in Chapter 4.

corner M (corner) M (M (corner)) M (M (M (corner)))

FIGURE 3.37 - PALLADIO’S VILLA CAPRA DESCRIBED USING THE ICE NOTATION

The ICE implementation uses regulators for transforming shapes and configurations

through their structures. The ICE implementation provides a systematic approach to

managing complex relations, while allowing users to interact with higher-level structures

as opposed to lower-level details. The parameters of regulators are manipulation handles,

and are used to transform configurations, slightly, as well as significantly, to

accommodate various levels of exploration. Figure 3.38 shows an example of

manipulating Palladio’s Villa Capra by means of moving rotating, and replacing its

regulators. The ICE implementation is described in greater detail in Chapter 7.

ARCHITECTURAL EXPLORATIONS CHAPTER 3 84

a a- Moving horizontal Mirror b- Rotating diagonal Mirror

c- Replace two mirrors with a
rotation

d- Increasing rotation degree e- Moving the rotation point

FIGURE 3.38 - PALLADIO’S VILLA CAPRA IS EXPLORED MANIPULATING THE GEOMETRY OF ITS
GENERATIVE REGULATORS

The notational description does not correspond to the way designers would go about

developing configurations with regulators. The notation provides a concise description

that summarizes the relationships in the configuration by means of an ordered syntax.

Designers, on the other hand, would develop elements and regulators with no particular

order. They would derive initial regulators from the surrounding site and would derive

additional regulators, perhaps at a later stage, from configuration elements; therefore,

associating elements and regulators as the configuration is being established. Such

interactions and derivations methods are illustrated in the protocols in Tables 3.1 and 3.2.

As designers are engaged in their exploration, they discover new ideas and new relations,

consequently, defining new regulators and reconfiguring the structure. As structures

change, novel exploration paths are formed. Exploration does not follow a predetermined

path, but rather, a path that is constantly being redefined during the course of the

exploration.

ARCHITECTURAL EXPLORATIONS CHAPTER 3 85

ARCHITECTURAL EXPLORATIONS CHAPTER 4 86

CHAPTER 4

THE ICE NOTATION

The ICE notation is the descriptive formalism of the ICE framework. It is a formal

notation specifying complex configurations through generative and relational constructs,

which are encapsulated by regulators. The ICE notation describes geometric

configurations in a clear, succinct, and complete manner and supports the description of a

wide range of configurations in two and three dimensions. Additionally for any given

configuration, the ICE notation captures, parsimoniously, the process for its generation

and as well as a set of applicable transformations that could be used for exploring the

configuration.

In this chapter, I describe the syntax of the ICE notation, and focus on the various

regulator types, their composition strategies, and their generation methods, from a

notational perspective. I discuss the capacity of ICE to capture applicable transformations

as well as the generative history for any given configuration, and I introduce the ICE

transformation syntax. A gallery of shapes and patterns illustrates how the ICE notation

represents shapes, patterns, and classes of compositional schemata.

ARCHITECTURAL EXPLORATIONS CHAPTER 4 87

4.1. THE ICE NOTATION SYNTAX

The ICE notation specifies a geometric configuration in terms of a minimal number of

steps required for its generation, and the meaningful relationships for its organization.

The principal building blocks used in the ICE notation are the “point” and “regulator”,

which encapsulates a formula for its spatial relation. Notationally, points are indicated in

lowercase, for instance, p , and regulators in (bold) uppercase, for instance, T for

translation. Shapes, denoted as lowercase words, are composite objects defined by points

and regulators. A prefix, depicted in uppercase Greek, indicates the regulator’s category,

for example, Δ : transformations, Φ : constraints, Ψ : hierarchies, Π : topologies, Ξ :

variations, and Ω : operations. Superscripted suffixes indicate regulator subtype, for

instance, pCΔ and eCΔ respectively specify parabolic and elliptical curve regulators with

each having its own formula. Numerical suffixes denote the dimension of the regulator,

for instance, 0MΔ , 1MΔ , and 2MΔ , respectively represent a mirror point (0-dimensions),

a mirror line (1-dimension) and a mirror plane (2-dimensions). Subscripted suffixes for

regulators, shapes, or points represent as indices; for example 1TΔ , and 2TΔ are two

different instances of Translation regulators used in the same configuration.

The ICE notation can be expressed in either a short or expanded form. The former

operates on a relational level, while the latter operated on a parametric level which is

essential for system implementation. The short form captures the regulator and regulated

objects, for instance,)(shapeTΔ . The expanded form, additionally, includes the

parameters of the regulator; these are enclosed within curly braces with vectors depicted

by an overline, for example,])(},,,{[shapendtp1TΔ . Parameters contribute to a

regulator’s formula and include geometric parameters, t , such as translation vectors,

rotation points/lines, reflection axes, as well as generative parameters, such as translation

distance, d , rotation degrees, θ , and the number of generated objects, n .

Regulators regulate points thereby creating shapes, likewise, regulate shapes to create

configurations, and regulate other regulators to create complex schemata. Regulators can

be generative or non-generative. Generative regulators take an input shape and create

output shapes, while non-generative regulators act on the input shape. The generative

ARCHITECTURAL EXPLORATIONS CHAPTER 4 88

property is depicted by the presence of the “ n ” parameter.])(},,,{[shapendtp1TΔ is a

generative regulator , while])(},,{[shapedtp1TΔ is a non-generative one. Regulators

that generate shapes from input points are applied continuously, while regulators that

generate configuration from input shapes are applied discretely. The continuity factor is

indicated by superscript brackets. >><><<Δ 210s)(T is a discrete application generating

disjoint points, while ><Δ 210s ,,)(T is a continuous application generating a line.

The ICE notation has a corresponding graph representation, which presents an alternative

view to the ICE string and serves to visualize internal associations between elements of

the ICE string namely points/shapes and regulators (Table 4.1). Graph representation is

particularly significant in the description of compositions and schemata.

T

s
p

p p p p

p p p p

Regulator and parameters Shape s and point p Input and output
connectors

Discrete associations
Continuous association

s

T

p
t
d
n

s2s1 s3 sn

s

T

p
t
d
n

T

p
t
d
n

p p1 p3 p4p2

Generative-discrete:
])(},,,{[>><><><><<Δ 43210shapendtp1T

Non-generative:
)]}(,,[{ shapedtp1TΔ

Generative-continuous:
])(},,,{[,,,, ><Δ 43210sndtp1T

TABLE 4.1 - GRAPH REPRESENTATION FOR REGULATOR AND SHAPE ASSOCIATIONS

ARCHITECTURAL EXPLORATIONS CHAPTER 4 89

4.2. REGULATORS CATEGORIES AND TYPES

The notational description formalizes the concept of regulators and clarifies the various

subtypes and their corresponding parameters. In this section, I describe the notation for

each regulator in the ICE framework. The mathematics corresponding to the defining,

transforming, and composing these regulators is presented in Appendix B.

4.2.1. TRANSFORMATION REGULATORS

Transformation regulators are the primary constructs of the ICE notation. Not only are

these used as exploration tools, but as generative vehicles as well. Transformation

regulators, based on isometric and affine transformations, are indicated by the Δ prefix.

Transformational regulators take as input a shape or a point, and generate “ n ” output

shapes or points. The input element is assigned index 0 and the output elements are

assigned indices, n−1 . The position of the outputs is determined by the type of

transformation.

Transformation regulators operate by applying an equation to the input element to derive

the output set of elements. The basic transformation regulators can be composed

simultaneously, to define complex transformation effects. These regulators use the

properties of their respective transformations to preserve points, lines, and planes, as a

visual depiction for the regulators. Table 4.2 illustrates transformation regulators with

their corresponding notations.

The Translation regulator generates n output shapes (d distance apart) along the line

specified by a starting point p and a direction vector t . If applied continuously,

translation specifies lines and extrudes shapes. The Translation regulator is depicted by a

line along the t vector.

ARCHITECTURAL EXPLORATIONS CHAPTER 4 90

Translation

])(},,,{[shapendtp1TΔ

Rotation

])(},,,{[shapentp θΔ 1R

])])(},,{[shapenp θΔ 0R

Mirror])(},{[shapenp0MΔ

])(},,{[shapentp1MΔ

])(},,,{[shapenvtp2MΔ

Dilation
(scale)

])(},,{[shapenkp0DΔ

Shear])(},{[shapenk SΔ

Glide

])(},,,{[shapendtp11 MT ΔΔ

])(},,,,,{[shapenedvtp21 MT ΔΔ

Screw])(},,,,{[shapendtp θΔΔ 11 TR

Curve])(},,,{[shapentp αΔ eC

])(},,,{[shapentp αΔ hC

TABLE 4.2 – REGULATORS BASED ON GEOMETRIC TRANSFORMATIONS

CΔ

TR ΔΔ

MT ΔΔ

SΔ

DΔ

MΔ

RΔ

TΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 4 91

The Rotation regulator generates n output shapes, each rotated θ degrees apart. In 3D

space, rotation is about the axis specified by a starting point p and a direction vector t ,

and in the 2D plane, the rotation is about a point p . If applied continuously, the rotation

specifies circles and surfaces of revolutions. The regulator is depicted by the rotation

point or axis.

The ICE notation supports three subtypes of the Mirror regulator: an inversion about a

point; a reflection about a line; and a reflection in the plane. These are depicted by the

point, line and plane, respectively. In 3D space, reflection about a line is not orientation

reversing; it is therefore, equivalent to a rotation. However, in the 2D plane, it is an

actual, orientation reversing, reflection. Although reflection produces a single image, the

reflection regulator allows for n output elements to accommodate the composition of

mirror with other regulators.

The Dilation regulator scales successive output shapes by a factor k , represented by a

vector. Dilation, which is either isotropic (equal in the xyz-directions) or anisotropic, is

depicted by a point p representing the origin of the scaling.

The Shear regulator shears the successive output shapes by a factor k and is depicted by

an arrow showing the direction of the shear.

The Glide regulator is a composition of mirror and translation. It generates successive

elements reflected about a plane or line and translated along the same line. It is achieved

by means of simultaneous composition of regulators (Section 4.4). Sub-types include: a

glide in 2D, along a glide line, and in 3D, about a glide plane.

The Screw rotation is a composition of a rotation and a translation. It generates

successive elements rotated about the axis defined by a point p and a vector t together

with a translation along this same axis. It is achieved by means of the simultaneous

composition of regulators (Section 4.4).

The Curve regulator organizes the output elements along a curve in space. Ideally, curves

should be described by their equations, but for ease, we identify them by their subtypes,

for example, elliptical eCΔ , hyperbolic hCΔ , or trigonometric curves sCΔ . A Curve

ARCHITECTURAL EXPLORATIONS CHAPTER 4 92

regulator can also be achieved through simultaneous composition.

4.2.2. VARIATION REGULATORS

Variational regulators, symbolized by Ξ , are composed with generative regulators to

create a variation in the output shapes. This is achieved by controlling shape attributes or

regulator parameters. Variation regulators are depicted by a point indicating their

presence. Table 4.3 illustrates the variation regulators and their corresponding notation.

Exception])(},{[n0 shapeshapeva −Ξ E

)]s}([{ va,n,d,,t,pETΞΔ

Rhythm/Grad
ation

])(},,{[n0 shapeshapeca −Ξ f G

)]s}([{ cf,a,n,d,,t,pGTΞΔ

Differential

])(},,{[n0 shapeshapeca −Ξ f F

)]s-s}([{ n1cf,a,n,d,,t,pFTΞΔ

TABLE 4.3 - REGULATORS BASED ON VARIATION FORMULAE

The Exception regulator sets a shape to be an exception to the output set by overriding an

attribute a , (for instance, position) with a value v .

The Rhythm regulator creates a rhythm/gradation effect within the output shapes, by

applying a formula f and coefficient c to an attribute a of output elements (for

instance, color), or to an attribute a of the generative regulator (for instance, the

GTΞΔ

G TΞΔ

E TΞΔ

s TΔ

F TΞΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 4 93

translation distance) as it is applied to the output shapes. The formula f defines the type

of rhythm, whether it is alternating or gradual, or follows the undulations of a curve.

The Differential regulator creates a variation in the output, by sweeping-copying the

elements of input set differently. It applies a formula f , and coefficient c , to attribute a

of the generative regulator as it is applied to the input shapes. This regulator is effective

only when there are many input shapes.

4.2.3. CONSTRAINT REGULATORS

Constraint regulators, symbolized by Φ , are not generative; they restrict shapes or define

relations between input shapes or points. Constraints can be defined independently or in

composition with generative regulators. Constraint regulators are based on an evaluation

function that determines whether or not the input element is within the constraints. Table

4.4 illustrates the constraint regulators and their corresponding notation.

The Equivalence regulator assigns and maintains a value v to an attribute a (for instance

color) of a shape/s.

The Alignment regulator restricts the position or motion of elements with respect to

itself. There are several subtypes of alignments: 0AΦ defined by a point p , 1AΦ

defined by p and a vector t , and 2AΦ defined by p and vectors, t and v . These

regulators are depicted by a point, line, and plane respectively. The Alignment regulator

can also restrict elements to a circle or curve. This regulator is depicted by cAΦ and its

parameters are defined by curve type and include the point p , the vectors t , and the

radius r .

There are three subtypes for the Size regulator: 1VΦ restricts length, 2VΦ restricts area,

and 3VΦ restricts volume. The parameters are minimum/maximum value and an

incremental module. These regulators are depicted by one, two, or three dimension lines,

respectively.

The Angle regulator sets the angle within a shape or between two shapes. A variant pLΦ

sets shapes as being parallel. The Angle regulator is depicted by an arc joining the two

ARCHITECTURAL EXPLORATIONS CHAPTER 4 94

shapes or a line in the case of pLΦ .

Equivalence

])(},{[k0 shapeshapeva −Φ Q

Alignment])(}{[k0

0 shapeshapep −ΦA

])(},{[k0
1 shapeshapetp −ΦA

])(},,{[k0
2 shapeshapevtp −ΦA

])(},,{[k0
C shapeshapertp −ΦA

Size])(},,{[shapemodmaxminVΦ

Angle

])(},,{[k1 shapeshapemodmaxmin −ΦL

Proportion

])(},,{[shapedtp1PΦ

TABLE 4.4 - REGULATORS BASED ON GEOMETRIC CONSTRAINTS

The Angle regulator sets the angle within a shape or between two shapes. A variant pLΦ

sets shapes as being parallel. The Angle regulator is depicted by an arc joining the two

shapes or a line in the case of pLΦ .

The Proportion regulator controls the aspect ratio of a shape through a diagonal line,

which also depicts the regulator. A variation of this regulator, aPΦ , controls the

proportion through an arc.

VΦ

1PΦ
aPΦ

AΦ

QΦ

LΦ
pLΦ

ARCHITECTURAL EXPLORATIONS CHAPTER 4 95

4.2.4. TOPOLOGICAL REGULATORS

Topological regulators, symbolized by Π , are mostly binary and non-generative. Table

4.5 illustrates the topological regulators and their corresponding notation.

The Distance regulator, +ΠJ , defines the proximity between shapes, irrelevant of their

geometry. Variations of this regulator are adjacency 0JΠ , defined by a zero distance and

overlap -JΠ , defined by a negative distance. This regulator is depicted as a dimension

line.

The Boundary regulator defines a legal region for a shape, with an offset o , in other

words, it restricts a shape to be inside another. It inputs the boundary shape as well as the

bounded shapes and is depicted by a thicker boundary shape.

The Connection regulator determines whether two shapes are connected and ensures that

these remain connected upon manipulation.

Distance

]),(},,{[21 shapeshapemodmaxminJΠ

Boundary)](}{[k1bound shape,shapeshapeo −ΠB

Connection]),({}[21 shapeshapeCΠ

TABLE 4.5 - REGULATORS BASED ON TOPOLOGICAL RELATIONS

4.2.5. HIERARCHICAL REGULATORS

Hierarchical regulators, symbolized by Ψ , define hierarchies of shapes; these can be

defined independently, or in composition with other regulators. Table 4.6 illustrates the

0JΠ -JΠ

BΠ

CΠ

ARCHITECTURAL EXPLORATIONS CHAPTER 4 96

hierarchical regulators and their corresponding notation.

Containment])({}[n0 tconstituennt constituecontainer, −Ψ H

Subshape

])(sup{}[n0 subshapeubshapeershape, s −Ψ S

TABLE 4.6 - REGULATORS BASED ON HIERARCHICAL RELATIONS

The Containment regulator creates a container-constituent relationship, irrelevant of

geometry. Typically, containment inputs the container and constituents, however, it can

input the container and generate the constituents, or vice versa. The containment

regulator can be composed with the Subdivision and the Boundary regulators to introduce

geometrical and topological dependencies in the hierarchy.

The Subshape regulator creates a geometric dependency between shapes (or more

precisely between their generative regulators).

4.2.6. OPERATION REGULATORS

Operational regulators, symbolized by Ω , are generative regulators that define complex

shapes from simpler ones by means of discrete transformations. Table 4.7 illustrates the

operation regulators and their corresponding notation.

The Subdivision regulator, ZΩ inputs a shape, subdivides it n times and allocates a

spacing s between the subdivisions. The subdivisions produced are normal to the shape’s

direction (i.e., to the generative regulator’s direction). A variant of subdivision, the

Cutting regulator, PZΩ , subdivides a shape according to a splitting plane.

The Boolean operations regulators input two or more objects, and generate their union,

intersection, or difference. Boolean regulators have no parameters.

HΨ

SΨ

ARCHITECTURAL EXPLORATIONS CHAPTER 4 97

Subdivision])(},{[shapensZΩ

Cutting])(},{[eshape,plannsPZΩ

Merging])({}[BA, shapeshapeGΩ

Boolean Operations

Union:])({}[k0 shapeshape −ΩU

Intersection:])({}[k0 shapeshape −ΩI

Difference:])({}[k0 shapeshape −ΩD

Symmetric
Difference:

])({}[k0 shapeshape −ΩM

TABLE 4.7 - REGULATORS BASED ON OPERATIONS

pZΩ

ZΩ

IΩ

DΩ

MΩ

UΩ

GΩ

ARCHITECTURAL EXPLORATIONS CHAPTER 4 98

4.3. REGULATOR GENERATION METHODS

In order to represent the various types of shapes and patterns observed in architectural

compositions, the ICE framework allows for several methods of generation. These

include continuous, discrete, combination, subset, and pattern generation. This feature,

which is only applicable to generative regulator, is indicated by superscripts, for instance,
>−><−<Δ 9630)p(T . Brackets group continuous parts together, and the dash indicates that all

shapes/points within the range are generated. Table 4.8 illustrates the generation methods

supported in ICE.

Discrete
generation

><−><Δ 20s)(T
>><><<Δ 210s)(T

Continuous
generation

>−<Δ 20s)(T
><Δ 210s ,,)(T

Combined
generation

>−><><−<Δ 65430s)(T
>><><<Δ 6543210s ,,,,)(T

Subset
generation

>><<Δ 65210s ,,,)(T
>−><−<Δ 6520s)(T

Pattern
generation

φ><∴Δ iims)(T

Non-
generative
regulators

><Δ i)(s1T

])(},,{[i><Δ sdtp1T

Motion
regulators

)(s⎯→⎯Δ 1T

])}(,,[{ sd0tp ⎯→⎯Δ 1T

)]}([{ s0 θ⎯→⎯φ 1L

TABLE 4.8 - GENERATION METHODS

TΔ

s

TΔ

s

TΔ

s

TΔ
s

TΔ
s

TΔ
s

TΔ

s

ARCHITECTURAL EXPLORATIONS CHAPTER 4 99

The discrete generation method generates individual separate output elements, none

connected. All previous examples were generated discretely.

The continuous generation method generates output elements that are connected and the

loci of points in-between the output-elements are also generated. Continuous generation

is used for creating shapes from connected vertices. The shape examples in Section 4.7

are generated continuously.

Combined generation includes both continuous and discrete parts. It is used for

generating shapes that have disconnected parts.

In subset generation, only some indices (from the range, n−0) are generated; thus, gaps

are created, not by discontinuity as in the previous method, but by the absence of an

output shape/point.

Pattern generation is intended to describe repetitive patterns, for instance a dashed line,

in a concise manner. The symbol ∴ indicates the start of the pattern, i denotes a

generated index, m indicates the number of times the cycle is repeated, φ indicates an

absent index, and the brackets indicate continuity.

Transformation regulators can be non-generative, i.e., these transform the input shape

and are characterized by the absence of the n parameter, and by the presence of only one

index for the new position in the superscript bracket.

Transformation regulators can also be used to describe the motion of the input shape.

This is shown by the superscript arrow, which indicates the shape moving from position

0 to position n .

ARCHITECTURAL EXPLORATIONS CHAPTER 4 100

4.4. REGULATOR COMPOSITION

A fundamental functionality of the ICE framework is the various ways of composing

regulators in order to represent the diverse types of structures observed in architectural

configurations. Composition of regulators is the primary method for connecting the

“regulator building blocks” of the ICE notation. A variety of complex configurations can

be specified through the composition of simple regulator units. Table 4.9 illustrates the

composition methods in supported in ICE and Table 4.10 shows its corresponding graph

representation. Composition strategies can be combines to define intricate schemata (see

Section 4.9).

Simultaneous composition of regulators allows multiple regulators to be applied to the

same set of element, i.e. multiple formulae to act simultaneously. This method allows

complex regulators to be defined by composing simple ones, therefore, significantly

extending the repertoire of regulators. There are no limits to the number, or type, of

regulators for the composition. Glide and screw rotation, for instance, are defined by

means of simultaneous composition. Notationally, the composed regulator symbols are

placed in juxtaposition and the parameters for the composite are the union for the

individual regulator parameters, with duplicates differentiated by subscripts.

In the successive form of composition, a regulator is applied to the output shapes of

another regulator, forming a nested relationship. There are no limits to the number of

regulators in the succession. Notationally, successive compositions correspond to nested

parenthesized strings in which inner regulators are applied before outer regulators.

In the partial composition method, a regulator is applied to a subset of the previously

generated output. This allows complex and irregular shapes/patterns to be defined.

Notationally, this is indicated by a subscripted string comprising the # symbol followed

by the indices of the output shape.

Sharing allows a regulator to regulate multiple input shapes, and a shape to be regulated

by multiple regulators. The former allows the reuse of regulators for multiple shapes and

the later allows for multiple constraints to act on a single shape. Such a situation is likely

to cause conflicts. There are no limits to the number of shapes shared by a regulator or to

the number of regulators shared by a shape.

ARCHITECTURAL EXPLORATIONS CHAPTER 4 101

Simultaneous
Composition

])(},,,,,{[shapendktpp DT
01 DT ΔΔ

])(},,,{[shapendtp11 AM ΦΔ

Successive
Composition

)])](},,,{[(},,,{[shapentpndtp αΔΔ 11 RT

Partial
Composition

)])](},,,{[(},,,{[,# 43shapentpndtp αΔΔ 11 RT

Sharing

]),}(,,,[{ 40 ><−><Δ BA shapeshapendtp2T

])}(,,,[{

)],,,}(,,[{
40 ><−><Δ

∧Φ

A

DCBA

shapendtp

shapeshapeshapeshapedtp

R

A

Aggregation

]]))(},,,[{}(,,,[{

]]))(},,,[{}(,,,[{
>−<>−<

>−<>−<

ΔΔ

∧ΔΔ
1010

1010

qndtpndtp

sndtpndtp

12

12

TR

TT

Multiple
Control

])(},,,{[

])(},,,{[
>><<

>><<

Δ

∧ΔθΔ
30

i

20

shapendtp

ntp

1i

1

T

TR

TABLE 4.9 - COMPOSITION METHODS

TΔ

AΦ
RΔ

TΔ

TΔ

RΔ

TΔ

RΔ

1TΔ

2TΔ
q

2RΔ

1TΔ
s

10TΔ
12TΔ

11TΔ

RΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 4 102

T D

s s2s1 s3 sn

Simultaneous Composition

T

R

s0 s1 s2

s01 s0n

s11 s1n

s3 s4

s21 s2n

s31 s3n

s41 s4n

T

R

s0 s1 s2 s3 s4

s31 s3n

s41 s4n

Successive Composition

Partial Composition

sB
T

sB2sB1 sB3 sB3

sA sA2sA1 sA3 sAn

sB

R

s1 snsC sAsD

A

Sharing: Multiple Shapes Sharing: Regulators Shapes

T1A

T2A

p p1

p01

p11

p0n

p1n

T1B

R2B

p p1

p01

p11

p0n

p1n

R

T T1 Tn

sA sA1

sAn

sb1

sBn

sC1

sCn

sB sC

Aggregation Multiple Control

TABLE 4.10 - GRAPH REPRESENTATION OF COMPOSITION METHODS

ARCHITECTURAL EXPLORATIONS CHAPTER 4 103

In the aggregation method, two independent strings are joined together to describe a

complex shape. Notationally, this is indicated by the conjunction ∧ .

The multiple control composition method allows regulators to be regulated, therefore,

regulators can be generated just like shapes and points and regulators can be constrained

or related topologically or hierarchically. This method allows relations to be regulated as

well as shapes, thus describing complex behaviors. When regulators control shapes, these

define only one level of control for the configuration. Alternatively, when regulators

control other regulators, these augment the complexity of the configuration by defining

multiple levels of control. Although there are no limits on the number of levels for the

regulation control hierarchy, the complexity of the configuration is directly proportional

to the number of the control levels. Regulators are always regulated discretely.

Notationally, generated regulators have an additional subscript to indicate its position in

the generation. The multiple control mechanism allows the visionary scenario of

functional regulators that control geometric regulators, which in turn regulate shapes.

ARCHITECTURAL EXPLORATIONS CHAPTER 4 104

4.5. ICE CONVENTIONS

For the purpose of consistency and simplification, the following conventions are used in

the ICE notation throughout this document.

4.5.1. SHAPE ENCAPSULATION

In order to simplify the description of complex configurations, the ICE notation supports

the notion of shape encapsulation, regulator encapsulation, parameter encapsulation and

schemata (Section 4.9) encapsulation. This enables complex definitions to be captured in

a simpler nomenclature, and reused within other shape definitions. For instance, in the

shape encapsulation shown in Table 4.11, the circle object can then be used as an input

for another string. Such encapsulation hierarchies can have infinite depths.

Shape
Encapsulation

]]))s(},,,{[(},,,{[>−<>−<ΔθΔ= n0n0ndtpntpcircle 12 TR

])(},,,{[>−<Δ= n0circlendtppipe 3T

Regulator
Encapsulation

])(},,,{[])(},,,{[>−<>−< ΔΔ=Δ n0n0 sndtpsndtp MTG

])(},,,{[])(},,,{[>−<>−< ΔΔ=Δ n0n0 sndtpsndtp MTG

Parameter
Encapsulation

])(},,,{[])(},,{[

}{
>−<>−< Δ=Δ

×=
n0n0 sndtpslentp

ndlen

TT

Schemata
Encapsulation

])(},,,,,{[])(},,{[

}{},{
>−<>−< θΔΔΔ=Δ

×θ=×=
n0n0 snkdtpslenhip

nlenndhi

DRTSPIRAL

TABLE 4.11 - ENCAPSULATIONS

4.5.2. INDICES AND SHAPE DIMENSION

In the context of ICE, the dimension of a shape is determined by the number of regulators

defining it. Therefore, one continuous regulator defines a linear 1D shape; two

continuous regulators define a planar 2D shape, and three continuous regulators define a

volumetric 3D shape. As a preferred convention, regulator indices are used to indicate

their position with respect to the dimension of a shape.

ARCHITECTURAL EXPLORATIONS CHAPTER 4 105

Special cases exist where the addition of a regulator does not imply a change in

dimension. These include coplanar discrete applications such as in the case of the

rhombus, or partial successions such as in the case of the polyline (Table 4.12).

Therefore, in most configurations, numerical indices are used for regulators that augment

dimension, while alphabetical indices are used for regulators that operate within the same

dimension. However, some configurations determine special conventions for shape and

regulator indices. In such cases, letters denoting vertical or horizontal may be used

instead of numbers, and numbers denoting order of applications can be used instead of

lowercase letters. Furthermore, complete words may be used instead of letters.

Indices for distinct shape are depicted as uppercase letters or even words, such as Ashape

or Bshape . Shapes generated by a common regulator are denoted by the indices 1 to n,

0shape or nshape . Similarly, regulators generated by a common regulator such indices,

concatenated to their own indices: 10TΔ to 1nTΔ . Regulator indices, denoting different

shapes, are inherited from the shape index. These are depicted as uppercase letters and

positioned before the dimension index. A11 TT Δ=ΔAshape .

])

])

])(},,,{[

(},,,{[

(},,,{[

>−<

>−<

>−<Δ

Δ

Δ=

10

10

10sndtp

ndtp

ndtpcube

1

2

3

T

T

T

])

])

])(},,,{[

(},,,,{[

(},,{[

>><<

>−<

>−<Δ

Δ

Δ=

10

10

10sndtp

nkdtp

ntprhombus

1

2a

2b

T

TD

M

])

])

])(},,,{[

(},,,{[

(},,,{[

>−<

>−<

>−<Δ

Δ

Δ=

10

10

10sndtp

ndtp

ndtppolyline

#1

#11a

1b

1c

T

T

T

TABLE 4.12 – SHAPE DIMENSION

1TΔ

2TΔ
3TΔ

s

1TΔ

2aDTΔΔ

s
2bMΔ

1aTΔ

s
1bTΔ

1cCΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 4 106

4.5.3. SHAPE ACCESS

The ICE notation supports the concept of accessing key elements inside shapes by using

“brackets.” This enables the application of regulators to certain part of a shape. For

instance, an alignment can be applied to the midpoint of a shape, or a value constraint can

be applied to a specific parameter of a regulator.

• To access a regulator of a shape: 1TΔAshape

• To access many regulators of a shape: 31 TT ΔΔ ,Ashape

• To access parameter n of the regulator 1RΔ : { }n1RΔ or
1Rn

• To access parameter n of the regulator 1RΔ within a shape:
1RnshapeA

• Key-points (e : endpoint, m : midpoint, s : start-point)

• To access key-points (such as the midpoint): 1mshapeA

4.5.4. SHAPE RESOLUTION

Every regulator has a resolution that is determined by the factor ()kt ,,θ multiplied by the

parameter, n . This can be increased or decreased by manipulating either ()kt ,,θ or n .

The same line can be generated by means of two points, which are six units of distance

apart,])(},,,{[>−<Δ= 10s16tpline 1T , or six collinear points, which are one unit distance

apart,])(},,,{[>−<Δ= 50s51tpline 1T . Typically, the former is the convention for

continuous shape generation, but in the case of certain operations, the latter is used to

provide access to intermediate key points. To increase the resolution, multiply the factor

by λ
1 and multiply n by λ .

ARCHITECTURAL EXPLORATIONS CHAPTER 4 107

4.5.5. DISTRIBUTION AND IDENTITY

The ICE notation supports the following distributive property,

)()s(),s(2121 shapehapeshapehape TTT Δ∧Δ=Δ , where the conjunction ∧ joins the two

related notation strings.

The ICE notation supports the following cancellation property. Generating only the zeroth

element, is equivalent to the identity operation in ICE and can cancel the regulator in

question from a complex string.

s])s(},,,{[=Δ ><0ndtp2T

]]))s(},,,{[(},,,{[>−<><ΔΔ n00ndtpndtp 12 TT =])s(},,,{[>−<Δ n0ndtp2T

ARCHITECTURAL EXPLORATIONS CHAPTER 4 108

4.6. GENERATION AND TRANSFORMATION IN ICE

In addition to capturing the structure of any configuration through its regulators, the ICE

notation captures two significant exploratory components: a step by step generative

sequence based on structure, and a set of transformations applicable to the structure. The

generation sequence is significant for analyzing a configuration and reproducing it, while

the applicable transformations are significant for designating manipulation handles for

exploring it.

4.6.1. CAPTURING GENERATION

The ICE notation is a vehicle for summarizing generative history, which is important for

process analysis and data encoding. If a notation string is dissected and analyzed

regulator by regulator, the result is a replay of the generation method. The graphic

configuration in Table 4.13 is the logo designed specifically for the generative CAD

systems symposium using an early version of the ICE implementation. It consists of two

Rotation regulators applied successively, with the first one being composed

simultaneously with Dilation and Gradation.

The initial shape

Ashape

Apply a generative Rotation regulator.
])(,,,[{ ><−><==θΔ 261

A
0
1 shape26n3pR

Compose the rotation with dilation.
])}(,,,[{0

1
><−><===θΔΔ 261

Ax shape.95k26n3p DR

Compose the rotation with color gradation.
])}(.,.,,,[{Ξ0

1
><−><+=−====θΔΔ 261

Ax shape028b058r .95,k26n3pG DR

Applying another rotation successively.

])

])shape}(.,.,,,[{Ξ0
1

}(,,[{0
2

A

><−><

><−><+=−====θΔΔ

==θΔ

91

261
x 028b058r .95,k26n3p

9n20p

G DR

 R

TABLE 4.13 GENERATION SEQUENCE OF THE GCAD’04 LOGO

ARCHITECTURAL EXPLORATIONS CHAPTER 4 109

Table 4.13 also illustrates the generation method that is based on the breakdown of the

notation string considering one regulator application at a time.

4.6.2. CAPTURING TRANSFORMATION

The ICE notation is a vehicle for exploration. Its representation allows the

reconfiguration of a string, therefore, the reconfiguration of a design. The

transformations captured in the ice strings are categorized as follows:

• Transforming the regulated element

• Transforming the generation method

• Transforming the regulator’s geometry and parameters

• Transforming the regulator composition

Transforming the regulated shape/point modifies the configuration while maintaining its

geometric structure. Transformations in this category include moving the point, as well as

moving-rotating-replacing the shape.

Transforming the generated method creates variations and subshapes, but maintains the

geometric structure of the configuration. Such transformations include changing the

number of elements generated, changing the discrete continuous properties, changing the

generated subset, and changing the generation pattern..

Transforming the parameters of the regulators modifies the configuration’s geometric

structure but not the notation’s structure. Transformations in this category include

changing the regulator’s geometry by moving it or rotating it, and changing the major

parameter (such as rotation degree or minimum-maximum value).

Transforming the composition redefines the notation string and completely alters the

configuration’s structure. Such transformations include adding, composing, inserting,

deleting, replacing or reordering regulators in a sequence.

Table 4.14 illustrates how such transformations are applied to explore the GCAD logo.

The notational manipulation and the corresponding effects on the logo are illustrated.

ARCHITECTURAL EXPLORATIONS CHAPTER 4 110

Each step in Table 4.14 is the result of applying a single transformation to the initial

GCAD logo in Table 4.13 Notice how a simple notation changes represent significant

changes in the geometry. Such transformation enables one to start with a configuration,

then to modify it with a few steps, until a completely different configuration is achieved.

When a transformation is applied to a notation string, the string is reconfigured and

consequently, the set of applicable transformations, and as well as the generation

sequence, are completely redefined.

The notation string captures all applicable transformations on each of these categories.

The various symbols, parameters, and indices of the notation represent manipulation

handles for the ICE system. The transformation syntax listed in Table 4.15 describes

these transformations using two complementary ways: (i) the transformation name (in

UPPPERCASE) and (ii) a left and right hand notation focusing on the parameters that are

changed.

The transformation syntax is used to document exploratory actions and transitions

between various configurations. It presents an alternative way of describing

configurations by means of steps.

It is important to distinguish between the generative sequence, which is captured directly

in ICE notation strings, and the “history” of exploration. The generative sequence is a

parsimonious, one-time, generation, while the exploratory history may be an extensive,

cyclic process that transforms the notation string, repeatedly, until a satisfactory

configuration is achieved. The exploratory history can be captured in a sequence of

configuration strings. Alternatively it can be captured by means of an initial configuration

string and a sequence of transformations that will be applied to this string.

ARCHITECTURAL EXPLORATIONS CHAPTER 4 111

Transforming the regulated element

REPLACE_SHAPE BA shapeshape ⇒

])

])}(.,.,,,[{Ξ0
1

}(,,[{0
2

><−><

><−><+=−====θΔΔ

==θΔ

91

261
Bx shape028b058r .95,k26n3p

9n20p

G DR

 R

Transforming the generation method

MODIFY_NUMBER]}4{[]}9{[4090
2

>−<>−< =Δ⇒=Δ nn 2RR

])

])}(.,.,,,[{Ξ0
1

}(,,[{0
2

><−><

><−><+=−====αΔΔ

==αΔ

41

261
Ax shape028b058r .95,k26n3p

4n20p

G DR

 R

Transforming the regulator parameters

MOVE_REGULATOR)}]1,2({[)}]0,0([{ −=Δ⇒=Δ pp RR

])

])}(.,.,,,[{Ξ0
1

}(,,[{0
2

><−><

><−><+=−====αΔΔ

==α′Δ

91

261
Ax shape028b058r .95,k26n3p

9n20p

G DR

 R

MODIFY_FACTOR]}120{[]}20{[2 =Δ⇒=Δ αα 1RR

])

])}(.,.,,,[{Ξ0
1

}(,,[{0
2

><−><

><−><+=−====αΔΔ

==αΔ

91

261
Ax shape028b058r .95,k26n1p

9n20p

G DR

 R

Transforming the regulator composition

REPLACE_REGULATOR 1
1

0
1 TR Δ⇒Δ

)]

])}(.,.,,,[{Ξ0
1

}(,,[{1
2

><−><+=−====αΔΔ

==Δ

261
Ax shape028b058r .95,k26n3p

9n25dp

G D

R

T

TABLE 4.14 TRANSFORMATIONS ON THE GCAD LOGO

ARCHITECTURAL EXPLORATIONS CHAPTER 4 112

REGULATED ELEMENT (applicable to point -- shape)

INSTANTIATE_SHAPE

MOVE_XYZ)()(1,0,0s0,0,0s =⇒=

MODIFY_ATTRIBUTE battributeshapeaattributeshape =⇒=

REPLACE_SHAPE BA shapeshape ⇒

GENERATION METHOD
MODIFY_CONTINUITY >−<>−<−>< Δ⇒Δ 90940 ss)()(TT

MODIFY_NUMBER])(}[{])}([{ >−<>−< =Δ⇒=Δ 12050 s12ns5n TT

MODIFY_PATTERN φ><=∴φφ><=∴ Δ⇒Δ iii8mii4m ss)()(TT

MODIFY_GENERATED >><><<>><><><< Δ⇒Δ 4204310 ss)()(TT

REGULATOR PARAMETERS (applicable to regulator – and simultaneous composition)

MOVE_XYZ)}]11,1([{)}]1,0,0([{ =Δ⇒=Δ pp TT

ROTATE_XYZ)}]4,3,1([{)}]1,0,0([{ =Δ⇒=Δ tt TT

MODIFY_FACTOR
modmax,min,,,,,,,,, socvakd α

}],8[{}]5[{ =Δ⇒=Δ dd TT
}]30[{}]10[{ =Δ⇒=Δ αα RR

)}],.,([{)}].,,([{ 1801k2111k =Δ⇒=Δ DD

MODIFY_FORMULA)}]2[{}]12[{ −Ξ⇒=Ξ 2:f:f (x)x(GG

MODIFY_DIMENSION }],,,[{}],,[{1 nvtpntp 2MM Δ⇒Δ

MODIFY_INDEX [{}][{}] 23 RR Δ⇒Δ

REGULATOR COMPOSITION

ADD_SIMULTANEOUS }],,,,,[{}],,,[{ ndktppndtp DT
011 DTT ΔΔ⇒Δ

REMOVE_SIMULTANEOUS }],,,[{}],,,,,{[ndtpndtpp RT
111 TRT Δ⇒ΔΔ α

SWAP_SIMULTANEOUS)][()][(shapeshape 1111 TRRT ΔΔ⇒ΔΔ

ADD_SUCCESSIVE)])][([()][(shapeshape 111 RTR ΔΔ⇒Δ

INSERT_SUCCESSIVE)])][([()][(shapeshape 111 RTT ΔΔ⇒Δ

DELETE_SUCCESSIVE)]([)])]([([shapeshape 111 TRT Δ⇒ΔΔ

SWAP_ SUCCESSIVE)])]([([)])]([([shapeshape 1111 TRRT ΔΔ⇒ΔΔ

REPLACE_REGULATOR

)]}(,,,,,[{

)]}(,,,,,[{

shapendktpp

shapendtpp

DT

RT

10

11

TD

TR

ΔΔ

⇒αΔΔ

)])]}(,,[{}(,,,{[

)])]}(,,,[{}(,,,{[

shapenkpndtp

shapentpndtp
01

11

DT

RT

ΔΔ

⇒αΔΔ

ADD_SHARED)][()][()][(shapeshapeshape 111 ATT Δ∧Δ⇒Δ

TABLE 4.15 - NOTATION FOR TRANSFORMATIONS IN ICE

ARCHITECTURAL EXPLORATIONS CHAPTER 4 113

4.7. SHAPE REPRESENTATION

By using transformation regulators and the continuous generation method, the ICE

notation has the capacity to describe a variety of shapes. In this section, ICE’s generative

techniques are illustrated through a gallery of linear, planar, and volumetric shapes.

4.7.1. LINEAR SHAPES

Linear shapes are generated by the application of a single continuous regulator, or by the

application of multiple regulators using partial composition, as is shown in Table 4.16.

Straight line

])(},,,{[>−<Δ= 10sndtpline 1T

Circular outline

])(},,,{[>−<=Δ= 10sn360θtpcirlce 1R

])(},,,{[>−<=Δ= 10sn98θtparc 1R

Curved line

])(},,{[>−<Δ= 10snθpcurve 1C

Complex polyline

])])

])}(,,,{[

}(,,,[{
}(,,,[{

#

#

>−<>−<

>−<Δ

Δ
Δ=

1010
1

10
1sndtp

ndtp
ndtppolyline

1a

1b

1c

T

T
C

Regular polygon

])

])}(,,,{[

}(,,,[{

#

><−><

>−<Δ

=θΔ=

40

10
1sndtp

n72tppentagon

1a

1b

T

R

Irregular polygon

)(])

]]))}(,,,{[

}(,,,[{
}(,,,[{

##

s

sndtp

ndtp
ndtpirregular

10

10
1

10
1

⎯→⎯

Δ

Δ
Δ=

>−<

>−<>−<

1a

1b

1c

T

T
T

TABLE 4.16 - REPRESENTATION OF LINEAR SHAPES

1TΔ
s

1RΔ
s

1CΔ

s

1TΔ
s

2TΔ

3CΔ

s

1RΔ

1TΔ

1RΔ

s

1TΔ
s

2TΔ

3TΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 4 114

The straight line is generated by the Translation regulator, 1TΔ , sweeping the starting

point s . The circle’s outline is generated by the Rotation regulator, 1RΔ , sweeping the

point s through 360º. If the angle is less than 360º, the result is an arc. Similarly, the

curve regulator 3CΔ sweeps s to create a curved line.

A polyline is generated by successive compositions; each regulator inputs only the last

point of the preceding regulator. The polygon’s outline is generated by translating a point

to construct an edge, then by rotating it, discretely, to construct the remaining sides. The

irregular polygon is also generated by successive compositions. However, the first point

is the same as the last one, and this is denoted by the arrow leading to the first point.

4.7.2. PLANAR SHAPES

Planar shapes are generated by the application of two continuous successive regulators,

or multiple regulators using partial composition and discrete generation as is illustrated in

Tables 4.17 and 4.18.

A rectangle is generated by the successive composition of two Translation regulators. A

solid triangle is generated by applying the composite regulator, 2DTΔΔ . If the dilation

factor is increased the result is a trapezoid (or quadrilateral). A solid circle is generated

by sweep-rotating a line through 360º. Similarly, the semicircle is rotated through 180º,

and the pie through 270º. A solid curved surface is generated by sweeping a curved line

along a Translation or along another curved line.

A rhombus is generated by discretely mirroring the solid triangle, and similarly, a solid

polygon is generated by discretely rotating the triangle. An irregular polygon is defined

by means of quadrilaterals, using partial composition, like the polyline. The first

quadrilateral is generated by sweep-scaling a line. The end line of each quadrilateral is

swept to generate the subsequent quadrilateral.

ARCHITECTURAL EXPLORATIONS CHAPTER 4 115

Rectangle

]]))(},,,{[(},,,{[>−<>−<ΔΔ= 1010sndtpndtprect 12 TT

Triangle and Trapezoid

]]))(},,,{[(},),,(.,,{[>−<>−<Δ=ΔΔ

=
1010sndtpnd15ktp

triangle

12 TDT

]]))(},,,{[(},),,(.,,{[>−<>−<Δ=ΔΔ

=
1010sndtpnd175ktp

trapezoid

12 TDT

Circle and Variations
]]))(},,,{[(},,,{[>−<>−<Δ=Δ= 1010sndtpn360θtpcircle 12 TR

]]))(},,,{[(},,,{[>−<>−<Δ=Δ= 1010sndtpn180θtpsemicircle 12 TR

]]))(},,,{[(},,,{[>−<>−<Δ=Δ= 1010sndtpn270θtppackman 12 TR

Rhombus
]]))(},,,{[(},,,,{[>−<>−<ΔΔΔ= 1010sndtpndktptriangle 12a TDT

])}(,,[{ >><<Δ= 10trianglentprombus 2bM

Solid Regular polygon

]]))(},,,{[(},,,,{[>−<>−<ΔΔΔ= 1010sndtpndktptriangle 12a TDT

])}(,,,[{ >><<θΔ= 40trianglentppolygon 2bR

Irregular Polygon

]

])

]))}(,,,{[

}(,,,,[{
}(,,,,[{

#
>−<

>−<

>−<Δ

Δ

ΔΔ=

10

10
1

10sndtp

nkdtp
nkdtpirregular

1

2

3

T

TD
DT

Solid curved surface

]]))}(,,{[}(,,,[{ >−<>−<ΔΔ= 1010snθpndtpsurface 12 CT

TABLE 4.17 - REPRESENTATION OF SIMPLE PLANAR SHAPES

1TΔ

2TΔ

s

1TΔ

2DTΔΔ

s 1TΔ

2DTΔΔ

s

1TΔ

2RΔ

s

1TΔ

2RΔ

s

1TΔ

2aDTΔΔ

s
2bMΔ

2bRΔ

1TΔ

2aDTΔΔ

s

2bDTΔΔ

2aDTΔΔ
1TΔ

 s

2TΔ

s
1CΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 4 116

U-shape

2part1partushape

sndtpndtp2part

sndtpndtp1part

22111

21

ninji0

i0n0

∧=

ΔΔ=

∧ΔΔ=

>−<>−><−<

>−<>−<

]]))(},,,{[(},,,[{

]]))(},,,{[(},,,[{

12

12

TT

TT

Square donut

2part1partdonut

sndtpndtp2part

sndtpndtp1part

22111

2221

jinji0

nji0n0

∧=

ΔΔ=

∧ΔΔ=

>−<>−><−<

>−><−<>−<

]]))(},,,{[(},,,[{

]]))(},,,{[(},,,[{

12

12

TT

TT

Ring, concentric, and radial

]]))(},,,{[(},,,{[>−<>−<Δ=Δ= 1010sndtpn360θtpring 12 TR

]]))(},,,{[(},,,{[>−<><Δ==Δ

=
n0φφiisndtp20n360θtp

concentric

12 TR

]]))(},,,{[(},,,{[>><>−<Δ=Δ

=
φφiin0sndtpn180θtp

radial

12 TR

Crescent

])

]]))}(,,,{[}(,,,,[{

}(,,[{

>><<

>−<>−<ΔΔΔ

Δ
=

10

1010sndtpnkθtp

ntp
crescent

12a

2b

TDR

M

Slice
]]))(},,,{[(},,,[{ >−<>−<Δ=Δ= 1010sndtpn180θtpsemicircle 12 TR

)](},{[semicirclekpDΔ

]]))p(},,,{[(},,,{[>−<>−<Δ=Δ= 1010ndtpn360θtpcircle TR

])(},{[><Δ 1circleline3Z

Composed shapes

)]

]]))(},,,{[(},,,{[

],]))(},,,{[(},,,{[

[{}(

>−<>−<

>−<>−<

ΔΔ

ΔΔ

Δ

1010
B

1010
A

sndtpndtp

sndtpndtp

B1B2

A1A2

TT

TT

U

TABLE 4.18 - REPRESENTATION OF COMPLEX PLANAR SHAPES

s 2TΔ

1TΔ

2RΔ

s

2RΔ
s

1TΔ
1TΔ

s
2RΔ

2DRΔΔ

3MΔ 1TΔ
s

1TΔ 3ZΩ

s

2RΔ

1TΔ

DΔ

As

Bs

2BTΔ

1ATΔ

1BTΔ

1TΔ

1j

2i s 2TΔ

1i

ARCHITECTURAL EXPLORATIONS CHAPTER 4 117

The U-shape is generated by means of the subset generation method. The regulators are

applied twice from the same starting point, each time deriving part of the shape. The

same method is applicable to the L-shape. A square with a hole is described by using the

subset generation method. The regulators needs to be applied twice, once to generate the

vertical sides, and once to generate the horizontal sides. There are other ways of

generating a square with a hole, for instance the pinwheel method, however, the two-pass

method is more flexible, and can describe variations such as rectangular holes, or many

holes, etc.

A ring is generated as a variant of the circle, a line (that does not intersect with the center

of rotation) is sweep-rotated through 360 degrees. The concentric pattern is a subshape of

a circle and defined by means of the subset generation method. The first regulator defines

a pattern, while the other is continuous. Similarly, the radial pattern, which is another

subshape of the circle, is a defined by subset generation, where the first regulator is

continuous, and the second regulator defines the pattern. A crescent is generated by

means of a scale rotating a line, then mirroring it discretely. A solid slice is defined by

applying the dilation 3DΔ to a semicircle, or alternatively by subdividing a circle about a

line.

4.7.3. VOLUMETRIC SHAPES

Volumetric shapes are generated by applying three successive regulators as is illustrated

in Table 4.19, which extends through several pages.

A cuboid is generated by sweeping a square along the Translation regulator 3TΔ .

Similarly, a prism is generated by sweeping a triangular base along 3TΔ . A rotated prism,

on the other hand, is generated by sweeping the triangular base along the screw

regulator, 3RTΔΔ , and a pyramid is generated by sweeping a square base along the

composite regulator, 3DTΔΔ . If the scale factor is decreased, the result is a frustum. The

octahedron is defined by discretely mirroring a pyramid.

ARCHITECTURAL EXPLORATIONS CHAPTER 4 118

Cuboid

])])(},,,{[(},,,{[>−<>−<ΔΔ

=
1010sndtpndtp

square

12 TT

])(},,,{[>−<Δ= 10squarendtpcuboid 3T

Prism

])])(},,,{[(},,,,{[>−<>−<ΔΔΔ

=
1010sndtpndktp

triangle

12 TDT

])(},,,{[>−<Δ= 10trianglendtpprism 3T

Rotated Prism

])])(},,,{[(},,,,{[>−<>−<ΔΔΔ

=
1010sndtpndktp

triangle

12 TDT

])(},,,,{[_ >−<ΔΔ= 10trianglenθdtpprismRotated 3RT

Pyramid and Frustum

])])(},,,{[(},,,{[>−<>−<ΔΔ

=
1010sndtpndtp

square

12 TT

])(},,,,{[>−<ΔΔ= 10squarenθktppyramid 3DT

])(},,,,{[>−<ΔΔ= 10squarenθktpfrustum 3DT

Octahedron

])])(},,,{[(},,,,{[>−<>−<ΔΔΔ

=
1010sndtpndktp

triangle

12 TDT

])(},,,,{[>−<ΔΔ= 10squarenθktppyramid 3aDT

])(},,,,,,{[>−<Δ= 10squarenθedvtpoctahedron 3bM

Cylinder

]]))(},,,{[(},,,{[>−<>−<Δ=Δ

=
1010sndtpn360θtp

circle

12 TR

])(},,,{[>−<Δ= 10circlendtpcylinder 3T

]]))p(},,,{[(},,,{[>−<>−<ΔΔ= 1010ndtpndtprect 12 TT

])(},,,{[>−<Δ= 10rectndtpcylinder 3R

3TΔ

3aDTΔΔ 4bMΔ

3DTΔΔ
3DTΔΔ

3RTΔΔ

3TΔ

3TΔ

3RΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 4 119

Cone

]]))(},,,{[(},,,{[>−<>−<Δ=Δ

=
1010sndtpn360θtp

circle

12 TR

])(},,,{[>−<Δ= 10circlendtpcone 3TD

])])(},,,{[(},,,,{[>−<>−<ΔΔΔ

=
1010sndtpndktp

triangle

12 TDT

])(},,,{[>−<Δ= 10trianglendtpcone 3R

Slinky

]]))(},,,{[(},,,{[>−<>−<Δ=Δ

=
1010sndtpn360θtp

circle

12 TR

])(},,,{[>−<Δ= 10circlenθtpslinky 3C

Sphere

]]))(},,,{[(},,,{[>−<>−<Δ=Δ

=
1010sndtpn360θtp

circle

12 TR

])(},,{[>−<Δ= 10circleθ,ntpsphere 3R

Torus

]]))(},,,{[(},,,{[>−<>−<Δ=Δ

=
1010sndtpn360θtp

circle

12 TR
])(},,{[>−<Δ= 10circleθ,ntptorus 3R

Paraboloid

]]))(},,,{[(},,,{[>−<>−<Δ=Δ

=
1010sndtpn360θtp

slice

12 TR

])(},,,{[>−<Δ= 10slicenθtpparaboloid 3R

Football

]]))(},,,{[(},,,{[>−<>−<Δ=Δ

=
1010sndtpn360θtp

slice

12 TR

])(},,{[>−<Δ= 10slicen,θtpfootball 3R

TABLE 4.19 - REPRESENTATION OF VOLUMETRIC SHAPES

3RΔ

3RΔ

3RΔ

3TDΔ

3CΔ

3RΔ

3RΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 4 120

A cylinder is generated either by sweeping a circular base along a Translation regulator

3TΔ , or by sweep-rotating a rectangle about the regulator 3RΔ . Likewise, a cone is

generated either by sweeping a circle along the composite regulator, 3DTΔΔ , or by

rotating a triangle about the regulator 3RΔ . Similarly a slinky is generated by sweeping a

circle along a curve regulator, 3CΔ . A sphere is generated by sweep-rotating a circle

about the regulator, 3RΔ , positioned along the diameter of the circle; while a torus is

generated by sweep-rotating a circle about the regulator 3RΔ , positioned outside the

circle. The solid paraboloid and the solid football are generated by rotating a slice about

the regulator, 3RΔ .

4.7.4. SHAPE TRANSFORMATIONS

The ICE notation supports the transformation of one shape to another, just by changing

the definition of the regulators as is illustrated in Table 4.20.

Starting shape the cuboid

])])])(},,,{[(},,,{[(},,,{[sndtpndtpndtp

cuboid

123 TTT ΔΔΔ

=

REPLACE_REGULATOR

}],,,[{}],,,[{ ntpndtp 2 θΔ⇒Δ RT2

])])])(},,,{[(},,,{[(},,,{[sndtpntpndtp

cylinder

123 TRT ΔθΔΔ

=

ADD_SIMULTANEOUS

}],,,,,[{}],,,[{ ndktppndtp DTDTT3 ΔΔ⇒Δ

)])(},,,{[(},,,{[(},,,,,{[sndtpntpndktpp

cone

DT 123 TRTD ΔθΔΔ

=

REPLACE_REGULATOR

}],,,[{}],,,[{ ndtpntp2 2TR Δ⇒θΔ

])]))](},,,{[(},,,{[(},,,{[sndtpndtpndtp
pyramid

123 TTTD ΔΔΔ
=

TABLE 4.20 TRANSFORMATION ACROSS SHAPES

3TDΔ

3TΔ

3TΔ

3DTΔΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 4 121

4.8. PATTERN GENERATION AND TRANSFORMATION

By using transformation regulators and the discrete generation method, the ICE notation

has the capacity to describe various types of patterns. In this section, I present examples

of cyclic, dihedral, frieze, and wallpaper patterns, based on symmetry group

classifications. The focus is on the mapping between regulators and the symmetries of the

patterns, as well as the use of regulators to transform patterns. The complete set of cyclic,

dihedral, frieze and wallpaper patterns, as well as the transformation among these

patterns is presented in Appendix C.

4.8.1. CYCLIC AND DIHEDRAL PATTERNS

Cyclic patterns have a single center of finite rotation; dihedral patterns have, additionally,

mirrors intersecting at the center of rotation. Table 4.21 shows an example of a Cyclic

and a Dihedral pattern, and illustrates how to transform one to the other by means of the

ICE notation.

Cyclic pattern C(3)

])(},,,{[)(><−><=Δ= 20shapen120θtp3C aR

Transforming pattern C(3) to D(8)
 MODIFY_FACTOR (θ)
 }][{}][{ 45θ120θ =Δ⇒=Δ aa RR

 INSERT_SUCCESSIVE (aMΔ)

)])][([()][(shapeshape aba MRR ΔΔ⇒Δ

Dihedral pattern D(8)

]]))}(,,[{}(,,,[{)(><−><>><<Δ=Δ= 7010shape1tpn45θtp8D ab MR

Transforming pattern D(8) to C(3)
 DELETE_SUCCESSIVE (aMΔ)

)][()])[([(shapeshape aab RMR Δ⇒ΔΔ

 MODIFY_FACTOR (θ)
 }][{}][{ 120θ45θ =Δ⇒=Δ aa RR

TABLE 4.21 - CYCLIC AND DIHEDRAL PATTERNS

bRΔ

aMΔ

aRΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 4 122

The cyclic pattern C(3) is generated by using the Rotation regulator 1RΔ . The dihedral

pattern D(8) is generated by using the Mirror regulator 1MΔ and the Rotation regulator

2RΔ . Although the pattern has four axes of mirror symmetry, ICE only uses one of those

as a primary generator.

4.8.2. FRIEZE PATTERNS

Frieze patterns are periodic patterns consisting of infinite translations of a motif in a

single direction. The seven frieze patterns admit half-turn rotations, horizontal and

vertical mirrors and glide (Martin 1991, p78) A point of symmetry in the motif is a point

of symmetry for the whole pattern and a line of symmetry in the motif is a line of

symmetry for the whole pattern. Table 4.22 shows two examples of Frieze patterns, and

illustrates how to transform one to the other by means of the ICE notation.

Frieze pattern p112

])

])(},,,{[

(},,,{[

><−><

>><<=Δ

Δ=

n0

10shape1180θtp

ndtp112p

a

b

R

T

Frieze pattern p1m1

])

])(},,{[

(},,,{[

><−><

>><<Δ

Δ=

n0

10shape1tp

ndtp1m1p

a

b

M

T

Transforming pattern p1m1 to p112
 REPLACE_REGULATOR aa RM Δ⇒Δ

 MOVE_REGULATOR_Y }]'[{}][{ pp aa RR Δ⇒Δ

Transforming pattern p112 to p1m1
 REPLACE_REGULATOR aa MR Δ⇒Δ

 MOVE_REGULATOR_Y }]'[{}][{ pp aa MM Δ⇒Δ

TABLE 4.22 - FRIEZE PATTERNS

aMΔ

bTΔ

aRΔ
bTΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 4 123

The Frieze pattern p1m1 is generated by using the horizontal Mirror regulator 1MΔ and

the Translation regulator 2TΔ . The pattern also has glide. The Frieze pattern p112 is

generated by using a half-turn Rotation regulator 1RΔ and the Translation regulator 2TΔ .

The pattern also has another half-turn between the motifs.

4.8.3. WALLPAPER PATTERNS

Wall paper patterns comprise infinite translations of a motif in two distinct (non-

collinear) directions. These form a conceptual lattice that is either rectangular, rhombic or

parallelogram. A point of symmetry in the motif is a point of symmetry for the whole

pattern, and a line of symmetry in the motif is a line of symmetry for the whole pattern.

The seventeen wall paper patterns admit 2, 3, 4, or 6 centers of rotation and reflection

line. (Martin 1991, p88) Table 4.23 shows two examples of wallpaper patterns, and

illustrates how to transform one to the other by means of the ICE notation. The wallpaper

pattern P6 is generated by using the Rotation regulator 1RΔ and the Translation

regulators 2TΔ and 3TΔ . The pattern has a rhombic lattice and has 6 centers, 3 centers

and 2 centers of rotation. The wallpaper pattern p4g is generated by using the Mirror

regulators 1MΔ and 2MΔ , the Rotation regulator 3RΔ and the Translation regulators

4TΔ and 5TΔ . The pattern has a rectangular lattice and has 4-centers, 2-centers of

rotation as well as glide.

ARCHITECTURAL EXPLORATIONS CHAPTER 4 124

Wallpaper pattern p6

])

])

])(},,,{[

(},,,{[

(},,,{[

><−><

><−><

>><<=Δ

Δ

Δ=

n0

n0

50shapen60θtp

ndtp

ndtp6p

a

b

c

R

T

T

Wallpaper pattern p4g

])

])

])(},,,{[

(},,,{[

(},,,{[

><−><

><−><

>><<=Δ

Δ

Δ=

n0

n0

50shapen60θtp

ndtp

ndtp6p

a

b

c

R

TM

TM

Transforming pattern p6 to p4g
 MODIFY_FACTOR (θ) }][{}][{ 90θ60θ =Δ⇒=Δ aa RR

 ROTATE_REGULATOR (cTΔ) }]'[{}][{ tt cc TT Δ⇒Δ

 ADD_SIMULTANEOUS (MΔ)
)])])][([([()])])][([([(shapeshape abcabc RTMTRTT ΔΔΔ⇒ΔΔΔ

 ADD_ SIMULTANEOUS (MΔ)
)])])][([([()])])][([([(shapeshape abcabc RTMTMRTMT ΔΔΔ⇒ΔΔΔ

Steps transforming pattern p4g to p6
 MODIFY_FACTOR (θ) }][{}][{ 60θ90θ =Δ⇒=Δ aa RR

 ROTATE_REGULATOR (cTΔ) }][{}]'[{ tt cc TT Δ⇒Δ

 REMOVE_SIMULTANEOUS (MΔ)
)])])][([([()])])][([([(shapeshape abcabc RTMTRTMTM ΔΔΔ⇒ΔΔΔ

 REMOVE _ SIMULTANEOUS (MΔ)
)])])][([([()])])][([([(shapeshape abcabc RTTRTMT ΔΔΔ⇒ΔΔΔ

TABLE 4.23 – WALLPAPER PATTERNS

3RΔ bTMΔ

cTMΔ

bTΔ

aRΔ

cTΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 4 125

4.9. REPRESENTATIONAL SCHEMATA

The ICE notation string also encapsulates the relationships between the regulators of the

configuration. These interrelationships form representational schemata, which are a

higher-level classification subsuming shapes and configurations. Schemata allow us to

identify distinct patterns of complex compositions where specific regulators, composition

strategies and generation methods are used in combination.

Configuration schemata are discernible patterns of regulator relationships. A schema can

be applied to different input shapes and get variable results with similar generation and

transformation patterns. Thus, various shapes can be derived from a single higher-level

schema. Consequently, schemata can be used as templates to store complex generation

sequences and constraint patterns, and can later be retrieved and modified to create

specific shapes. A schema can store the generation and constraints for a chair, while

another schema can store the generation and constraints for a restaurant. A user can later

retrieve the former schema and modify it to create variations of chairs. Transforming

regulator parameters does not alter the schema; however, transforming the regulator

composition or sequence transforms the schemata completely, therefore the latter form of

transformations can be used to create new schemata from existing ones.

Configurational schemata include the following: simple generative schemata, complex

generative schemata, hierarchical schemata, topological grid schemata, dynamic

schemata. These schemata are often used in combination. In this section, I present some

examples of schemata that can be generated in ICE. The graph representation illustrates

how the regulators in each type of schemata are interrelated.

The notation for schemata differs from the notation for shapes in the following manner.

(i) Shapes are denoted in lowercase, while schemata are denoted in uppercase. (ii)

Schemata are defined by the regulator types, composition and their generation methods,

while shapes are defined, additionally, by the regulator parameters. Distinct shapes, for

instance the circle and the ring, can have the same schema,

]]))p[([(>−<>−<ΔΔ= 1010CIRCULAR 12 TR , but their actual shapes are defined by the

parameters of their specific regulators.

ARCHITECTURAL EXPLORATIONS CHAPTER 4 126

4.9.1. SIMPLE GENERATIVE SCHEMATA

Simple generative schemata, which describe symmetric or centralized architectural

layouts, utilize successive and simultaneous composition methods to generate shapes and

patterns. There are no limits on the number of regulators in the sequence, or in the

simultaneous composition. Patterns such as 1D frieze and 2D wallpaper, as well as shape

like the cuboids, cylinders, and cones (Table 4.24) are examples of simple generative

schemata. The schema for the 3D cone consists of three successive regulators: 1TΔ , 2RΔ ,

and 3DTΔΔ , all of which are continuous, with the last regulator being a composite of

Translation and Dilation.

])])])p([([([101010 >−<>−<>−<ΔΔΔΔ= 123 TRDTConeSCHEME

R

p p1

T

T

p01

p11

p0n

p1n

p011

p111

p0n1

p1n1

p01n

p11n

p0nn

p1nn

D

TABLE 4.24 - SIMPLE GENERATIVE SCHEMATA

4.9.2. COMPLEX GENERATIVE SCHEMATA

The complex generative schemata utilize composition methods such as sharing,

aggregation, and multiple-control, in addition to simultaneous and successive

compositions. These enable the description of intricate configurations and a hierarchy of

control that achieves complex behaviors. Table 4.25 shows a schema that consists of a

shape shared by several Translation regulators, which are, in turn, regulated by a higher-

level Rotation regulator.

3TDΔ

1TΔ 2RΔ

s

ARCHITECTURAL EXPLORATIONS CHAPTER 4 127

])s(},,,[{])(},[{ >−<>−< Δ∧ΔΔ 30
0

30 ndtptp aiab TTR

Rb

Ta Ta1 Tan

s0 s1 sn

s1 sn

s1 sn

TABLE 4.25 - COMPLEX SCHEMATA

4.9.3. HIERARCHICAL SCHEMATA

Hierarchical schemata, which describe spatial organizations in buildings, utilize

hierarchical regulators to define dependencies between hierarchical structures. These are

combined with other regulators (such as subdivision, size, and boundary) through

simultaneous composition in order to define topological and geometric relations within

hierarchies. There are no limits to the number of levels in the hierarchy. Table 4.26 shows

a two-tier hierarchical configuration, which is formed by subdividing the container shape

and generating constituents; these are in turn subdivided into their own constituents.

21_ tiertierSCHEMEHIERARCH ∧=

])[{}(1 30 >−<ΩΨ= containerZHtier

])1[{}(_2 40
1#

>−<ΩΨ= tierZHtoptier

])1[{}(_2 20
3#

>−<ΩΨ= tierZHbottomtier

H Z

H Z

H Z

s11 s13 s14

s31 s32

s1 s2 s2

s12

s

TABLE 4.26 - HIERARCHICAL SCHEMATA

a1TΔ

a0TΔ

a3TΔ

a2TΔ

bRΔ

ZHΩΨ

ZH ΩΨ

Z HΩΨ

ARCHITECTURAL EXPLORATIONS CHAPTER 4 128

4.9.4. GRID SCHEMATA

Grid schemata are of particular significance because grids are a major organization tool

in Architecture. Grid schemata consist of grid lines, which are alignment or bounding

regulators. Grid lines are in turn regulated by Translation or Mirror regulators, which

determine the number of grid lines, the distance between them, and the axes of symmetry

of the grid. Grids can be manipulated in several ways. Gross (1991) explains that grids

can be selected, composed, superimposed, and used to position design elements and

define relations among elements. Some of these manipulations correspond to Dürer

(source: Mitchell 1990) and Darcy Thomson’s strategies (Thomson 1971). In Table 4.27,

1GRID is defined by translating the alignment regulators 1AAΦ along 2ATΔ and 1BAΦ

along 2BTΔ and 2GRID is defined the same sequence and additionally by mirroring the

second set of alignment lines about 3BMΔ . Table 4.28 shows variations of these grids as

transformed by the ICE transformation syntax. When parameters of the grid are changed,

that does not alter its schema, however, when the regulator composition is changed, this

results in a new schema, and is indicated by a change in the grid’s name.

])(},,,{[

])(},,,{[
>−<

>−<

ΦΔ

∧ΦΔ=
n0

n0

nθtp

nθtp1GRID

1B2B

1A1A

AT

AT

A11 A1n

T1

A1 A21 A2n

T2

A2

]]))}(,,,[{}(,,,{[

])(},,,{[
>−<>−<

>−<

ΦΔΔ

∧ΦΔ=
n0n0

n0

nθtpnθtp

nθtp2GRID

1B2B3B

1A2A

ATM

AT

A11 A1n

T1

A1 A21 A2n

T2

A2

A01

An1

M

A11

TABLE 4.27 - GRID SCHEMATA

1BTΔ

1ATΔ

1AAΦ

2AAΦ

1BTΔ

1ATΔ

1AAΦ

1BAΦ

3BMΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 4 129

])([])([>−<>−< ΦΔ∧ΦΔ

=
n0n0

1GRID

1B2B1A2A ATAT

ROTATE_REGULATOR 2ATΔ

])([])([>−<>−< ΦΔ∧ΦΔ

=
n0n0

1GRID

1B2B1A2A ATAT

ROTATE_SCHEMA 1GRID

]]))([([

])([
>−<>−<

>−<

ΦΔΔ

∧ΦΔ=
n0n0

n02GRID

1B2B3B

1A2A

ATM

AT

ROTATE_REGULATOR 2ATΔ

])([

])([
>−<

>−<

ΦΞΔ

∧ΦΔ=
n0

n01GRID

1B2B

1A2A

AGT

AT

ADD_SIMULTANEOUS GΞ

])([

])([
>−<

>−<

Φ

∧ΦΔ=
n0

n04GRID

1B2B

1A
C

2A

AC

AT

REPLACE_REGULATOR (2BTΔ by 2BCΔ)

REPLACE_REGULATOR (1AAΦ by 1A
CAΦ)

)(_ 1GRIDSCHEMEROTATE
1GRID5GRID ∧=

TABLE 4.28 - VARIATIONS OF GRID SCHEMATA

2BTΔ
2ATΔ

1AAΦ
1BAΦ

2ATΔ

1ATΔ

1AAΦ

1BAΦ

3BMΔ 1BGTΞΔ

1ATΔ

1AAΦ

1BAΦ

1BTΔ

1ATΔ

1AAΦ

1BAΦ

1CTΔ
1DTΔ

1DAΦ 1CAΦ

1BCΔ

1ATΔ

1AAΦ

1BAΦ

2BTΔ

2ATΔ

1AAΦ

1BAΦ

ARCHITECTURAL EXPLORATIONS CHAPTER 4 130

4.9.5. TOPOLOGICAL SCHEMATA

Topological schemata utilize topological regulators to describe proximity relationships

between spatial entities and to determine adjacency networks of spatial configurations.

Table 4.29 shows set of spaces in a house that are related by means of adjacencies,

distances overlaps and boundaries.

]),({}[AB
0 DiningKitchenJΦ

]),(}{max[DC FamilyLiving100−=Φ −J

]),({}[CA
0 LivingDiningJΦ

]),(}{min[DA FamilyDining50=Φ +J

)](}{[CAE Dining,LivingFirstFlooro −ΠB

Kitchen
B

DiningA Living C

FamilyD

J

J

J-J+

1stFloorE

B

TABLE 4.29 - TOPOLOGICAL SCHEMATA

4.9.6. DYNAMIC SCHEMATA

Dynamic schemata utilize motion regulators in combination with multiple control

regulators. Some types of dynamic schemata allow the description of moving components

in cases where architecture and mechanical design are integrated, while other types

describe complex shapes that can only be defined by means of motion. The latter type

combines motion with subsequent generation of output shapes, such that the outputs are

generated while the regulator is moving. Table 4.30 illustrates two examples of dynamic

schemata, one is the bidirectional rotation of a moving part, and the other is an elliptical

configuration generated by means of a moving regulator.

EFirstFloor

ADining CLiving

DFamily

BKitchen

0JΠ
BΠ

−ΠJ

+ΠJ
0JΠ

ARCHITECTURAL EXPLORATIONS CHAPTER 4 131

])s([>⎯→←<Δ= 10
0MOTION R

S0

R

])s([])([>−<>⎯→⎯< Δ∧ΔΔ= 40
0

40ELLIPTICAL aab RRT

S0 s1 sn

 R

T

TABLE 4.30 - DYNAMIC SCHEMATA

4.9.7. SCHEMATA ENCAPSULATION

Schemata encapsulation creates a multilevel schema hierarchy, where a schema is

regulated like other objects. When schemata are regulated, it’s starting point/shape and

regulators are regulated. Schemata are always regulated discretely. Table 4.31 shows a

rectangular sub-schema mirrored about 3MΔ creating a super-schema.

aRΔ
bTΔ

RΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 4 132

]]))s([([>−<>−<ΔΔ= 1010RECTSCHEME 12 TT

]) , ,s([

])([
>><<

>><<

ΔΔΔ=

Δ=
10

10RECTSCHEMEESUPERSCHEM

21a

a

TTM

M

T

R

p p1

p01

p11

p0n

p1n

M

T

R

p p1

p01

p11

p0n

p1n

TABLE 4.31 - SCHEMATA ENCAPSULATION

1TΔ

3MΔ

1TΔ

s 2TΔ

s

2TΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 5 133

CHAPTER 5

PROPERTIES OF THE ICE

REPRESENTATION

The ICE notational string explicitly captures the structure of a configuration as regulators

as well as a concise generation method in the order and composition of these regulators

together with the applicable transformations in their parameters. Moreover, it also

captures, implicitly, additional shape information that can be derived from the notational

string by means of simple computations and manipulations of parameters.

In this chapter, I describe the properties and arithmetic of the ICE notation and focus on

this category of implicit information and the corresponding methods and strategies by

which these are be derived. Through these properties, the ICE representation is analyzed

in depth with a focus on the computational significance of every parameter, and its

relevance to geometry and to further algorithmic processing. These properties could be

easily proven due to their correspondence with the formulae of regulators, but proving

these, formally, is beyond the scope of this dissertation.

This chapter is laid out as follows. In Section 5.1, I describe geometric information that

can be further derived from ICE strings by means of simple computations of the

parameters or generative indices. In Section 5.2, I describe definitions and shape

analogies with respect to the regulator representation. Some of these are common

definitions adapted to regulators, while others are established specifically for regulators.

In Section 5.3, the focus is on the interrelationships among the various regulators, and I

deal with the issue of conflict in constraint-based regulators. In Section 5.4, I discuss the

property of multiple representations. In Section 5.5, I discuss the transformations from

one string to another. Lastly, in Section 5.6, I conclude with a discussion of the design

space represented in ICE.

ARCHITECTURAL EXPLORATIONS CHAPTER 5 134

5.1. SHAPE INFORMATION

The ICE notation contains implicit geometrical information about shapes that can be

derived through simple computation of parameters, or simple modification of the

generated subset. The derivation of shape information, which includes key elements,

subshapes and areas/volumes, enables the post processing of particular sub-parts or

properties the a shape.

Key points (such as midpoints) or key lines (such as edges), which are not explicitly

defined as symbols in the notational string, can be identified through specific treatment of

the generated subsets. In this way, such key elements can be directly accessed for further

manipulation. For instance, a midpoint or a specific edge can be aligned or a specific

edge can be made adjacent to another edge. The identification and direct access of

subshapes allows various parts of a shape to be treated differently for example different

parts of a circle can be extruded at different heights. Furthermore, the identification of

key elements such as vertices and edges, allow for different views of a certain shape such

as wire frame or the solid view. The areas/volumes of shapes, which can be determined

by multiplying parameters of the regulators, can be constrained for instance to establish a

minimum area requirement, or can be used in post processing computations for example

in determining amounts of materials or determining costs.

5.1.1. BOUNDARY ELEMENTS AND KEY-ELEMENTS

Key elements and subshapes can be identified by means of strategically manipulating

certain parameters and subset definitions of the ICE string. Table 5.1 shows the

derivation of endpoints and midpoints with respect to 1D shapes. Table 5.2 and Table 5.3

illustrate these with respect to 2D and 3D shapes, respectively.

A solid line is generated by continuous generation of a single regulator. Its endpoints,

which consist of a start point s and an endpoint e , are identified by generating discretely

the zeroth element and the nth element of that same regulator.

The midpoint, depicted by m , is identified by multiplying the factor ()kt ,,θ by ()2
1 .

Any intermediate point can be generated in this same way using another multiple. The

ARCHITECTURAL EXPLORATIONS CHAPTER 5 135

dotted line is generated by increasing the resolution of the regulator. This is achieved by

multiplying the factor by λ
1 and by multiplying the parameter n by λ .

Straight line

])(},,,{[>−<Δ= 10sndtpline 1T

Both endpoints

])(},,,{[>><<Δ= 10sndtpendpoints 1T

One endpoint

])s(},,,{[><Δ= n
1 ndtpe 1T

Dotted line

])p(},,,{[)(>−λ<−><

λ
Δ= n10nd1tpdotted 1T

Midpoint

])s(},,,{[><Δ= n
1 nd

2
1tpm 1T

TABLE 5.1 - REPRESENTATIONS OF KEY ELEMENTS IN LINEAR SHAPES

A solid rectangle is generated by continuous generation of two successive regulators. Its

vertices are identified by discretely generating the zeroth element and nth element of each

of these regulators. The endpoint resulting from the application of a regulator, such as

1TΔ , is denoted as 1e ; the endpoint resulting from two regulators is denoted as 21e , .

Edges are generated by designating one regulator as continuous and one as discrete.

Edges of each direction must be generated separately. The midpoint, depicted by 21m , , is

identified by multiplying the factors ()kt ,,θ of both regulators by ()2
1 , and the midlines,

which are midpoints of one regulator, extended continuously along the other regulator,

are denoted as 1m , and 2m . Parallel, intermediate lines are generated by one continuous

and one discrete regulator for which the resolution is increased.

s 1e
1TΔ

1TΔ
s

1TΔ
s

1TΔ
s

1m

ARCHITECTURAL EXPLORATIONS CHAPTER 5 136

Rectangle
]]))(},,,{[(},,,{[>−<>−<ΔΔ= 1010sndtpndtprectangle 12 TT

Vertices
]]))(},,,{[(},,,{[>><<>><<ΔΔ= 1010sndtpndtpvertices 12 TT

Specific endpoints

])s(},,,{[><Δ= n
1 ndtpe 1T

])s(},,,{[><Δ= n
2 ndtpe 2T

]]))s(},,,{[(},,,{[2,1
><><ΔΔ= nnndtpndtpe 12 TT

Edges
verticalsshorizontaledgesOutline ∧=

]]))(},,,[{}(,,,[{ >><<>−<ΔΔ= 1010sndtpndtpshorizontal 12 TT

]]))}(,,,[{}(,,,[{ >−<>><<ΔΔ= 1010sndtpndtpverticals 12 TT

Parallel lines

])

])(},,,{[

}(,,,{[

)(>−χ<−><

>−<Δ

χ
Δ=

n10

10sndtp

nd1tplines

1

2

T

T

Midlines

]]))s(},,,{[(},,,{[>−<><ΔΔ

=

n0n

1

nd
2
1tpndtp

mmidline

12 TT

Centroid

]]))(},,,{[}(,,,{[

,

><><ΔΔ= nn

21

snd
2
1tpnd

2
1tp

mcentroid

12 TT

TABLE 5.2 - REPRESENTATIONS OF KEY ELEMENTS IN PLANAR SHAPES

1TΔ

2TΔ

s

1TΔ

2TΔ

s 1e

2e 21e ,

1TΔ

2TΔ

s

1TΔ

2TΔ

s

s

2m

21m ,

1TΔ

1m

2TΔ

1TΔ
s

2DTΔΔ

2m

21m ,
1m

1TΔ 2RΔ

s

2m

1m

21m ,

ARCHITECTURAL EXPLORATIONS CHAPTER 5 137

Solid Cuboid

])])

])(},,,{[

(},,,{[

(},,,{[

>−<>−<

>−<Δ

Δ

Δ=

1010

10sndtp

ndtp

ndtpcuboid

1

2

3

T

T

T

Vertices

])])

])(},,,{[

(},,,{[

(},,,{[

>><<>><<

>><<Δ

Δ

Δ=

1010

10sndtp

ndtp

ndtpvertices

1

2

3

T

T

T

Endpoints

])(},,,{[><Δ= n
1 sndtpe 1T

])(},,,{[><Δ= n

2 sndtpe 2T

])(},,,{[><Δ= n
3 sndtpe 3T

]]))(},,,{[(},,,{[,

><><ΔΔ= nn
21 sndtpndtpe 12 TT

]]))(},,,{[(},,,{[,
><><ΔΔ= nn

21 sndtpndtpe 12 TT

]]))(},,,{[(},,,{[,
><><ΔΔ= nn

32 sndtpndtpe 23 TT

]])]))}(,,,{[}(,,,[{}(,,,[{
,,

><><><ΔΔΔ

=
nnn

321

sndtpndtpndtp

e

123 TTT

Edges

3edges2edges1edgesedgescuboid

sndtpndtpndtp

3edges

sndtpndtpndtp

2edges

sndtpndtpndtp

1edges

101010

101010

101010

∧∧=

ΔΔΔ

=

ΔΔΔ

=

ΔΔΔ

=

>−<>><<>><<

>><<>−<>><<

>><<>><<>−<

]])]))}(,,,[{}(,,,[{}(,,,[{

]])]))}(,,,[{}(,,,[{}(,,,[{

]])]))}(,,,[{}(,,,[{}(,,,[{

123

123

123

TTT

TTT

TTT

Surfaces

3surfaces2surfaces1surfacessurfacescuboid

sndtpndtpndtp

3surfaces

sndtpndtpndtp

2surfaces

sndtpndtpndtp

1surfaces

101010

101010

101010

∧∧=

ΔΔΔ

=

ΔΔΔ

=

ΔΔΔ

=

>−<>−<>><<

>−<>><<>−<

>><<>−<>−<

]])]))(},,,[{}(,,,[{}(,,,[{

]])]))(},,,[{}(,,,[{}(,,,[{

]])]))(},,,[{}(,,,[{}(,,,[{

123

123

123

TTT

TTT

TTT

1TΔ

2TΔ

3TΔ

2e

1e

321e ,,

3e

32e ,

31e ,

21e ,

1TΔ

2TΔ
3TΔ

1TΔ

2TΔ
3TΔ

1TΔ

2TΔ
3TΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 5 138

Parallel planes

])

])

])p(},,,{[

(},,,{[

(},,,{[

)(>−λ><<

>−<

>−<Δ

Δ
λ

Δ=

n10

10

10ndtp

ndtp

nd1tpplanes

1

2

3

T

T

T

Mid-surfaces

)])])(},,,{[(},,,{[(},,,{[>−<>−<><ΔΔΔ

=

n0n0n

11

snd
2
1tpndtpndtp

murfacesmid

123 TTT

)])])(},,,{[(},,,{[(},,,{[−<><>−<ΔΔΔ

=

0nn0

22

sndtpnd
2
1tpndtp

murfacesmid

123 TTT

)])])(},,,{[(},,,{[(},,,{[<>−<>−<ΔΔΔ

=

n0n0

33

sndtpndtpnd
2
1tp

murfacesmid

123 TTT

Mid-lines

])])])}(,,,{[}(,,,{[(},,,[{

,

>−<><><ΔΔΔ

=

n0nn

21

snd
2
1tpnd

2
1tpndtp

mmidline

123 TTT

]]))])(},,,{[(},,,[{(},,,[{

,

><>−<><ΔΔΔ

=

nn0n

31

snd
2
1tpndtpnd

2
1tp

mmidline

123 TTT

]]))])(},,,{[}(,,,{[}(,,,[{

,

><><>−<ΔΔΔ

=

nnn0

32

sndtpnd
2
1tpnd

2
1tp

mmidline

123 TTT

Centroid

)p(},,,{[(},,,{[(},,,{[

,,

><ΔΔΔ

=

n

321

nd
2
1tpnd

2
1tpnd

2
1tp

Centroid

123 TTT

TABLE 5.3 – REPRESENTATION OF KEY ELEMENTS IN VOLUMETRIC SHAPES

1TΔ

2TΔ
3TΔ

1TΔ

2TΔ
2TΔ

3TΔ

21m ,

32m ,

31m ,

3DTΔΔ

1TΔ

2TΔ

3TΔ

1TΔ

2RΔ

1TΔ

2TΔ
3TΔ

321m ,,

1TΔ

2TΔ
3TΔ

1m

2m

3m

ARCHITECTURAL EXPLORATIONS CHAPTER 5 139

A solid cuboid is generated by continuous generation of three successive regulators. Its

vertices are identified by discretely generating the zeroth element and nth element of each

of these regulators. The endpoints resulting from the application of one regulator are

denoted as 1e , the endpoints of two regulators are denoted as 21e , , and the endpoint of the

three regulators combined is denoted as 321e ,, .

Edges are generated by designating one regulator as continuous and two regulators as

discrete. Edges of each direction are generated separately. Similarly, surfaces (for each

direction) are generated by designating two regulators as continuous and one regulator as

discrete.

For 3D shapes, there is one centroid, three midlines and three mid-surfaces. The

midpoint, depicted by 321m ,, , is identified by multiplying the factors ()kt ,,θ of all three

regulators by ()2
1 . The midlines, which represent the midpoint of two regulators

extended continuously along the third regulator, are denoted as 32m , . The mid surfaces

represent the midpoints of one regulator extended continuously across the two other

regulators and denoted as 1m . Parallel, intermediate, planes are generated by two

continuous and one discrete regulator for which the resolution is increased.

In the ICE framework, shapes are not defined by the Cartesian coordinate system. Each

shape has its internal coordinate system defined by its generative regulators. These can be

polar coordinates or cylindrical, or any other curvilinear configuration determined by the

regulator’s form. Therefore, elements are identified through the parameters defining these

coordinate systems.

5.1.2. SUB-SHAPES

In the ICE framework, subshapes depend on the definition of the shape’s regulators.

Subshape definition requires an increase in the resolution of the regulators, which is

achieved by multiplying the factor by λ
1 and by multiplying the parameter n by λ .

Subshapes, such as the dashed line, the sub-rectangles and the sub-cubes are all defined

by means subset generation, where the range i-j (that define the subshape) must be

between 0 and n . Table 5.4 shows sample subshapes and their corresponding notation.

ARCHITECTURAL EXPLORATIONS CHAPTER 5 140

Subshape 1D

()nj0i

sndtplinesub ji

<∧>

Δ=− >−<])(},,,{[1T

Dashed line

])(},,,{[>−><−<Δ= nji0sndtpdotted 1T

Subshape 2D

() ()222111

jiji

nj0inj0i

sndtpndtp

rectanglesub

<∧>−<∧>

ΔΔ

=−
>−<>−<]]))(},,,{[(},,,{[12 TT

Sub-planes

])

])(},,,{[

(},,,{[

>−><−><−<

>−><−><−<Δ

Δ=

nlkji0

nlkji0sndtp

ndtpsubplanes

1

2

T

T

Subshape 3D

() () ()333222111

jiji

ji

nj0inj0inj0i

sndtp

ndtp

ndtp
volumesub

<∧><∧><∧>

Δ

Δ

Δ
=−

>−<>−<

>−<

,,

]]))

])(},,,{[

(},,,{[

(},,,{[

1

2

3

T

T

T

Sub-cubes

])

])

])(},,,{[

(},,,{[

(},,,{[

>−<

>−><−<

>−><−<Δ

Δ

Δ=

10

nji0

nji0sndtp

ndtp

ndtpsubcubes

1

2

3

T

T

T

TABLE 5.4 – DERIVING SUBSHAPES FROM THE ICE SHAPES

s 1TΔ
1i 1j

2i

2j
2TΔ

1TΔ

s

2DTΔΔ 2i

2j

1i 1j

2RΔ

s

2i

1i

1j 2j

1TΔ
s

1TΔ
s

1TΔ

2TΔ

s

1TΔ

2TΔ

3TΔ

1i 1j

2i 2j

3j

3i

1TΔ

2TΔ
3TΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 5 141

5.1.3. LENGTHS, AREA, AND VOLUMES

Length and area computations are important in architecture, at various levels, from

accommodating space requirements, to determining budgets. The ICE notation enables

the computation of lengths, areas, and volumes of shapes by means of multiplying the

generative parameters of its regulators. Tables 5.5, 5.6, and 5.7, show the derivation of

lengths, areas, and volumes, respectively. Each row focuses on one of the major

transformation regulators.

The basic strategy for computing the length of a shape defined by one regulator is to

multiply the factor ()kt ,,θ with the parameter n , with specific considerations for certain

regulators, such as Rotation and Dilation. The length of the curve is determined by

integration. The curve is subdivided into small units (by increasing the curve’s

resolution) and the sum of these units gives the total length of the curve. For composite

regulators, the factors of each of the composites are taken into consideration for

computing the length. For 2D shapes, each continuous regulator determines the length of

one side of the shape.

For determining the area of a shape, the length of the first regulator, 1length is multiplied

with that of the second regulator. In case of shapes defined by additional discrete

regulators, the area is computed by taking the resulting area of the first two regulators and

multiplying it with the number n of the discrete regulator.

For determining the volume, the area of the base shape produced by the first two

regulators, 21area , , is multiplied by the length produced by the third regulator.

ARCHITECTURAL EXPLORATIONS CHAPTER 5 142

Translation :])(},,,{[sndtp1TΔ ,

()11 ndlength ×=

Mirror :])(},,,{[snvtp1MΔ

()1h2length ×=

h is the perpendicular distance between s and MΔ

Rotation:])])(},,{[snp αΔ 0R

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×Π××

×θ
= r2

360
n

length 11

r is the perpendicular distance between s and 1RΔ

Scale:])(},,{[snkp0DΔ

()semagnitudelength −=

()zyx ssss =

()zzz
n
zzyyy

n
yyxxx

n
xx ppkksppkksppkkse +−+−+−=

Curve:])(},,,{[sntp αΔ eC

2
1ii

2
1ii

2
1ii

1n

0i

zzyyxxlength)()()(+++

−

=

−+−+−= ∑

COMPOSITION OF REGULATORS

Translation and scale:])s(},,,,{[nkdtpTDΔ

()semagnitudelength −=

()zyx ssss =

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+−+

+−+
+−+

=

zzzzzz

yyyyyy

xxxxxx

ppkdks
ppkdks
ppkdks

e

Screw Rotation:])s(},,,,{[ndtp θΔΔ RT

() ndr2
360

length 2
2

1 ×+⎟
⎠
⎞

⎜
⎝
⎛ ×Π××

θ
=

TABLE 5.5 – LENGTHS COMPUTATIONS

RTΔΔ

s

1DΔ

e

1TΔ
s

h

1MΔ
s

1RΔ
s

r

1CΔ

s
1CΔ

s

ARCHITECTURAL EXPLORATIONS CHAPTER 5 143

Translation
()22121 ndlengtharea ××=,

Mirror

()2121 h2lengtharea ××=,

Rotation

()()21
2

1
22

21 rlength2length
360

n
area ××+×Π×

×θ
=,

Scale

() ()n
2z

n
2y

n
2x11m121 kkkmemagnitudelengtharea ×××−×=,

()zyx1 mmmm =

(zzz
n
zzyyy

n
yyxxx

n
xx1m ppkksppkksppkkme +−+−+−=

Curve

2
1ii

2
1ii

2
1ii

1n

0i
121 zzyyxxlengtharea)()()(, +++

−

=

−+−+−×= ∑

Shape defined by discrete generation
nareaunitareatotal ×= __

TABLE 5.6 – AREA COMPUTATIONS

2TΔ
2MΔ

2RΔ

2DΔ

1me

1m

2CΔ

2bRΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 5 144

Translation
()3321321 ndareavolume ××= ,,,

Mirror

()321321 h2areavolume ××= ,,,

Rotation

()321
2

21
33

321 rarea2area
360

n
volume ××+×Π×

×θ
= ,,,,

Curve

2
1ii

2
1ii

2
1ii

1n

0i
21321 zzyyxxareavolume)()()(,,, +++

−

=

−+−+−×= ∑

Scale

() ()n
3z

n
3y

n
3x11m21321 kkkmemagnitudeareavolume ×××−×= ,,,

()zyx1 mmmm =

()zzz
n
zzyyy

n
yyxxx

n
xx1m ppkksppkksppkkme +−+−+−=

TABLE 5.7 – VOLUME COMPUTATIONS

3TΔ

3RΔ

3CΔ

3DΔ

1me

1m

3MΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 5 145

5.2. DEFINITIONS AND ANALOGIES

In this section, I present known geometric definitions and shape analogies with respect to

the regulator representation with an emphasis on the relevant parameters. What does it

mean for two ICE notational strings to be equivalent for instance? Are they any

conditions subsumed in the notation? And, are additional conditions necessary? Are their

subclasses of equivalence based on regulators? Such definitions are particularly important

for understanding, in depth, the regulator representation, for defining the structure of

regulator interrelationships, and not least, for defining the fundamentals of test, or for

further algorithmic computations.

5.2.1. EQUALITY AND EQUIVALENCES

Besides equality (Figure 5.1), the ICE notation supports several types of equivalences:

directional-equivalence, factor-equivalence, and continuity-equivalence for regulators

(Figure 5.2); as well as distance-equivalence, angular-equivalence, and proportional-

equivalence for shapes (Figure 5.3).

Regulator equality: Two regulators, aTΔ and bTΔ , are equal whenever (i) they are of the

same type, (ii) their parameters aaa ndt ,, and bbb ndt ,, are respectively equal, and

(iii) the continuity pattern of aTΔ is identical that of bTΔ . The parameter p denoting the

starting point of the regulator needs not to be equal. Additionally, in order to achieve

equality, curvilinear regulators need to have same formula.

Shape equality: Ashape and Bshape are equal, whenever (i) their defining regulators

AnA1 TT Δ−Δ and BnB1 TT Δ−Δ are respectively equal and (ii) the distances between

regulators and the starting point s of the shapes are respectively equal. Note that this

definition of shape equality does not address multiple representations.

FIGURE 5.1 - EQUAL REGULATORS, EQUAL SHAPES, AND UNEQUAL SHAPES

aTΔ s
bTΔ s

1TΔ
s 1TΔ

s

2DTΔΔ 2DTΔΔ

Bs

2RΔ

1TΔ

2RΔ

As

ARCHITECTURAL EXPLORATIONS CHAPTER 5 146

Directional-equivalence: Two regulators, aTΔ and bTΔ are directionally-equivalent if (i)

they are of the same type, and (ii) their directional parameter at and bt are equal. Since

the formula defines the direction for curvilinear regulators, their formula must be

identical.

Factor-equivalence: The regulators aTΔ and bTΔ are factor-equivalent whenever (i) they

are of the same type, and (ii) their distance factors d are equal. Factors include the angle

θ for Rotation and scaling k for Dilation regulators.

Continuity-equivalence: The regulators aTΔ and bTΔ are continuity-equivalent

whenever (i) they are of the same type and (ii) the continuity pattern of aTΔ is identical

to the pattern in bTΔ .

Inverted-equivalence: Two regulators, aTΔ and bTΔ , are inverse-equivalent to one

another, whenever they are of the same type, and the parameters at and bt are equal, but

the factors ad and bd are opposites (one is the negative of the other).

FIGURE 5.2 – DIRECTIONAL, FACTOR, CONTINUITY, AND INVERTED EQUIVALENCE

Shape equivalence: Ashape and Bshape are equivalent, whenever (i) their defining

regulators AnA1 TT Δ−Δ and BnB1 TT Δ−Δ are respectively equivalent. Shapes maintain

the same geometric integrity and preserve angles if their regulators are directionally-

equivalent; they maintain the same dimensions if their regulators are factor-equivalent;

and they maintain the same continuity patterns if their regulators are continuity-

equivalent. Shape schema describes shapes that are continuity equivalent.

aTΔ s

bTΔ s
aTΔ s

bTΔ s
aTΔ s

bTΔ s
aTΔ As

bTΔ

Bs

ARCHITECTURAL EXPLORATIONS CHAPTER 5 147

Distance-equivalence: Ashape and Bshape are distance-equivalent whenever the distances

between the starting points s of the shapes and their regulators are respectively equal.

Angular-equivalence: Ashape and Bshape are angular-equivalent whenever the angles

between the constituent regulators for each shape are equal.

Proportional-equivalence: Ashape and Bshape are proportionally-equivalent whenever

the regulator factors and the distance between the starting point s and the regulators are

proportionally related.

FIGURE 5.3 – DISTANCE, ANGULAR , AND PROPORTIONAL EQUIVALENCE

These definitions of shape and regulator equivalences do not address multiple

representations.

5.2.2. COINCIDENCE AND EXTENSION

Coincidence in ICE depends on regulator operations. A point q is coincident on Ashape ,

whenever (i) q can be generated by Ashape ’s defining regulators using its starting point

As , and (ii) q is within the range defined by >−< n0 of Ashape . This is achieved by

means of a multiple applied to the main factor of the regulator. If As can be obtained by

applying the inverse of the regulators’ matrices to q with the factor multiple λ between

0 and 1, then q is coincident on Ashape . If Ashape is discontinuous, the factor must be

verified with respect to the continuity patterns of its regulators.

Table 5.8 shows coincidence as it applies to linear, planar and volumetric shapes. For

linear shapes, coincidence describes points anywhere on the line. If the factor multiple 1λ

equals 0, then the point q is coincident to the start point and if the multiple equals 1, it’s

1TΔ
As

2DTΔΔ 1TΔ

Bs
2DTΔΔ2RΔ

As

2RΔ

As
1TΔ

As

2DTΔΔ

TΔ
As

2DTΔΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 5 148

coincident to the endpoint. For planar shapes, coincidence describes points that are either

inside the plane or on its boundary. If the both multiples 1λ and 2λ equal 0, then the

point q is coincident to the start point, if one multiple equals 0 or equals 1 then the point

q is on the boundary. For volumetric shapes, coincidence describes points inside the

shape, on its surfaces, edges or vertices. If the all three multiples 1λ , 2λ and 3λ equal 0,

then the point q is coincident to the start point, if one or two multiple equal zero or equal

one then the point q is on an edge of the volume, if one multiple equals 0 or equals 1,

then the point q is on the surface of the volume.

Coincidence on linear shapes

])(},,,{[>−<λΔ= 10sndtpline 1T

Coincidence on planar shapes

])

])(},,,{[

(},,,{[

>−<

>−<λΔ

λΔ=

10

10sndtp

ndtp

1

2

T

Trectangle

Coincidence on volumetric shapes

])

])

])(},,,{[

(},,,{[

(},,,{[

>−<

>−<

>−<λΔ

λΔ

λΔ=

10

10

10sndtp

ndtp

ndtpcuboid

1

2

3

T

T

T

TABLE 5.8 – LINEAR, PLANAR , AND VOLUMETRIC COINCIDENCE

Internal-coincidence: A point q is internal-coincident on Ashape (linear, planar, or

volumetric) whenever its entire factor multiples λ are greater than 0 and less than 1.

Boundary-coincidence: A point q is boundary-coincident on Ashape (linear, planar, or

volumetric) whenever its one of its factor multiples λ is equal to 0 or 1.

Primary-coincidence: A point q is primary-coincident on Ashape whenever it can be

generated by only one of its regulator. For a linear shape, coincidence is always primary.

For planar shapes, primary-coincidence is contingent on one of λ multiples to be equal

1TΔ

2TΔ
3TΔ

1TΔ

2TΔ

s

q
As 1TΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 5 149

to 0. For volumetric shapes, primary-coincidence is contingent on two of λ multiples to

be equal to 0.

Secondary-coincidence: A point q is secondary-coincident on Ashape whenever it can

be generated by only two regulators. For planar shapes, coincidence is secondary if none

of the λ multiples are equal to 0. For volumetric shapes, secondary-coincidence is

contingent on one λ multiples to be equal to 0.

Directional-coincidence: A regulator aTΔ is directionally coincident on Ashape

whenever (i) aTΔ ’s starting point p is on the boundary of Ashape and (ii) aTΔ generates

points that are inside ashape .

Extension: A point q is an extension of a Ashape , whenever q can be generated by

Ashape ’s defining regulators using its starting point As , and q extends beyond the range

defined by >−< n0 of Ashape . The factor multiple 1λ can be negative or can be greater

than 1. Extension can be primary or secondary as illustrated in Figure 5.4.

Primary-extension: Primary-extensions are defined by a single regulator. Linear shapes

can only describe primary extensions. For planar shapes, a primary extension is defined if

one of the λ multiples is equal to 0. For a volumetric shape to define a primary

extension, two of the λ multiples must equal 0.

Secondary-extension: Secondary extensions are defined by two regulators. Planar shapes

define secondary extension if none of the λ multiples are zero, and volumetric shapes

define secondary extensions if only one of the λ multiples equals zero.

FIGURE 5.4 – PRIMARY AND SECONDARY EXTENSIONS

q s 1TΔ
1TΔ

2TΔ

s

ARCHITECTURAL EXPLORATIONS CHAPTER 5 150

5.2.3. COINCIDENCE-BASED RELATIONS AND OPERATIONS

Complex relations and operations can be simply defined by means of coincidence with

respect to regulators. These include collinearity, coplanarity, connectedness. Computing

intersections and are illustrated in Figures 5.5 and 5.6.

Collinear: Two linear shapes, Ashape and Bshape , are collinear whenever (i) their

defining regulators are directionally-equivalent and (ii) the starting point of Bshape is

primary-coincident or a primary-extension with respect to Ashape . This definition is

applicable to curvilinear lines as well.

Coplanar: Two planar shapes, Ashape and Bshape , are coplanar whenever (i) their

defining regulators are respectively directionally-equivalent, and (ii) the starting point of

Bshape is primary (or secondary) coincident, or a primary (or secondary) extension with

respect to Ashape . This definition is also applicable to curvilinear surfaces.

Connectedness: Two shapes, Ashape and Bshape , are connected whenever the starting

point of Bshape (or is coincident to) Ashape . The shapes are primary-connected if the

starting point of Bshape is primary-coincident to Ashape

FIGURE 5.5 – COLLINEAR, COPLANAR, CONNECTED, AND PRIMARY CONNECTED

Point of intersection: A point of intersection of two linear shapes Ashape and Bshape , is

a point q which is coincident on both Ashape and Bshape . This means that it can be

generated by regulators of Ashape using the start-point As and by regulators of Bshape

using the starting point Bs .

As BsAs Bs

a1CΔ

As Bs
b1CΔ

As
Bs

ARCHITECTURAL EXPLORATIONS CHAPTER 5 151

FIGURE 5.6 – POINTS OF INTERSECTION

5.2.4. MAXIMAL AND SUBSHAPE

Maximal regulators: A regulator CTΔ is the maximal of the regulators ATΔ and BTΔ

whenever (i) all three regulators are directionally and continuity-equivalent and (ii) the

factor ()kθd ,, multiplied by the parameter n of CTΔ equals the sum of the factor ()kθd ,,

multiplied by the parameter n of ATΔ and those of BTΔ . A maximal regulator can

replace several regulators and produce a maximal shape. Figure 5.7 shows maximal

regulators and shapes.

Maximal shape: Cshape is the maximal of the shapes Ashape and Bshape , whenever (i)

at least one set of corresponding regulators are equivalent, (ii) the regulator of Cshape is

the maximal of the regulator of Ashape and Bshape , (iii) Ashape is primary-connected to

Bshape (along the equivalent regulator) (iv) Ashape and Bshape are subshapes of Cshape

and (v) the start-point of Cshape is coincident with the start-point of Ashape , and (vi) the

endpoint of Cshape is coincident with the endpoint of Bshape .

a

b

FIGURE 5.7 – MAXIMAL REGULATOR AND MAXIMAL SHAPE

as

BRΔ

bs

ATΔ

CTΔ

ATΔ BTΔ

Cs
As

Bs

ARCHITECTURAL EXPLORATIONS CHAPTER 5 152

Sub-regulator: BTΔ is a sub-regulator of ATΔ whenever (i) both are directionally and

continuity equivalent, (ii) the factor ()kθd ,, multiplied by the parameter n of BTΔ is less

than the factor ()kθd ,, multiplied by the parameter n of ATΔ . Figure 5.8 shows sub-

regulators and subshapes.

Subshape: Bshape is a sub-shape of Ashape whenever (i) their corresponding defining

regulators are sub-regulators and (ii) the starting point and the endpoints Bshape are

coincident or internally-coincident on Ashape .

FIGURE 5.8 – SUB-REGULATOR AND SUBSHAPE

ATΔ

BTΔ

Bs

AS

ARCHITECTURAL EXPLORATIONS CHAPTER 5 153

5.3. REGULATOR INTERRELATIONSHIPS

The categories of regulators (transformational, variational, operational, constraints,

hierarchical, topological) are significantly different in their technique for regulating

shapes. These regulators can be further categorized into three sets: the primary

generative set, the secondary constructive set, and the ternary relational set. The primary

generative regulators, consisting of transformation regulators, define the geometry. The

secondary set, consisting of variational and operational regulators affect the geometry and

are used in conjunction with the primary set to create complex forms. The ternary set,

consisting of constraint, hierarchical, and topological regulators, define relationships and

establish order among shapes. These are applied to shapes defined by the primary and

secondary sets. Figure 5.9 shows these sets of regulators and their interrelationships.

Δ
Transformations

 Ω
Operations

Π
Topological

 Ξ
Variations

Ψ
Hierarchies

Φ
Constraints

Generative: define geometry

Affect Geometry

Define relationships and establish orders

Primary
regulators

Secondary
regulators

Ternary
regulators

FIGURE 5.9 - REGULATOR INTERRELATIONSHIPS

Since the secondary and ternary sets of regulators are applied to shapes defined by

primary regulators, they are in fact controlling parameters of generative regulators.

Understanding regulator interrelationship in detail is significant for understanding the

consequences of applying regulators; it is critical for the identifying conflicts within

configurations and for system implementation. In this section, I describe how secondary

and ternary regulators control primary regulators.

ARCHITECTURAL EXPLORATIONS CHAPTER 5 154

5.3.1. VARIATIONAL REGULATORS

Variational regulators are composed simultaneously with transformation regulators and

thus control their transformational factors.

The Exception regulator, EΞ , affects an output shape by making it non-responsive to the

transformation regulator’s influence, therefore, creating an exception to the set of outputs.

The Rhythm/Gradation regulator, GΞ , creates a variation by multiplying a coefficient,

c , to an attribute of the output shape/points, or to the factor ()kθd ,, of its composed

generative regulator as is applied to the output shapes/points.

The Differential regulator, FΞ , creates a variation by multiplying a coefficient c to the

factor ()kθd ,, of its composed generative regulator as it is applied to various input

shapes.

5.3.2. CONSTRAINT REGULATORS

When constraint regulators are applied to a shape, they are actually applied to the

parameters of the generative regulators of this shape. Constraint regulators restrict

parameters to a maximum or minimum value, or to a value defined by an incremental

module. Constraint regulators are applicable to one or many shapes at a time.

The attribute Equivalence regulator, QΦ , controls shape attributes. These include the

factor ()kθd ,, , the parameter n and the direction vector t of any of the generative

regulators. This regulator is also applicable to non-geometric attributes of shapes.

The Alignment regulator has several variations: 0AΦ , 1AΦ , and 2AΦ . 0AΦ restricts the

starting point s (or any key-point k) of the shape to be coincident to an alignment point

p . 1AΦ restricts the point k and the directional vector t (of one the defining regulators

of the shape). k becomes coincident to the alignment line (defined by p and t) and t

becomes directionally-equivalent to the vector t of the alignment regulator. 2AΦ

restricts the point k and the vector t (of two the defining regulators). k must be

coincident to the alignment plane (defined by p , t , and v) and t must be coplanar to

ARCHITECTURAL EXPLORATIONS CHAPTER 5 155

the plane defined by the vectors t and v of the alignment regulator. cAΦ restricts the

point k and the vector t of two the defining regulators to align with the tangent and

radius of the circle. The desired key-point and regulators needs to be specified, otherwise,

the alignment will apply to the starting point, s , and the first regulator 1TΦ .

•])shape(}{[A 1
0 mpAΦ

•]),shape.(},{[3TA ΔΦ stp1

•]),,shape(},,{[21 TTA ΔΔΦ svtp2

•]),,shape(},,{[21 TTA ΔΔΦ srtpc

The Size regulator, VΦ , restricts the lengths of the shape by means of restricting the

factor ()kθd ,, and the parameter n of the constituent regulator. 1VΦ applies to one

regulator, thus restricting the length, 2VΦ applies to two regulators, thus restricting the

area, and 3VΦ applies to three regulators, thus restricting the volume.

•
])shape(},,{[2

1 TV ΔΦ modmaxmin

•]),shape(},,{[31
2 TTV ΔΔΦ modmaxmin

•])shape(},,{[3 modmaxminVΦ

The Angle regulator restricts the angle between two directional vectors t of constituent

regulators. These two regulators can be pertaining to a single shape, or these can be

pertaining to two distinct shapes.

•]),shape(},,{[31 TTL ΔΔΦ modmaxmin

•
])shape,shape(},,{[31 TTL ΔΔΦ modmaxmin

The Proportion regulator restricts the aspect ratio of a shape determined by the factor

()kθd ,, and the parameter n of two (or three) of its defining regulators.

]),shape(},,{[31
1 TTP ΔΔΦ dtp

ARCHITECTURAL EXPLORATIONS CHAPTER 5 156

5.3.3. TOPOLOGICAL REGULATORS

Topological regulators are mostly binary regulators that establish a relationship between

two shapes, Ashape and Bshape , by controlling their key points.

The Distance regulator, +ΠJ , restricts a key-point from Ashape and a key-point from

Bshape to be within a specific distance. The Adjacency regulator, JΠ , restricts a key-

point or key element of Ashape and a key-point of Bshape to be coincident. The Overlap

regulator, −ΠJ , restricts at least one key-point of Bshape to be internally-coincident

Ashape .

•])shape,shape({}[B,A se 21
+ΠJ

•])shape,shape({}[B,A se 21
0JΠ

•])shape,shape({}[BA s−ΠJ

The Boundary regulator restricts the start-point, endpoint and all key-points of bounded

shape to be internally-coincident the boundary shape.

•)]shape,shape(}{[B 1boundaryo2Φ

The Connected regulator, CΠ , restricts a key-point of Ashape to be coincident with a

key-point of Bshape .

•])shape,shape({}[B2,1A seCΠ

5.3.4. HIERARCHICAL REGULATORS

Hierarchical regulators establish order between shapes.

The Containment regulator, HΨ , is independent of geometry therefore does not affect

the parameters of the generative regulators.

The Subshape regulator, SΨ , ensures that the following conditions are always satisfied

(i) the defining regulators of the shapes are directionally-equivalent by controlling their

directional parameter t (or formula), (ii) the start point of the Subshape is internally

ARCHITECTURAL EXPLORATIONS CHAPTER 5 157

coincident or coincident with respect to the Super-shape, and (iii) the factor ()kθd ,,

multiplied by the parameter n of the each regulator in the Subshape is always less than

the corresponding ones of the Super-shape:

•]]))s(},,,{[(},,,{[superShape >−<>−<ΔΔ= n0n0ndtpndtp 12 TR

•]]))s(},,,{[(},,,{[subShape >−<>−<ΔΔ= n0n0ndtpndtp 12 TR

5.3.5. OPERATION REGULATORS

The operation regulators apply a discrete operation to the input set, and create a resultant

set of output shapes.

The Subdivision regulator, ZΩ , divides a shape into sequentially connected subshapes

(Table 5.9a). In order to subdivide a shape, it is necessary to subdivide at least one of its

defining regulators. The original regulator is a maximal with respect to its sub-regulators;

similarly the original shape is the maximal with respect to its subshapes.

The regulator AΔR of the original Ashape will be replaced by subn directionally

equivalent sub-regulators BΔR , CΔR , etc. The n parameter of each sub-regulator

remains the same as the n parameter of AΔR . The factor ()kθd ,, of AΔR is scaled

according to the number of subdivisions. For each subshape, a new start point will be

created at the position determined by the scale factor, and the remaining regulators

(which are not subdivided) will be duplicated.

Another form of subdivision by means of the Cutting regulator, CΩ , is achieved by a

cutting line or cutting surface, which is not directionally-equivalent to the regulators of

the shape (Table 5.9b). The points of intersection between the shape and the plane are

identified and a new shape is created. Its starting point is determined by the points of

intersection with the plane, and its regulators are directionally-equivalent to original

regulator. A Differential variation regulator is applied to each of the subdivided

regulators to create the slanted effects in the subdivided shapes.

The Merging regulator is the inverse of the subdivision regulator (Table 5.9c). It replaces

a primary-connected shape with their maximal representation. To merge a set of

ARCHITECTURAL EXPLORATIONS CHAPTER 5 158

connected shapes, it is necessary to merge at least one corresponding set of their defining

regulators. These must be directionally-equivalent.

The original regulators AΔT and BΔT are replaced by their directionally-equivalent

maximal regulator CTΔ . The n parameter of CTΔ is the sum of the parameter n of the

original regulators. The factor ()kθd ,, of the maximal CTΔ is the average of the factor

of the original regulators, AΔT and BΔT . Start-points and regulators of the original

shapes will be deleted. The starting point of the first shape is the starting point of the

maximal shape, and the endpoint of the last shape is the ending point of the maximal

shape.

a - Subdivision
{ } { } { }nnn CBA RRR Δ=Δ=Δ
{ } { } { }θθθ CBA RRR Δ+Δ=Δ

b- Subdivision by plane

c - Merging

{ } { } { }nnn BAC TTT Δ+Δ=Δ

{ } { } { }
2

ddd BA
C

TTT Δ+Δ
=Δ

TABLE 5.9 – SUBDIVISION AND MERGING REGULATORS

The Boolean operation regulators control the generated subsets of input shapes to create

a new output shape. The Boolean regulator determines the resultant shapes by (i)

identifying boundary vertices of intersected shape, (ii) increasing the resolution of the

inputs, and (iii) generating the output based on subsets of the original input shape.

The vertices bounding the intersected shape are identified by computing the points of

As

AΔR

Bs

Cs
CΔR

BΔR

Bs

B1ΔT

B2 FΔTΞ Cs
C2 FΔTΞ

C1ΔT

 As p

A1ΔT

A2ΔT A2ΔT

As

A1ΔT

Cs
C1ΔT

C2ΔT
As Bs

A1ΔT

A2ΔT B2ΔT

B1ΔT

ARCHITECTURAL EXPLORATIONS CHAPTER 5 159

intersection between the input shapes and computing the key-points of Ashape that are

coincident in Bshape and vice versa. The output shape is generated by increasing the

resolution of the input shapes, and as the output shape is generated, each intermediate

point is tested to determine its coincidence with Ashape and Bshape .

• Union: All points internally-coincident to shape A, or internally-coincident to

shape B, are generated.

• Intersection: All points internally-coincident to shape A, and internally-

coincident to shape B, are generated.

• Difference: All points internally-coincident to shape A, and not coincident to

shape B, are generated.

The linear boundary of the intersected shape is constructed by taking each boundary

vertex as a starting point of the intersected shape and applying a regulator from the input

shape. The applicable regulators are determined by testing the boundary vertex with all

the regulators. If the regulator test generates line with is directionally-coincident to both

shapes, the regulator is applied to create a valid boundary line. If there are directionally-

equivalent (or inverted-coincident) regulators, only one will be considered per bounding

point. The process is illustrated in Figure 5.10.

FIGURE 5.10 - GENERATION OF THE LINEAR BOUNDARY OF THE INTERSECTION

5.3.6. CONFLICT IDENTIFICATION

Since the ICE notation supports constraints among its many regulator types, there is

potential for conflicting situations. This is particularly the case in an implementation

environment intended for design exploration where conflicts can cause annoying

interruptions. From the perspective of the ICE framework, conflicts can occur when

ARCHITECTURAL EXPLORATIONS CHAPTER 5 160

multiple regulators control a common shape (or point), each restricting its attributes in a

different and opposing way.

ICE notational strings contain explicit information about constraints and constrained

shapes, and therefore, these strings contain implicit information about possible conflicts

for every constrained shape. In this section, I present a strategy for identifying conflicts,

and the parameters involved, from an ICE notational string.

Constraints on shapes can be categorized as positional, directional or dimensional or a

combination. Positional constraints control the starting point s of a shape or the starting

point p of a regulator. Directional constraints control the vector t of one (or many) of

the constituent regulators. Dimensional constraints affect the factor ()kθd ,, of one the

constituent regulators.

The following steps constitute the strategy for identifying conflicts as well as the shapes

and parameters involved, by analyzing the notational string:

• Identify the constraining regulators (These include topological and hierarchical

regulators).

• Identify the constraint type, and the parameters that it typically controls.

• Identify constrained shapes, their constrained key-points and parameters.

• Identify other regulators controlling the constrained shape.

• Identify possible transformations that may change the constrained key-points and

parameters (This includes regulator transformation or user manipulations)

Table 5.10 shows examples of simple conflicts that can be identified using this strategy.

The first example shows a Rotation regulator controlling a set of bounded shapes.

Potential conflicts can occur if the shapes are moved beyond their boundary. The conflict

causing parameters are identified as follows.

• Positional constraint regulator: BΦ

• Constrained shapes: shapeshape −0

• Constrained key-points: 2,12100 ,,,shape eees

ARCHITECTURAL EXPLORATIONS CHAPTER 5 161

• Other control regulators: RΔ , 1TΔ and 2TΔ

• Possible transformation parameters that can cause conflicts: { }pRΔ , { }θRΔ ,

{ }nd ,1TΔ , { }nd ,2TΔ

Rotation and boundary

]]))s(},,,{[(},,,{[

shape

0

0
>−<>−<ΔΔ

=
n0n0ndtpndtp 12 TT

]]))s(},,,{[(},,,{[

shape

Boundary

Boundary

>−<>−<ΔΔ

=
n0n0ndtpndtp 12 TT

]),(}{[

])(},,,{[

0

0
0

nboundary

n

shapeshapeshapeo

shapentp

−Φ

Δ ><−><

B

R θ

Angle and alignment

]]))s(},,,{[(},,,{[

shape

0

0
>−<>−<ΔΔ

=
n0n0ndtpndtp 12 TT

])(},{[

]),(}{[

10

0
210

TA

TTL

ΔΦ

ΔΔΦ ><−><

shapetp

shape nθ

Proportion and Dimension

]]))s(},,,{[(},,,{[shape 00
>−<>−<ΔΔ= n0n0ndtpndtp 12 TT

])(}{min[

])(}{[

10
1

n0
0

shaped

shapet

TV

P

Δ=Φ

Φ ><−><

TABLE 5.10 – EXAMPLES OF CONFLICTING SITUATIONS

The second example shows a shape with a fixed angle controlled by an Alignment

regulator. Potential conflicts can occur if the angle is changed beyond the alignment, or if

the alignment is rotated beyond the allowable angle range. The conflict causing

parameters are identified as follows.

• Directional constraint: LΦ

• Positional constraint: AΦ

RΔ

BΦ

AΦ

LΦ

VΦ

PΦ

ARCHITECTURAL EXPLORATIONS CHAPTER 5 162

• Constrained objects: 0shape

• Constrained parameters:

By angle:
1TΔt0shape ,

2TΔt0shape

By alignment:
1TΔt0shape ,

1TΔp0shape

• Possible transformation causing conflicts: { }pAΦ , { }tAΦ , { }θΦL

The third example shows a shape with a minimum dimension on one side, controlled by a

Proportion regulator. Potential conflicts can occur if the proportion line is rotated, thus

causing a change in the length beyond the allowable range. The conflict causing

parameters are identified as follows.

• Dimensional constraint: { }θPΦ and { }θ1VΦ

• Constrained objects: 0shape

• Constrained parameters:

 By proportion:
11 TT ΔΔ nd ,shape0 ,

22 TT ΔΔ nd ,shape0

 By length:
11 TT ΔΔ nd ,shape0

• Possible transformation causing conflicts: { }tPΦ , { }minVΦ

This strategy can be developed further into an algorithm that not only identifies potential

conflicts, but deactivates the responsible regulators when the conflicts occur.

ARCHITECTURAL EXPLORATIONS CHAPTER 5 163

5.4. MULTIPLE REPRESENTATION

Although the ICE notation is not ambiguous, it is also not unique: the same configuration

can be represented by different notation strings. For a given configuration, these strings

would capture different processes of generation, and a different set of applicable

transformations. This property of multiple representations allows for different options for

generating a shape, as well, different options for manipulating it. Therefore, the ICE

framework supports different exploration paths leading to the same configuration, thus

allowing users to select variable strategies for their exploration.

The simplest example is the solid square, which can be defined using ICE in several

ways. Table 5.11 illustrates the possible generations of the square using continuous

generation only. The square can be defined by two continuous Translations; it can be

defined by two continuous Mirrors; or alternatively, it can be defined by one Translation

and one Mirror, both continuous, in any order.

The number of possible generations is greatly augmented when the continuous and

discrete generation methods are combined, as shown is Table 5.12. Notice that this latter

form of representation is recursive. A square can be defined by two continuous

Translations then a discrete Mirror; it can be defined by two continuous Translations then

two discrete Mirrors; it can be defined by two continuous Translations then four discrete

Mirrors. Notice how recursive this representation can be. Alternatively, the square can be

defined by two continuous Translations then a discrete Rotation; it can be defined by

Translation then a Translation composed with a Dilation (both continuous) then a discrete

Mirror or the last regulator can be a discrete Rotation.

Multiple representations result in multiple schema for the same configuration, one

scheme for every exploration path. Therefore, each representation for the square is a

separate schema.

Equivalent configurations having a different set of defining regulators, allow for different

applicable transformations. Each configuration will have shared as well as distinct

regulators. The distinct regulators will provide a distinct set of manipulations.

Furthermore, the shared regulators provide manipulations that produce different results.

Table 5.13 and 5.14 illustrate the difference in manipulation effects for distinct

ARCHITECTURAL EXPLORATIONS CHAPTER 5 164

representations of the square. Table 5.13 shows continuous representations, while Table

5.14 shows continuous-discrete examples. In Table 5.13, manipulating 1TΔ results in a

parallelogram for one representation, and it results in a trapezoid for the other. In Table

5.14, manipulating the shared Regulator 2TΔ , results in a quadrilateral symmetric

configuration for one representation, and a pinwheel for the other. In both tables, the

third row shows manipulations of distinct (not shared) regulators.

])

])(},,,{[

(},,,{[

>−<

>−<Δ

Δ=

10

10sndtp

ndtpsquare

 1

2

T

T

])

])(},,,{[

(},,{[

>−<

>−<Δ

Δ=

10

10sndtp

ntpsquare

 1

2

T

M

])

])(},,{[

(},,{[

>−<

>−<Δ

Δ=

10

10sntp

ntpsquare

 1

2

M

M

])

])(},,{[

(},,,{[

>−<

>−<Δ

Δ=

10

10sntp

ndtpsquare

 1

2

M

T

TABLE 5.11 - REPRESENTATIONS OF THE SQUARE (CONTINUOUS GENERATION)

1TΔ
s

2MΔ

1TΔ

2TΔ

s

1MΔ s

2MΔ

1MΔ s

1TΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 5 165

]])

]))(},,,{[(

},,,{[(

},,{[

>><<>−<

>−<Δ

Δ

Δ

1010

10sndtp

ndtp

ntp

1

2a

2b

T

T

M

]])])

]))(},,,{[(

},,,{[(

},,{[(

},,{[

>><<>><<>−<

>−<Δ

Δ

Δ

Δ

101010

10sndtp

ndtp

ntp

ntp

1

2s

2b

2c

T

T

M

M

]])])])])

]))(},,,{[(

},,,{[(

},,{[(

},,{[(

},,{[(

},,{[

>><<>><<>><<>><<>−<

>−<Δ

Δ

Δ

Δ

Δ

Δ

1010101010

10sndtp

ndtp

ntp

ntp

ntp

ntp

1

2a

2b

2c

2d

2e

T

T

M

M

M

M

]])

]))(},,,{[(

},,,{[(

},,,{[

>><<>−<

>−<Δ

Δ

Δ

1010

10sndtp

ndtp

n90tp

1

2a

2b

T

T

R o

]])

]))(},,,{[(

},,,,{[(

},,{[

>><<>−<

>−<Δ

ΔΔ

Δ

1010

10sndtp

nkdtp

ntp

1

2a

2b

T

DT

M

]])

]))(},,,{[(

},,,,{[(

},,,{[

>><<>−<

>−<Δ

ΔΔ

Δ

1010

10sndtp

nkdtp

n180tp

1

2a

2b

T

DT

R o

TABLE 5.12 - REPRESENTATIONS OF THE SQUARE (CONTINUOUS AND DISCRETE GENERATION)

2bMΔ

2aTΔ

s 1TΔ

2bMΔ

2aTΔ

s 1TΔ

2cMΔ

2dMΔ

2aTΔ
s 1TΔ

2eMΔ
2bMΔ

2cMΔ

2aTΔ

s 1TΔ

2bRΔ

1TΔ

2aTDΔ

s
2bMΔ

2bRΔ

1TΔ

2aTDΔ

s

ARCHITECTURAL EXPLORATIONS CHAPTER 5 166

])

])(},,,{[

(},,,{[

>−<

>−<Δ

Δ=

10

10sndtp

ndtpsquare

 1

2

T

T

])

])(},,,{[

(},,{[

>−<

>−<Δ

Δ=

10

10sndtp

ntpsquare

 1

2

T

M

ROTATE_REGULATOR 1TΔ

)}].,([{)}],([{ 2501t01t =Δ⇒=Δ 11 TT

ROTATE_REGULATOR 1TΔ

)}].,([{)}],([{ 2501t01t =Δ⇒=Δ 11 TT

ROTATE_REGULATOR 2TΔ

)}],.([{)}],([{ 1250t10t −=Δ⇒−=Δ 22 TT

ROTATE_REGULATOR 2MΔ

)}],([{)}],([{ 11t01t −=Δ⇒=Δ 22 MM

TABLE 5.13 - TRANSFORMATIONS FOR DISTINCT CONTINUOUS REPRESENTATIONS OF THE SQUARE

1TΔ

2TΔ

s

1TΔ

2TΔ

s

1TΔ

2TΔ

s 1TΔ
s

2MΔ

1TΔ
s

2MΔ

1TΔ
s

2MΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 5 167

]])])

]))(},,,{[(

},,,{[(

},,{[(

},,{[

>><<>><<>−<

>−<Δ

Δ

Δ

Δ

101010

10sndtp

ndtp

ntp

ntp

1

2s

2b

2c

T

T

M

M

]])

]))(},,,{[(

},,,{[(

},,,{[

>><<>−<

>−<Δ

Δ

Δ

1010

10sndtp

ndtp

n90tp

1

2a

2b

T

T

R o

ROTATE_REGULATOR 2TΔ

)}],.([{)}],([{ 130t10t −=Δ⇒−=Δ 12 TT

ROTATE_REGULATOR 2TΔ

)}],.([{)}],([{ 130t10t −=Δ⇒−=Δ 12 TT

ROTATE_REGULATOR

)}],([{)}],([{ 11t10t =Δ⇒=Δ 2b2b MM
MODIFY_FACTOR

}][{}][{ 12090 =θΔ⇒=θΔ 2b2b RR

TABLE 5.14 - TRANSFORMATION FOR DISTINCT DISCRETE REPRESENTATIONS OF THE SQUARE

Multiple representations are caused by equivalent relationships between the generative

regulators as illustrated in Tables 5.15 and 5.16. The symbol ≈ is used for

representational equivalence.

2bMΔ

2aTΔ

s 1TΔ

2cMΔ

2bMΔ

2aTΔ

s 1TΔ

2cMΔ

2bMΔ

2aTΔ

s 1TΔ

2cMΔ 2aTΔ

s

2bRΔ

2aTΔ

s 1TΔ

2bRΔ

2aTΔ

s 1TΔ

2bRΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 5 168

Two Translations ≈

]))s(},,{[(},,{[><>><<ΔΔ 110
1aabb dtpdtp #ab TT

One Translation

])(},,{[>><<
++Δ 10

baba sdtp1T

Two Rotations (same center) ≈

]))s(},,{[(},,{[#
><>><<θΔθΔ 110

1ab tptp ab RR

One Rotation

])(},,{[10 >−<
+Δ stp baθ1R

Two parallel Mirrors

]))s(},{[(},{[#
><>><<ΔΔ 110

1ab tptp ab MM

One Translation

])(},,{[10 >−<Δ sdtp1T

Two intersecting Mirrors

]))s(},{[(},{[#
><>><<ΔΔ 110

1aabb tptp ab MM

One Rotation

])(},{[10 >−<Δ sp θ1R

TABLE 5.15 - EXAMPLES OF EQUIVALENCES IN TRANSFORMATION REGULATORS IN 2D

≈
aΔT bΔT 1ΔT

≈ 1ΔR
aΔR

bΔR

≈ aΔM bΔM
1ΔT

≈
aΔM 1ΔM 1ΔR

ARCHITECTURAL EXPLORATIONS CHAPTER 5 169

Combined generation

])s(},,,[{ >−><−><−<Δ 543210ndtp1T

Two successive regulators (of the same type)

]]))s(},,,{[(},,,{[>−<>−<ΔΔ 1010ndtpndtp 1a1b TT

Two successive regulators

])

])s(},,,{[

}(,,,{[

>><<

>−<ΔΔ

θΔ

30

10hapendtp

ntp

DR

R

Rhythmic variation

])s(},,,,,,{[>><<θΞΔ 70hapecantp f1GR

Maximal

])

])s(},,,{[

(},,,{[

>−<

>−<Δ

Δ

10

10ndtp

ndtp

1

2

T

T

Two subdivisions

]]))s(},,,[{}(,,,[{

]]))s(},,,[{}(,,,[{
>−<>−<

>−<>−<

ΔΔ

∧ΔΔ
1010

1010

ndtpndtp

ndtpndtp

B1B2

A1A2

TT

TT

Boolean union

])s,s({}[BA hapehape ΩU

Boolean difference

])s,s({}[DC hapehape ΩD

TABLE 5.16- EXAMPLES OF EQUIVALENCES IN VARIATION, AND OPERATION REGULATORS

1ΔT

s

aΔT
bΔT

s
≈

≈ΔR
DΔRΔ 1GΔR Ξ

s

1ΔT

2ΔT
As

A1ΔT

A2ΔT

Bs

B1ΔT

B2ΔT

≈

UΩ DΩ

≈

ARCHITECTURAL EXPLORATIONS CHAPTER 5 170

Two consecutive Translations, aΔT and bΔT are equivalent to a single Translation 1ΔT ,

where the factors and the direction vectors are related as follows: 1ba ddd =+ and

1ba ttt =+ . Two consecutive Rotations about the same center, aΔR and bΔR , are

equivalent to a single Rotation 1ΔR , where the factors are related as follows:

1ba θ=θ+θ . Two parallel Mirrors, aΔM and bΔM are equivalent to a single translation

1ΔT , where the direction vector }{t1TΔ is perpendicular to }{t1MΔ and the factor is

equal to twice the distance between the two mirror lines:)(2}{ ba ppd −×=Δ 1T . Two

intersecting Mirrors, aΔM and bΔM are equivalent to a single Rotation 1ΔR , where the

rotation point }{p1RΔ is the intersection of the mirror lines }{t1aMΔ and }{t1bMΔ , and

the rotation degree }{θ1RΔ equals twice the angle between }{t1aMΔ and }{t1bMΔ .

The capacity of ICE to determine equivalent representations (same shape different

generation method) depends on the regulators chosen as well as on the generation method

chosen. It also varies if the representation is recursive.

If maximal representations are used to eliminate the recursive factor, and if isometric

regulators are considered exclusively, it would be possible to algorithmically determine

equivalent representations for an ICE string. Two consecutive isometric transformation

regulators can be replaced by a single equivalent regulator or vice versa. However, once

other regulators (such as affine transformations, variations or operations) are used, and

once generation methods are combined, additional representational options are

introduced. Consequently, determining equivalences becomes increasingly complex, and

it would be extremely difficult to determine, algorithmically, possible equivalences for a

given configuration.

ARCHITECTURAL EXPLORATIONS CHAPTER 5 171

5.5. DETERMINING TRANSFORMATION STEPS

The ICE notation provides a flexible representation that supports transformation from one

configuration into another. Determining the precise transformation sequence is not

always a simple task, especially when the configurations are very different. However, it is

critical to identify a strategy for achieving a goal shape or configuration from an initial

one. In his section, I introduce a computational algorithm that automates the derivation

“sequential steps” for such transformations, provided both configurations are represented

using the ICE notation.

Given an initial and a goal string, a precise sequence of individual transformations can be

determined by using simple string operations such as juxtaposition, insertion, deletion,

and replacement. The objective of the Transformation Steps (TS) algorithm is to make

the initial string identical to the goal string, with the minimum number of steps. These

steps are a list of transformations based on the ICE transformational syntax (Table 4.15).

The algorithm cycles through the strings several times, each time addressing a different

element, identifying a particular transformation step and updating the working string

(which is the intermediate string going from the initial to the goal). Earlier iterations or

phases consider the whole string, while focusing on regulator types, and later phases

consider individual regulators, and focus on particular attributes. If the strings are broken

down into levels of encapsulations, each of these levels is compared, using the same

algorithm, recursively.

The algorithm’s major iterations are as follows

• Match the strings

• Adjust the regulator sequence (# of regulators changes)

• Adjust the regulator sequence (same # of regulators)

• Adjust the regulator composition

• Update indices

• Adjust the regulator parameters

• Adjust the generation method

• Adjust the regulated element (points)

ARCHITECTURAL EXPLORATIONS CHAPTER 5 172

Table 5.18 describes each step of the algorithm in detail with an example of transforming

a 2D pattern into a 3D shape, using the initial and goal configuration strings in Table

5.17.

Initial String
))))((((psmm6p 1abc CMRT ΔΔΔΔ=

])])])])

])(},,[{

(}),,,(,[{

(},º,,[{

(},),,,(,[{

(},),,,(,[{

><−><><−><><−><>><<

>−<θΔ

==Δ

==θΔ

=Δ

=Δ

=

n0n05010

10
psnp

1n010tp

5n60tp

nd001tp

nd031tp

mm6p

1

a
1

b
1

c
1

d
1

C

M

R

T

T

Goal String

)))(((cscone 123 TRTD ΔΔΔ=

])

])

])(}),0,0,1(,[{

(}1,º360,,[{

(},),1,0,0(,[{

10

10

10

>−<

>−<

>−<=Δ

==Δ

=Δ

=

csntp

ntp

ndtp

cone

1
1

2
1

3
1

T

R

TD

θ

TABLE 5.17 - INITIAL AND GOAL CONFIGURATIONS

3TDΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 5 173

Match the strings

Initial = dTΔ cTΔ bRΔ aMΔ 1CΔ ps

Goal = 3TDΔ 2RΔ 1TΔ cs
Working = dTΔ cTΔ bRΔ aMΔ 1CΔ ps

Adjust the regulator sequence (# of regulator
changes)
Working = dTΔ cTΔ bRΔ aMΔ 1CΔ ps

Goal = 3TDΔ 2RΔ 1TΔ cs

New Working = cTΔ bRΔ 1CΔ ps

DELETE_SUCCESSIVE aMΔ

DELETE_SUCCESSIVE dTΔ

Adjust the regulator sequence (# of regulator
is the same)

Working = cTΔ bRΔ 1CΔ ps

Goal = 3TDΔ 2RΔ 1TΔ cs

New Working = cTΔ bRΔ 1TΔ ps

REPLACE_REGULATOR 11 TC Δ⇒Δ

Adjust the regulator composition

Working = cTΔ bRΔ 1TΔ ps

Goal = 3TDΔ 2RΔ 1TΔ cs

New Working = cTDΔ bRΔ 1TΔ ps

ADD_SIMULTANEOUS cc TDT Δ=>Δ

Update indices and dimensions

Working = c
01DTΔ b

1RΔ 1
1TΔ ps

Goal = 3
01DTΔ 2

1RΔ 1
1TΔ cs

New Working = 3TDΔ 2RΔ 1TΔ ps

MODIFY_INDEX 3c TDTD Δ=>Δ

MODIFY _INDEX 2b RR Δ=>Δ

ARCHITECTURAL EXPLORATIONS CHAPTER 5 174

Adjust the regulator parameters

Working = },),0,0,1(,{ ndtp =Δ 3TD }5,º60,,{ ==Δ ntp θ2R },,{ np θ1TΔ ps

Goal = },),1,0,0(,{ ndtp =Δ 3TD }1,º360,,{ ==Δ ntp θ2R }),0,0,1(,{ ntp =Δ 1T cs

New Working = },),1,0,0(,{ ndtp =Δ 3TD }1,º360,,{ ==Δ ntp θ2R },,{ np θ1TΔ ps

ROTATE_XYZ),,(.),,(. 100t001t =Δ⇒=Δ 33 TDTD

MODIFY_FACTOR º.º. 36060 =θΔ⇒=θΔ 22 RR

INSERT_PARAMETER),,(. 001t =Δ 1T

MODIFY_NUMBER, 1n5n =Δ⇒=Δ .. 22 RR

Adjust the generation method

Working =
><−><Δ n0

3TD
><−><Δ n0

2R
>−<Δ 10

1T ps

Goal =
>−<Δ 10

3TD
>−<Δ 10

2R
>−<Δ 10

1T cs

New Working =
>−<Δ 10

3TD
>−<Δ 10

2R
>−<Δ 10

1T ps

MODIFY_CONTINUITY
>−<><−>< Δ⇒Δ 100

22 RR n

MODIFY_CONTINUITY
>−<><−>< Δ⇒Δ 100

33 TDTD n

Adjust the regulated element (points and their attributes)

Working = cTΔ bRΔ 1TΔ ps

Goal = 3TDΔ 2RΔ 1TΔ cs

Final = cTDΔ bRΔ 1TΔ cs
REPLACE_SHAPE cp ss ⇒

TABLE 5.18 - THE TRANSFORMATION STEPS ALGORITHM

The “Match the strings” phase of the TS algorithm considers the whole regulator

sequence and focuses on regulator types. It is a process of alignment where the working

string is moved with respect to the goal string until the greatest number of regulators is

ARCHITECTURAL EXPLORATIONS CHAPTER 5 175

matched. Two regulators such as cTΔ and 3TDΔ are considered as a semi-match.

The first “Adjust the regulator sequence” phase consists of an alignment operation that

recursively moves the non-matching regulators to derive the greatest match between the

working and goal strings. It focuses on the whole string at the regulator level of

abstraction, and identifies regulators that need to be deleted and creates empty spaces for

insertions. ADD_SUCCESSIVE, INSERT_SUCCESSIVE, DELETE_SUCCESSIVE are

the possible transformations that could be identified in this phase.

The second “Adjust the regulator sequence” phase compares both strings, focusing on

one regulator at a time, and replacing or swapping non-matching regulators. The possible

transformations that could be identified in this phase are SWAP_SUCCESSIVE and

REPLACE_REGULATOR.

The “Adjust the regulator composition” phase focuses on individual semi-matching

regulators, adding or removing types from their composition. ADD_SIMULTANEOUS,

REMOVE_SIMULTANEOUS, and SWAP_SIMULTANEOUS are the possible

transformations of this phase.

The “Update indices and dimensions” phase focuses on the subscripts and superscripts of

individual regulators. At the end of this phase, the sequence of regulators in the working

string and goal string are identical. The possible transformations for this phase are

ADJUST_INDEX and ADJUST_DIMENSION.

The “Adjust the regulator parameters” phase focuses on the parameters inside the curly

brackets, of individual regulators. Transformations for this phase are MOVE_XYZ,

ROTATE_XYZ, MODIFY_FACTOR, MODIFY_NUMBER, and

MODIFY_FORMULA.

This “Adjust the generation method” phase focuses on the generation methods (inside the

subscript brackets) of individual regulators. Transformations for this phase are

MODIFY_CONTINUITY, MODIFY_PATTERN, and MODIFY_GENERATED.

The “Adjust the regulated element” phase focuses on regulated elements, which are the

innermost elements in a regulator sequence. Transformations identified are MOVE_XYZ,

ARCHITECTURAL EXPLORATIONS CHAPTER 5 176

MODIFY_ATTRIBUTE, REPLACE_SHAPE.

With this algorithm, not only can the ICE framework be used for interactive exploration

towards an unknown goal, it can also be used to identify precise strategies to reach a

desired goal.

ARCHITECTURAL EXPLORATIONS CHAPTER 5 177

5.6. DESIGN SPACE IN THE ICE REPRESENTATION

In the context of Simon’s cognitive model of design (Simon, 1969), the ICE notational

string, which capture a generation method and the applicable transformations, presents a

snapshot within the exploration process. A string represents one state in an immense

space of possibilities. The applicable transformations represent the possible transitions

from this state to other states. The generation method is one non-cyclic exploration path

that leads to this state from an initial start state (the point).

In the ICE representation there is no distinction between terminal and non-terminal

symbols. Consequently, there is no classification of intermediary and final states. All

symbols can be transformed at anytime. All states can be transformed at any time,

although these same states are considered final at any time.

There are implicit rules for transitions in ICE, establishing the way element in the string

are transformed. Only regulators can replace regulators; only generation methods can be

reconfigured within the brackets, and only parameters can change in value. These rules

are encoded in the well defined structure of the ICE string and in the transformation

syntax of the ICE notation.

For each state, there are numerous possible transformations, each leading to another other

design state. However, in certain states not all transformations are applicable: for

instance, DELETE_REGULATOR is not applicable to the initial state consisting of a

single point. Design transformations, which are manipulations on the ICE string, can

have variable effects, depending on the parameter values. REPLACE_REGULATOR

will produce different states if the new regulator is a Rotation or a Dilation; similarly,

MODIFY_FACTOR will produce different states for different values.

Because of continuous parameter values, it is not possible to enumerate all design states

that can be generated from a given state, thus making the design space an infinite space.

Furthermore, since every object can be transformed into every other object using the TS

algorithm, the infinite design space encompasses all objects that could be generated in

ICE.

ARCHITECTURAL EXPLORATIONS CHAPTER 5 178

The universe described by the ICE notation is two fold: the universe of shapes and

configurations, and the universe of manipulations. These are determined by the regulators

in use, as well as on the generation method.

Transformation regulators applied continuously define a universe of 1D, 2D and 3D

shapes in 3D space. Translation regulators, used exclusively, define a universe of

rectilinear shapes, while isometric regulators (Translation, Rotation and Mirror) define a

universe consisting of Euclidean shapes. Affine regulators such as Dilation, and Shear,

significantly increase the universe of possible shapes and so do Curve and Deformation

regulators.

Generation methods also influence the resulting universe. Discrete generation, used

exclusively, the result would be a universe of points. If the generation were restricted to

one continuous regulator and unlimited discrete regulators, the resulting universe would

consist of linear objects in a 3D Space. If continuous and discrete generation were used in

combination, irregular shapes and shapes with holes could be produced.

Variation and operation regulators significantly increase the universe of possible shapes

as well as the complexity of the shapes generated; while constraint, topological and

hierarchical regulators influence ICE’s universe of manipulations.

Since the set of regulators described in this document is not an exhaustive list. The

universe of the configurations and the universe of manipulations described in ICE are not

clearly determined. As more regulators are added according to the necessity, the universe

is redefined.

CHAPTER 6

ARCHITECTURAL EXAMPLES

In this Chapter, I demonstrate the capacity of the ICE notation to describe architectural

configurations and transformations across these, through architectural works. These

include the representation of architectural components (Section 6.1), a hypothetical

generation and transformation of Hejduk’s half house (Sections 6.2), the roof structure of

Calatrava’s Art Museum in Milwaukee, and an ethnographic observation in a design

studio (Section 6.4). Each of these examples represents a different aspect of design. Some

are finished products, while others are snapshots of actual evolving designs. Yet others

represent hypothetical generations.

The strategy for describing effectively using ICE depends on the properties of the

configuration represented. Most architectural configurations are constructed by means of

repetitive elements, and often such configurations have repetitive relations. It is important

to capture these repetitions in ICE in order to define the most effective and parsimonious

description and the shortest generation path. Most configurations can be divided into

smaller units, and represented in a top-down or bottom-up manner. Shape encapsulation

in ICE allows the representation of such configurations at multiple levels of abstraction,

including detailed descriptions, as well as higher-level ones.

ARCHITECTURAL EXPLORATIONS CHAPTER 6 179

6.1. ARCHITECTURAL ELEMENTS

In this section, I illustrate architectural components, such as arches, domes, vaults, stairs,

roofs, and trusses, as they are described with the ICE notation. This section serves as a

preamble to the more elaborate and exploratory examples of the following sections.

Table 6.1 shows round and pointed arches. The round arch is described by rotating the

unit bricks while the pointed arch is described by rotating then mirroring these bricks. In

addition, these bricks are constrained by an Adjacency regulator composed with the

generative rotations and translations. The curved bricks are described by continuous

Translation and Rotation regulators, while the keystone of the pointed arch is described

by a Mirror, composed with Cutting and Adjacency regulators.

keystonekcurvedBricnθtp

RoundArch
n0

arch ∧ΔΠ

=
><−><])](},,,{[RJ

])])

])(},,,{[

(},,,{[

(},,,{[

>−<>−<

>−<Δ

Δ

Δ
=

n0n0

n0
bricksndtp

nθtp

nθtp
kcurvedBric

1

2

3

T

R

R

RJΔΠ

keystone

kcurvedBricnθtp

nθtp
Archointedp

n0n0

∧

ΠΔ

Δ
=

><−><><−><]]))](},,,{[

(},,,{[

JR

M

])]])

])(},,,{[

(},,,{[

(},,,{[

(},,{[

>><<>−<>−<

>−<Δ

Δ

Δ

ΩΔΠ
=

10n0n0

n0
keystonesndtp

nθtp

nθtp

ntp
Keystone

1

2

3

T

R

R

CMJ

MΔ

RJΔΠ

TABLE 6.1 – ARCHES (SOURCE CHING 1997, P14)

The Roofs in Table 6.2 are described by means of Translation and Mirror regulators

composed with adjacencies.

ARCHITECTURAL EXPLORATIONS CHAPTER 6 180

]]))](},,,{[

(},,{[
><−><><−><ΔΠ

Δ
=

n0n0beamnθtp

ntp

TJ

MΠ
gableRoof

J

])])])(},,,{[

(},,,{[

(},,,{[

>−<>−<>−<Δ

Δ

Δ
=

n0n0n0
beamsndtp

ndtp

ndtp
beam

1

2

3

T

T

T

MΔ

TΔ

])])

])(},,,{[

(},,,{[

(},,{[

#

><−><><−><

><−><Δ

Δ

ΔΠ
=

n0n0

n0
nbeamnθtp

nθtp

ntp
fmansardRoo

a

b

T

T

 MJ

MΔ

])])(},,,,{[

(},,{[

])])(},,,,{[

(},,{[

><−><><−><

><−><><−><

ΔΔ

ΔΠ

ΔΔ

Δ
=

n0n0
2

n0n0
1

beamnθktp

ntp

beamnθktp

ntp
hipRoof

b

v

a

h

DT

MJ

DT

M

TABLE 6.2 – ROOFS (SOURCE CHING 1997, P208)

The truss in Table 6.3 is described by means of Alignment regulators. The start-point of

each inclined member is aligned to the horizontal post, and its endpoint is aligned to the

diagonal post. The horizontal Alignment regulator is composed with a Translation

regulator in order to generate the inclined members.

])

])(},,[{

])(},,[{

(},,{[

>><<

>><<

>><<

Φ

Φ

Δ
=

10

n0
1

n0

ememberntp

smembersntp

ntp
ssbelgianTru

slanted

horizontal

A

A

M

ΔT

TABLE 6.3 – TRUSSES (SOURCE CHING 1997, P261)

bTΔ

aTΔ

aDTΔ Δ
bDTΔΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 6 181

The domes in Table 6.4 are described by means of compound rotations of their unit

structural members. Additionally, horizontal structural members are kept adjacent, and

diagonal structural members are aligned to both horizontal and vertical members.

]]))(},,,{[(},,{[

]]))(},,,{[(},,{[
><−><>−<

><−><>−<

ΔΔΔΠ

ΔΔ

=

n0n0
horizontal

n0n0
vertical

linenθtpntp

linenθtpntp

radialDome

ab

ab

DRRJ

RR

)](},,{[

)](},,{[

]]))(},,,{[(},,,{[

]]))(},,,{[(},,,{[

]]))(},,,{[(},,,{[

d

d

n0n0
d

n0n0
h

n0n0
v

linentp

linentp

linenθtpnθtp

linenθtpnθtp

linenθtpnθtp

omeschwedlerD

v

h

ab

ab

ab

A

A

DRR

DRRJ

DRR

Φ

∧Φ

ΔΔΔ

ΔΔΔΠ

ΔΔΔ

=

><−><>−<

><−><>−<

><−><>−<

TABLE 6.4 – DOMES (SOURCE CHING 1997, P60)

Table 6.5 shows two vaults. The quadripartite vault is described by creating the curved

surface, then mirroring it, rotating it, and cutting all surfaces beyond the intersection. The

annular vault is defined by rotating the arch-like cross section.

])]))(},,{[

(},,,{[
>−<>−<Δ

θΩΔΠ
=

n0n0acecurvedSurfntp

ntp
iteVaultquadriPart

M

CRJ

]]))(},,,{[(},,{[>−<>−<ΔΔ

=
n0n0

vaultsndtpθ,ntp

acecurvedSurf

12 TR

bRΔ

bRΔ

aRΔ

bR

Δ

aRΔ

bRΔ

RΔ

MΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 6 182

]),,(},,,{[>><<θΔ

=
n0SectionvaultCrossouterwallarcadentp

ltannularVau

R

]))(},,{[(},,{[>−<>−<ΔΔ

=
n0n0

vaultsntpntp

SectionVaultCross

12 TR

cRΔ

TABLE 6.5 – VAULTS (SOURCE CHING 1997, P263)

In Table 6.6, half turn stairs are described by means of translations and one 180º screw

rotation, while spiral stairs are described by means of only screw rotations.

])])(},,,{[

(},,,{[
>−<>−<ΔΠ

ΔΔΠ
=

n0n0treadndtp

ndtp
airhalfTurnSt

TJJ

RTJ

])])])(},,,{[

(},,,{[

(},,,{[

>−<>−<>−<Δ

Δ

Δ
=

n0n0n0
treadsndtp

ndtp

ndtp
tread

1

2

3

T

T

TD

tcentralPossupporttreadndtp

rspiralStai
n0 ∧ΔΔ

=
>−<]),(},,,{[RT

TΔ

])])])(},,,{[

(},,,{[

(},,,{[

>−<>−<>−<Δ

Δ

Δ
=

n0n0n0
treadsndtp

ndtp

ndtp
tread

1

2

3

T

T

R

])])])(},,,{[

(},,,{[

(},,,{[

>−<>−<>−<Δ

Δ

Δ
=

n0n0n0
postsndtp

nθtp

ndtp
tcentralPos

1

2

3

T

R

T

])])])(},,,{[

(},,,{[

(},,,,{[

>−<>−<>−<Δ

Δ

Δ
=

n0n0n0
postsndtp

ndtp

ndktp
Support

1

2

3

T

T

TD

TABLE 6.6 – STAIRS (SOURCE CHING 1997, P234)

ARCHITECTURAL EXPLORATIONS CHAPTER 6 183

6.2. HALF HOUSE TO HOUSE 10

In this section, the ICE notation is used to describe two of John Hejduk’s architectural

endeavors: Half House and House 10 (Figure 6.1, sources: Ching p.187 and p.12). Both

houses have simple, non-repetitive parts, yet include repetitive relationships. Both consist

of semi-primary shaped rooms linked by common spaces. These houses were chosen for

their simplicity and elegance. The global asymmetry of these houses illustrates ICE’s

descriptive capacity in encapsulating local symmetries and geometrical constraints. A

hypothetical exploratory-generation of Half House is presented in Section 6.2.1, and a

hypothetical transformation of Half House to House 10 is presented in Section 6.2.2.

FIGURE 6.1 – HALF HOUSE AND HOUSE 10

6.2.1. THE GENERATION OF HALF HOUSE

Table 6.7 shows the exploratory step by step generation of Half House from an initial

rectangle. An exploratory generation allows users to explore while modeling. Therefore,

it includes intermediate exploration steps that are not captured in the final generation

sequence. Each step in the table shows the current state of generation, its corresponding

notation and the operation that resulting in this state, from the previous one.

In the 1st step of Table 6.7, the outline of the rectangular unit, , is generated from Aunit

ARCHITECTURAL EXPLORATIONS CHAPTER 6 184

two Translation regulators, and , and one Mirror regulator, . This sequence

is strategically chosen, among the multiple representations of the rectangle to describe the

local bilateral symmetry of each space.

vTΔ hTΔ MΔ

In the 2nd step, and are generated by applying the Translation regulators,

 and , respectively to .

Bunit Cunit

BTΔ CTΔ Aunit

In the 3rd step, alignments between the three rectangles are identified. is aligned

vertically to , along , and is aligned horizontally to , along .

Cunit

Aunit vAΦ Bunit hAΦ

In the 4th step, the rectangular units are defined as being composed of an enclosure and a

line, and the thickness for the enclosure is incorporated by means of the Dilation

regulator, . The enclosure and the line are defined to be adjacent. DΔ

In the 5th step, the structural constraint between the midpoints of the three shapes

(Ap , Bp and Cp) is identified as a right triangle, which is represented by the Angle

regulator . Each midpoint of the shape is actually the endpoint of the line defined by

the regulator and is constrained to the Mirror regulator,

LΦ

hTΔ MΔ . The directional

parameters, t , of both Translation regulators, and , are adjusted to be

consistent with this right angle.

BTΔ CTΔ

In the 6th step, is rotated 90 degrees from its midpointBunit Cp . This manipulation is

equivalent to replacing the Translation regulator , which relates to , with

the Rotation regulator .

BTΔ Aunit Bunit

BRΔ

In the 7th step, the window, column, beams, terrace, and the corner square are integrated

into the representation to create more detailed units. The window and its opening are

defined as subshapes of the enclosure.

In the 8th step, the elements joining the three basic units, namely the corridor, the

staircase and the walkway, are added to the representation.

In the 9th step, the configuration is explored by changing the rectangular units into

ARCHITECTURAL EXPLORATIONS CHAPTER 6 185

triangular ones. This involves removing the regulator , and rotating the regulator hTΔ

vTΔ by 45º. Since the window is a subshape of the enclosure, it is redefined according to

the new regulators of the enclosure. Furthermore, the window is moved from one side to

another by moving its starting point, 5s .

In the 10th step the configuration is explored, once more, by changing the triangular units

into semicircular ones. This involves replacing the regulator by the regulator vTΔ RΔ .

The last step of Table 6.7 shows the completed configuration, emphasizing the

differences between the individual units and their relational constraints. The regulators

 and relate only the starting points and specific regulators, not the whole units

as in previous configurations.

BTΔ CTΔ

1 INSTANTIATE_SHAPE Aunit

])

])

])(},,,{[

(},,,{[

}(,,[{

10

0

0
0

>><<

>−<

>−<Δ

Δ

Δ

=

n

n

A

sndtp

ndtp

ntp

unit

1
v

1
h

1

T

T

M

2 ADD_SUCCESSIVE(and) BTΔ CTΔ

])(},,,{[

])(},,,{[
10

10

>><<

>><<

Δ=

Δ=

AC

AB

unitndtpunit

unitndtpunit
1
C

1
B

T

T

3 ADD_SHARED (and) vAΦ hAΦ

)](},{[

)](},{[

CB

BA

unit ,unittp

unit ,unittp
1
h

11
v

A

MA

Φ

ΔΦ

ARCHITECTURAL EXPLORATIONS CHAPTER 6 186

4 DISTRIBUTE
ADD_SUCCESSIVE (DΔ)

])(},,[{ 10 >><<∧Δ= AAA lineenclosurentpunit 1M

])

])

])(},,,{[

(},,,{[

(},,{[

10

0

0
#0

>><<

>−<

>−<Δ

Δ

Δ

=

n

n
n

A

sndtp

ndtp

nkp

enclosure

1
v

1
h

0

T

T

D

])(},,,{[0
0

>−<Δ= n
A sndtpline 1

hT

)],([AA lineenclosureJΦ

5 ADD_SHARED (,LΦ AAΦ , BAΦ , CAΦ)

)],,(},,{[

)],(},,{[

)],(},,{[

)],(},,{[

CBA

C

B

A

hCC

hBB

hAA

pppntp

pntp

pntp

pntp

eline p

eline p

eline p

0

1
C

1
C

1
B

1
B

1
A

1
A

L

MA

MA

MA

Φ

ΔΦ

ΔΦ

ΔΦ

=

=

=

6 REPLACE_REGULATOR (,) BTΔ BRΔ

])},,,{[

])(},90,{[
10

10

>><<

>><<

Δ=

°Δ=

AC

AB

unitndtpunit

unitnpunit
1
C

0
B

T

R

7 INSTANTIATE_SHAPES

AAA

AA

A

columnsquarewindow

onsarticulatienclosurentp

unit

,,

]),(},,[{ 10 ∧Δ

=
>><<1M

])(},,,{[

]),,,(},,,{[
0

3

0
210

>−<

>−<

Δ

Δ

=

n

n
A

sndtp

sssndtp

nsrticulatioa

1
v

1
h

T

T

)],([AA onsarticualtienclosureJΦ

ARCHITECTURAL EXPLORATIONS CHAPTER 6 187

]]))(},,,{[(},,,{[1010
3

>−<>−<ΔΔ

=

sndtpndtp

olumnc A
1
v

1
h TT

]]))(},,,{[(},,,{[1010
4

>−<>−<ΔΔ

=

sndtpndtp

squareA
1
v

1
h TT

])]),([([frameopeningenclosure
window

AA

A

SU ΔΩ
=

]))(},,,{[(},,,{[

]]))(},,,{[(},,{[
100

5

00
5

>><<>−<

>−<>−<

ΔΔ=

ΔΔ=
n

nn

sndtpndtpframe

sndtpnkpopening
1
h

1
v

1
h

0

TT

TD

)],([

)],([

AA

AA

frameenclosure

openingenclosure

S

S

Π

Π

8

INSTANTIATE_SHAPES

])

,],)(},,,{[

(},,,{[

10

87
10

6

>−<

>−<Δ

Δ

=

sssndtp

ndtp

corridor

1
v

1
h

T

T

])

])(},,,{[

])

])(},,,{[

(},,,{[

(},,{[

0

0
10

0

0
#9

>−<

>−<

>−<

>−<

Δ

Δ

Δ

Δ

=

n

n

n

n
n

sndtp

sndtp

ndtp

ntp

alkwayw

1
v

1
v

1
h

1

T

T

T

M

]),(}1,,{[10 >><<Δ= outlinetreadstpstaircase 1M

])

])(},,,{[

(},,,{[

0

0
11

>><<

>−<Δ

Δ

=

n

nsndtp

ndtp

treads

1
h

1
v

T

T

])

])

]),(},,,{[

(},,,{[

(},,,{[

0

0

0
#1211

>−<

>−<

>−<Δ

Δ

Δ

=

n

n

n
nssndtp

ndtp

ndtp

outline

1
v

1
h

0

T

T

D

ARCHITECTURAL EXPLORATIONS CHAPTER 6 188

9 DELETE_REGULATOR (hTΔenclosure)

ROTATE_REGULATOR () vTΔ

MOVE_SHAPE () window

])

])(},,,{[

},,{[

0

0
045

>−<

>−<Δ

Δ

=

n

n

A

sndtp

nkp

enclosure

1
v

0

T

D

]]))(},,,{[(},,,{[

]]))(},,,{[(},,{[

100
545

00
545

>><<>−<

>−<>−<

ΔΔ

=

ΔΔ

=

n

nn

sndtpndtp

frame

sndtpnkp

opening

1
v

1
e

1
v

0

TT

TD

10 REPLACE_REGULATOR () vTΔ

])

])(},,,{[

},,{[

>−<

>−<Δ

Δ

=

n0

n0
A

A

sn90tp

nkp

enclosure

0
v

0

R

D

]]))(},18,,{[(},,,{[

]]))(},18,,{[(},,{[

100
5

00
5

>><<>−<

>−<>−<

ΔΔ

=

ΔΔ

=

n

nn

sntpndtp

frame

sntpnkp

opening

01
v

00

RT

RD

11 COMPLETE CONFIGURATION (summary)

scommonlinkunitunitunitHalfHouse CBA ∧∧∧=

staircasewalkwaycorridorscommonlink ∧∧=

AAA

AA

A

columnsquarewindow

onsarticulatienclosurentp

unit

,,

]),(},,[{ 10 ∧Δ

=
>><<1M

])

])

])(},,,{[

(},,,{[

(},,{[

10

0

0
#

>−<

>−<

>−<Δ

Δ

Δ

=

n

n
nA

A

sndtp

ndtp

nkp

enclosure

1
v

1
h

0

T

T

D

BBB

BB

B

columnsquarewindow

onsarticulatienclosurentp

unit

,,

]),(},,[{ 10 ∧Δ

=
>><<1M

ARCHITECTURAL EXPLORATIONS CHAPTER 6 189

])

])(},,,{[

},,{[

0

0

>−<

>−<Δ

Δ

=

n

n
B

B

sndtp

nkp

enclosure

1
v

0

T

D

CCC

CC

C

columnsquarewindow

onsarticulatienclosurentp

unit

,,

]),(},,[{ 10 ∧Δ

=
>><<1M

])

])(},90,,{[

},,{[

0

0

>−<

>−<Δ

Δ

=

n

n
C

C

sntp

nkp

enclosure

0

0

R

D

])(},,{[

])(},,{[

])(},,{[

>><<

>><<

>><<

Δ°Δ=Δ

Δ°Δ=Δ

°Δ=

10

10

10
AC

n90p

n90p

sn90ps

1
Ah

1
C

1
Ch

1
A

1
C

1
C

1
C

TRT

MRM

R

])(},,,{[

])(},,,{[

])(},,,{[

>><<

>><<

>><<

ΔΔ=Δ

ΔΔ=Δ

Δ=

10

10

10
AB

ndtp

ndtp

sndtps

1
Ah

0
B

1
Bh

1
A

0
B

1
B

0
B

TTT

MTM

T

)],,(},,{[

)],(},,{[

)],(},,{[

)],(},,{[

CBA

C

B

A

hCC

hBB

hAA

pppntp

pntp

pntp

pntp

eline p

eline p

eline p

0

1
C

1

1
B

1

1
A

1

L

MA

MA

MA

Φ

ΔΦ

ΔΦ

ΔΦ

=

=

=

)](},{[

)](},{[

CB

BA

unit ,unittp

unit ,unittp
1
h

11
v

A

MA

Φ

ΔΦ

FIGURE 6.7 – HYPOTHETICAL GENERATION OF HALF HOUSE

6.2.2. THE TRANSFORMATION OF HALF HOUSE TO HOUSE 10

Table 6.7, which extends through several pages, shows a set of exploratory manipulations

used while generating Half House. These include instantiation of elements, replacing

elements, increasing in the levels of details, identification of constraints, and adjusting to

ARCHITECTURAL EXPLORATIONS CHAPTER 6 190

fit constraints. Table 6.8 uses similar manipulations to transform Half House to House 10.

The 1st step of Table 6.8 represents the abstraction of Half House into its basic primary

shapes and their relations. In the 2nd step, half house is rotated 180 degrees. This involves

rotating the direction vectors of the shape’s defining regulators.

In the 3rd step, the dimension of the corridor is changed and the rectangular and triangular

units, and , are moved to new positions. Resizing the corridors involves

changing the distance factor of its horizontal regulator, and moving the units involves

moving their starting points. The vertical alignment is broken, and the triangle connecting

all three units is no longer a right angle.

Aunit Bunit

In the 4th step, the shapes of the three units are transformed by rotating their mirror lines

45 degrees. The rotation degree of is updated to 135º, the regulator is inserted

in to achieve the trapezoidal shape, and the right angle is re-established when the

midpoint of is repositioned.

Cunit hTΔ

Bunit

Aunit

In the 5th step, the walls thickness is defined by means of a Dilation regulator. In the 6th

step, the corridor is redefined to accommodate the curvilinear spaces, using the technique

of partial succession of regulators (used for polylines). All the regulators defining the

corridor are either Translation or Curve regulators. These are referred to as or

. The last step of Table 6.8 shows House 10 in its final form, emphasizing the

units and their relationships.

n1 TT Δ−Δ

n1 CC Δ−Δ

1

 corridorunitunitunitHalfHouse CBA ∧∧∧=

]])]))(},,,{[(},,,{[(},,{[1000
90

>><<>−<>−<ΔΔΔ= nn
AA sndtpndtpntpnitu 1

v
1
h

0 TTM

]])]))(},,,{[(},,,{[(},,{[1000
045

>><<>−<>−<ΔΔΔ= nn
B sndtpndtpntpnitu 1

d
1
h

0 TTM

]])]))(},90,,{[(},,,{[(},,{[1000
0

>><<>−<>−<ΔΔΔ= nn
C sntpndtpntpnitu 11

h
0 RTM

ARCHITECTURAL EXPLORATIONS CHAPTER 6 191

]),],)(},,,{[(},,,{[10
87

10
6

>−<>−<ΔΔ= sssndtpndtpcorridor 1
v

1
h TT

)],,(},,{[

)],(},,{[

)],(},,{[

)],(},,{[

CBA

C

B

A

hCC

hBB

hAA

pppntp

pntp

pntp

pntp

eline p

eline p

eline p

0

1
C

1

1
B

1

1
A

1

L

MA

MA

MA

Φ

ΔΦ

ΔΦ

ΔΦ

=

=

=

)](},{[

)](},{[

CB

BA

unit ,unittp

unit ,unittp
1
h

11
v

A

MA

Φ

ΔΦ

2

 ROTATE_SHAPE () HalfHouse

])}(,180,,[{])}(,180,,[{ 11 ><>< ∧∧∧°Δ=°Δ corridorunitunitunitntpHalfHousentp CBA
11 RR

3

 ADJUST_FACTOR () }{dhTΔ

]),],)(},,,{[(},5,,{[10
87

10
6

>−<>−<ΔΔ= sssndtpndtpcorridor 1
v

1
h TT

DELETE_REGULATOR () vAΔ

)](},{[CB unit ,unittp1
hAΦ

ADJUST_FACTOR () }{vLΔ

)],,(}100{[CBA ppp°Φ 0L

MOVE_SHAPE (,) Aunit Bunit

4

ARCHITECTURAL EXPLORATIONS CHAPTER 6 192

 ROTATE_REGULATOR () CBA MMM ΔΔΔ ,,

]])]))(},,,{[(},,,{[(},,{[1000

45
>><<>−<>−<ΔΔΔ= nn

AA sndtpndtpntpnitu 1
v

1
h

0 TTM

]])]))(},,,{[(},,,{[(},,{[1000
04545

>><<>−<>−<ΔΔΔΔ= nn
B sndtpndtpntpnitu 1

d
0
h

1
h

0 TDTM

]])]))(},135,,{[(},,,{[(},,{[1000
045

>><<>−<>−<ΔΔΔ= nn
C sntpndtpntpnitu 11

h
0 RTM

)],,(}90{[CBA ppp°Φ 0L

5

 ADD_SUCCESSIVE (DΔ)

])

]]))(},,,{[(},,{[

]]))(},,,{[(},,,{[

(},,{[

10

00
90

00
90

45

>><<

>−<>−<

>−<>−<

ΔΔ

ΔΔ

Δ=

nn
A

nn
A

A

sndtpnkp

sndtpndtp

ntpnitu

1
h

0

1
v

1
h

0

TD

TT

M

])

]]))(},,,{[(},,{[

]]))(},,,{[(},,,{[

(},,{[

10

00
045

00
045

45

>><<

>−<>−<

>−<>−<

ΔΔ

ΔΔΔ

Δ=

nn

nn

B

sndtpnkp

sndtpndtp

ntpnitu

1
h

0

1
d

01
h

0

TD

TDT

M

])

]]))(},,,{[(},,{[

]]))(},135,,{[(},,,{[

(},,{[

10

00
0

00
0

45

>><<

>−<>−<

>−<>−<

ΔΔ

ΔΔ

Δ=

nn

nn

C

sndtpnkp

sntpndtp

ntpnitu

1
h

0

11
h

0

TD

RT

M

6

 INSTANTIATE_SHAPES

)))))(((((

_

####2012345 TTTTT nnnnddddd s

walkwayupper

ΔΔΔΔΔ

=

))))((((

_

###3012131415 nnndddd s

corridorupper

 TTCT ΔΔΔΔ

=

ARCHITECTURAL EXPLORATIONS CHAPTER 6 193

))))))))((((((

__

######4067891011 TTCCCTD nnnnnndddddd s

spacercurvilineauppper

ΔΔΔΔΔΔΔ

=

)))))((((()()(

_

####70181920212260175016 nnnnddddddd sss

corridorlower

 TTTTTTT ΔΔΔΔΔ∧Δ∧Δ

=

))))))))))))))

)(

((((((((((((
__

#############

80

232425262728293031323334

TTTTCCCCCCTTD

nnnnnnnnnnnnn

dddddddddddd

s

spacercurvilinealower
ΔΔΔΔΔΔΔΔΔΔΔΔΔ

=

7

 COMPLETE CONFIGURATION (SUMMARY)

corridorunitunitunitHouse CBA ∧∧∧=10

spacercurvilinealowercorridorlower
spacercurvilineauppercorridorupperwalkwayupper

corridor

∧
∧∧∧

=

])

]]))(},,,{[(},,{[

]]))(},,,{[(},,,{[

(},,{[

10

00
90

00
90

45

>><<

>−<>−<

>−<>−<

ΔΔ

ΔΔ

Δ=

nn
A

nn
A

A

sndtpnkp

sndtpndtp

ntpnitu

1
h

0

1
v

1
h

0

TD

TT

M

])

]]))(},,,{[(},,{[

]]))(},,,{[(},,,{[

(},,{[

10

00
045

00
045

45

>><<

>−<>−<

>−<>−<

ΔΔ

ΔΔΔ

Δ=

nn

nn

B

sndtpnkp

sndtpndtp

ntpnitu

1
h

0

1
d

01
h

0

TD

TDT

M

])

]]))(},,,{[(},,{[

]]))(},135,,{[(},,,{[

(},,{[

10

00
0

00
0

45

>><<

>−<>−<

>−<>−<

ΔΔ

ΔΔ

Δ=

nn

nn

C

sndtpnkp

sntpndtp

ntpnitu

1
h

0

11
h

0

TD

RT

M

)](},{[CB unit ,unittp1
hAΦ

)],,(}90{[CBA ppp°Φ 0L

TABLE 6.8 - HYPOTHETICAL TRANSFORMATION OF HALF HOUSE TO HOUSE 10

ARCHITECTURAL EXPLORATIONS CHAPTER 6 194

6.3. CALATRAVA’S ART MUSEUM AT MILWAUKEE

In this section, I use the ICE notation to describe the winged roof structure of Calatrava’s

Art Museum at Milwaukee (Figure 6.2, source: Tzonis 2004, p.291, p.298, p.299). This

building was chosen because of its visual appeal, and because, in its concepts and

technology, it symbolizes Calatrava’s poetics of structure and movement (Tzonis 2004,

p.290).

Overlooking Lake Michigan, Calatrava’s Art museum at Milwaukee is exceptional for its

visual connection with its environment. The sculptural elements of the roof create the

impression of a great seagull landing on the shore, while the remaining parts of the

building (with the bridge supported by a single inclined mass) are reminiscent of another

marine image, a ship. The towering glass roof over the main hall and the system of

movable wings allow one to control the light and temperature of the interior, while

completely transforming its character. When closed, it is a covered protected space, and

when open, it is a vast open air installation in which the distinction between interior

and exterior dissolves. (Molinari 1999, p.142)

The folding roof structure, consisting of a brise-soleil, is constructed out of steel plates

which are welded and stiffened inside. The two winged elements, each formed by 36 fins

whose length ranges from 32 to 8 meters, are cantilevered by a rotating spine joined by

five rows of tying tubular sections. The angle at which each spine meets the rotating

spine is different so that when closed the brise-soleil forms a ruled surface with a conical

shape. The spine and the parallel mast of the bridge are both 47º incline. The brise-soleil

is controlled either manually, to accommodate the requirements of the museum, or

automatically through a computer system, which responds to bad weather and excessive

wind speeds by closing the brise-soleil. (Tzonis 2004, p.290).

ARCHITECTURAL EXPLORATIONS CHAPTER 6 195

a- Closed wings b- Open wings, side view

c- Back view against Lake Michigan d- Brise-soleil in operation

FIGURE 6.2 - THE ART MUSEUM AT MILWAUKEE

6.3.1. DESCRIBING THE ROOF STRUCTURE USING ICE

Table 6.9 describes the step by step description, using the ICE notation, of the roof

structure and mast of Calatrava’s Art Museum at Milwaukee. The figures in the table are

all generated using the ICE-3D implementation.

The 1st step of Table 6.9 describes the beam means of its generative regulators. The 2nd

and 3rd steps describe the generation of the conic roof structure, by using circular and

diagonal Alignments to define the half-conic, then a Mirror regulator to generate the

whole conic structure. Within these Alignment regulators, the diagonal line, which is

composed with a generative translation, aligns the start-point of the beams, while the

circle aligns the endpoints.

The 4th and 5th steps describe the wings, by using Translation composed with Alignments

and Gradation regulators to define one wing, then a Mirror regulator to generate both

ARCHITECTURAL EXPLORATIONS CHAPTER 6 196

wings. The Gradation includes both a gradual rotation factor and gradual scale factor.

The 6th step describes the connection between the conic beams and the wings. The 7th step

describes the constraints tying each beam of the conic with its corresponding beam of the

wing thought its connection object. Notice that the mirror of the wings, the mirror of the

connection axis, and the mirror of the conic is the same, axisMΔ regulator.

The 8th step describes the mast of the bridge by means of its generative regulators and the

9th step describes the linear supports of the bridge aligned to both the mast and the

horizontal thought their endpoints.

The 10th step describes the constraint defining the inclination of both the mast and the

wings-connection-conic diagonal axis to be at 47º.

The last step of Table 6.9 describes the motion of the brise-soleil by means of motion

regulators, which sets the angle of the wing beams with respect to the connection axis.

When the brise-soleil is closed the angle is at its minimum; when it is open the angle is at

its maximum. The gradual rotation factor determines angle of each beam differently.

1

]])]))}(,,,[{

(},,,{[

(},,,{[

>−<>−<>−<Δ

Δ

Δ
=

101010
beamsndtp

ndtp

ndtp
beam

1

2

3

T

T

T

2

])(},,{[

)(},,{[

_

º

º

><−><

><−><

=Φ

=ΔΦ

=

180
conic0

180
conic47

ebeam18ntp

sbeam18ntp

conichalf

circ

diag

A

A T

ARCHITECTURAL EXPLORATIONS CHAPTER 6 197

3])_(},,{[>><<Δ= 10conichalfntpconic Maxis

4

])(},,,,[{ ><−><ΦΞΔ

=
n0

wingeamb36θktp

wing

AG T

5

])(},,{[

_
>><<Δ

=
10wingntp

wingsboth

axisM

6

pointedEnd

connectionndtp

ntp
axisconnection

10

n0

∧

Δ

Δ
=

>><<

><−><

])

])(},,,{[

(},,{[
_

T

Maxis

7

]),,(

},,{[

iwingiconici beambeamconnection

ntp

t_constrainconnection

−−

Φ

=

i
0A

8

])

])(},,,{[

(},,{[
_

>><<

><−><Δ

Δ
=

10

n0
mastsnθtp

ntp
axismast

R

TD

ARCHITECTURAL EXPLORATIONS CHAPTER 6 198

9

])(},,{[

])(},,{[

º

º

><−><

><−><

=Φ

∧=Φ

=

90
0

90
47

esupport9ntp

ssupport9ntp

portslinear_sup

horizontal

diag

A

A

10
)]_)(_(}[{ axisconnectionaxisastm47

ntn_constraiinclinatio
°=θΔ

=
L

11

]))((}{[

])

])}(,,,,{[

(},,{[
__

connectionwing

10

360
wing

beambeamθ0

eamb36nθ0ktp

ntp
MOTIONINwingsboth

°⎯→⎯Δ

∧

=°⎯→⎯ΦΞΔ

Δ
=

>><<

><−><

L

AG T

Maxis

TABLE 6.9 - THE ART MUSEUM AT MILWAUKEE

ARCHITECTURAL EXPLORATIONS CHAPTER 6 199

6.4. ETHNOGRAPHIC EXAMPLE

In this example, the ICE notation is used for describing snapshots from an annotated

design studio, in which the entire graphic output of a student and the annotations of her

faculty have been ethnographically recorded. This is a realistic design situation, in which

the configuration is evolving and several ideas are explored. The ICE notation enables the

formal and unambiguous codification the design process in stages, which are defined by

each drawing in the sequence of the design development, as well as the codification of

transitions between those drawings.

6.4.1. THE ANNOTATED STUDIO

A vertical design studio in the School of Architecture, at Carnegie Mellon University was

offered during the summer of 2002, by Professor Omer Akin, where students ranged from

2nd year, to 5th year of their college education. The entire studio work was recorded

through digital photographs of student work brought to each class session and the

midterm and final reviews (Akin, 2004). These graphic records were accompanied by

daily diary annotations kept by the instructor for each student’s progress as well as the

overall progress of the studio. Three different problems emerged: international housing

prototype, dormitory housing, and a toy manufacturer’s headquarters building.

6.4.2. SNAPSHOTS FROM THE DESIGN STUDIO

In this section, I present a sequence of sketches and models created by Subject-W for her1

dormitory housing project. This sequence starts about a quarter of the way into the studio

and runs through to the end, highlighting all major formal solutions produced. The ICE

description is a hypothetical analysis of each drawing after the completion of the project;

these designs have been generated by Subject-W independent of ICE. Subject-W’s

project was selected mainly because she constantly changes directions in her

development. It gives the opportunity to illustrate how the ICE notation represents

changes in actual design exploration paths.

1 We used “she” or “her” to refer to all subjects--students and critics--of the annotated studio for the purpose of
anonymity. No gender implications are intended.

ARCHITECTURAL EXPLORATIONS CHAPTER 6 200

In Subject-W’s project, the main design constructs repeated throughout the drawing

sequence are rooms, dorm units, entrances and common spaces. Subject-W’s repeatedly

reorganizes these elements and further details are not completely resolved in most of her

drawings. Therefore, the ICE notation is used to represent these elements and the

evolving relations between them.

Table 6.10 shows the sequence of Subject-W’s drawings, their corresponding ICE

representation, and steps to transform one drawing to the next. Notice how Subject-W

alternates between the sketchy mode and the refined drawings/models, with the sketchier

ones expressing re-organization of ideas.

In the 1st step of Table 6.10, “Subject-W begins by drawing her housing hierarchy of

rooms, units, unit-clusters, wings, buildings, and building-clusters by means of a

seemingly unstructured swirling shape” (Akin 2004). With the assumption that the whole

drawing represents a building and its individual flower-like objects are abstractions of

dorm units, it is possible to identify the underlying structure, which can be described in

ICE by means of Rotation, Curve, and Dilation regulators. In the 2nd step of Table 6.10,

“Subject-W presents a rectilinear scheme in which the modular bays of the dormitory are

clustered to create a large and integrated form on the site, creating a ‘beads-on-a-string’

type scheme” (Akin 2004). The building’s structure can be generated in ICE through the

following steps: (1) reflecting the dorm unit to create the dorm cluster, (2) translating and

rotating the dorm cluster (4) and reflecting these to generate the whole building.

Similarly, the entrance is defined by sweeping points along a curve, then reflecting the

curved lines.

The configuration in steps 3 and 4 go back to the curvilinear theme. In the 3rd step, “the

beads-on-a-string type arrangement has yielded to a “serpentine” form that curves with

the contours, creating a concave edge for the public and a convex one for the private side

of the site lot” (Akin 2004). This serpentine form is described by sweeping a point along

two consecutive Curve regulators, then 1CΔ 2CΔ . Both common spaces are described in

the same way. In the 4th step, “the serpentine form is refined. Curves turn into rotations

and the central axis of symmetry from the previous configuration is reinstituted” (Akin

2004). The building is generated by means of Reflection and Rotation regulators. To

achieve the curved axis (from the rectilinear configuration in step 2), the Translation

ARCHITECTURAL EXPLORATIONS CHAPTER 6 201

regulator is deleted and Rotation regulator is adjusted. The dorm units are refined and re-

oriented, while the dorm cluster’s reflection axis, 1MΔ , is rotated thought 45º.

In the 5th step of Table 6.10, “the next formal overhaul involves one end of the

‘serpentine’ form bifurcating into two wings, allowing the development of a ‘commons’

area and lobby from one of the major access edges of the site” (Akin 2004). In this

configuration, the curve is broken into segments, and the rotation is replaced by a

reflection, which becomes the dominant relationship in all parts of the drawing. This

building is defined by reflecting the dorm cluster twice, then reflecting the individual

dorm units to achieve the bifurcations. The central axis is slightly rotated and several

local axes emerge.

“During midterm review, Subject-W’s work shows little development over the previous

critique” (Akin 2004). The most significant development is the layout of the dorm units

illustrated in the 6th step. The Containment regulator, HΨ , indicates that the dorm unit

consists of two successive reflections for the rooms and one for the bathroom, as well as

a kitchen and a balcony.

The configurations in steps 7 and 8 are variations suggested during the midterm review.

The 7th step is achieved by moving the common space, and the 8th step is achieved by

rotating the dorm cluster 180 degrees and converting the Mirrors, 4MΔ and , into

Rotations.

5MΔ

In step 9, the configuration shows a return to the curvilinear axis through rotation. “A

new aspect of the scheme emerges. Drawings lack architectonic qualities, such as

material, construction and structural specificity” (Akin 2004). Although, this is

speculation, it appears that Subject-W has created this configuration not by developing

the midterm solution, but by working from the drawings in step 2, while pair-wise

integrating the common spaces from the midterm’s configuration. To achieve this

configuration from the midterm configuration in step 5, the bifurcation Mirro 4Mrs, Δ

5MΔ , are removed, and the secondary reflection, 3Mand Δ , is replaced by a R tioota n

RΔ .

“The configuration in the 10th step is a mixed bag. While the dorm units gain

ARCHITECTURAL EXPLORATIONS CHAPTER 6 202

architectonic clarity, the main entrance, circulation and commons areas continue to

resemble spaghetti” (Akin 2004). This configuration has the same underlying structure as

the previous configuration (step 9), but with the incorporation spaghetti region of the

public spaces.

 to t one in step 10, with the secondary Rotation,

In the 11th step, “the development is along the same lines as before. The “spaghetti”

scheme dominates the formal development. Circulation paths are configured as tubes

without incorporating circulation and social hubs” (Akin 2004). The general structure of

this configuration is similar he RΔ , being

replaced by the reflection,

rallel dorm wings”

(Akin 2004). Its structure is the same as the configuration in step 11.

It h elopment in the dorm cluster,

where a glide relationship, depicted by

3MΔ .

“The 12th step marks a significant return to architecture and architectonics. The

“spaghetti” is gone, dissolved in the interstitial space between two pa

The 13th step represents the submission two days prior to the final review, where “there

are still basic issues of development and resolution, including the incorporation of the

other building systems” (Akin 2004). as a slight dev

 GΔ , is explored.

usters. Thi

and nce

The final review, illustrated in the 14th step of Table 6.10, “does not bring any surprises

or further development of the scheme” (Akin 2004). However, it still shows some signs

of exploration in the dorm cl s time the units are slightly sheared. The

Reflection Glide seque))((MG 1ΔΔ is replaced by a composition of Translation

and Shear regulators.

1

TSΔ

ecommonSpac

rdormCluste,n,t,p

building

∧Δ

=
><−><])(}[{ 70

3 αC

])(,[30 ><−><Δ

=

eflowerShap,nk,t,p

rdormcluste

}{RD θ

])(,[40 ><−><Δ

=

room,nk,t,p

eflowershap

}{RD θ

])([0
1

>−<Δ= ns,n,t,proom }{C1 α

Thursday, May 23, 2002
Extract from Design The Art and
Science of the Synthetic unpublished
manuscript by Ömer Akin ©

ARCHITECTURAL EXPLORATIONS CHAPTER 6 203

])([0
2

>−<Δ= ns,n,t,pecommonSpac }{C2 α

EPLACE_REGULATOR (

1 2
REPLACE_SHAPE (rdormCl) uste

R 3CΔ)

])])])[([([()][(1#3 rdormClusterdormCluste TRMC ΔΔΔ⇒Δ

])

])

])}(,[{

}(,,[{
}([{

10

10
1#

10

2

>><<

>><<

>><<Δ

Δ
Δ

=

rdormClusten,dt,p

nt,p
,nt,p

building

T

R
M

θ

])([10
1

>><<Δ= dormUnit,nt,prdormcluste }{M

])

])([

([

0

0
2

>−<

>−<Δ

Δ
=

n

ns,n,t,p

,nt,p
Entrance

}{C

}{M

2 α

2

Tuesday, June 4, 2002

E_REGULATOR (

2
DELET

4
TΔ)

 [([(RM2)])][([(])])])[(1# rdormClusterdormCluste RMT 2Δ Δ⇒

ODIFY_FACTOR (

ΔΔΔ

M }R{θΔ)

30 }R{ 90 }R{⇒=Δ Δ =θθ

ecommonSpac) INSERT_SHARED (

REPLACE_SHAPE (dorm) Unit
ROTATE_REGULATOR(1MΔ)

 }{M}{M 11)1,1()1,0(Δ =⇒=Δ tt

3

21 ecommonSpacecommonSpac
serpentinebuilding

∧
∧=

])

])(,[

(,[

0

0
11

2

>−<

>−<Δ

Δ
=

n

ns,nt,p

,nt,p
serpentine

}{C

}{C

α

α

])

])(,[

(,[

0

0
11

2

>−<

>−<Δ

Δ
=

n

ns,nt,p

,nt,p
ecommonSpac

}{C

}{C

α

α

Thursday, June 6, 2002

ARCHITECTURAL EXPLORATIONS CHAPTER 6 204

4

])}((,,[{

])

])}((,,[{

}([{

20

10

10

>><<

>><<

>><<

Δ

∧

Δ

Δ
=

ecommonSpacnt,p

rdormClustent,p

,nt,p
building

θ

θ

R

R

M2

])([10
1

>><<Δ= dormUnit,nt,prdormcluste }{M

Thursday, June 6, 2002

 4 5
REPLACE_REGULATOR (RΔ)
)])][([()])][([(3 rdormClusterdormCluste MMRM 22 ΔΔ⇒ΔΔ

5

ecommonSpac

dormUnitnt,p

dormUnitnt,p

rdormClustent,p

,nt,p
building

∧Δ

∧Δ

∧

Δ

Δ
=

>><<

>><<

>><<

>><<

])}((,[{

])}((,[{

])

])}((,[{

}([{

10
5

10
4

10

10
1#1

5

4

3

2

M

M

M

M

])([10
1

>><<Δ= dormUnit,nt,prdormcluste }{M

Wednesday, June 12

 5 7
MOVE_SHAPE () ecommonSpac

5 8
ROTATE_SHAPE () rdormCluste
MOVE_SHAPE () ecommonSpac

REPLACE_REGULATOR (4MΔ , 5MΔ)

)]}((,,[{])}((,[{

)]}((,,[{])}((,[{

55

44

dormUnitnt,pdormUnitnt,p

dormUnitnt,pdormUnitnt,p

θ

θ

55

44

RM

RM

Δ⇒Δ

Δ⇒Δ

ARCHITECTURAL EXPLORATIONS CHAPTER 6 205

6

]

]

,][M

[M

[H

1

)
,

)

)(},,{

(},,{

({}

10

10
2

1

balconykitchen

bathroom

roomntp

ntp

dormUnit

∧

Δ

Δ

Π
=

>><<

>><<

Monday, June 17, 2002: MIDTERM

7

ecommonSpac

dormUnitnt,p

dormUnitnt,p

rdormClustent,p

,nt,p
building

∧Δ

∧Δ

∧

Δ

Δ
=

>><<

>><<

>><<

>><<

])}((,[{

])}((,[{

])

])}((,[{

}([{

10
5

10
4

10

10
1#1

5

4

3

2

M

M

M

M

])([10
1

>><<Δ= dormUnit,nt,prdormcluste }{M

Monday, June 17, 2002: MIDTERM

8

ecommonSpac

dormUnitnt,p

dormUnitnt,p

rdormClustent,p

,nt,p
building

∧Δ

∧Δ

∧

Δ

Δ
=

>><<

>><<

>><<

>><<

])}((,[{

])}((,[{

])

])}((,[{

}([{

10
5

10
4

10

10
1#1

5

4

3

2

R

R

M

M

])([10
1

>><<Δ= dormUnit,nt,prdormcluste }{M

Monday, June 17, 2002: MIDTERM

 5 9
DELETE_REGULATOR(4MΔ , 5MΔ)

REPLACE_REGULATOR(3MΔ)

)])][([()])][([(rdormClusterdormCluste RMMM 232 ΔΔ⇒ΔΔ

ARCHITECTURAL EXPLORATIONS CHAPTER 6 206

9

])}(,,[{

])

])}(,,[{

}([{

])

])}(,,[{

}([{

0

10

10
1#24

10

10
1

>><<

>><<

>><<

>><<

>><<

Δ

∧

Δ

Δ

∧

Δ

Δ
=

necommonSpacnt,p

rdormClustent,p

,nt,p

rdormClustent,p

,nt,p
building

θ

θ

θ

R

M

M

R

M

2

2

([111 Δ= dormUnit,nt,prdormCluste }{M

])([10
22

>><<Δ= dormUnit,nt,prdormCluste }{M3

Friday, June 21, 2002

 9 10
INSTANTIATE_SHAPE () acespagettiSp

10

acespagettiSp

rdormClustent,p

,nt,p
building

∧

Δ

Δ
=

>><<

>><<

])

])}(,,[{

}([{

10

10
1θR

M2

])([10
11

>><<Δ= dormUnit,nt,prdormCluste }{M

Monday, June 24, 2002

 10 11
REPLACE_REGULATOR(RΔ)
)])][([()])][([(rdormClusterdormCluste 322 MMRM ΔΔ⇒ΔΔ

INSTANTIATE_SHAPE () ncirculatio

11

])

,,

])}(,,[{

}([{

10
2

10
1

>><<

>><<Δ

Δ
=

ncirculatioecommonSpacrdormCluste

rdormClustent,p

,nt,p
building

θ3

2

M

M

])([10
1

>><<Δ= dormUnit,nt,prdormCluste }{M1

Wednesday June 26, 2002

 11 12
SAME STRUCTURE

ARCHITECTURAL EXPLORATIONS CHAPTER 6 207

12

])

,,

])}(,,[{

}([{

10
2

10
1

>><<

>><<Δ

Δ
=

ecommonSpacncirculatiordormCluste

rdormClustent,p

,nt,p
building

θ3

2

M

M

])([10
1

>><<Δ= dormUnit,nt,prdormCluste }{M1

Monday July 1, 2002

 12 13
INSERT_SUCCESSIVE (GΔ , 1MΔ)

])

,

])

])}(,[{

}([{

])}(,[{

}([{

10

10

10
1#2

10
1

>><<

>><<

>><<

>><<

∧

Δ

Δ

Δ

Δ
=

ncirculatioecommonSpac

rdormClustent,p

,nt,p

rdormClustent,p

,nt,p
building

1

3

2

M

G

M

M

])([10
1

>><<Δ= dormUnit,nt,prdormCluste }{M1

Wednesday, July 3, 2002

13

 13 14
REPLACE_REGULATOR (GΔ , 1MΔ)

⇒ΔΔ])])}(,[{}([{ 1#2rdormClustent,p,nt,p 1MG)]}(,[{ 2rdormClustent,pSTΔΔ

])

,

])}(,[{

])}(,[{

}([{

10

20
2

10
1

>><<

>><<

>><<

ΔΔ

Δ

Δ
=

ncirculatioecommonSpac

rdormClustent,p

rdormClustent,p

,nt,p
building

ST

M

M

3

2

])([10
1

>><<Δ= dormUnit,nt,prdormCluste }{M1

14

Tuesday, July 10, 2002

TABLE 6.10 – SUBJECT W’S DESIGN SEQUENCE ILLUSTRATED IN ICE

6.4.3. MULTIPLE REPRESENTATIONS OF A SNAPSHOT

Each step in Table 6.10 represents a stage of Subject-W’s development. Although each of

these steps is represented using ICE in a single manner, it is possible to represent it in

multiple ways using ICE’s property of multiple representations. Table 6.11 shows the

ARCHITECTURAL EXPLORATIONS CHAPTER 6 208

abstraction of Subject-W’s midterm submission (see Table 6.10 step 5) as it is

represented by distinct generation paths, and consequently yielding different ICE notation

strings and distinct applicable transformations. Each of these steps is generated using the

ICE implementation. In steps 1 and 2, a dorm unit is created then reflected about 1MΔ .

In step 3, the same arrangement is obtained (step 3A) by a reflection about , and in

(step 3B) a rotation about

2MΔ

1RΔ . The generation sequence continues in distinct paths

though steps 4 and 5, yielding different arrangements. In step 6, however, two different

actions, reflecting about and reflecting about 5MΔ 6MΔ , bring the arrangement back to

equivalence. At this point the two shapes are identical, but not the notation, since it also

captures the way in which each shape was generated.

 A B

1

2

3

4

5

6

)dormUnit(
)dormUnit(

)))dormUnit(((

5

4

1

5

4

123

M
M

MMM

Δ
Δ

ΔΔΔ

)))(dormUnit((
))dormUnit((

1

1

246

11

RMM
MR

ΔΔΔ
ΔΔ

TABLE 6.11 - TWO GENERATIVE REPRESENATIONS OF SUBJECTW’S DESIGN

ARCHITECTURAL EXPLORATIONS CHAPTER 6 209

 A B

1

 Move mirror upward 1MΔ Move mirror 1MΔ upward

2

 Rotate mirror counterclockwise 1MΔ RotateMirror 1MΔ counterclockwise

3

 Move rotation point RΔ to the right Rotate mirror counterclockwise 3MΔ

TABLE 6.12 - TWO SETS OF APPLICABLE TRANSFORMATION OF SUBJECTW’S DESIGN

The notation clearly expresses the difference(s) between the two generative sequences.

The resulting configuration (step 6) in Sequence B of Table 6.11 has different handles

than the same one in Sequence A. These results are illustrated in steps1-3 of Table 6.12.

Identical manipulation-actions (for instance moving shared regulators) would result in

totally different graphic configurations. The different handles (non-shared regulators)

allow for a different set of manipulations per graphic configuration, such as moving the

rotation point or rotating the mirror line 1RΔ 3MΔ . There are numerous possible

manipulations for each sequence; those shown were just a few. Additionally, redefining

the notation string by insertion, deletion, or replacement would expand the manipulation

possibilities even further and redirect the exploration paths.

ARCHITECTURAL EXPLORATIONS CHAPTER 6 210

CHAPTER 7

THE ICE IMPLEMENTATION

In this chapter, I describe the implementation of the ICE framework, which is a software

environment that supports real-time exploration of 3D shapes and configurations by

means of regulators.

The ICE implementation supports creation of structures, integration of structure,

preservation of structure, transformation of structure, as well as breaking of structure.

Creation of structure is achieved by designing regulators (the axes, centers and

alignments) and associating them to the elements of composition. Integration of structure

is the superimposition of several local and global sub-structures, within a single

composition, by integrating distinct sets of regulators and elements. Preservation of

structure is achieved by propagating changes though regulators. Transformation of

structures is achieved by manipulating regulators. Breaking of structures is achieved by

dissociating and deactivating regulators, in order to explore the configurations without

their corresponding relationships.

ARCHITECTURAL EXPLORATIONS CHAPTER 7 211

7.1. OVERVIEW

In the ICE implementation, the design configuration is represented as two levels of

abstraction: one for the regulated elements and the other for the structure encapsulated by

regulators. Although the point is only element in ICE, and all shapes are defined by

points and regulators, the implementation includes additional pre-programmed primitive

elements. These are introduced for the purpose of processing speed. The regulators

control the behavior of elements and propagate changes across the configuration.

Elements and regulators can be dynamically associated with each other. This allows

superimposed structures, and enables multiple elements per regulator as well as multiple

regulators per element. Furthermore, regulators can control other regulators, defining

structure hierarchies with multiple levels of control.

Flexibility is the primary goal for the ICE implementation in both its engineering and

usability components. Flexibility is necessary to support an exploration that begins with

one configuration, and proceeds by means of gradual transformations in order to arrive at

a different configuration. The absence of flexibility would confine this exploratory

process and limit exploratory directions.

In the ICE implementation, flexibility is expressed in the interaction of users with

structures. To create structures, users must be able to associate regulators with elements

at any time during the exploration. Conversely, to break structures, users have the ability

to dissociate regulators from elements. To momentarily explore without specific

structures, users must be able to deactivate and reactivate regulators. To transform

structures, user must be able to manipulate all parameters of regulators and regulated

elements at any given time. Furthermore, users must be able to interchange regulators

(and interchange regulated elements) anytime during exploration without reworking the

configuration, such that they may never be “stuck” to a specific situation.

Additional goals for the ICE implementation include efficiency, ease of use, and user

control of all elements as well as attributes of the configuration.

7.1.1. ENGINEERING CONCEPTS

The ICE implementation was designed using an object oriented software engineering

ARCHITECTURAL EXPLORATIONS CHAPTER 7 212

approach; use-cases, interaction diagrams, and an object model were developed.

Appendix D presents selected use-cases and interaction diagrams for creating and

transforming elements and regulators.

Figure 7.1 shows the object model for the ICE implementation (see Appendix D for an

enlarged version). The main objects include Shape, Regulator, Association, Schema,

which represents the groups of associated elements and regulators, and the IceModel,

which represents the whole configuration. Polymorphism has a primary role in all the

constructs of the ICE implementation, and particularly, in the way lists are implemented

and objects are interchanged. IceObject is the primary abstraction that subsumes all other

objects of the implementation, and IceList is a list that organizes all these objects.

FIGURE 7.1 - THE ICE OBJECT MODEL

input_plane

my_regulator
expressions

my_shape

elements_in_list
my_observers

selecte_associations

selected_regualtors

selected_elements

regulator_list

element_list

Schema_list

element_list

associationt_list

regulator_identities_list

associated elements

direction vectors

my_regulator

tranformation_matrix

expressions

Hist_list

ExpVect..

Association

Regulator

Expression

IceObject

HistoryElemen

IceMatrix IceVector

Plane

NumVectorNumMatrix

OperationEx FunctionExValueExp

Cube_

SpheriTorus

TrapezPrism

CylConePyrami

ICE Model

Scene

CameraLight

GL Mode

IceGeometry

Scheme

Shape
Point

Line

IceElement IceList

RegulatorIdentity

ExpMatrix

History

There were several significant issues in the design of the object model. The bidirectional

associativity between regulators and associated elements resulted in an adaptation of the

Observer mechanism (Gamma 1997, p293). The need to interchange elements and

regulators during exploration resulted in an adaptation of the Bridge pattern (Gamma

1997, p151). The numerous possible combinations of regulators resulted in a strategy for

ARCHITECTURAL EXPLORATIONS CHAPTER 7 213

combining simple mathematical modules to define complex formulae for regulators. This

modular approach extends the notion of describing complex shapes though simple

regulator modules of the ICE framework.

Regulators control elements though the observer mechanism. A regulator 'observes' the

elements (inputs and outputs) that are associated with it. When an element is changed, it

notifies its regulator; some regulators constrain the change, while others propagate the

change to other elements. When a regulator's parameters are changed, the elements that it

regulates are updated accordingly. The observer pattern, which encapsulates the

dependencies between elements and regulators, is adapted to accommodate the control

functionality of the regulator in addition to the observation functionality. This allows

bidirectional associative networks to be constructed at run-time. Figure 7.2 shows the

observer in the context of the ICE implementation. IceElement subsumes the objects of

the observation mechanism, which are the shape, the regulator and the association. This

allows the association object to include shapes and regulators, such that regulators can be

regulated, and enables regulators and associations to act as observers/controllers. When

the regulators and shapes are associated in succession, these form a tree; when shapes

share regulators or regulators share shapes, these form an acyclic graph.

FIGURE 7.2 - OBSERVER MECHANISM

my_shape

my_observers

my_geometry

associated_elements

my_regulator

association_list

my_regulator
regulator_identity_list

IceObject
IceGeometry

Shape

IceObject
IceElement

Regulator Association

IceObject
RegulatorIdentit

Replacing regulators (or shapes), while these are associated to numerous elements, can

lead to reconfigurations numerous reassignment of associations. This is an error prone

process, which affects the robustness of the implementation. Such internal

reconfigurations are significantly simplified by using the Bridge pattern, which, in the

ARCHITECTURAL EXPLORATIONS CHAPTER 7 214

context of the ICE implementation, uses polymorphism to interchange a specific formula

(or geometry) at run-time, without changing additional parameters or reassigning any of

the numerous associations.

7.1.2. USABILITY AND INTERACTION CONCEPTS

in the ICE implementation can be accessed through the interface. Shapes,

The implementation starts up with the model. A user instantiates shapes as well as

Modes of interaction include drawing modes, and selection modes (Figure 7.3). Drawing

Every object

regulators associations, schemata, and models, have specialized windows housing their

controls. Interaction with structures is achieved by manipulating the regulator's

parameters. Direct manipulation is implemented for selection and moving, but other

operations, such as rotation, scaling and changing attributes, are achieved through value

sliders. Furthermore, every element in the ICE implementation – shapes, regulators,

associations, schemata and models—can be either viewed or hidden in order to provide

focused views as well as integrated views of the configuration.

regulators by choose and click. Associations and schemata are generated by the system,

when users associate regulators and elements. Every element in the ICE implementation,

whether it is instantiated by users generated by the system, can be selected and

manipulated separately.

modes are for instantiating, copying, and moving elements and regulators. Selection

modes include single selection, multiple selection, and specialized selections. The latter

form selection includes selecting all shapes of an association, all shapes of a regulator,

and all associations of a regulator, efficiently, with just a single click. Additionally, when

an object is selected, its relevant interface widgets appear on its window.

FIGURE 7.3 - MODES OF INTERACTION

ARCHITECTURAL EXPLORATIONS CHAPTER 7 215

7.2. REGULATED ELEMENTS

The vocabulary of regulated elements consists of the point and a finite set of 3D shapes.

These can be manipulated in various ways, including common manipulations such as

translation, scaling, rotation, and shear, and manipulation specific to each shape such as

adjusting holes sizes, smoothness of surface, and dimensions of upper and lower faces.

Additionally, all the shape’s physical properties such as color, fill, line width, and

transparency are adjustable. Shapes are regulated thought their key points, which include

their centroids, or their upper or lower midpoints.

In the ICE implementation, shapes can be interchanged at any time. The shape

abstraction is separated from its specific geometry by means of the bridge pattern (Figure

7.4), allowing the geometry to be changed without disrupting any of the intricate

associations.

FIGURE 7.4 - SHAPE BRIDGE PATTERN

my_shape
my_geometry

IceElement
Shape

IceElement
IceGeometry

Line

Point

Plane

CylConePyrami

SpheriTorus

TrapezPrism

Cube_

Figure 7.5 shows the shape window, the shape controls, and illustrates examples of ICE

primitive shapes, for which the proportion can be manipulated in many ways.

ARCHITECTURAL EXPLORATIONS CHAPTER 7 216

a b

FIGURE 7.5 - SHAPE WINDOW AND SHAPE EXAMPLES

ARCHITECTURAL EXPLORATIONS CHAPTER 7 217

7.3. REGULATORS

A regulator has generative as well as manipulative capabilities: it generates one or more

outputs from a (user-defined) input; it maintains a persistent relation between outputs and

corresponding inputs upon manipulation. Changes to regulators transform outputs, and

may change the classification of the configuration, for instance its symmetry group.

Transformation-based regulators (for example, translation, rotation, mirror, and dilation)

control the relation between an input and its outputs. Each regulator computes the

position/orientation of outputs according to its specific transformation matrix. It is used

to generate outputs from an input, and to update outputs when the input is manipulated.

The inverse transformation is used to update the input when the outputs are manipulated.

Variation regulators control elements by means of a formula, and constraint regulators

control elements by means of an evaluation function.

Only a subset of the regulators of the ICE framework is realized in the ICE

implementation. In the transformation category, Translation, Rotation, Mirror, Dilation,

and Shear are implemented. In the variation category, Rhythm/Gradation and Exception

are implemented. In the constraint category, Alignment is implemented. All regulators

function in 3D space. The regulator parameters described in the ICE notation are the

manipulation handles in the ICE system.

Transformation-based regulators work by multiplying the regulated elements by the

regulator’s main transformation matrix. When their geometry is updated the

transformation matrix is pre- and post- multiplied by the rotation and translation matrices,

therefore modifying the regulator’s main transformation matrix. Transformation

regulators (Figure 7.6) include translation along a line, rotation about a line, mirror about

a point, line, plane, dilation about a point in the xyz direction and shear about a point

along one direction.

ARCHITECTURAL EXPLORATIONS CHAPTER 7 218

a- Translation b- Rotation c- Mirror

d- Dilation e- Shear

FIGURE 7.6 - TRANSFORMATION-BASED REGULATORS

The Rhythm/gradation regulator can only be used in composition with other

transformation regulators. These work by applying a formula to a specific attribute of the

shape or point. For instance, position, relative rotation, color and relative scale. There are

several version of this regulator, including a gradual rhythm, a cyclic rhythm, a sine

curve rhythm, and an upwards and downward rhythm. The gradual and cyclic Rhythm

types are illustrated in Figure 7.7. The exception regulator works by overriding the value

of a specific attribute of the regulated shape or point.

a b

FIGURE 7.7 - RHYTHM

The Alignment regulator can be generative or can be used in combination with generative

transformation regulators. Alignment works by constraining the position of the key-point

in the regulated shape about a point or along a line, plane, or circle. Key-points include

the shape’s centroid, or its upper or lower midpoints. Alignment regulators can be

combined to regulate different points in a set of shapes. Figure 7.8 illustrates a linear

ARCHITECTURAL EXPLORATIONS CHAPTER 7 219

element regulated by two simultaneous alignment regulators, with its upper midpoint

aligned by a line and its lower midpoint aligned by a line (7.8a), point (7.8b), or circle

(7.8c).

FIGURE 7.8 - ALIGNMENT

7.3.1. DYNAMIC ASSOCIATIONS

Elements can be associated with regulators at any stage of the exploration. An element

supporting multiple regulators maintains a list of its regulators. Likewise, a regulator

supporting multiple elements maintains a list of associations, each consisting of an input

and outputs. n

Within associations, images are indexed, and the index is treated as an active variable in

its regulator formula. Each association has a positive and negative output list, one on each

side of the input (Figure 7.9). An association traverses though the list of images, updating

these according to the transformation matrix or constraint of its regulator. The index

(positive or negative) is combined with the active parameter of the regulators

transformation matrix and therefore, determines the precise transformation for each

output.

s0

Association

s1 s2 s3 sn

Input Positive Output listNegative output list

s-1s-2s-3s-n

FIGURE 7.9 - THE ASSOCIATION OBJECT

ARCHITECTURAL EXPLORATIONS CHAPTER 7 220

The number of outputs generated is a function of the association, in this way, distinct

associations belonging to the shape regulator can have a different number of outputs. The

user can adjust the number of elements within an association anytime. Furthermore, the

user can choose whether to update all properties of the associated elements or just to

update the geometry.

Associations of non-generative regulators transform the input, and do not have any

outputs. Associations can also accommodate several inputs, thereby supporting regulators

that input several objects to output one resultant object, such as the union or intersection

regulators.

On the model, associations are displayed by means of a line linking associate elements

together and emphasizing the input elements (Figure 7.10a). Therefore, in a multiple

regulator schema, associations can be traced (Figure 7.10b)

a

b

FIGURE 7.10 - ASSOCIATION DISPLAY

There are several types of associations: a user can associate one element (or regulator) to

a regulator, or associate all elements (of a schema) to a regulator (Figure 7.11). An

association can also associate a schema, thus creating multiple output schemata from an

ARCHITECTURAL EXPLORATIONS CHAPTER 7 221

input schema. Additionally a user can relate separate elements to a regulator, thus

establishing a relation between them and creating an association. This functionality

serves when structures are discovered within configuration elements.

FIGURE 7.11 - ASSOCIATION TYPES

7.3.2. SIMULTANEOUS COMPOSITION OF REGULATORS

Simultaneous composition takes advantage of the regulator’s bridge pattern, where the

regulator object is separated from its formula or matrix, which is encapsulated in a

RegulatorIdentity object (Figure 7.12). This strategy enables various combinations of

regulators to be defined at runtime. Regulators can be composed, added, removed, or

replaced, and therefore, changing the regulation formulae and the behavior of the

regulated elements, without disrupting any associations.

FIGURE 7.12 - BRIDGE PATTERN FOR REGULATORS

my_regulator

regulator_identities_list

TransformationID

Union

Mirror

ConstraintID

Containm...

Equivalence

OperationID

SubdivisionCurve

Shear

IceElement
Regulator

Alignment Boundary

TopologicalID

Area

Angle

Difference
SubShape

Exception

Projection

Rotation

VariationID

Proportion

Connectedness

IceObject
RegulatorIdentity

HierarchicalID

Rhythm

Deformation

Dilation

Adjacency_

Translation

Differencial

Intersection

The regulator object contains all the regulator’s parameters and associations. The

RegulatorIdentity object encapsulates the formula as well as the geometry of the

regulator, therefore, enabling distinct geometries per identity. For example, in a

ARCHITECTURAL EXPLORATIONS CHAPTER 7 222

composition of mirror and translation, the mirror is a plane while the translation is a line,

and each of these can be manipulated separately.

The regulator has a list of RegulatorIdentity objects, which accommodates multiple

matrices or formulae. Upon regulation, the regulator goes thought this list and combines

all the matrices of formulae of these RegulatorIdentity objects. Transformation-based

regulators produce a single composite transformation matrix (and its inverse) by means of

matrix multiplication of all the unit matrices in the list as illustrated in Figure 7.13. The

composite matrix controls the positive list in the association, while its inverse controls the

negative list. Variation and constraint regulators produce a compound formula by

combining the formulae of their regulator identities.

T D R

s s2s1 s3 sn

1 0 0 tx

ty010

0 0 1 tz

1000

x

kx 0 0 tx

ty0ky0

0 0 kz tz

1000

cosz -sinz 0 1

10coszsinz

0 0 1 1

1000

x

T D R TDR

0 tx

ty0

kz tz

10

kx*cosz -kx*sinz

ky*coszky*sinz

0 0

00

=

FIGURE 7.13 - SIMULTANEOUS COMPOSITION

Direction vectors and transformation matrices are implemented as Expression objects that

store compound numerical expressions and trigonometric functions as well as numbers

(Figure 7.14)

ARCHITECTURAL EXPLORATIONS CHAPTER 7 223

FIGURE 7.14 - THE MATRIX-VECTOR OBJECT MODEL

direction vectors
my_regulator

tranformation_matrix

expressions
expressions

regulator_identity_list

IceObject
Expression

NumMatrix NumVectorExpVect..

IceObject
IceMatrix

OperationEx

IceObject
IceVector

ExpMatrix

FunctionEx

IceObject
RegulatorIdentity

ValueExp

IceElement
Regulator

7.3.3. REGULATOR CONTROLS

The ICE implementation supports both the geometric manipulation of the composition of

regulators and the geometric manipulation of the single regulator.

Regulators are controlled thought the regulator window (Figure 7.15). The user selects a

regulator (or multiple regulators) from a list, and then positions these on the model to be

instantiated. The user can add, remove, or replace regulators from a simultaneous

composition at any time. Each category of regulators, transformations, constraints, and

variations are listed in a separate box. The user can select single regulators from this box

in order to manipulate them separately. The geometric parameters of the regulators as

well as regulator-specific parameters and factors are controlled by means of sliders. The

regulator identity objects are hidden form the user. The interface gives the impression of

composing whole regulators objects. When a regulator is selected, only the applicable

widgets appear in the regulator window.

ARCHITECTURAL EXPLORATIONS CHAPTER 7 224

FIGURE 7.15 - REGULATOR CONTROLS

Associations are also manipulated thought the regulator window, where the numbers of

positive and negative output elements, as well as the property to update all associated

elements, are adjusted.

ARCHITECTURAL EXPLORATIONS CHAPTER 7 225

7.4. SCHEMATA

Schemata encapsulate configurations comprising of elements associated to regulators. In

addition to allowing multiple shapes to share a regulator, and multiple regulators to shape

a shape, schemata facilitate the interaction by allowing the manipulation of the structure

as a whole and the superimposition of distinct structures.

Schemata encapsulate a sequence of regulators. Regulators can be inserted in a sequence,

deleted from a sequence, or two regulators can be swapped within a sequence, thereby

redefining configurations, especially those with non-commutative regulators.

Such discrete manipulations of schemata (as well as the continuous geometric

manipulations of moving, rotating, and scaling) are achieved through the schema window

(Figure 7.16).

FIGURE 7.16 - SCHEMA WINDOW

Regulators use polymorphism to regulate shapes, points, and other regulators in a

ARCHITECTURAL EXPLORATIONS CHAPTER 7 226

seamless manner. Points are the simplest elements to regulate, with only position as the

regulated property. Shapes need additional properties to be regulated, such as their

orientation, scale, and physical and formal properties. Regulators, on the other hand are

the most complex to regulate, because their matrices need to be regulated as well as their

geometric and physical properties.

Once an element is regulated, it can be momentarily deleted, but it will not be completely

discarded. If a schema is reset, all the deleted points, shapes and regulators are re-

activated.

7.4.1. SUCCESSIVE COMPOSITION OF REGULATORS

In a multiple regulator schema, elements can take on the role of both inputs and outputs

simultaneously (Figure 7.17). The root of the tree is the first input; intermediate nodes are

outputs of the regulator above and inputs of the level below; and leaf nodes are outputs of

the last regulator. For a multiple element and multiple regulator schemata, this tree

becomes an acyclic graph.

R

T

M

O

i-1
M

i-1
R

i-1
M

i-1
M

T
i-1 i-2 i-n

T
i-1 i-2 i-n

T
i-1 i-2 i-n

i-n

T
i-1 i-2 i-n

FIGURE 7.17 - THE REGULATOR TREE

When an element is associated with multiple regulators, its outputs are subject to a

composition of transformations. In principle, there is no limit to the number of regulators

that can be composed successively.

For multiple regulator schemata, a change in one element will initiate a chain reaction of

changes that propagate across all the regulators. Changes in regulators are recursively

ARCHITECTURAL EXPLORATIONS CHAPTER 7 227

propagated “forward” so that they affect outputs of subsequent regulators. Changes in

elements are recursively propagated "forwards and backwards" and affect outputs of

subsequent, as well as antecedent, regulators. The user can select whether the change

propagation is to proceed forwards, backwards, or in both directions.

7.4.2. REGULATING CONTINUOUS SHAPES

Complex shapes are regulated through continuous generation of points. When a regulator

is updated, the shape is redefined in a virtually plastic manner. The resolution of the

shapes can be adjusted by increasing or decreasing the number of points.

In OpenGL, 3D shapes are rendered as surfaces. So it is necessary to map every ICE

shape representation to a representation of its outer surfaces in order to display it

properly. Such surfaces can be displayed or hidden at will.

The ICE implementation supports the selection of various subsets of a shape, whether it’s

a sub-point, sub-line, sub-surface, or sub-volume.

When defining a 3D shapes (with 3 regulators), it is possible to specify any combination

of discrete or continuous regulators to define a shape with its constituent linear or planar

components (Figure 7.18). Furthermore, it is possible to define subshapes within a shape

by indicating the indices to be generated (Figure 7.19).

a
b

FIGURE 7.18 - COMBINATION OF DISCRETE AND CONTINUOUS REGULATORS

ARCHITECTURAL EXPLORATIONS CHAPTER 7 228

a b

FIGURE 7.19 – COMPLETE SHAPE GENERATION AND SUBSET GENERATION

7.4.3. REGULATING REGULATORS

Regulators can be regulated creating multiple levels of control. When regulators are

regulated, the transformation matrix of the super-regulator influences the matrix of the

sub-regulators. This matrix is pre- and post- multiplied by the conjugates (the matrix and

its inverse) of the super-regulator in order to produce the correct regulation matrix for the

sub regulator.

Furthermore, the ICE implementation supports the regulation of schemata, therefore

enabling a regulator to input a shape (described by regulators) and create a novel

configuration by means of discrete generation. Regulating schemata involves regulating

the constituent regulators.

ARCHITECTURAL EXPLORATIONS CHAPTER 7 229

7.5. THE MODEL

In the ICE implementation, the model has two major components: the configuration

component consisting of the elements and regulators of the ICE framework, and the

graphic component, consisting of viewing, camera, and lighting. The controls for the

model display can be considered as view regulators.

The user can select between one, two, and four simultaneous view-ports, (Figure 7.20)

allowing the display of several views of the model simultaneously. These can be

axonometric, perspective, top, front, back, or side views. Each view-port can be selected

and manipulated independently. The user can move, rotate or scale, the model as a whole

and can control the camera to focus on particular aspects of the configuration model.

Additionally, wire frame views as well as shaded views of the model are available. The

views and camera controls are located on the right side of the main model window, which

is designated for common manipulations (Figure 7.20), or alternatively, on the view

window (Figure 7.21a) where less frequent manipulations are placed. The main model

window also serves for setting interaction modes and accessing other windows.

FIGURE 7.20 - THE MAIN MODEL WINDOW

ARCHITECTURAL EXPLORATIONS CHAPTER 7 230

Since the ICE implementation is in 3D, it is important to have adequate lighting to shade

the model elements properly. Lights can be turned on and off, and the position,

orientation, intensity, and color of the lights, are adjustable, as well as their ambient,

diffuse, and secular components. All lighting controls are located in the light window

(Figure 7.20b).

FIGURE 7.21 - VIEW AND LIGHTING CONTROLS

Additional model elements include the coordinate axes, and the positioning plane (Figure

7.22). The coordinate axes intersect at the origin, forming the three coordinate planes;

each has a corresponding grid with adjustable resolution. The plane serves as a

positioning device for direct input. A point on the 2D screen corresponds to infinitely

many positions (forming a line) in its 3D model projection. The intersection of this line

with the input plane serves to determine the precise position of the input on the 3D

model. The plane can be set parallel to any of the 3D coordinate planes or can be set to

any orientation by changing its direction vectors.

ARCHITECTURAL EXPLORATIONS CHAPTER 7 231

a

b

c

FIGURE 7.22 - THE AXES, THE POSITIONING PLANE, AND THEIR CONTROLS

ARCHITECTURAL EXPLORATIONS CHAPTER 7 232

7.6. HISTORY AND PROCESS CAPTURE

In the ICE implementation, every exploratory action, whether it is generative or

transformative is recorded, in order to track the process. The current history controls,

located in the history window (Figure 7.23) include playback, playback speed, loading,

saving history and displaying the history list. In this way the whole process of exploration

can be recorded and analyzed for further studies.

FIGURE 7.23 - HISTORY WINDOW

ARCHITECTURAL EXPLORATIONS CHAPTER 7 233

ARCHITECTURAL EXPLORATIONS CHAPTER 8 234

CHAPTER 8

DISCUSSION

This chapter concludes the dissertation by a discussion of the ICE framework in

comparison to other representations, as well as a review the contributions of this work,

and a presentation on the future directions for the ICE framework.

8.1. COMPARATIVE ANALYSIS

This section presents a comparative analysis of the ICE framework with constraint-based,

grammar-based, associative, and mathematical representations.

8.1.1. ICE AND CONSTRAINT-BASED REPRESENTATIONS

The ICE representation differs from constraint-based representations in its capacity to

encapsulate lower-level constraints into higher-level regulating constructs. While

constraint-based representations operate with basic unary and binary constraints, ICE

operates with more complex, yet more, intuitive entities. From a usability perspective,

regulators overcome some of the problems found in typical constraint-based systems.

Constraints are either system-defined (Briar, Sketcher) or user-defined (SketchPad,

CoDraw). System defined constraints can lead to misinterpretation of user intent. On the

other hand, users specifying and updating every constraint can become increasingly

cumbersome with complex configurations, and can distract from the major design task.

Regulators simplify user interaction with multiple constraints by grouping related

constraints, and enabling users to generate and manipulate them simultaneously. Users

interact with higher-level regulators, while regulators manage lower-level constraints. In

this manner, users are relieved from the burden of specifying and updating numerous

lower-level constraints. Still, users maintain control over the constraint definitions of

their configuration though regulators.

ARCHITECTURAL EXPLORATIONS CHAPTER 8 235

Through this higher-level regulation, composing, transforming and redefining structures,

both in a continuous and discrete manner, provide a more stimulating exploratory

experience.

8.1.2. ICE AND ASSOCIATIVE REPRESENTATIONS

The ICE representation is an associative representation. However, unlike

GenerativeComponents, ICE supports bi-directional change propagation; and unlike

ReDraw with its three-tier hierarchical structure, ICE support multiple levels of control

structures. Although ReDraw’s pencil lines can be considered a primitive form of an

alignment regulator, the ICE regulators are more diverse, and compositions strategies are

more elaborate. Furthermore, ReDraw imposes an order on the drawing sequence (pencil

lines first, then ink lines), while ICE requires no order for generation or manipulation.

8.1.3. ICE AND DESIGN GRAMMARS

ICE differs from design grammars in its representation for configurations, as well as in its

strategy for transformations.

In grammars, the configuration is represented by shapes, which are in turn represented by

lines and points. The shape itself does not recall its generation path nor does it capture

relations between its parts. The only exception is Carlson’s structured grammars that

capture a transformation, which maps a shape from the origin to its intended position and

orientation. ICE, on the other hand, represents the shape by means of relations among its

parts. These relations determine the way the shape is generated, and their corresponding

parameters guide further transformations. This representation makes the shapes

themselves much richer in information.

In grammars, configurations are transformed through the application of production rules

in a sequential manner; transformations (as well as relations and constraints) are

implicitly encapsulated in those rules. In ICE, however, transformations are explicitly

encapsulated in regulator parameters. The transformation syntax in ICE is comparable to

grammar rules, but the recognition process (for which the left hand of the rule is matched

to the configuration) is much simpler in ICE, where the recognition process is explicitly

built in the string definition. In grammars, the recognition process is based on spatial

ARCHITECTURAL EXPLORATIONS CHAPTER 8 236

algorithms mapping the points and lines of the left hand side of the rule to the

configuration. In ICE, however, there is no process for recognizing spatially equivalent,

yet, notationally different configuration.

8.1.4. ICE AND MATHEMATICAL REPRESENTATIONS

Although both ICE and Cha’s representation of shape patterns use predicate and

arguments, the purpose of Cha’s representation is shape analysis, while the purpose of the

ICE representation is design exploration. ICE differs from Cha’s shape patterns in

numerous ways. ICE is a 3-Dimensional representation that includes a description for

individual shapes as well as patterns. ICE is broader in scope (more relationships are

supported) and more diverse in generation methods (continuous discrete and subpart

generation are supported). From a syntactic perspective, the ICE’s representation for

output sequences is iterative, but it allows variations within the iterations, while Cha’s

representation for each element in the sequences is recursive. ICE uses mnemonic

symbols to denote its relations, and it uses brackets and indices consistently, thus

promoting readability. ICE also has a shape encapsulation strategy that simplifies the

description. In addition to the configuration syntax, ICE has a complementary syntax for

transformations.

The ICE representation and Leyton’s representation are based on the same mathematical

principles, however, their respective goals and approaches are different. Leyton’s purpose

is to represent existing shapes and configurations with a rigorous theoretic foundation.

His objective is to maximize transfer and maximize recoverability. ICE’s objective is to

maximize the exploratory potential of design configurations, and to minimize the

complexity of their corresponding descriptions. In Leyton’s representation there are no

objects, just actions. ICE has the opposite approach. In ICE, actions are encapsulated by

objects (regulators), therefore, allowing these to be grabbed and manipulated after the

action initially takes place. This approach converts actions, which are typically one time

events, to persistent controllable events.

Leyton represents all shapes and configurations by means of symmetry groups and

transfer structures. He claims that all design processes are effectively asymmetry

building. In his effort to maximize transfer and recoverability, Leyton imposes an order

ARCHITECTURAL EXPLORATIONS CHAPTER 8 237

of symmetry, then asymmetry, on the action sequences for shape generation. This often

complicates the generation of the shape. ICE, on the other hand, has a significant amount

of recoverability, but does not impose a specific sequence on the generation process. ICE

allows for multiple representations in order to maximize the options for shape generation.

Leyton always uses transfer structures as necessary constructs for describing all parts of a

configuration; ICE, however, use transfer structures for describing shapes and promoting

exploration, but transfer is not a necessary condition for all parts of the configuration. For

instance, two distinct cubes can be described in ICE without transfer.

ICE’s regulator structure can also be described by groups; however, not all shapes can be

described simply by means of groups. For instance, a regular hexagon has a dihedral

group, but not the semi-hexagon because it does not satisfy the group property of closure

under composition. ICE supports the generation of such a shape (by three steps) in the

same way the hexagon is generated, but with different parameters. Leyton needs to create

the symmetrical hexagon first, then, define other groups to remove parts of it, therefore

lengthen the process of generation.

From a syntactic perspective, Leyton’s notation does not denote all the necessary

parameters for shape generation. Additionally, the syntax for unfolding groups is quite

complex.

The ICE representation simplifies the process of shape generation as much as possible

and the syntax uses a minimum number of steps (motions) to create shapes. These steps

are comparable to a sequence of pen motions in 3-Dimensional space.

8.1.5. ICE AND SOLID MODELING

The ICE framework differs from solid modeling and constructive solid geometry

representations in that ICE relies on compositions of relations to define forms rather than

a fixed set of components and operations.

8.1.6. ICE AND COMPUTING LANGUAGES

ICE resembles a computing language in its functional approach as well as object oriented

ARCHITECTURAL EXPLORATIONS CHAPTER 8 238

quality. It has input and output parameters, functional nesting as well as object

encapsulation. However, it is not quite a language, because it does not have explicit

conditional and procedural definitions nor does it explicitly support inheritance. Although

some of these are captured within the regulators — for example, constraints encapsulate

conditionals, while operations encapsulate procedural algorithms — the ICE notation

itself cannot be used to define conditionals or procedures, explicitly.

8.2. CONTRIBUTIONS

This research describes a novel way of representing and exploring design configurations

by means of generative and relational structures. It advances the state of the art in

computational design representations through the following contributions:

A Modular Approach to Organizing Lower-Level Relations into Higher-Level

Structures. Regulators of the ICE framework capture design relations as simple building

blocks that are composed (in parallel and in sequence) to define the structure of complex

configurations.

The Support for Iterative Explorations. Regulators, in their capacity to be decomposed,

modified (in various ways), and replaced, offers the ability to completely transform and

redefine configurations by changing a few structural parameters, thus reducing the labor

involved in exploring with structures.

The Encapsulation Design Descriptions. The ICE notation introduces syntax for

representing geometric configurations, completely, accurately and succinctly by means of

a string. Its short form and shape encapsulation mechanism augment the notation with

flexibility and enhance readability. Furthermore, describing complex geometrical

configurations by means of a concise string has the additional computational advantages

of minimizing the size of storage, maximizing the speed of file transfer, and facilitating

the analysis of configurations.

The Encapsulation Design History. The ICE notation string, in its capacity to capture

parsimoniously the generative process of a configuration, encapsulates its generative

history. In its capacity for recording transformations, the ICE notation captures the

exploratory history for a configuration.

Deleted: a syntax

ARCHITECTURAL EXPLORATIONS CHAPTER 8 239

The Derivation of Additional Information from Notational Descriptions. The notational

description allows for the derivation of additional shape information, such as volumes

and subshapes, by simple computation of regulator parameters. Furthermore, with some

algorithmic interpretation, the notational description enables the deduction of the precise

steps for transforming an initial configuration to the goal configuration. This derivational

mechanism allows an unprecedented level of detail to be stored in such a concise string.

A Novel Method of Interaction with Design Configurations. The ICE implementation

supports direct-manipulation of structures, while providing instantaneous visualization of

the effects for these manipulations. It enables designers to transform structures, discretely

and continuously, thus allowing the complete redefinition of configurations with

minimum steps. Such iterative manipulation, coupled with visualization, facilitates the

modification of earlier decisions, and provides a new exploratory experience in design.

Strategic Exploration. The ICE implementation allows users to define their manipulation

handles for any object, based on the relationships they choose. Therefore, they are able to

influence the direction of the subsequent explorations that will occur during design. In

this way users can strategically compose their regulators with the intention of specific

future explorations.

ARCHITECTURAL EXPLORATIONS CHAPTER 8 240

8.3. FUTURE WORK

The ICE framework, both in its notation and implementation forms, has potential for

future investigation. Several venues for extension as well as potential applications are

discussed below.

8.3.1. EXTENDING THE ICE FRAMEWORK

Regulators Representing Non-Geometric Information. Although regulators were

described as geometric in nature, the vocabulary of the ICE framework can be extended

to include non-geometric design information. These include physical/material properties

(such as light reflectance, thermal transmission, and acoustic absorption), budgets

constraints and design requirements (such as privacy or climatic considerations). With

such semantic additions, the ICE framework would evolve into a complete design

language relating semantics to geometry, and therefore, enabling the control of a design

through its requirements and through its semantic property.

Regulators in Other Design Domains. Although regulators were primarily conceived for

architectural design, this concept can be utilized in other domains, such as mechanical,

industrial, and graphic design. Geometric regulators are easily applicable, while other

domain specific regulators can be further developed, in particular, motion regulators can

be of great potential in exploring mechanical and industrial design. Furthermore, by

adapting non-geometric regulators to semantic properties, the regulator approach can be

applied to domains that do not rely on geometry.

Recognition of Implied and Emergent Structures. Gero (1998) and others investigated

recognition of emergent structures in design. Although recognizing structures in ICE is a

complex task, a module for recognizing design structures would complement the ICE

implementation, and would uncover implied and hidden structures in any configuration.

Therefore, it would enable the identification of the geometrically equivalent, yet

notationally different, representations, in cases where multiple representations exist.

Two-way Integration between the Notation and the Implementation. The interaction

between the notation and the 3D model is not sufficiently integrated. A parser that

converts the notational string into a 3D model and converts a model into a string would

ARCHITECTURAL EXPLORATIONS CHAPTER 8 241

provide the two-way integration, where a change in the notation would appear on the

model, and a change in the model would be updated on the notation. Furthermore, an

editor for the notation, where the syntax (brackets, commas, superscripts, etc) is managed

automatically would greatly enhance the usability of the notation.

Usability. Although ICE represents complex geometric relationships in a simple way,

interaction with the ICE models in 3-dimension is not ideal. Complexities of converting

2D interaction in 3D space are still prevalent. A significant research venue would be to

investigate novel interaction hardware applicable to the design exploration activities of

the ICE system. The ICE generation sequences can be mapped to gestures of drawing

with the pen in a 3D sketch environment. Manipulation would also be mapped to

gestures, without intermediate windows and widgets.

Cognitive Implications and Predictability. Predictability of the behavior of the ICE

models upon manipulation is proportional to the complexity of the configuration and

depends on whether the manipulations are discrete or continuous. Discrete manipulations

are far less predictable and more surprising than continuous ones. Predictability is also

affected by the type of transformation that is applied. A user study documenting factors

in ICE that influence predictability, as well as the cognitive implication of predictably, is

worthy of further investigation.

8.3.2. POTENTIAL APPLICATIONS FOR THE ICE FRAMEWORK

Process Analysis. ICE captures history on two levels: (1) the generative sequence

captured in the shape definition; and (2) a record of transformations that occurred in the

process of creating the design. Keeping track of the history is a valuable tool in analyzing

the course of design processes precisely, and completely. Furthermore, history can be

used effectively as a multidimensional element of the exploration. Users can step through

their history, forwards and backwards, and change the course of the exploration while

replaying their design actions. This would result in a history tree of branching exploration

paths, instead of a linear history list.

Case-base Adaptation. The ICE representation can be integrated to case base systems,

where cases are represented by means of the ICE notation, and the adaptation of a case to

a new problem can be achieved readily through regulator transformations. As novel

ARCHITECTURAL EXPLORATIONS CHAPTER 8 242

shapes and configurations are defined by regulators, these can be stored in the

configuration library, then later retrieved, re-used, and manipulated, as part of other

configurations.

Application of the ICE Notation to Genetic Algorithms. The ICE representation can be

used as the basis for genetic algorithms. Configurations would be represented in ICE and

the evolution patterns would be based on patterns of random ICE transformations. These

would result in more intricate evolution patterns than those produced by typical binary

mutations used in genetic algorithms.

Integration with Evaluation Systems. ICE can be integrated with a design evaluation

system: as a user explores alternate solutions, his/her design can be evaluated in real time,

thereby enabling him/her to continuously compare the results of the exploration. In this

scenario, regulators and evaluators work together to guide users in transforming design

configurations in ways that improves the quality of the design.

Integration with Generative Systems. Regulators can be augmented to generative

systems, in order to enable users to further manipulate the generated results. Shape

configurations can be represented as ICE strings, while generative rules would be

represented as ICE transformations. In the present context, users generate and control

regulators. In a generative context, the system can generate regulators as part of

configurations, therefore making generated configurations very flexible. Furthermore,

generative systems can focus on the use of specific regulators, in order to promote

exploration within certain styles.

APPENDIX A

BIBLIOGRAPHY

Aish, 2005 Aish, R. – Introduction to GenerativeComponents. –
http://www.bentley.com/en-
US/Markets/Building/White+Papers/White+Papers.htm

Akin, 1978 Akin, O. – How Architects Design. – Artificial Intelligence and
Pattern Recognition in Design, North Holland Publishing Company,
Amsterdam, 1978.

Akin, 1978b Akin, O. – Quantification of Three-Dimensional Structure. – Journal of
Experimental Psychology, American Psychology Association, 1978.

Akin, 1980 Akin, O. – Structural Properties of Three Dimensional Block
Arrangements. –Technical Report, Carnegie Mellon University,
 Pittsburgh. 1980

Akin, 1986 Akin, O. – Psychology of Architectural Design. – Pion Ltd., London,
1986.

Akin, 1987 Akin, O. – Problem Structuring in Architectural Design. – Technical
Report, Carnegie Mellon University, Pittsburgh, 1987.

Akin, 1994 Akin, O. – Psychology of Early Design. – Technical Report, Carnegie
Mellon University, Pittsburgh, 1994.

Akin, 1996a Akin, O., Akin C. – Expertise and Creativity in Architectural Design. –
Descriptive Models of Design, Istanbul, 1996.

Akin, 1996b Akin, O., Akin, C. – Frames of Reference in Architectural Design:
Analyzing the Hyper Exclamation! AHA!. – Design Studies, vol.17,
Elsevier Science, New York, 1996.

Akin, 2003 Akin, Ö., Moustapha H. – Strategic Use of Representation in
Architectural Massing. – Design Studies, vol.25 #1, Elsevier Ltd.,
London, 2003.

Akin, 2004 Akin, Ö., Moustapha, H. – Formalizing Generation and Transformation
in Design: a studio case study. – First International Conference on
Design Computing and Cognition (DCC’04), Kluwer Academic
publisher, the Netherlands, 2004.

ARCHITECTURAL EXPLORATIONS APPENDIX A 243

AutoDesk, 2005 AutoDesk. – An Introduction to AutoDesk Revit.
http://usa.autodesk.com/adsk/servlet/index?siteID=123112&id=3782406

AutoDesk, 2005 AutoDesk. – AutoDesk Revit User Guide.
http://usa.autodesk.com/adsk/servlet/item?siteID=123112&id=5107070

Archea, 1987 Archea, J. – Puzzle Making: What Architects Do When No One is
Looking. – Computability of Design, John Wiley and Sons Inc., New
York, 1987.

Argawal, 1997 Argawal, M. – Shape Grammars and their Languages: a Methodology
for Product Design and Product Representation. – ASME, Sacramento,
1997.

Badros, 1998 Badros, G., et, al. – Cassowary Linear Arithmetic Constraint Solving
Algorithm. – Technical Report, University of Washington, Seattle,
1998.

Baglivo, 1983 Baglivo, J., Graver, J. – Incidence and Symmetry in Design and
Architecture. – Cambridge University Press, London, 1983.

Baird, 1973 Baird I.C. – Designing with Volumes. – Cantlab Press, Cambridge
England, 1973.

Baker, 1996 Baker, G. – Design Strategies in Architecture. – E & FN Spon, 1996.

Baudish, 1996 Baudish, P. – The Cage: Efficient Construction in 3D Using a Cubic
Adaptive Grid. – UIST 96, ACM Press, Seattle, 1996.

Baykan, 1997 Bakan, C., Fox, M. – Spatial Synthesis by Disjunctive Constraint
Satisfaction. – AI EDAM, Cambridge University Press, 1997.

Blackwell, 1984 Blackwell, W. – Geometry in Architecture. – John Wiley and Sons
Inc., 1984.

Booth, 1983 Booth, N. – Basic Elements of Landscape Architectural Design. –
Elsevier, New York, 1983.

Brier, 1986 Brier, E. – Stone, M. Snap-Dragging. – ACM Siggraph, vol.20, #4,
ACM Press, Dallas, 1986.

Brier, 1988 Bier, E. – Snap-Dragging: Interactive Geometric Design in Two and
Three Dimensions. – Technical Report, University of California at
Berkley, 1988.

Bruegge, 2003 Bruegge, B., Dutoit, A. – Object Oriented Software Engineering: Using
UML, Patterns and Java. – 2nd edition. Prentice Hall, NJ, 2003.

Cagan, 2001 Cagan J. – Engineering with Grammars. Formal Engineering Design
Synthesis. – Cambridge University Press, New York, 2001.

ARCHITECTURAL EXPLORATIONS APPENDIX A 244

Carlson, 1989 Carlson, C. – Structured Grammars and Their Applications to Design. –
Technical Report, Carnegie Mellon University, Pittsburgh, 1989.

Carlson, 1990 Woodbury R., Carlson C. – Hands on exploration of Recursive forms. –
Technical Report, Carnegie Mellon University, Pittsburgh, 1990.

Carlson, 1993 Carlson, C. – Grammatical Programming. – Ph.D. Disseration,
Carnegie Mellon University, Pittsburgh, 1993.

Cha, 1998 Cha, M.Y., Gero, J. – Shape pattern recognition using a computable
shape pattern representation. – Artificial Intelligence in Design '98,
Kluwer, Dordrech, 1998.

Cha, 1999 Cha, M.Y., Gero, J. – Style Learning: Inductive Generalization On
Architectural Shape Patterns. – Architectural Computing from Turing
to 2000, eCAADe, University of Liverpool, Liverpool.

Cha, 200? Cha, M.Y., Gero, J. – Shape Pattern Representation for Design
Computation. –
http://www.arch.usyd.edu.au/%7Ejohn/publications/ChaGero.pdf

Chase, 1988 Chase, S. – Shapes and Shape Grammars: from Matematical Models to
Computer Implementations. – Environment and Planning B, vol.16 Pion
Ltd., London, 1988.

Chase, 1996 Chase, S. – Representing Designs with Logic Formulations of Spatial
Relations. –Visual Representation, Reasoning and Interaction in
Design, 4th Conference on Artificial Intelligence in Design, Stanford
University, 1996.

Ching, 1996 Ching, F. – Form, Space and Order. – John Wiley & Sons Inc., New
York, 1996.

Ching, 1997 Ching, F. – A Visual Dictionary of Architecture. – John Wiley & Sons
Inc., New York, 1997.

Clark, 1982 Clark, R. – Analysis of Precedents. – North Carolina State University,
1982.

Clark, 1985 Clark, R. – Precedence in Architecture. – Van Nostrand Reinhold, New
York, 1985.

Coxeter, 1987 Coxeter, H. – Geometry Revisited. – The Mathematical Association of
America, Washington D.C. 1987.

Cromwell, 1997 Cromwell, P. – Polyhedra. – Cambridge University Press, Cambridge,
1997.

Curtis, 1935 Curtis, N. – Architectural Composition. – J. H. Jansen, C, 1935.

ARCHITECTURAL EXPLORATIONS APPENDIX A 245

Dix, 1993 Dix et. al. – Human Computer Interaction. – Prentice Hall, New York,
1993.

Dohmen, 1995 Dohmen. M. – A Survey of Constraint Satisfaction Techniques. –
Computer and Graphics, vol.19 #6, Elsevier Science Ltd., New York
1995.

Eastman, 1987 Eastman, C. – The Design of Assemblies. – Technical Report,
Carnegie Mellon University, Pittsburgh, 1987.

Economou, 1999- Economou, A. – The Symmetry Lessons of Froebel Gifts. –
Environment and Planning B, vol.26, Pion Ltd., London 1999.

Eggink, 2001 Eggink, et. al. – Smart Objects: Constraints and Behavior in a 3D
Design Environment. – Modeling and Planning, Virtual Environments,
New York, 2001.

Emmer, 1993 Emmer, M. – The Visual Mind. – MIT Press, Cambridge, 1993.

Fernando 1993 Fernando et. al. – Interactive Constraint Based Solid Modelers Using
Allowable Motion. – Second Symposium on Solid Modeling and
Applications, ACM press, New York, 1993.

Ferrante, 1991 Ferrante A. et al. – Computer Graphics for Architects and Engineers. –
Elsevier, New York, 1991.

Finke, 1989 -- Finke, R. – Principles of Mental Imagery. – MIT Press, Cambridge,
Mass, 1989.

Flemming, 1990 Flemming U. – Syntactic Structure in Architecture. – The Electronic
Design Studio, MIT Press, Cambridge,1990.

Flemming, 1995 Flemming, U., Chien. S. Schematic Layout Design in SEED
Environment. – Journal of Architectural Engineering American Society
of Civil Engineers, 1995.

Foley, 1996 Foley, J., VanDam, A. – Computer Graphics: Principles and Practices.
– Addison Wesley Publishing Co., Holland, 1996.

Foz, 1973 Foz, A. – Observation on Designer Behavior in the Parti. – In The
Design Activity International Conference, vol.1, Printing Unit,
University of Strathclyde, Glasgow, 1973.

Frohlich, 1996 Frohlich, D. – Direct Manipulation and Other Lessons. – Hewlett
Packard Laboratories, Bristol 1996.

Gabriel, 1997 Gabriel J., F. – Beyond The Cube: The Architecture of Space Frames
and Polyhedra. – John Wiley & Sons Inc., 1997.

Gamma, 1996 Gamma, E., Helm, R. – Design Patterns: Elements of Reusable Object-
Oriented Software. – Addison Wesley Publishing Co., Holland, 1994.

ARCHITECTURAL EXPLORATIONS APPENDIX A 246

Gero, 1994 Gero, J., Yan, M. – Shape Emergence by Symbolic Reasoning. –
Environmental and Planning B, vol.21, Pion Ltd., London 1994.

Gero, 1995 -- Gero J., Jun, H. Getting Computers to Read the Architectural Semantic
of Drawings. – ACADIA’95, Seattle, 1995.

Gero, 1997 Gero, J., Damsky, J.C. – A Symbolic Model for Graphical Emergence.
– Environmental and Planning B, vol.24, Pion Ltd., London 1997.

Gero, 1998 -- Gero, J., Jun, H. – Emergence of Shape Semantics of Architectural
Shapes. – Environmental and Planning B, vol.25, Pion Ltd., London
1998.

Gleicher, 1990 Gleicher, M. – Snap Together Mathematics. – Technical Report,
Carnegie Mellon University, Pittsburgh, 1990.

Gleicher, 1991 Gleicher, M., Witkin, A. – Creating and Manipulating Constrained
Models. – Technical Report, Carnegie Mellon University, Pittsburgh,
1991.

Gleicher, 1993a Gleicher, M. – Drawing with Constraints. – In the Visual Computer,
Springer, Berlin, 1993.

Gleicher-1993b Gleicher, M., Witkin, A. – Supporting Numerical Computations in
Interactive Contexts. – Graphics Interfaces '93, Morgan Kauffmann,
San Francisco, CA, 1990.

Gleicher, 1994 Gleicher, M. – A Differential Approach to Graphical Interaction. –
Ph.D. Dissertation, Carnegie Mellon University, Pittsburgh, 1994.

Goldshmidt, 1990 Goldshmidt, G. – On Visual Design Thinking: The Vis Kids of
Architecture. – Design Studies, vol.15 #2, Butterworth and Co. Ltd.,
1990.

Goldsmidt 1996 Goldshmidt, G. – Capturing Indeterminism: Representation of the
Design Problem Space. – Descriptive Models of Design, Takisla,
Istanbul, 1996.

Grim., 1995 Grim, et. al. – Visual Interfaces for Solid Modeling. – UIST 95,
Pittsburgh, ACM Press, 1995.

Gross, 1987 Gross, M. et al. – Designing with Constraints. – In Computability of
Design, John Wiley and Sons Inc., New York, 1987.

Gross, 1990 Gross, M. – Relational Modeling A Basis From Computer Aided
Design. – The Electronic Design Studio, MIT Press, Cambridge, 1990.

Gross, 1991 Gross, M. – Grids in Design and CAD. – Proceedings ACADIA 91-
Reality and Virtual Reality, Los Angeles, 1991.

ARCHITECTURAL EXPLORATIONS APPENDIX A 247

Gross, 1992 Gross, M. – Graphical Constraints in CoDraw. – IEEE Workshop on
Visual Languages, Seattle WA, 1992.

Gross, 1996a Gross, M. – Why can't CAD be more like Lego. – Automation in
construction, Elsevier, New York, 1996

Gross, 1996b Gross, M. – Form Writer. – CAAD Futures 2001, Kluwer Academic
Publishers, The Netherlands, 1996.

Guan, 1996 -- Guan, X., et al. – A Prototype System for Early Geometric
Configuration Design. – Computers in Industry, vol.30, 1996.

Harada, 1995 Harada, M., et. al. – Interactive Physically Based Manipulation of
Discrete Continuous Models. – SIGGRAPH’95, Computer Graphics
Proceeding Annual Conference Series, ACM Press, Montreal 1995.

Harada, 1997 Harada, M. – Discrete/Continuous Design Exploration by Direct
Manipulation. – Ph.D. Dissertation, Carnegie Mellon University,
Pittsburgh, 1997.

Hargittai, 1998 Hargittai, Istvan. – Symmetry II: Unifying Human Understanding. –
Pergamon Press, Oxford, 1998.

Heiserman, 1993 Heiserman, J. Woodbury, R. – Generating Languages of Solid Models.
– Second Symposium on Solid Modeling and Applications, ACM Press,
New York, 1993.

Herndon, 1992 Herndon, K., et, al. – Interactive Shadows. – UIST '92, ACM Press,
New York, 1992.

Hill, 2001 Hill, F. – Computer Graphics Using Open OpenGL. – Prentice Hall,
New Jersey, 2001.

Hoffmann, 1989 Hoffmann, C. – Geometric and Solid Modeling: An Introduction. –
Morgan Maufmann Publishers Inc., San Mateo, CA, 1989.

Hoggar, 1992 Hoggar, S. – Mathematics for Computer Graphics. – Cambridge
University Press 1992.

Honda, 1999 Honda et.al. – Integrated Manipulation: Context Aware Manipulation
of 2D Diagrams. – UIST 99, Asheville, 1999.

Hudson, 1996 Hudson S., Smith, I. – Ultra Lightweight Constraints. – UIST 96, ACM
Press, Seattle, 1996.

Huybers, 1993 Huybers, P. – Computer Aided Design of Polyhedral Building
Structures. – Design Studies, vol.14, #1, Butterworth and Co. Ltd.,
1993.

Josuttis, 1999 Josuttis, N. – The C++ Standard Library: A Tutorial and Reference. –
Addison Wesley Longman Inc, Reading Mass., 1997.

ARCHITECTURAL EXPLORATIONS APPENDIX A 248

Knight, 1983 Knight, T. – Transformation of Languages of of Design (part 1 to 3). –
Environmental and Planning B, vol.10, Pion Ltd., London, 1983.

Knight, 1994 Knight, T. – Shape Grammars and Color Grammars in Design. –
Environmental and Planning B, vol.21, Pion Ltd., London, 1994.

Knight, 1995a Knight, T. – Constructive Symmetry. – Environment and Planning B,
vol.21, Pion Ltd., New York, 1995.

Knight, 1995b Knight, T. – Transformations in Design: A Formal Approach to
Stylistic Change and Innovation in Visual Art. – Environment and
Planning B, vol. 21, Pion Ltd., New York, 1995.

Knight, 1999 Knight, T. – Shape Grammars: Six types. – Environmental and
Planning B, vol 26, Pion Ltd., London, 1999.

Kolarevic, 1993 Kolarevic, B. – Geometric Relations as a Framework Design
Conceptualization. – Ph.D. Dissertation, Harvard University,
Graduate School of Design, 1993.

Kolarevic, 1997 Kolarevic, B. – Lines And Geometric Relations as a Framework for
Exploring Shape, Dimension and Geometric Organization in Design. –
CAAD Futures 97, Kluwer Academic Publishers, Munich, 1997.

Krawczyk, 1997 Krawczyk, R. – Programs as Pencils: Investigating Form Generation. –
ACADIA 9, Ohio, 1997.

Krawczyk, 2001 Krawczyk, R. – Curving Spirolaterals. – Mathematics and Design
2001, Third International Conference, Deakin University, Geelong,
2001.

Krier, 1988a Krier, R. – Architectural Composition. – Rizolli International
Publication Inc., New York, 1988.

Krier, 1988b Krier, R. – Urban Space. – Rizolli International Publication Inc., New
York, 1988.

Krishnamurti, 1979 Krishnamurti, R. – On the Generation and Enumeration of Tessellation
Designs. – Environment and Planning B, vol.6, Pion Ltd., London
1979.

Krishnamurti, 1992 Krishnamurti, R. – The Maximal Representation of a Shape. –
Environment and Planning B, vol.19, Pion Ltd., London 1992.

Laffra, 1995 Laffra. C. – Object Oriented Programming For Graphics. – Springer,
New York, 1995.

Laseau, 1992 Laseau, P., Tice J. – Frank Lloyd Wright: Between Principle and Form.
– Van Nostrand Reinhold, 1992.

ARCHITECTURAL EXPLORATIONS APPENDIX A 249

Le Corbusier, 1960 Le Corbusier. – Towards a new Architecture. – Preager Publishers
Inc., 1960.

Leeuven, 1997 Leeuven, J. – Architectural Design by Features. – CAAD Future’ 97
Proceedings, Kluwer Academic Publishers, Munich, 1997.

Leeuven, 1997 Leeuven, J. – Architectural Design by Features. – CAAD Futures’99
Proceedings, Kluwer Academic Publishers, Munich 1997.

Leyton, 1992 Leyton, M. – Symmetry, Causality, Mind. – The MIT Press,
Cambridge, Mass., 1992.

Leyton, 1999 Leyton, M. – Group Theory and Architecture I and II. – Visual
Mathematics, vol.1 #3, and vol.1 #4, 1999.
http://members.tripod.com/vismath/pap.htm

Leyton, 2001 Leyton, M. – A Generative Theory of Shape. – Springer Verlag, New
York, 2001.

Liu, 2000 Liu, Y. – Computational Symmetry. – Technical Report, Carnegie
Mellon University, Pittsburgh, 2001.

Mahdavi, 1997 Mahdavi, A. Suter, G. – On Implementing a Computational Facade
Design Tool. – Environment and Planning B, vol.24, Pion Ltd.,
London, 1997.

Madrazo, 1994 Madrazo, L. Durant and The Science of Architecture. – Journal of
Architectural Education, vol.48 #1, Association of Collegiate Schools
of Architecture, Washington, May 1994.

Madrazo, 1995 Madrazo, L. – Concept of Type in Architecture. – Federal Institute of
Technology Zurich, 1995.

Maher, 1990 Maher M. – Processes Models for Design Synthesis. – AI Magazine,
vol.11 #1, American Associations for Artificial Intelligence, 1990.

Mantyla, 1988 Mantyla, M. – An Introduction To Solid Modeling. – The Computer
Science Press Inc., Maryland, 1988.

March, 1972 March, L., Martin, L. – Urban Space and Structures. – Cambridge
University Press, London, 1972.

March, 1974 March, L., Steadman P. – The Geometry of the Environment. – The
MIT Press, Cambridge, Massachusetts, 1974.

March, 1976 March L. – The Architecture of Form. – Cambridge University Press,
London, 1976.

Martin, 1991 Martin G. – Transformation Geometry: An Introduction to Symmetry.
– Springer, New York, 1991.

ARCHITECTURAL EXPLORATIONS APPENDIX A 250

Medjdoub, 1999 Medjdoub, B. – Interactive 2D Constraint-Based Geometric
Construction. – CAAD Futures 99, Kluwer Academic Publishers,
Munich, 1999.

Mitchell, 1977 Mitchell, W. – Computer Aided Architectural design. – Charter, New
York 1977.

Mitchell, 1990 Mitchell, W. – The logic of Architecture. – The MIT Press,
Cambridge, 1990.

Mitchell, 1993 Mitchell, W. – A Computational View of Design Creativity. –
Modeling Creativity and Knowledge Based Creative Design. Lawrence
Erlbaum Associates Publishers, Hillsdale, New Jersey, 1993.

Molinari, 1999 Molinari, L. – Santiago Calatrava. – Skira, Milan, 1999.

Mortenson, 1995 Mortenson, M. – Geometric Transformations. – Industrial Press, New
York, 1995.

Mortenson, 1997 Mortenson, M. – Geometric Modeling. – Second Edition, John Wiley
and Sons, New York, 1997.

Mortenson, 1999 Mortenson, M. – Mathematics for Computer Graphics Applications. –
Industrial Press, New York, 1999.

Moustapha, 2001 Moustapha, H., Krishnamurti. R – Arabic Calligraphy: A
Computational Exploration – Mathematics and Design 2001, Third
International Conference, Geelong, Australia, 2001.

Moustapha, 2004 Moustapha, H. – A Formal Representation for Generation and
Transformation in Design. – Generative CAD Systems Symposium
(GCAD’04), Carnegie Mellon University, Pittsburgh, 2004.

Museum, 1972 Museum of Modern Art. – Five Architects: Eisenman, Graves,
Gwathmey, Hejduk, Meier. – Wittenborn, New York, 1972.

Neilsen, 1993 Neilsen, J. – Usability Engineering. AP Professional, Boston, 1993.

Onat, 1991 Onat, E. – Architecture, Form, and Geometry. – Yem Yayin
 Istambul, 1991.

Oxman, 2002 Oxamn, R. – The Thinking Eye: Visual Recognition in Design
Emergence. – Design Studies vol.19 #5, New York, 2002.

Papazian, 1993 Papazian, P. – Incommensurability of Criteria and Focus in Design
Generation. – CAAD FUTURES 93, Elsevier, New York. 1993.

Pohl, 1994 Pohl, I. – C++ for C Programmers. – Second Edition, The Benjamin
Cummings Publishing Company Inc., Redwood City, CA., 1994.

ARCHITECTURAL EXPLORATIONS APPENDIX A 251

Pomerantz, 1991 Pomerantz, J. – The Structure of Visual Configurations. – In The
Perception of Structure, G. Lockhead ed. The American Psychological
Association, 1991.

Purcell, 1998 Purcell, A., Gero, J. – Drawings and the Design Process. – Design
Studies vol. 19 #4, New York, 1998.

Raisamo, 1996 Raisamo et. al. – Techniques for Aligning Objects in Drawing
Programs. – Technical Report, University of Tampere Finland, 1996.

Rappoport, 1997 Rappoport, A., Spitz, S. – Interactive Boolean Operations for
Conceptual Design of 3-D Solids. – Siggraph 97, LA, 1997.

Robinson, 1914 Robinson, J. – Architectural Composition. – Van Nostrand Company.
London, 1914.

Rosen, 1995a Rosen, J. – Symmetry in Science. – Springer-Verlag, New York, 1995.

Rosen, 1995b Rosen, K. – Discrete Mathematics and its Applications. – McGraw
Hill, New York, 1995.

Rumbaugh, 1996 Rumbaugh, J., Blaha, M. – Object-Oriented Modeling and Design. –
Prentice-Hall, Englewood Cliffs NJ, 1991.

Sapossnek, 1991 Sapossnek M. – Research on Constraint-Based Design Systems. –
Technical Report, Carnegie Mellon University, Pittsburgh 1991.

Schild, 1991 Schild H. – C, The Pocket Reference. Second Edition. – McGraw
Hill, Berkeley, CA., 1990

Shepard, 1978 Shepard, R. – The Mental Image. – American Psychologist, vol.23 #2,
1978.

Shepard, 1982 Shepard, R. – Mental Images and Their Transformation. – MIT Press,
Cambridge, Mass, 1982.

Shubnikov, 1974 Shubnikov, A., Koptsik V. – Symmetry in Art and Science. – Plenum
Press, New York, 1974.

Simon, 1969 Simon H. – The Science of the Artificial. – MIT Press, Cambridge,
Mass, 1969.

Simon, 1984 Simon H. – The Structure of Ill-structured Problems. – Developments
in Design Methodology, John Wiley and sons, New York, 1984.

Speray, 1990 Speray, D. – Volume Probes: Interactive Data Exploration on Arbitrary
Grids. – Computer Graphics, vol.24, #5, 1990.

ARCHITECTURAL EXPLORATIONS APPENDIX A 252

Stamps, 1998 Stamps, A. – Measures of Architectural Mass: From vague impressions
to definite design features. – Environmental and Planning B, vol.25,
Pion Ltd., London 1998.

Steadman, 1983 Steadman P. – Architectural Morphology. – Pion Ltd., London, 1983.

Steadman, 1994 Steadman, P. – Built Forms and Building Types: Some Speculations. –
Environmental and Planning B, vol.21, Pion Ltd., London 1994.

Steadman, 1998 Steadman, P. – Sketch for an Archetypal Building. – Environmental
and Planning B, Anniversary Issue, Pion Ltd., London 1998.

Stiny, 1976 Stiny, G. – Two Exercises in Formal Compositions. – Environment
and Planning B, vol.3, Pion Ltd., New York, 1976.

Stiny, 1977 Stiny, G. – Ice Ray: a Note on the Generation of Chinese Lattice
Designs. – Environmental and Planning B, vol.4, Pion Ltd., London,
1977.

Stiny, 1980a Stiny G. – Introduction to Shape and Shape Grammars. – Environment
and Planning B, vol.7, Pion Ltd., London 1980.

Stiny, 1980b Stiny G. – What Designers Do that Computers Should. – The
Electronic Design Studio, MIT Press, Cambridge,1990.

Stiny, 1980c Stiny, G. – Kindergarten Grammars: Designing with Froebels Building
Gifts. – Environment and Planning B, vol.7, Pion Ltd., London, 1980.

Stouffs, 1994 Stouffs, R. – The Algebra of Shapes. – PhD Dissertation, Carnegie
Mellon University, Pittsburgh, 1994.

Stouffs, 2001 Stouffs, R., Krishnamurti, R. – Sortal Grammars as a Framework for
Exploring Grammar Formalisms. – Mathematics and Design 2001,
Third International Conference, Deakin University, Geelong, 2001.

Stroustrup, 1997 Stroustrup, B. – The C++ Programming Language. – Third Edition,
Addison Wesley Longman Inc, Reading, Mass., 1997.

Suter, 1999 Suter, G. – A Representation for Design Manipulations and
Performance Simulation. – Ph.D. Dissertation, Carnegie Mellon
University, Pittsburgh, 1999.

Sutherland, 1963 Sutherland, I.E. – Sketchpad: A Man Made Graphical Communication
System. – Massachusetts institute of technology, 1963.

Tan, 1990 Tan, M. – Saying what is by what is like. – The Electronic Design
Studio, MIT Press, Cambridge, 1990.

Thadani, 1992 Thadani, D. – Five Architects: Twenty Years Later. – University of
Maryland, College Park, 1992.

ARCHITECTURAL EXPLORATIONS APPENDIX A 253

Thompson, 1971 Thompson, D. – On Growth and Form. – Cambridge University Press,
London, 1971.

Tobin, 1991 Tobin M. – Constraint-Based Three Dimensional Modeling as a Design
Tool. – Reality and Virtual Reality (ACADIA 1991 proceedings)
Association for Computer Aided Design in Architecture, 1991.

Turabian, 1987 Turabian, K. – A Manual for Writers. – Fifth Edition, The University
of Chicago Press, Chicago, 1987.

Tzoniz, 2004 Tzonis, A. – Santiago Calatrava: The Complete Works. – Rizzoli, New
York, 2004.

VanLeeuven, 1997 Van Leeuven, J. – Architectural Design by Features. – CAAD Futures
97, Kluwer Academic Publishers, The Netherlands, 1997.

Veltkamp, 1996 Veltkamp, R., Arbab, F. – Interactive Geometric Constraint
Satisfaction. – Stichting Mathematish Centrum, Amsterdam 1996.

Verstijen, 1998 Verstijen, I., et. al. – Sketching and Creative Discovery. – Design
Studies, vol. 23 #2, New York 1998.

Viega, 1996 Viega, et. al. – 3D Magic Lenses. – UIST 96, ACM Press, Seattle,
1996.

Weichsel, 1999 Weichsel, J. – Pattern Formation under Various Tiling Rules. –
Computer and Graphics, vol.23, Elsevier Science, New York, 1999.

Weterguard, 1992 Weterguard, C. – Visualizing negative space. – Computer Supported
Design in Architecture, Mission, Method and Madness, ACADIA, 92
Charleston, 1992.

White, 1980 White, E. – Concept Sourcebook: A Vocabulary of Architectural
Forms. – Architectural Media Ltd., 1980.

Williams, 1999 Williams, K. – Symmetry in Architecture. – Visual Mathematics, vol.1
#1, 1999. http://members.tripod.com/vismath/pap.htm

Wisskirchen, 1990 Wisskirchen, P. – Object Oriented and mixed Programming paradigms.
– Springer New York, 1990.

Witkin, 1990 Witkin, A., et al. – Linking Perception and Graphics: Modeling with
Dynamic Constraint. – Images and understanding, Cambridge
University Press, 1990.

Wong, 1993 Wong, W. – Principles of Form and Design. – John Wiley and Sons
Inc., New York, 1993.

Woo, 1998 Woo, M. et. al. – OpenGL Programming Guide. – Second Edition,
Addison Wesley Longman Inc, Reading Mass., 1998.

ARCHITECTURAL EXPLORATIONS APPENDIX A 254

Woodbury, 1987 Woodbury, R. – Strategies for Interactive Design Systems. – In
Computability of Design, John Wiley and Sons Inc., New York, 1987.

Woodbury, 1987 Woodbury, R. – Knowledge Based Representation and Manipulation of
Geometry. – Ph.D. Dissertation, Carnegie Mellon University,
Pittsburgh, 1987.

Woodbury, 1995 Woodbury, R., Cheng, T. – Massing and Enclosure Design with SEED
Config. – Journal of Architectural Engineering American Society of
Civil Engineers, 1995.

Yale, 1968 Yale, P. – Geometry and Symmetry. – Dover, New York, 1968.

Yessios, 1987 Yessios, C. – Computability of Void Architectural Modeling. – In
Computability of Design, John Wiley and Sons Inc., New York, 1987.

ARCHITECTURAL EXPLORATIONS APPENDIX A 255

APPENDIX B

THE MATHEMATICS OF

REGULATORS

Regulators encapsulate a formula, a polynomial equation, for controlling its associated elements.

In most cases, this formula is determined by the geometry of the regulator. In this Appendix, I

discuss the geometric representation of regulators in general, and the specific mathematical

properties for each regulator type, as well as for transforming and compositing regulators.

B.1. THE GEOMETRY OF REGULATORS

The geometry of regulators is based on vector mathematics. Point regulator, line regulator and

plane regulators are represented as vectors in 3D space.

B.1.1. REPRESENTATION OF POINTS

A point
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

z

y

x

p
p
p

p

Distance between two points

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

z

y

x

p
p
p

p and
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

z

y

x

q
q
q

q = 222)()()(zzyyxx pqpqpq −−+−

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX B 256

B.1.2. REPRESENTATION OF LINES

A line l with starting point p and end point q and direction along t

tdpql +== = (pqdpq −+=) where ()pqt −=

zzz

yyy

xxx

dtpq

dtpq
dtpq

+=

+=
+=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

z

y

x

z

y

x

z

y

x

t
t
t

d
p
p
p

q
q
q

Magnitude:

Line: 222)()()(zzyyxx pqpqpql −−+−=

Vector: 222)()()(zyx tttt +=

Unit vector: ttu /=

Direction cosines:

φ

θ

ψ

cos

cos

cos

tt

tt

tt

z

y

x

=

=

=

φ

θ
ψ

cos

cos
cos

=

=
=

z

y

x

u

u
u

Where φθψ ,, are the angles of vector t with the x, y, z axes respectively.

Midpoint of a line:

2
xx

x
qp

Mid
+

= ,
2

yy
y

qp
Mid

+
= ,

2
zz

z
qp

Mid
+

=

Point on the line

New point
if s < d then the point is on the line
if s > d then the point extends beyond the line

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX B 257

B.1.3. REPRESENTATION OF PLANES

Given three points in a plane 0P , 1P and 2P .

)()(120100 PPePPdPvetdPP −+−+=++=

The plane’s normal []zyx NNNN =

)()(1201 PPPPvtN −⊗−=⊗=

0=• tN
0)(10 =−• PPN

0=++ zzyyxx tNtNtN

If []CBAN = and [] the Plane equation =zyxt = 0=+++ DCzByAx

To determine the angle between a plane and the major coordinate planes (e.g. x-y plane), it is

necessary to compute the angle between the normal of both planes.

B.2. TRANSFORMATION REGULATORS

Transformation regulators are based on isometry and affine transformations. An isometry

transformation is a collineation i.e. it preserves linearity. It also preserves, distances, angles,

areas, parallels, perpendiculars, between-ness and midpoints. The determinant of the

transformation matrix for an isometry transformation is 1± . Even isometries preserve orientations

(determinant =), while odd isometries reverse orientations (determinant =). A similarity

transformation is any combination of an isometry with a uniform scaling. Together, these form

the group of similarities, (every similarity has an inverse, which is also a similarity, and the

product of two similarities is a similarity). The group of similarity transformations subsumes the

group of isometries. Affine transformations subsume similarity transformations. These preserve

collinearity and parallelism. The inverse of an affine transformation is affine, and the product of

two affine transformations is also affine. Distances and angles, however, are not preserved. The

determinant of its coefficient matrix is

1+ 1−

0≠ .

Transformation regulators operate by applying an equation (or transformation matrix) to the input

element to derive the output set of elements. These regulators use the properties of their respective

transformations to preserve points, lines, and planes, as a visual depiction for the regulators.

Transformations in space have a polynomial equation. Their arguments are expressed by the

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX B 258

coefficients of the (4x4) transformation matrix (using homogenous coordinates). In order for a

transformation to apply to a shape, it must be multiplied to every vertex. A vector v is

transformed by T resulting in v ′

Function notation: ')(vvT = Vector/matrix notation: vTv ='

34333231

24232221

14131211

azayaxaz
azayaxay

azayaxax

+++=′
+++=′
+++=′

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z

y

x

v
v
v

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

44434241

34333231

24232221

14131211

aaaa
aaaa
aaaa
aaaa

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z

y

x

v
v
v

B.2.1. GROUP PROPERTIES OF TRANSFORMATIONS (MORTENSON 1995)

In general, a group consists of a set of elements and an operator acting on these elements. In this

case, the transformations are the elements, and the operator is the composition of transformation.

In order for a set of transformations to form a group it needs to have the following properties.

• Closure: SBASBSA ∈⇒∈∧∈ o if two transformations are in a group then their

composition is also in the group.

• Identity: AAIAIAI =∧=∴∃ oo . There exists an identity transformation I, such that A

composed with I leaves A unchanged.

• Inverse: . For every transformation A in the group, there

exists an inverse A-1 such that A composed with A-1 results in the identity

transformation.

IAAASA =∴∃∈∀ −− 11........ o

• Associativity: CBACBA oooo)()(=

• Commutativity: (only for Abelian groups) ABBA oo = .

The following is a description for each transformation that corresponds to a regulator. It is applied

about the origin and uses the xyz-coordinate axes. The common strategies for transforming about

arbitrary points, lines and planes, are described in section B.3.

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX B 259

Translation])shape(},,,{[ndtp1T∆

Translation is an even isometry. The determinant of its

coefficient matrix is +1. Translations form an Abelian group

because of the following:

The product of two or more translations is a translation

 czbyaxcbazyx TTT +++= ,,,,,, o

The inverse of a translation is a translation.

 zyxzyx TT −−−
− = ,,

1
,,

Composition of translation is commutative (the order of

application is immaterial)

 Translation Matrix

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢

⎢

⎣

⎡

1000
100
010
001

tz
ty
tx

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

=
⎢
⎢

Rotation

])shape(},,,{[ntp α1R∆ or])])shape(},,{[np α0R∆

Rotation is an even isometry. Its coefficient matrix has a determinant of 1. Furthermore, a rotation

matrix is an orthogonal matrix; therefore, its inverse is equal to its transpose. An improper rotation

is a rotation that has a determinant of –1, and is actually a combination of a rotation and a

reflection. Any rotation in space can be achieved by means of successive rotations along the three

principal axes. All rotations form a group because of the following:

The inverse of a rotation is a rotation: θφ −= RR -1

The product of two rotations is a rotation. θφθφ += RRR o

Composition of rotations is not commutative; except for the product of two rotations with the same

axis, which yields a rotation about the same axis. ψθφ RRR

About the z axis (yaw)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎡

1
'
'
'

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢

⎢

⎣

⎡ −

1000
0100
00cossin
00sincos

φφ
φφ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢

⎢

⎣

⎡

−
1000
0cos0sin
0010
0sin0cos

θθ

θθ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

1000
0cossin0
0sincos0
0001

ψψ
ψψ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

⎣

=
⎢
⎢

About the y axis (pitch)

=
⎢
⎢

About the x axis (roll)

=

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX B 260

Mirror (Reflection)

])shape(},{[np0M∆])shape(},,{[ntp1M∆])shape(},,,{[nvtp2M∆

Reflections are odd isometries, their determinant is –1.

A reflection is an involution, meaning it is its own inverse. and MM-1 = IMM =o

There are three types of reflections: (1) Reflection about a point, also called an inversion, (2)

Reflection about a line, which in 3D space, is equivalent to a half turn about the line and is not

really a reflection because the determinant is +1, and (3) Reflection about a plane. Reflection is

considered the building block of all isometries: a translation can be described using two parallel

reflections and a rotation can be described using two intersecting reflections.

• The product of two inversions is a translation.

• The product of three inversions is an inversion.

• The product of reflection of parallel planes is a translation

• The product of reflection of intersecting planes is a rotation about the line of intersection

of the two planes.

Inversion about a point

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x − x

− −

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0100
0010
0001

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎡

−

1000
0100
0010
0001

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎡−

1000
0100
0010
0001

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

1000
0100
0010
0001

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y

Reflection about the x-axis

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

1000
0100
0010
0001

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

Reflection about the y-axis

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0100
0010
0001

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

Reflection about the z-axis

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

1000
0100
0010
0001

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

Reflection about the x-y plane

=

Reflection about the x-z plane

= ⎣

Reflection about the y-z plane

= ⎣

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX B 261

Screw Rotation])shape(},,,,{[ndtp α11 TR ∆∆

Screw rotation is a composition of rotation and translation along

the rotation axis. It can be achieved by matrix multiplication. The

translation factor is the pitch of the screw. It is also an even

isometry meaning its determinant is 1.

Screw rotation matrix

 =
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

1000
100

00cossin
00sincos

φ
φφ
φφ

t
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

Glide])shape(},,,{[ndtp11 MT ∆∆

])shape(},,,,,{[nedvtp21 MT ∆∆

Glide reflection is a composition of translation and reflection,

with the translation vector on the reflection plane. It can be

achieved by matrix multiplication.

Glide matrix

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0100

010
001

ty
tx

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

Dilation (scale)])shape(},,{[nkp0D∆

Isotopic Dilation is a similarity transformation, which has a

uniform scaling factor k.

• If k>1 then its an expansion;

• If 0<k<1 then it is a contraction,

• If k < 0 then it is a scaled inversion (or half turn in

2D space).

Anisotropic dilation is a non-uniform scaling. It is an affine

transformation. If the scaling is unidirectional, (only in the x-

direction for instance), it is referred to as strain. Negative factors

in the dilation matrix’s diagonal coefficients act as a scale

coupled with a reflection.

The product of two dilations is a dilation.

Isotropic dilation fixing the
origin

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
000
000
000

k
k

k

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

Anisotropic dilation fixing the
origin

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
000
000
000

z

y

x

k
k

k

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX B 262

Shear])shape(},{[nk S∆

Shear is an equiareal affine transformation, i.e. it preserves the

area of shapes it transforms. In general an affine transformation

multiplies the area by the absolute value of the determinant. In

case of equiaffine or equiareal transformations, such as shear,

the determinant of +1.

Rotation can be expressed as the product of three shears. The

product of two shears is a shear, and the inverse of a shear is a

shear.

Shear fixing the y-z plane

= ⎢
⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣1
'
'

z
y ⎥
⎤

⎢
⎡ 'x ⎤

⎢

⎣

⎡

1000
0100
0010
001 1s

⎥
⎤

⎢
⎡x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢

⎢

⎣

⎡

1000
0100
010
001

2

1

s
s

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

⎥
⎥
⎥
⎥

⎦
⎢
⎢

⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣1
z
y

Two shears simultaneously

=
⎢
⎢

Curve])shape(},,,{[ntp αeC∆

])shape(},,,{[ntp αhC∆

 Parametric Implicit

Circle θ+=θ+= sincos rbyrax 02222 =+++ rzyx

θ=θ= sincos byax

Ellipse

01

2

2

2

2
=−+

b
y

a
x

ptyptx == 2 042 =− pyx

θ

Parabola

Hyperbola θ
tan
sec

by
ax

=
=

012

2

2

2
=−−

b
y

a
x

Trigonometric curves θθθθ tan,sin,cos, ==== yyyx

Deformations (Nonlinear transformations)

Curves Surfaces Volumes

)('
)('
)('

ufzz
ufyy
ufxx

=
=
=

),('
),('
),('

vufzz
vufyy
vufxx

=
=
=

),,('
),,('
),,('

wvufzz
wvufyy
wvufxx

=
=
=

univariate bivariate trivariate

C(t) = u(t) C(t) = u(t), v(t) C(t =u(t), v(t), w(t)

Tapering produces a global tapering about the z-axis
Twisting produces a global twist about the z-axis

Tapering

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
0100
00)(0
000)(

zfy
zfx

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

Twisting

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

1000
0100
00)(cos)(sin
00)(sin)(cos

zfzf
zfzf

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX B 263

B.3. TRANSFORMING THE GEOMETRY OF REGULATORS

In order to apply a regulator about an arbitrary, point, axis, or plane, it is necessary to pre and post

multiply by conjugate translations and rotation matrices. Below is an example of using this

strategy to convert a reflection regulator M.

In order to reflect about a plane parallel to a principal axis, it is necessary to pre and post multiply

the reflection by the translation matrix. The reflection matrix is translated to the origin then it is

translated back to its position (The conjugate pair consists of a matrix and its inverse): -1TMT

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
100
010
001

tz
ty
tx

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0100
0010
0001

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

1000
100
010
001

tz
ty
tx

In order to reflect through a rotated plane that passes through the origin, it is necessary to pre and

post multiply the reflection by the three successive rotation matrices.

-1-1-1 RRRM RRR ψθφφθψ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

1000
0100
00cossin
00sincos

φφ
φφ

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0cos0sin
0010
0sin0cos

θθ

θθ

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

1000
0cossin0
0sincos0
0001

ψψ
ψψ

 ×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0100
0010
0001

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0cossin0
0sincos0
0001

ψψ
ψψ

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

1000
0cos0sin
0010
0sin0cos

θθ

θθ

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

1000
0100
00cossin
00sincos

φφ
φφ

If the rotated plane does not pass through the origin, it is necessary to pre and post multiply the

above equation by a pair conjugate translations.

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX B 264

 -1-1-1-1 T R R R M R R R T ψθφφθψ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
100
010
001

tz
ty
tx

 ×
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

1000
0100
00cossin
00sincos

φφ
φφ

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0cos0sin
0010
0sin0cos

θθ

θθ

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

1000
0cossin0
0sincos0
0001

ψψ
ψψ

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0100
0010
0001

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0cossin0
0sincos0
0001

ψψ
ψψ

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

1000
0cos0sin
0010
0sin0cos

θθ

θθ

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

1000
0100
00cossin
00sincos

φφ
φφ

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−
−

1000
100
010
001

tz
ty
tx

This is a commonly used strategy to define complex transformations though simpler matrices. It is

applicable to the other regulators, such as Rotation and Dilation as well. For Dilation to fix any

point in space, it needs to be pre and post multiplied by conjugate translation matrices . For

the Anisotropic dilation to be applied with respect to any three mutually orthogonal axes, the

dilation matrix needs to be pre and post multiplied by the conjugate rotation matrices.

-1TDT

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX B 265

B.4. VARIATION REGULATORS

Variational regulators are composed with generative regulators to create a variation in the output

shapes, by applying a formula to the shape attributes or regulator parameters.

Exception])shapeshape(},{[n0 −Ξ va E

The exception regulator allows a shape to be controlled differently from the rest of the output set. It

gives this shape an exclusive formula.

Rhythm/Gradation])shapeshape(},,{[n0 −Ξ ca f G

The Rhythm regulator applies an additional formula to an attribute of the output set (or to an attribute

of the regulator). The rhythm formula uses a coefficient, and ranges from simple to complex.

Examples include and ciaa oldnew ×+=)sin(ciaa oldnew ×+=

Differential])shapeshape(},,{[n0 −Ξ ca f F

The Differential regulator an additional formula to the attribute of the regulator making vary across the

different inputs. The differential formula uses a coefficient, and ranges from simple to complex.

Examples include and ciaa oldnew ×+=)sin(ciaa oldnew ×+=

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX B 266

B.5. CONSTRAINT REGULATORS

Constraint regulators are based on an evaluation function or formula that determines whether or

not the input element is within the geometric constraints. These are applied to input shapes.

Angle])shapeshape(},,{[k1 −Φ modmaxminL

To derive the angle between two shapes, it is necessary to derive the angle between the direction-

vectors of the defining regulators. Since these can be points, lines or planes, we use the following

formulae to determine the angles between regulators.

The angle between two lines:

Dot product of the line vectors

Line1 : tdpl += 11

Line1 : vepl += 22
θcosvtvt =•

)/cos(vtvtar •=θ

The angle between two planes:

Dot product of the plane normals m n and

θcosnmnm =•

)/arccos(nmnm •=θ

The angle between a line and a plane:

The complementary angle to the line vector and the plane normal

line : tdpl +=
plane : n

For complementary anglesα and β
ααβ sin)90cos(cos =−=

Atntn sin=•
)/arcsin(tntn •=α

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX B 267

Proportion])shape(},,{[1 dtpPΦ

The proportion regulator controls a shape by means of its diagonal lines. The proportion can

control volumetric shapes as well as planar ones. Although proportion regulator is intended for

rectilinear shapes, it can also be used on non-rectilinear ones.

The diagonal is the diagonal vector, while the vectors defining the shape are the component

vectors. For volumes there are additional surface diagonals that can be used for controlling the

shape. The surface diagonals have two of the components of the volume diagonal. These are

computed by means of the direction cosines.

zyxxyz tttPDt +++= 0

yxxy ttPDt ++= 0

zxxz ttPDt ++= 0

zyyz ttPDt ++= 0

 xzyzxyxyz DtDtDtPDt +++= 0

Equivalence])shapeshape(},{[n0 −Φ va Q

This is achieved by setting an equivalence relationship between a specific attribute of several

shapes.

Dimension])shape(},,{[modmaxminVΦ

The dimension regulator restricts length, area and volume. The dimension regulator computes the

dimensions of a shape based on the (and or n d θ) parameters of its defining regulators.

y

z

x

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX B 268

Boundary)]shapeshape,shape(}{[B k1bound
2 −Φ o

The boundary regulator controls the position of shapes within the allowable region of a boundary

shape. It is based on the half space representation. The boundary regulators tests the shapes with

the implicit function of the boundary shape’s defining regulators, in order to classify

whether the bounded shapes are “in”, “outside” or “on” the boundary shape.

),,(zyxf

0),,(=zyxf on ⇒

0),,(<zyxf in ⇒

0),,(>zyxf out ⇒

Alignment])shapeshape(}{[k0
0 −Φ pA

])shapeshape(},{[k0
1 −Φ tpA

])shapeshape(},,{[k0
2 −Φ vtpA

])shapeshape(},,{[k0 −Φ rtpCA

The alignment regulator restricts the position of shapes with respect to a point, line, plane or

circle.

• If it’s a point alignment, the xyz coordinates of the (starting point) of the shape is

restricted to this point.

• If it’s an orthogonal line alignment, for example parallel to the x-axis, y and z

coordinates of the (starting point) of the shape is restricted, while the x coordinate is

free. If it is an arbitrary line, it is necessary to determine the closest distance between the

shape and the line. This is derived by the foot of the perpendicular between the initial

shape and the line.

• If it’s an orthogonal plane alignment, for example parallel to the x-plane, the z

coordinates of the (starting point) of the shape is restricted, and the x and y coordinates

are free. If it is an arbitrary plane, it is necessary to determine the closest distance

between the shape and the plane. This is derived by the foot of the perpendicular

between the initial shape and the plane.

• A circle alignment restricts elements by determining the closest distance between the

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX B 269

shape and the circle (or sphere), and computing the intersection point of circle (or

sphere) with the line connecting the shape and the center of the circle or sphere.

The foot of perpendicular between a point and a line

),(21 pplline =

tdpp ft += 1

)(121 ppdpp ft −+=

0)()(12 =−•− pppQ ft

0)()))(((12121 =−•−+− ppppdpQ

The distance between Q and the line is the distance between Q and P2.

2
12

2
12

2
12

121121121

)()()(
))(())(())((

pzpzpypypxpx
pzpzpzQpypypyQypxpxpxQd zx

−+−+−
−−+−−+−−

=

)(

)(

)(

121

121

121

pzpzdpzpz

pypydpypy

pxpxdpxpx

ft

ft

ft

−+=

−+=

−+=

Foot of perpendicular between a point and a plane:

Plane defined by normal []zyx NNNN ,,=

Point (away from the plane) []zyx QQQQ ,,=

Point (on the plane) []zyx PPPP 0000 ,,=

The perpendicular projection of onto the plane is found by computing the

perpendicular line (same direction as normal vector) that passes thought , then

finding its intersection with the plane.

Q

Q

Q

p1 pft p2

P0

Q

Pft

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX B 270

Perpendicular line that passes thought : Q sNQPft +=

Line on the plane: 0PPft −

Perpendicular point: 0)(0 =−• PPN ft

222
0)()(

zyx

zzyyxx

NNN

qNqNqN
NN

PQNs
++

++
=

•
−•−

=

N
NNN

qNqNqN
QP

zyx

zzyyxx
ft 222

)(

++

++
−=

Perpendicular distance θcos)(0PQPQ ft −=−

Intersection between a line and a circle
Line)(12 QQdQP −+=

)(
)(
)(

zQzQdzQPz
yQyQdyQPy
xQxQdxQPx

121

121

121

−+=
−+=
−+=

Sphere centered at with a radius r described by),,(CzCyCxC

2222 rCzPzCyPyCxPx =−+−+−)()()(

Substituting the equation of the line into the sphere gives a quadratic equation of the

form

02 =++ cbdad

[]
[] 2

111
2

1
2

1
2

1
222

112112112

2
12

2
12

2
12

rzCzQyCyQxCxQ2zQyQxQCzCyCxc

CzzQzQzQCyyQyQyQCxxQxQxQ2b
zQzQyQyQxQxQa

−++−+++++=

−−+−−+−−=
−+−+−=

))(())(())((
)()()(

P

C

Q1

Q2

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX B 271

a
acbb

2
42 −±−

• if then the line does not intersect the sphere 042 <− acb

• if then the line is tangent to the sphere 042 =− acb

• if then the line intersect the sphere in two places 042 >− acb

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX B 272

TOPOLOGICAL REGULATORS

Topological regulators are also based on an evaluation function or formula that determines

whether or not the input element is within the topological constraints.

Distance])shape,shape(},,{[k1modmaxminJΠ

Adjacency test: The distance is a binary relation that is determined by computing the position of

each shape. The following shows the computation for adjacency along the x axis for rectilinear

shapes. Non rectilinear shapes are tested thought their bounding volumes. The end point of the

shape can be derived from the definition of the regulator.

Exactly face adjacent along x

zendszendszstartszstarts
yendsyendsystartsystarts

xendsxstartsxstartsxends

..2..1..2..1
..2..1..2..1
..2..1..2..1

=∧=
=∧=
<∧=

y

z

x

Face adjacent along x with shift along y

zendszendszstartszstarts
yendsyendsystartsystarts

xendsxstartsxstartsxends

..2..1..2..1
..2..1..2..1

..2..1..2..1

=∧=
<∧>=

<∧=

Face adjacent along x with shift along y and shift

along z

zendszendszstartszstarts
yendsyendsystartsystarts

xendsxstartsxstartsxends

..2..1..2..1
..2..1..2..1

..2..1..2..1

<∧>=
<∧>=

<∧=

Line adjacent about x – y

zendszendszstartszstarts
yendsystartsystartsyends
xendsxstartsxstartsxends

..2..1..2..1
..2..1..2..1
..2..1..2..1

=∧=
<∧=
<∧=

y

z

x

y

z

x

y

z

x

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX B 273

Point adjacent about x, y, z

zendszstartszstartszends
systartsyends
sxstartsxends

.1..2..1
.1..2..1
.1..2..1

∧=
∧= yendsystart

xendsxstart

..2.
..2.
..2.

<
<
<∧=

Interlock Test: The interlock test determines whether the two shapes are interlocking or

overlapping in 3D.

Interlock along the x

zendszendszstartszstarts
yendsyendsystartsystarts

xendsxstartsxstartsxends

..2..1..2..1
..2..1..2..1
..2..1..2..1

=∧=
=∧=
<∧>

Interlock along the x and y

zendszendszstartszstarts
yendsyendsystartsystarts

xendsxstartsxstartsxends

..2..1..2..1
..2..1..2..1
..2..1..2..1

=∧=
=∧=
<∧>

y

z

x

y

z

x

y

z

x

Interlock along x, y, and z

zendszendszstartszstarts
yendsyendsystartsystarts
xendsxstartsxstartsxends

..2..1..2..1
..2..1..2..1
..2..1..2..1

<∧>
<∧>
<∧>

y

z

x

Connectedness])shape,shape({}[k1CΠ

A shape is connected if and only if it is adjacent. The connectedness regulator ensures that

connected shapes remain connected, by constraining their endpoints and freeing their other

variables.

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX B 274

B.6. HIERARCHICAL REGULATORS

Hierarchical regulators define hierarchies of elements.

Containment

])tconstituentconstituen container,({}[n0 −Ψ H

Defines a relationship between entities that is irrelevant of

geometry. When it is composed with other constraint

regulators, such as boundary of subdivision, it will have

geometric implications.

 Ψ H

Subshape

])subshapesubshape ,supershape({}[n0 −Ψ S

The subshape regulator ensures that the generative

regulators of both shapes are equivalent and that the

constraints of the supershape are maintained along the

subshapes.

 Ψ S

B.7. OPERATION REGULATORS

Operational regulators define shapes by means of discrete transformations. These are processing

intersections of the inputs, in order to determine the output shapes.

B.7.1. INTERSECTION OF TWO LINES

Line ;),(211 PPl =)(1212 PPaPQ −+=

Line ;),(432 PPl =)(3432 PPbPQ −+=

21 QQ = gives the intersection points with two unknowns

)()(343121 PPbPPPaP −+=−+

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX B 275

)()(343121 xxbxxxax −+=−+

)()(343121 yybyyyay −+=−+

)()(343121 zzbzzzaz −+=−+

))(())(/())(())((1234123431343134 yyxxxxyyxxyyyyxxa −−−−−−−−−−=

))(())(/())(())((1234123431123112 yyxxxxyyxxyyyyxxb −−−−−−−−−−=

You can substitute either of these in their corresponding equations

)(121 xxaxx −+=

)(121 yyayy −+=

)(121 zzazz −+=

B.7.2. INTERSECTION OF TWO PLANES

22

11

dpN
dpN

=•
=•

The equation of the line of intersection is

212211 NeNNcNcp ⊗++=

Substituting:

22211122

22211111

NNcNNcdpN
NNcNNcdpN
•+•==•
•+•==•

2
2122112111122

2
2122112122211

)())(/()(

)())(/()(

NNNNNNNNdNNdc

NNNNNNNNdNNdc

•−•••−•=

•−•••−•=

Note: also check if the planes are not parallel: if they are parallel then NN ⊗1 = 0

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX B 276

B.7.3. INTERSECTION BETWEEN A LINE AND A PLANE

Line dtpQ += 11

Plane bwavpQ ++= 22

Intersection is when dtpbwavp +=++ 12

twv
pwvpwv

d
•⊗

•⊗−•⊗
=

)(
)()(12

vtw
ptwptwa

•⊗
•⊗−•⊗

=
)(

)()(21

wtv
ptvptvb

•⊗
•⊗−•⊗

=
)(

)()(21

Subdivision])shape(},{[nsZΩ])planeshape,(},{[nsPZΩ

The subdivision regulator inputs a shape and generates many subshapes of this shape. The first

version, , operates by subdividing the generative regulators. It duplicates them and adjusts

their parameters in order to determine their new position and sizes. It also acts as a super

regulator that controls these sub regulators.

ZΩ

The second version, , subdivides the shape according to a cutting plane. The intersections

are computed, and then the sub-regulators are generated and adjusted to produce the subshapes

defined by this plane. Differential sweeping regulators are used to define slanted of curved

planes.

PZΩ

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX B 277

Boolean operations

Union])shapeshape({}[k0 −ΩU

Intersection:])shapeshape({}[k0 −ΩI

Difference:])shapeshape({}[k0 −ΩD

Symmetric Difference:])shapeshape({}[k0 −ΩM

The Boolean regulators input several shapes and output the union, difference or intersection of

these. The Boolean regulators rely on the half space representation and to determine whether

the key intersection points are “in”, “on” and “out” of the input shapes.

0),,(=zyxf on the plane or curve

0),,(<zyxf in the plane or curves

0),,(>zyxf out of the plane or curve

Union = MIN (,)),,(zyxf),,(zyxg

Intersection = MAX (,)),,(zyxf),,(zyxg

Difference = MAX (,-)),,(zyxf),,(zyxg

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX B 278

B.8. COMPOSITION OF REGULATORS

The internal mechanism for composition of regulators depends on the regulator types.

Composition of transformation regulators is achieved by means of matrix multiplication.

Composition of the other types of regulators is achieved by means of the sequence of the

evaluation functions.

Simultaneous composition])shape(},,,,,{[ndktpp DT
01 DT ∆∆

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
100
010
001

tz
ty
tx

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
000
000
000

z

y

x

k
k

k

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

In case of composing regulators of various types or the

transformations are computed, then the operations are computed, then the constraints are

evaluated.

)(sAM 11Φ∆)(sUR1Ω∆

Successive and partial composition)])]shape(},,,{[(},,,{[ntpndtp α∆∆ 11 RT

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

= and then =
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

1000
0100
00cossin
00sincos

φφ
φφ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
''
''
''

z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
100
010
001

tz
ty
tx

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

B.9. REGULATING REGULATORS

The formula for the regulator is affected when the regulator is regulated by other regulators. This

is also achieved by matrix multiplication. For example, if a mirror is rotated, the formula for the

translation will incorporate the mirror factors.

)]shape(},,,{[])(},,,{[3210 ndtpnθtp 111 TTR ∆∧∆∆ >><><><<

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
'
'
'

z
y
x

=
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

1000
0100
00cossin
00sincos

φφ
φφ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
1000
0100
0010
0001

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

1000
0100
00cossin
00sincos

φφ
φφ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX B 279

APPENDIX C

PATTERN REPRESENTATION AND

TRANSFORMATION

In this appendix, I illustrate the capacity of the ICE notation to represent all symmetry group

patterns, and to transform each pattern to every other pattern with the Cyclic, Dihedral, Frieze and

Wallpaper groups. In the following examples, the notation is abbreviated to show only relevant

parameters; and since the generation method is always discrete, it is not depicted. Furthermore, for

the purpose of brevity, the following regulators will be encapsulated in shorter notations.

Horizontal translation HTT ∆=∆ ()]},[{ 01

Vertical translation VTT ∆=∆ ()]},[{ 10

30º translation 30TT ∆=∆ ()]},[{ 13

60º translation 60TT ∆=∆ ()]},[{ 31

45º translation 45TT ∆=∆ ()]},[{ 11

-45º translation 45-TT ∆=−∆ ()]},[{ 11

Horizontal Mirror HMM ∆=∆ ()]},[{ 01

Vertical Mirror: VMM ∆=∆ ()]},[{ 10

Horizontal Glide (translation + Mirror): HTMMT ∆=∆∆ ()]},[{ 01

Vertical Glide (translation + Mirror): VTMMT ∆=∆∆ ()]},[{ 10

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX C 280

C.1. CYCLIC AND DIHEDRAL PATTERNS

C(2)

)](}[{ s180R∆

C(3)

)](}[{ s120R∆

C(4)

)](}[{ s90R∆

C(6)

)](}[{ s60R∆

C(8)

)](}[{ s45R∆

C(12)

)](}[{ s30R∆

D(2)

)])](}[{(}[{ st180 MR ∆∆

D(3)

)])](}[{(}[{ st120 MR ∆∆

D(4)

)])](}[{(}[{ st90 MR ∆∆

D(6)

)])](}[{(}[{ st60 MR ∆∆

D(8)

)])](}[{(}[{ st45 MR ∆∆

D(12)

)])](}[{(}[{ st30 MR ∆∆

TABLE C.1 - CYCLIC AND DIHEDRAL PATTERNS

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX C 281

}{180R∆

}{120R∆
}{90R∆

}{60R∆
}{45R∆

}{30R∆

 }{180R∆

 }{}{ 120180 RR ∆⇒∆ {}{ 90180 RR

}∆⇒∆

}{}{ 60180 RR ∆⇒∆

}{}{ 45180 RR ∆⇒∆ }{}{ 30180 RR

∆⇒∆

}120{R∆

}{}{ 180120 RR ∆⇒∆

 }{}{ 90120 RR ∆⇒∆

}{}{ 60120 RR ∆⇒∆

}{}{ 45120 RR ∆⇒∆ {}{ 30120 RR

}∆⇒∆

}{90R∆

}{}{ 18090 RR ∆⇒∆ {}{ 12090 RR

}∆⇒∆

 }{}{ 6090 RR ∆⇒∆

}{}{ 4590 RR ∆⇒∆ }{}{ 3090 RR

∆⇒∆

}{60R∆

} {}{ 18060 RR ∆⇒∆ {}{ 12060 RR

}∆⇒∆ {}{ 9060

}RR ∆⇒∆

 }{}{ 4560 RR ∆⇒∆ {}{ 3060 RR

}∆⇒∆

}{45R∆

} {}{ 18045 RR ∆⇒∆ {}{ 12045 RR

}∆⇒∆ {}{ 9045

}RR ∆⇒∆

}{}{ 6045 RR ∆⇒∆

 }{}{ 3045 RR ∆⇒∆

}{30R∆

} {}{ 18030 RR ∆⇒∆ {}{ 12030 RR

}∆⇒∆ {}{ 9030

}RR ∆⇒∆

}{}{ 6030 RR ∆⇒∆

}{}{ 4530 RR ∆⇒∆

MR ∆∆ },{180

M∆DELETE M

∆DELETE

}{}{ 120180 RR ∆⇒∆
M∆DELETE

}{}{ 90180 RR ∆⇒∆
M∆DELETE

}{}{ 60180 RR ∆⇒∆
M∆DELETE M

}{}{ 45180 RR ∆⇒∆
∆DELETE

}{}{ 30180 RR ∆⇒∆

MR ∆∆ },{120

M∆DELETE M
}{}{ 180120 RR ∆⇒∆

∆DELETE M

∆DELETE

}{}{ 90120 RR ∆⇒∆
M∆DELETE

}{}{ 60120 RR ∆⇒∆
M∆DELETE M

}{}{ 45120 RR ∆⇒∆
∆DELETE

}{}{ 30120 RR ∆⇒∆

MR ∆∆ },{90

M∆DELETE
}{}{ 18090 RR ∆⇒∆

M∆DELETE
}{}{ 12090 RR ∆⇒∆

M∆DELETE M ∆DELETE
}{}{ 6090 RR ∆⇒∆

M∆DELETE M
}{}{ 4590 RR ∆⇒∆

∆DELETE
}{}{ 3090 RR ∆⇒∆

MR ∆∆ },{60

M∆DELETE M

} {}{ 18060 RR ∆⇒∆

∆DELETE

}{}{ 12060 RR ∆⇒∆
M∆DELETE

}{}{ 9060 RR ∆⇒∆
M∆DELETE M∆DELETE

}{}{ 4560 RR ∆⇒∆
M∆DELETE

}{}{ 3060 RR ∆⇒∆

MR ∆∆ },{45

M∆DELETE M

} {}{ 18045 RR ∆⇒∆

∆DELETE

}{}{ 12045 RR ∆⇒∆
M∆DELETE

}{}{ 9045 RR ∆⇒∆
M∆DELETE

}{}{ 6045 RR ∆⇒∆
M∆DELETE M ∆DELETE

}{}{ 3045 RR ∆⇒∆

MR ∆∆ },{30

M∆DELETE M

} {}{ 18030 RR ∆⇒∆

∆DELETE

}{}{ 12030 RR ∆⇒∆
M∆DELETE

}{}{ 9030 RR ∆⇒∆
M∆DELETE

}{}{ 6030 RR ∆⇒∆
M∆DELETE

}{}{ 4530 RR ∆⇒∆
M∆DELETE

 TABLE C.2 - TRANSFORMATION ACROSS CYCLIC AND DIHEDRAL PATTERNS

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX C 282

MR ∆∆ },{180

MR ∆∆ },{120
MR ∆∆ },{90

MR ∆∆ },{60
MR ∆∆ },{45

MR ∆∆ },{30

}{180R∆

M∆INSERT M

∆INSERT
}{}{ 120180 RR ∆⇒∆

M∆INSERT
}{}{ 90180 RR ∆⇒∆

M∆INSERT
}{}{ 60180 RR ∆⇒∆

M∆INSERT M
}{}{ 45180 RR ∆⇒∆

∆INSERT
}{}{ 30180 RR ∆⇒∆

}{120R∆

M∆INSERT M
}{}{ 180120 RR ∆⇒∆

∆INSERT M

∆INSERT
}{}{ 90120 RR ∆⇒∆

M∆INSERT
}{}{ 60120 RR ∆⇒∆

M∆INSERT M
}{}{ 45120 RR ∆⇒∆

∆INSERT
}{}{ 30120 RR ∆⇒∆

}{90R∆

M∆INSERT
}{}{ 18090 RR ∆⇒∆

M∆INSERT
}{}{ 12090 RR ∆⇒∆

M∆INSERT M

∆INSERT
}{}{ 6090 RR ∆⇒∆

M∆INSERT M
}{}{ 4590 RR ∆⇒∆

∆INSERT
}{}{ 3090 RR ∆⇒∆

}{60R∆

M∆INSERT M
}{}{ 18060 RR ∆⇒∆

∆INSERT
}{}{ 12060 RR ∆⇒∆

M∆INSERT
}{}{ 9060 RR ∆⇒∆

M∆INSERT M∆INSERT

}{}{ 4560 RR ∆⇒∆

M∆INSERT
}{}{ 3060 RR ∆⇒∆

}{45R∆

M∆INSERT M
}{}{ 18045 RR ∆⇒∆

∆INSERT
}{}{ 12045 RR ∆⇒∆

M∆INSERT
}{}{ 9045 RR ∆⇒∆

M∆INSERT
}{}{ 6045 RR ∆⇒∆

M∆INSERT M

∆INSERT
}{}{ 3045 RR ∆⇒∆

}{30R∆

M∆INSERT M
}{}{ 18030 RR ∆⇒∆

∆INSERT
}{}{ 12030 RR ∆⇒∆

M∆INSERT
}{}{ 9030 RR ∆⇒∆

M∆INSERT
}{}{ 6030 RR ∆⇒∆

M∆INSERT
}{}{ 4530 RR ∆⇒∆

M∆INSERT

MR ∆∆ },{180

 }{}{ 120180 RR ∆⇒∆ }{}{ 90180 RR

∆⇒∆

}{}{ 60180 RR ∆⇒∆

}{}{ 45180 RR ∆⇒∆ }{}{ 30180 RR

∆⇒∆

MR ∆∆ },{120

}{}{ 180120 RR ∆⇒∆

 }{}{ 90120 RR ∆⇒∆

}{}{ 60120 RR ∆⇒∆

}{}{ 45120 RR ∆⇒∆ }{}{ 30120 RR

∆⇒∆

MR ∆∆ },{90

}{}{ 18090 RR ∆⇒∆ }{}{ 12090 RR

∆⇒∆

 }{}{ 6090 RR ∆⇒∆

}{}{ 4590 RR ∆⇒∆ }{}{ 3090 RR

∆⇒∆

MR ∆∆ },{60

}{}{ 18060 RR ∆⇒∆ }{}{ 12060 RR

∆⇒∆ }{}{ 9060

RR ∆⇒∆

 }{}{ 4560 RR ∆⇒∆ }{}{ 3060 RR

∆⇒∆

MR ∆∆ },{45

}{}{ 18045 RR ∆⇒∆ }{}{ 12045 RR ∆⇒∆ }{}{ 9045

RR ∆⇒∆

}{}{ 6045 RR ∆⇒∆

 }{}{ 3045 RR ∆⇒∆

MR ∆∆ },{30

}{}{ 18045 RR ∆⇒∆ }{}{ 12030 RR

∆⇒∆ }{}{ 9030

RR ∆⇒∆

}{}{ 6030 RR ∆⇒∆

}{}{ 4530 RR ∆⇒∆

TABLE C.3 - TRANSFORMATION ACROSS CYCLIC AND DIHEDRAL PATTERNS

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX C 283

C.2. FRIEZE PATTERNS

p111

)](},[{ s01T∆

p1m1

)])](},[{(},[{ s0101 MT ∆∆

pm11

)])](},[{(},[{ s1001 MT ∆∆

pmm2

)])])](}1,0[{(

(}0,1[{(}0,1[{

sM

MT

∆

∆∆

p112

)])](}[{(},[{ s18001 RT ∆∆

p1a1

)](},[{ s01MT∆∆

pma2

)])](},[{(},[{ s1001 MMT ∆∆∆

TABLE C.4 - FRIEZE PATTERNS

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX C 284

HT∆

HH TM ∆∆ ,

HV TM ∆∆ ,

HVH TMM ∆∆∆ ,,

HTR ∆∆ },{180

HTM∆

HV TMM ∆∆ ,

HT∆

 HM∆INSERT VM

∆INSERT M

V∆INSERT

HM

∆INSERT

{180INSERT R

}∆

HM∆COMPOSE VM

∆INSERT

HM∆COMPOSE

HH TM ∆∆ ,

HM∆DELETE

 VH MM ∆⇒∆

VM∆INSERT
 }{180

REPLACE
RMH ∆⇒∆

HM∆DELETE

HM∆COMPOSE

VH MM

∆⇒∆

HM∆COMPOSE

HV TM ∆∆ ,

VM∆DELETE HV MM ∆⇒∆

 HM∆INSERT
}{180

REPLACE
RMV ∆⇒∆

VM∆DELETE

HM∆COMPOSE

HM

∆COMPOSE

HVH TMM ∆∆∆ ,,

M∆DELETE

HM∆DELETE
HM∆DELETE HM

V

∆DELETE

 HM∆DELETE

}{180
REPLACE

RMV ∆⇒∆

VM∆DELETE

HM∆DELETE

HM∆COMPOSE

HM

∆DELETE

HM∆COMPOSE

HTR ∆∆ },{180

}{180DELETE R∆

 HMR ∆⇒∆ }{180

REPLACE

VMR ∆⇒∆ }{180

REPLACE

HM∆INSERT

VMR ∆⇒∆ }{180
REPLACE

 } {180DELETE R∆

HM∆COMPOSE

VMR ∆⇒∆ }{180
REPLACE

HM∆COMPOSE

HTM∆

HM∆REMOVE HM∆INSERT VM

HM∆REMOVE

∆INSERT

HM∆REMOVE

HM∆INSERT

VM

∆INSERT

HM∆REMOVE

}{180INSERT R∆

HM∆REMOVE

 VM∆INSERT

HV TMM ∆∆ ,

VM∆DELETE HV MM ∆⇒∆ HM

HM∆REMOVE

HM∆REMOVE

∆REMOVE HM

∆INSERT

HM∆REMOVE

}{180
REPLACE

RMV ∆⇒∆

HM∆REMOVE

VM∆DELETE

TABLE C.5 - TRANSFORMATION ACROSS FRIEZE PATTERNS

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX C 285

C.3. WALLPAPER PATTERNS

p6

)])]

)](}[{

(},[{(},[{

s60

0131

R

TT

∆

∆∆

p6mm

)])]

)])](},[{(}[{

(},[{(},[{

s1060

0131

MR

TT

∆∆

∆∆

p3

)])]

)](}[{

(},[{(},[{

s120

0131

R

TT

∆

∆∆

p3m1

)])]

)])](},[{(}[{

(},[{(},[{

s10120

1310

MR

TT

∆∆

∆∆

p31m

)])]

)])](},[{(}[{

(},[{(},[{

s10120

0131

MR

TT

∆∆

∆∆

p4

)])]

)](}[{

(},[{(},[{

s90

0110

R

TT

∆

∆∆

p4mm

)])]

)])](},[{(}[{

(},[{(},[{

s1090

0110

MR

TT

∆∆

∆∆

p4g

)])]

)](}[{

(},[{(},[{

s90

0110

R

TMTM

∆

∆∆

TABLE C.6 - WALLPAPER PATTERNS

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX C 286

p2

)])]

)](}[{

(},[{(},[{

s180

0110

R

TT

∆

∆∆

cmm

)])]

)])](},[{(}[{

(},[{(},[{

s10180

0110

MR

TT

∆∆

∆∆

pmm

)])]

)])](},[{(},[{

(},[{(},[{

s1001

0110

MM

TT

∆∆

∆∆

pmg

)])]

)])](},[{(}[{

(},[{(},[{

s10180

0110

MR

TTM

∆∆

∆∆

pgg

)])]

}0,1[{(}1,0[{

TMTM ∆∆

pg

)])]

}0,1[{(}1,0[{

TTM ∆∆

p1

)])]

},[{(},[{

0110 TT ∆∆

pm

)])]

)](},[{

(},[{(},[{

s10

0110

M

TT

∆

∆∆

cm

)])]

)](},[{

(},[{(},[{

s10

1111

M

TT

∆

∆−∆

TABLE C.7 - WALLPAPER PATTERNS

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX C 287

p6

60H TT
R

∆∆
∆

,
}{60

p6m

60H

V

TT
R ,M

∆∆
∆∆

,
}{60

p3

60H TT
R

∆∆
∆

,
}{120

p3m1

V30

V

TT
RM

∆∆
∆∆

,
}{, 120

p31m

60H

V

TT
RM

∆∆
∆∆

,
}{, 120

p6

60H TT
R

∆∆
∆

,
}{60

 VM∆INSERT }{}{ 12060 RR ∆⇒∆ VM∆INSERT

}{}{ 12060 RR ∆⇒∆
30H TT ∆⇒∆
V60 TT ∆⇒∆

VM∆INSERT
}{}{ 12060 RR ∆⇒∆

p6m

60H

V

TT
R ,M

∆∆
∆∆

,
}{60

VM∆DELETE VM∆DELETE
}{}{ 12060 RR ∆⇒∆

}{}{ 12060 RR ∆⇒∆
30H TT ∆⇒∆
V60 TT ∆⇒∆

}{}{ 12060 RR ∆⇒∆

p3

60H TT
R

∆∆
∆

,
}{120

}{}{ 60120 RR ∆⇒∆
VM∆INSERT

}{}{ 60120 RR ∆⇒∆
 VM∆INSERT

30H TT ∆⇒∆
V60 TT ∆⇒∆

VM∆INSERT

p3m1

V30

V

TT
RM

∆∆

∆∆

,
}{, 120

VM∆DELETE

}{}{ 60120 RR ∆⇒∆
H30 TT ∆⇒∆

60V TT ∆⇒∆

}{}{ 60120 RR ∆⇒∆
H30 TT ∆⇒∆

60V TT ∆⇒∆

VM∆DELETE
H30 TT ∆⇒∆

60V TT ∆⇒∆

 H30 TT ∆⇒∆
60V TT ∆⇒∆

p31m

60H

V

TT
RM

∆∆
∆∆

,
}{, 120

VM∆DELETE

}{}{ 60120 RR ∆⇒∆

}{}{ 60120 RR ∆⇒∆

VM∆DELETE

30H TT ∆⇒∆
V60 TT ∆⇒∆

TABLE C.8 - TRANSFORMATIONS ACROSS WALLPAPER PATTERNS

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX C 288

p6

60H TT
R

∆∆
∆

,
}{60

p6m

60H

V

TT
R ,M

∆∆
∆∆

,
}{60

p3

60H TT
R

∆∆
∆

,
}{120

p3m1

V30

V

TT
RM

∆∆
∆∆

,
}{, 120

p31m

60H

V

TT
RM

∆∆
∆∆

,
}{, 120

p4

VH TT
R

∆∆
∆

,
}{90

}{}{ 6090R R ∆⇒∆

60V TT ∆⇒∆

VM∆INSERT
}{}{ 6090 RR ∆⇒∆

60V TT ∆⇒∆

}{}{ 12090 RR ∆⇒∆
60V TT ∆⇒∆

VM∆INSERT
}{}{ 12090 RR ∆⇒∆

30H TT ∆⇒∆

VM∆INSERT
}{}{ 12090 RR ∆⇒∆

60V TT ∆⇒∆

p4m

VH

V

TT
R ,M

∆∆

∆∆

,
}{90

VM∆DELETE
}{}{ 6090 RR ∆⇒∆

60V TT ∆⇒∆

}{}{ 6090 RR ∆⇒∆
60V TT ∆⇒∆

VM∆DELETE
}{}{ 12090 RR ∆⇒∆

60V TT ∆⇒∆

}{}{ 12090 RR ∆⇒∆
30H TT ∆⇒∆

}{}{ 12090 RR ∆⇒∆
60V TT ∆⇒∆

p4g

VH TMTM
R

∆∆
∆

,
}{90

}{}{ 6090 RR ∆⇒∆
60V TT ∆⇒∆

HM∆REMOVE
VM∆REMOVE

VM∆INSERT
}{}{ 6090 RR ∆⇒∆

60V TT ∆⇒∆

HM∆REMOVE
VM∆REMOVE

}{}{ 12090 RR ∆⇒∆
60V TT ∆⇒∆

HM∆REMOVE
VM∆REMOVE

VM∆INSERT
}{}{ 12090 RR ∆⇒∆

30H TT ∆⇒∆

H
 M∆REMOVE

VM∆REMOVE

VM∆INSERT
}{}{ 12090 RR ∆⇒∆

60V TT ∆⇒∆

HM∆REMOVE
VM∆REMOVE

p2

VH TT
R

∆∆
∆

,
}{180

}{}{ 60180 RR ∆⇒∆
60V TT ∆⇒∆

VM∆INSERT
}{}{ 60180 RR ∆⇒∆

60V TT ∆⇒∆

}{}{ 120180 RR ∆⇒∆
60V TT ∆⇒∆

VM∆INSERT
}{}{ 120180 RR ∆⇒∆

30H TT ∆⇒∆

VM∆INSERT
}{}{ 120180 RR ∆⇒∆

60V TT ∆⇒∆

cmm

VH

V

TT
R ,M

∆∆
∆∆

,
}{180

VM∆DELETE
}{}{ 60180 RR ∆⇒∆

60V TT ∆⇒∆

}{}{ 60180 RR ∆⇒∆
60V TT ∆⇒∆

VM∆DELETE
}{}{ 120180 RR ∆⇒∆

60V TT ∆⇒∆

}{}{ 120180 RR ∆⇒∆
30H TT ∆⇒∆

}{}{ 120180 RR ∆⇒∆
60V TT ∆⇒∆

pmm

VH

HV

TT
MM

∆∆
∆∆

,
,

VM∆DELETE

}{60
REPLACE

RMH ∆⇒∆

60V TT ∆⇒∆

}{60
REPLACE

RMH ∆⇒∆

60V TT ∆⇒∆

VM∆DELETE

}{120
REPLACE

RMH ∆⇒∆

60V TT ∆⇒∆

}{120
REPLACE

RMH ∆⇒∆

30H TT ∆⇒∆

}{120
REPLACE

RMH ∆⇒∆

60V TT ∆⇒∆

TABLE C.9 - TRANSFORMATIONS ACROSS WALLPAPER PATTERNS

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX C 289

p6

60H TT
R

∆∆
∆

,
}{60

p6m

60H

V

TT
R ,M

∆∆
∆∆

,
}{60

p3

60H TT
R

∆∆
∆

,
}{120

p3m1

V30

V

TT
RM

∆∆
∆∆

,
}{, 120

p31m

60H

V

TT
RM

∆∆
∆∆

,
}{, 120

p1

VH TT ∆∆ ,

}INSERT R∆ {60
60V TT ∆⇒∆

}{60INSERT R∆
VM∆INSERT

60V TT ∆⇒∆

}{120INSERT R∆
60V TT ∆⇒∆

}{120INSERT R∆
VM∆INSERT

30H TT ∆⇒∆

}{120INSERT R∆
VM∆INSERT

60V TT ∆⇒∆

pm

VH

V

TT
M

∆∆
∆

,

VM∆DELETE
}{60INSERT R∆

60V TT ∆⇒∆

}{60INSERT R∆
60V TT ∆⇒∆

VM∆DELETE
}{120INSERT R∆

60V TT ∆⇒∆

}{120INSERT R∆
30H TT ∆⇒∆

}{120INSERT R∆
60V TT ∆⇒∆

cm

45-45

V

TT
M

∆∆
∆

,

VM∆DELETE
}{60INSERT R∆

H45 TT ∆⇒∆
6045- TT ∆⇒∆

}{60INSERT R∆
H45 TT ∆⇒∆
6045- TT ∆⇒∆

VM∆DELETE
}{120INSERT R∆

H45 TT ∆⇒∆
6045- TT ∆⇒∆

}{120INSERT R∆
3045 TT ∆⇒∆
V45- TT ∆⇒∆

}{120INSERT R∆
H45 TT ∆⇒∆
6045- TT ∆⇒∆

pmg

VH

V

TMT
RM

∆∆
∆∆

,
}{, 180

VM∆DELETE
}{}{ 60180 RR ∆⇒∆

60V TT ∆⇒∆

VM∆REMOVE

}{}{ 60180 RR ∆⇒∆
60V TT ∆⇒∆

VM∆REMOVE

VM∆DELETE
}{}{ 120180 RR ∆⇒∆

60V TT ∆⇒∆

VM∆REMOVE

}{}{ 120180 RR ∆⇒∆

30H TT ∆⇒∆

VM∆REMOVE

}{}{ 120180 RR ∆⇒∆

60V TT ∆⇒∆

VM∆REMOVE

pgg

VH TMTM
R

∆∆
∆

,
}{180

}{}{ 60180 RR ∆⇒∆

60V TT ∆⇒∆

VM∆REMOVE
HM∆REMOVE

VM∆INSERT
}{}{ 60180 RR ∆⇒∆

60V TT ∆⇒∆

VM∆REMOVE
HM∆REMOVE

}{}{ 120180 RR ∆⇒∆

60V TT ∆⇒∆

VM∆REMOVE
HM∆REMOVE

VM∆INSERT
}{}{ 120180 RR ∆⇒∆

30H TT ∆⇒∆

VM∆REMOVE
HM∆REMOVE

VM∆INSERT
}{}{ 120180 RR ∆⇒∆

60V TT ∆⇒∆

VM∆REMOVE
HM∆REMOVE

pg
VH TMT ∆∆ ,

}{60INSERT R∆
60V TT ∆⇒∆

VM∆REMOVE

VM∆INSERT
}{60INSERT R∆

60V TT ∆⇒∆

VM∆REMOVE

}{120INSERT R∆
60V TT ∆⇒∆

VM∆REMOVE

VM∆INSERT
}{120INSERT R∆

30H TT ∆⇒∆

VM∆REMOVE

VM∆INSERT
}{120INSERT R∆

60V TT ∆⇒∆

VM∆REMOVE

TABLE C.10 - TRANSFORMATIONS ACROSS WALLPAPER PATTERNS

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX C 290

p4

VH TT
R

∆∆
∆

,
}{90

p4m

VH

V

TT
R ,M

∆∆
∆∆

,
}{90

p4g

VH TMTM
R

∆∆
∆

,
}{90

p2

VH TT
R

∆∆
∆

,
}{180

cmm

VH

V

TT
R ,M

∆∆
∆∆

,
}{180

pmm

VH

HV

TT
MM

∆∆
∆∆

,
,

p6

60H TT
R

∆∆
∆

,
}{60

}{}{ 9060 RR ∆⇒∆
V60 TT ∆⇒∆

VM∆INSERT
}{}{ 9060 RR ∆⇒∆

V60 TT ∆⇒∆

}{}{ 9060 RR ∆⇒∆
V60 TT ∆⇒∆

VM∆COMPOSE
HM∆COMPOSE

}{}{ 18060 RR ∆⇒∆
V60 TT ∆⇒∆

VM∆INSERT
}{}{ 18060 RR ∆⇒∆

V60 TT ∆⇒∆

VM∆INSERT

HMR ∆⇒∆ }{60
REPLACE

V60 TT ∆⇒∆

p6m

60H

V

TT
R ,M

∆∆

∆∆

,
}{60

VM∆DELETE
}{}{ 9060 RR ∆⇒∆

V60 TT ∆⇒∆

}{}{ 9060 RR ∆⇒∆
V60 TT ∆⇒∆

VM∆DELETE
}{}{ 9060 RR ∆⇒∆

V60 TT ∆⇒∆

VM∆COMPOSE
HM∆COMPOSE

VM∆DELETE
}{}{ 18060 RR ∆⇒∆

V60 TT ∆⇒∆

}{}{ 18060 RR ∆⇒∆
V60 TT ∆⇒∆

HMR ∆⇒∆ }{60

REPLACE

V60 TT ∆⇒∆

p3

60H TT
R

∆∆
∆

,
}{120

}{}{ 90120 RR ∆⇒∆
V60 TT ∆⇒∆

VM∆INSERT
}{}{ 90120 RR ∆⇒∆

V60 TT ∆⇒∆

}{}{ 90120 RR ∆⇒∆
V60 TT ∆⇒∆

VM∆COMPOSE
HM∆COMPOSE

}{}{ 180120 RR ∆⇒∆

V60 TT ∆⇒∆
VM∆INSERT

}{}{ 180120 RR ∆⇒∆

V60 TT ∆⇒∆

VM∆INSERT

HMR ∆⇒∆ }{120
REPLACE

V60 TT ∆⇒∆

p3m1

V30

V

TT
RM

∆∆

∆∆

,
}{, 120

VM∆DELETE
}{}{ 90120 RR ∆⇒∆

H30 TT ∆⇒∆

}{}{ 90120 RR ∆⇒∆
H30 TT ∆⇒∆

VM∆DELETE
}{}{ 90120 RR ∆⇒∆

H30 TT ∆⇒∆

VM∆COMPOSE
HM∆COMPOSE

VM∆DELETE
}{}{ 180120 RR ∆⇒∆

H30 TT ∆⇒∆

}{}{ 180120 RR ∆⇒∆

H30 TT ∆⇒∆
HMR ∆⇒∆ }{120

REPLACE

H30 TT ∆⇒∆

p31m

60H

V

TT
RM

∆∆
∆∆

,
}{, 120

VM∆DELETE
}{}{ 90120 RR ∆⇒∆

V60 TT ∆⇒∆

}{}{ 90120 RR ∆⇒∆
V60 TT ∆⇒∆

VM∆DELETE
}{}{ 90120 RR ∆⇒∆

V60 TT ∆⇒∆

VM∆COMPOSE
HM∆COMPOSE

VM∆DELETE
}{}{ 180120 RR ∆⇒∆

V60 TT ∆⇒∆

}{}{ 180120 RR ∆⇒∆

V60 TT ∆⇒∆

HMR ∆⇒∆ }{120
REPLACE

V60 TT ∆⇒∆

TABLE C.11 - TRANSFORMATIONS ACROSS WALLPAPER PATTERNS

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX C 291

p4

VH TT
R

∆∆
∆

,
}{90

p4m

VH

V

TT
R ,M

∆∆
∆∆

,
}{90

p4g

VH TMTM
R

∆∆
∆

,
}{90

p2

VH TT
R

∆∆
∆

,
}{180

cmm

VH

V

TT
R ,M

∆∆
∆∆

,
}{180

pmm

VH

HV

TT
MM

∆∆
∆∆

,
,

p4

VH TT
R

∆∆
∆

,
}{90

 VM∆INSERT

VM∆COMPOSE
HM∆COMPOSE

}{}{ 18090 RR ∆⇒∆

VM∆INSERT
}{}{ 18090 RR ∆⇒∆

VM∆INSERT

HMR ∆⇒∆ }{90
REPLACE

p4m

VH

V

TT
R ,M

∆∆

∆∆

,
}{90

VM∆DELETE

 VM∆DELETE

V
 M∆COMPOSE

HM∆COMPOSE

VM∆DELETE
}{}{ 18090 RR ∆⇒∆

}{}{ 18090 RR ∆⇒∆
 HMR ∆⇒∆ }{90

REPLACE

p4g

VH TMTM
R

∆∆
∆

,
}{90

VM∆REMOVE
HM∆REMOVE

VM∆INSERT

VM∆REMOVE
HM∆REMOVE

 }{}{ 18090 RR ∆⇒∆

VM∆REMOVE
HM∆REMOVE

VM∆INSERT
}{}{ 18090 RR ∆⇒∆

VM∆REMOVE
HM∆REMOVE

VM∆INSERT

HMR ∆⇒∆ }{90
REPLACE

V

 M∆REMOVE

HM∆REMOVE

p2

VH TT
R

∆∆
∆

,
}{180

}{}{ 90180 RR ∆⇒∆

VM∆INSERT
}{}{ 90180 RR ∆⇒∆

}{}{ 90180 RR ∆⇒∆

V
 M∆COMPOSE

HM∆COMPOSE

 VM∆INSERT

VM∆INSERT

HMR ∆⇒∆ }{180
REPLACE

cmm

VH

V

TT
R ,M

∆∆
∆∆

,
}{180

VM∆DELETE
}{}{ 90180 RR ∆⇒∆

}{}{ 90180 RR ∆⇒∆
VM∆DELETE

}{}{ 90180 RR ∆⇒∆

V

 M∆COMPOSE

HM∆COMPOSE

VM∆DELETE

HMR ∆⇒∆ }{180

REPLACE

pmm

VH

HV

TT
MM

∆∆
∆∆

,
,

VM∆DELETE

}{90
REPLACE

RMH ∆⇒∆

}{90
REPLACE

RMH ∆⇒∆
 VM∆DELETE

}{90
REPLACE

RMH ∆⇒∆

VM∆COMPOSE
HM∆COMPOSE

VM∆DELETE

}{180
REPLACE

RMH ∆⇒∆

}{180
REPLACE

RMH ∆⇒∆

TABLE C.12 - TRANSFORMATIONS ACROSS WALLPAPER PATTERNS

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX C 292

p4

VH TT
R

∆∆
∆

,
}{90

p4m

VH

V

TT
R ,M

∆∆
∆∆

,
}{90

p4g

VH TMTM
R

∆∆
∆

,
}{90

p2

VH TT
R

∆∆
∆

,
}{180

cmm

VH

V

TT
R ,M

∆∆
∆∆

,
}{180

pmm

VH

HV

TT
MM

∆∆
∆∆

,
,

p1

VH TT ∆∆ ,

}{90INSERT R∆

VM∆INSERT
}{90INSERT R∆

}{90INSERT R∆

VM∆COMPOSE
HM∆COMPOSE

}{180INSERT R∆

VM∆INSERT
}{180INSERT R∆

VM∆INSERT
HM∆INSERT

pm

VH

V

TT
M

∆∆
∆

,

}{90
REPLACE

RMV ∆⇒∆

}{90INSERT R∆
 }{90

REPLACE
RMV ∆⇒∆

VM∆COMPOSE
HM∆COMPOSE

}{180
REPLACE

RMV ∆⇒∆

}{180INSERT R∆

HM∆INSERT

cm

45-45

V

TT
M

∆∆
∆

,

}{90
REPLACE

RMV ∆⇒∆

H45 TT ∆⇒∆
V45- TT ∆⇒∆

}{90INSERT R∆
H45 TT ∆⇒∆
V45- TT ∆⇒∆

}{90
REPLACE

RMV ∆⇒∆

H45 TT ∆⇒∆
V45- TT ∆⇒∆

VM∆COMPOSE
HM∆COMPOSE

}{180
REPLACE

RMV ∆⇒∆

H45 TT ∆⇒∆
V45- TT ∆⇒∆

}{180INSERT R∆

H45 TT ∆⇒∆
V45- TT ∆⇒∆

HM∆INSERT

H45 TT ∆⇒∆
V45- TT ∆⇒∆

pmg

VH

V

TMT
RM

∆∆
∆∆

,
}{, 180

VM∆DELETE
}{}{ 90180 RR ∆⇒∆

VM∆REMOVE

}{}{ 90180 RR ∆⇒∆

VM∆REMOVE

VM∆DELETE
}{}{ 90180 RR ∆⇒∆

HM∆COMPOSE

VM∆DELETE

VM∆REMOVE

VM∆REMOVE
 HMR ∆⇒∆ }{180

REPLACE

VM∆REMOVE

pgg

VH TMTM
R

∆∆
∆

,
}{180

}{}{ 90180 RR ∆⇒∆

VM∆REMOVE
HM∆REMOVE

VM∆INSERT
}{}{ 90180 RR ∆⇒∆

VM∆REMOVE
HM∆REMOVE

}{}{ 90180 RR ∆⇒∆

VM∆REMOVE
HM∆REMOVE

VM∆INSERT

VM∆REMOVE
HM∆REMOVE

VM∆INSERT

HMR ∆⇒∆ }{180
REPLACE

VM∆REMOVE
HM∆REMOVE

pg
VH TMT ∆∆ ,

}{90INSERT R∆

VM∆COMPOSE

VM∆INSERT
}{90INSERT R∆

VM∆REMOVE

}{90INSERT R∆

HM∆COMPOSE

}{180INSERT R∆

VM∆REMOVE

VM∆INSERT
}{180INSERT R∆

VM∆REMOVE

VM∆INSERT
HM∆INSERT

VM∆REMOVE

TABLE C.13 -TRANSFORMATIONS ACROSS WALLPAPER PATTERNS

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX C 293

p1

VH TT ∆∆ ,

pm

VH

V

TT
M

∆∆
∆

,

cm

45-45

V

TT
M

∆∆
∆

,

pmg

VH

V

TMT
RM

∆∆
∆∆

,
}{, 180

pgg

VH TMTM
R

∆∆
∆

,
}{180

pg
VH TMT ∆∆ ,

p6

60H TT
R

∆∆
∆

,
}{60

}{60DELETE R∆
V60 TT ∆⇒∆

VM∆INSERT
}60DELETE R{∆

V60 TT ∆⇒∆

VM∆INSERT
}{60DELETE R∆

45H TT ∆⇒∆
45-60 TT ∆⇒∆

VM∆INSERT
}{}{ 18060 RR ∆⇒∆

V60 TT ∆⇒∆

VM∆COMPOSE

}{}{ 18060R ∆⇒ R∆
V60 TT ∆⇒∆

HM∆COMPOSE
VM∆COMPOSE

}{60DELETE R∆
V60 TT ∆⇒∆

VM∆COMPOSE

p6m

60H

V

TT
R ,M

∆∆
∆∆

,
}{60

VM∆DELETE
}{60DELETE R∆

V60 TT ∆⇒∆

}{60DELETE R∆
V60 TT ∆⇒∆

}{60DELETE R∆
45H TT ∆⇒∆
45-60 TT ∆⇒∆

}{}{ 18060 RR ∆⇒∆
V60 TT ∆⇒∆

VM∆COMPOSE

VM∆DELETE
}{}{ 18060 RR ∆⇒∆

V60 TT ∆⇒∆

HM∆COMPOSE
VM∆COMPOSE

VM∆DELETE
}{60DELETE R∆

V60 TT ∆⇒∆

VM∆COMPOSE

p3

60H TT
R

∆∆
∆

,
}{120

}{120DELETE R∆
V60 TT ∆⇒∆

VM∆INSERT
}{120DELETE R∆

V60 TT ∆⇒∆

VM∆INSERT
}{120DELETE R∆

45H TT ∆⇒∆
45-60 TT ∆⇒∆

VM∆INSERT
}{}{ 180120 RR ∆⇒∆

V60 TT ∆⇒∆

VM∆COMPOSE

}{}{ 180120 RR ∆⇒∆

V60 TT ∆⇒∆

HM∆COMPOSE
VM∆COMPOSE

}{120DELETE R∆
V60 TT ∆⇒∆

VM∆COMPOSE

p3m1

V30

V

TT
RM

∆∆
∆∆

,
}{, 120

VM∆DELETE
}{120DELETE R∆

H30 TT ∆⇒∆

}{120DELETE R∆
H30 TT ∆⇒∆

}{120DELETE R∆
45H TT ∆⇒∆
45-60 TT ∆⇒∆

}{}{ 180120 RR ∆⇒∆

H30 TT ∆⇒∆

VM∆COMPOSE

VM∆DELETE
}{}{ 180120 RR ∆⇒∆

H30 TT ∆⇒∆

HM∆COMPOSE
VM∆COMPOSE

VM∆DELETE
}{120DELETE R∆

H30 TT ∆⇒∆

VM∆COMPOSE

p31m

60H

V

TT
RM

∆∆
∆∆

,
}{, 120

VM∆DELETE
}{120DELETE R∆

V60 TT ∆⇒∆

}{120DELETE R∆
V60 TT ∆⇒∆

}{120DELETE R∆
45H TT ∆⇒∆
45-60 TT ∆⇒∆

}{}{ 180120 RR ∆⇒∆

V60 TT ∆⇒∆

VM∆COMPOSE

VM∆DELETE
}{}{ 180120 RR ∆⇒∆

V60 TT ∆⇒∆

HM∆COMPOSE
VM∆COMPOSE

VM∆DELETE
}{120DELETE R∆

V60 TT ∆⇒∆

VM∆COMPOSE

TABLE C.14 -TRANSFORMATIONS ACROSS WALLPAPER PATTERNS

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX C 294

p1

VH TT ∆∆ ,

pm

VH

V

TT
M

∆∆
∆

,

cm

45-45

V

TT
M

∆∆
∆

,

pmg

VH

V

TMT
RM

∆∆
∆∆

,
}{, 180

pgg

VH TMTM
R

∆∆
∆

,
}{180

pg
VH TMT ∆∆ ,

p4

VH TT
R

∆∆
∆

,
}{90

}{90DELETE R∆
 VMR ∆⇒∆ }{90

REPLACE

VMR ∆⇒∆ }{90
REPLACE

45H TT ∆⇒∆
45-V TT ∆⇒∆

VM∆INSERT
}{}{ 18090 RR ∆⇒∆

VM∆COMPOSE

}{}{ 18090 RR ∆⇒∆

HM∆COMPOSE
VM∆COMPOSE

}{90DELETE R∆

VM∆COMPOSE

p4m

VH

V

TT
R ,M

∆∆
∆∆

,
}{90

}{90DELETE R∆
VM∆DELETE

}{90DELETE R∆

}{90DELETE R∆

45H TT ∆⇒∆
45-V TT ∆⇒∆

}{}{ 18090 RR ∆⇒∆

VM∆COMPOSE

VM∆DELETE
}{}{ 18090 RR ∆⇒∆

HM∆COMPOSE
VM∆COMPOSE

VM∆DELETE
}{90DELETE R∆

VM∆COMPOSE

p4g

VH TMTM
R

∆∆
∆

,
}{90

}{90DELETE R∆

HM∆REMOVE
VM∆REMOVE

VMR ∆⇒∆ }{90
REPLACE

HM∆REMOVE
VM∆REMOVE

VMR ∆⇒∆ }{90
REPLACE

45H TT ∆⇒∆
45-V TT ∆⇒∆

HM∆REMOVE
VM∆REMOVE

VM∆INSERT
}{}{ 18090 RR ∆⇒∆

HM∆REMOVE

}{}{ 18090 RR ∆⇒∆

}{90DELETE R∆

HM∆REMOVE

p2

VH TT
R

∆∆
∆

,
}{180

}{180DELETE R∆
 VMR ∆⇒∆ }{180

REPLACE

VMR ∆⇒∆ }{180

REPLACE

45H TT ∆⇒∆
45-V TT ∆⇒∆

VM∆INSERT

VM∆COMPOSE

HM∆COMPOSE
VM∆COMPOSE

}{180DELETE R∆

VM∆COMPOSE

cmm

VH

V

TT
R ,M

∆∆

∆∆

,
}{180

VM∆DELETE
}{180DELETE R∆

}{180DELETE R∆

}{180DELETE R∆
45H TT ∆⇒∆
45-V TT ∆⇒∆

VM∆COMPOSE
VM∆DELETE

HM∆COMPOSE
VM∆COMPOSE

VM∆DELETE
}{180DELETE R∆

VM∆COMPOSE

pmm

VH

HV

TT
MM

∆∆
∆∆

,
,

VM∆DELETE
HM∆DELETE

HM∆DELETE

HM∆DELETE
45H TT ∆⇒∆
45-V TT ∆⇒∆

}{180
REPLACE

RMH ∆⇒∆

VM∆COMPOSE

VM∆DELETE

}{180
REPLACE

RMH ∆⇒∆

HM∆COMPOSE
VM∆COMPOSE

VM∆DELETE
HM∆DELETE

VM∆COMPOSE

TABLE C.15 - TRANSFORMATIONS ACROSS WALLPAPER PATTERNS

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX C 295

p1

VH TT ∆∆ ,

pm

VH

V

TT
M

∆∆
∆

,

cm

45-45

V

TT
M

∆∆
∆

,

pmg

VH

V

TMT
RM

∆∆
∆∆

,
}{, 180

pgg

VH TMTM
R

∆∆
∆

,
}{180

pg
VH TMT ∆∆ ,

p1

VH TT ∆∆ ,

 VM∆INSERT

VM∆INSERT
45H TT ∆⇒∆
45-V TT ∆⇒∆

VM∆INSERT
}{180INSERT R∆

VM∆COMPOSE

}{180INSERT R∆

VM∆COMPOSE
HM∆COMPOSE

VM∆COMPOSE

pm

VH

V

TT
M

∆∆
∆

,

VM∆DELETE

 45H TT ∆⇒∆
45-V TT ∆⇒∆

}{180INSERT R∆

VM∆COMPOSE

}{180
REPLACE

RMV ∆⇒∆

VM∆COMPOSE
HM∆COMPOSE

VM∆DELETE

VM∆COMPOSE

cm

45-45

V

TT
M

∆∆
∆

,

VM∆DELETE
H45 TT ∆⇒∆
V45- TT ∆⇒∆

H45 TT ∆⇒∆
V45- TT ∆⇒∆

 }{180INSERT R∆
H45 TT ∆⇒∆
V45- TT ∆⇒∆

VM∆COMPOSE

}{180
REPLACE

RMV ∆⇒∆

H45 TT ∆⇒∆
V45- TT ∆⇒∆

VM∆COMPOSE
HM∆COMPOSE

VM∆DELETE
H45 TT ∆⇒∆
V45- TT ∆⇒∆

VM∆COMPOSE

pmg

VH

V

TMT
RM

∆∆
∆∆

,
}{, 180

VM∆DELETE
}{180DELETE R∆

VM∆REMOVE

}{180DELETE R∆

VM∆REMOVE

}{180DELETE R∆
45H TT ∆⇒∆
45-V TT ∆⇒∆

VM∆REMOVE

 VM∆DELETE

HM∆COMPOSE

VM∆DELETE
}{180DELETE R∆

pgg

VH TMTM
R

∆∆
∆

,
}{180

}{180DELETE R∆

HM∆REMOVE
VM∆REMOVE

VMR ∆⇒∆ }{180
REPLACE

HM∆REMOVE
VM∆REMOVE

VMR ∆⇒∆ }{180
REPLACE

45H TT ∆⇒∆
45-V TT ∆⇒∆

HM∆REMOVE
VM∆REMOVE

VM∆INSERT

HM∆REMOVE

 }{180DELETE R∆

HM∆REMOVE

pg
VH TMT ∆∆ ,

VM∆REMOVE

VM∆INSERT

VM∆REMOVE

VM∆INSERT
45H TT ∆⇒∆
45-V TT ∆⇒∆

VM∆REMOVE

VM∆INSERT
}{180INSERT R∆

}{180INSERT R∆

HM∆COMPOSE

TABLE C.16 -TRANSFORMATIONS ACROSS WALLPAPER PATTERNS

ARCHITECTURAL EXPLORATIONS - 8/15/2005 APPENDIX C 296

APPENDIX D

THE ENGINEERING OF THE ICE

IMPLEMENTATION

This appendix illustrates the UML diagrams used to engineer the ICE implementation. Section

D.1 shows the object models, and section D.2 shows use cases and interaction diagrams for the

various functionalities of regulators.

D.1. OBJECT MODELS

D.1.1. Shape Bridge Object model

m
y_

sh
ap

e
m

y_
ge

om
et

ry

Ic
eE

le
m

en
t

Sh
ap

e
Ic

eE
le

m
en

t
Ic

eG
eo

m
et

ry

Li
ne

Po
in

t

Pl
an

e

C
yl

C
on

eP
yr

am
i

Sp
he

riT
or

us

Tr
ap

ez
Pr

is
m

C
ub

e_

ARCHITECTURAL EXPLORATIONS APPENDIX D 297

D.1.2. Regulator Bridge Object model

m
y_

re
gu

la
to

r

re
gu

la
to

r_
id

en
tit

ie
s_

lis
t

t
Ic

eO
bj

ec

C
on

ta
in

m
...

Tr
an

sf
or

m
at

io
nI

D

U
ni

on

M
irr

or

C
on

st
ra

in
tID

Eq
ui

va
le

nc
e

O
pe

ra
tio

nI
D

Su
bd

iv
is

io
n

C
ur

ve

Sh
ea

r

Ic
eE

le
m

en
t

R
eg

ul
at

or

A
lig

nm
en

t
B

ou
nd

ar
y

To
po

lo
gi

ca
lID

A
re

a

A
ng

le

D
iff

er
en

ce
Su

bS
ha

pe

H
ie

ra
rc

hi
ca

lID

s
C

on
ne

ct
ed

ne
s

_
dj

ac
en

cy
A

n
In

te
rs

ec
tio

R
eg

ul
at

or
Id

en
tit

y

Pr
op

or
tio

n
D

iff
er

en
ci

al

Ex
ce

pt
io

n

R
hy

th
m

Va
ria

tio
nI

D

D
ef

or
m

at
io

n

Tr
an

sl
at

io
n

Pr
oj

ec
tio

n

R
ot

at
io

n

D
ila

tio
n

ARCHITECTURAL EXPLORATIONS APPENDIX D 298

D.1.3. Observer Object Model

m
y_

sh
ap

e

m
y_

ob
se

rv
er

s

m
y_

ge
om

et
ry

as
so

ci
at

ed
_e

le
m

en
ts

m
y_

re
gu

la
to

r

as
so

ci
at

io
n_

lis
t

m
y_

re
gu

la
to

r
re

gu
la

to
r_

id
en

tit
y_

lis
t

Ic
eO

bj
ec

t
Ic

eG
eo

m
et

ry

Sh
ap

e

Ic
eO

bj
ec

t
Ic

eE
le

m
en

t

R
eg

ul
at

or
A

ss
oc

ia
tio

n

Ic
eO

bj
ec

t
R

eg
ul

at
or

Id
en

tit

ARCHITECTURAL EXPLORATIONS APPENDIX D 299

D.1.4. ICE Implementation Object Model

in
pu

t_
pl

an
e

m
y_

re
gu

la
to

r
ex

pr
es

si
on

s

m
y_

sh
ap

e

el
em

en
ts

_i
n_

lis
t

m
y_

ob
se

rv
er

s

se
le

ct
e_

as
so

ci
at

io
ns

se
le

ct
ed

_r
eg

ua
lto

rs

se
le

ct
ed

_e
le

m
en

ts

re
gu

la
to

r_
lis

t

el
em

en
t_

lis
t

S
ch

em
a_

lis
t

el
em

en
t_

lis
t

as
so

ci
at

io
nt

_l
is

t

re
gu

la
to

r_
id

en
tit

ie
s_

lis
t

as
so

ci
at

ed
 e

le
m

en
ts

di
re

ct
io

n
ve

ct
or

s

m
y_

re
gu

la
to

r

tra
nf

or
m

at
io

n_
m

at
rix

ex
pr

es
si

on
s

H
is

t_
lis

t

n

C
am

er
a

IC
E

M
od

el

H
is

to
ry

El
em

e

H
is

to
ry

Sc
en

e

Li
gh

t

G
L

M
od

e

Ic
eL

is
t

Sc
he

m
e

Sh
ap

e

ss
oc

ia
tio

n
A

Ic
eO

bj
ec

t

Ic
eE

le
m

en
t

R
eg

ul
at

or

C
yl

C
on

eP
yr

am
i

Ic
eG

eo
m

et
ry

Tr
ap

ez
Pr

is
m

Sp
he

riT
or

us

R
eg

ul
at

or
Id

en
tit

y

C
ub

e_

Po
in

t

Pl
an

e

Li
ne

r
N

um
Ve

ct
o

Ic
eV

ec
to

r

Ex
pV

ec
t..

Fu
nc

tio
nE

x

x
N

um
M

at
ri

Ex
pr

es
si

onIc
eM

at
rix

p
O

pe
ra

tio
nE

x
Va

lu
eE

x

x
Ex

pM
at

ri

ARCHITECTURAL EXPLORATIONS APPENDIX D 300

D.1.5. Matrices Object Model

di
re

ct
io

n
ve

ct
or

s
m

y_
re

gu
la

to
r

tra
nf

or
m

at
io

n_
m

at
rix

ex
pr

es
si

on
s

ex
pr

es
si

on
s

re
gu

la
to

r_
id

en
tit

y_
lis

t

Ic
eO

bj
ec

t
Ex

pr
es

si
on

N
um

M
at

rix
N

um
Ve

ct
or

Ex
pV

ec
t..

Ic
eO

bj
ec

t
Ic

eM
at

rix

O
pe

ra
tio

nE
x

Ic
eO

bj
ec

t
Ic

eV
ec

to
r

Ex
pM

at
rix

Fu
nc

tio
nE

x

Ic
eO

bj
ec

t
R

eg
ul

at
or

Id
en

tit
y

Va
lu

eE
xp

Ic
eE

le
m

en
t

R
eg

ul
at

or

D.2. USE-CASES AND INTERACTION DIAGRAMS

All use-cases are designed for the developer as the main actor, in the future theses will be refined

and intended for designers. All use-cases assume the presence of shape and scheme libraries, a

history list, a graph view, and a string view, which are not currently implemented. The following

use-cases include are for instantiation, deletion, selection, shape modification, associations, and

regulator modification.

ARCHITECTURAL EXPLORATIONS APPENDIX D 301

Instantiation Use-cases D.2.1.

D.2.1.1 Instantiate a new shape

Entry condition: The model view is available, the shape controls are available
Flow of events:

The user chooses the shape from a shape library
The system sets the interaction mode for the chosen shape

 or
 The user defines a new shape by composing regulators
 The system sets the interaction mode as “define new shape’
 The selected or defined shape appears in the shape pre-view
 The user positions the cursor clicks the model view

 A new shape is instantiated and added to the model’s element list.
 The new shape is selected
 The system updates the history
 Exit condition: The new shape appears on the model view, graph view and the string view.

Model ShapeShapeLibraryuserInterface

3: set_position

2: set_interaction_mode

1: choose_shape

1.1: appear in preview

8: update_all_views

7: add_to_selectedt_list

6: set_select_mode_primary

5: add_to_element_list

4: instantiate

ARCHITECTURAL EXPLORATIONS APPENDIX D 302

D.2.1.2 Define a new shape by composing regulators

Entry condition: The model view and shape controls are available
Flow of events:
 The user selects the start vertex (or start shape)
 The user chooses to define a new shape

The user chooses a regulator (from a list) and
The system associates it to the start vertex (or shape)
The shape preview displays the resulting shape (in progress)

Optional steps:
 The user manipulates the parameters of the regulator
 The user chooses the subset of the shapes to generate
 The user chooses the subset of generates shapes to be applied to the next regulator

The user can repeat choosing a regulator and associating it to the vertices as many times
as needed to define the new shape

Exit condition: The user types the name and terminates the definition of the new shape
 The system saves the new shape in the shape library

ModeluserInterface Vertex_shape NewShape Regulator Shape_library

5: modify parameters

3: choose_regulator

2: set_interaction_mode_define_new_shape

1: select_start_ shape

7: set_name

8: Save_shape_in_library

4: Preview

2.2: set_start_shape

3.2: associate_to start_vertex

3.1: intantiate

2.1: instantiate

7.1: terminate_shape

ARCHITECTURAL EXPLORATIONS APPENDIX D 303

D.2.1.3 Instantiate a new regulator

Entry condition: The model view is available, the regulator controls are available
Flow of events:
 The user chooses the regulator (from the list of possible regulator types)
 The system sets the create-regulator mode
 The user points and clicks on the model view

A new regulator is instantiated (with the chosen identities) and added to the model’s
element list.

 The new regulator is selected
Exit condition: The new regulator appears on the model view, graph view and the string view.
Special requirements: The user can set parameters and identities before or after the instantiation of
the regulator.

Model RegulatorUserInterface

4: update_all_views

5: modify_parameters

3: set_position

2: choose_id

1: set_interaction_mode_instantiate_regulator

3.3: add_to_element_list

3.4: set_selected_reg

3.2: set_id

3.1: instantiate

ARCHITECTURAL EXPLORATIONS APPENDIX D 304

D.2.2. Selection Use-cases

D.2.2.1 Select a shape or a regulator

Entry condition: There exits at least one shape or regulator in the model
Flow of events:
 The system default interaction mode is “select an element “
 The user points and clicks the mouse over the shape/regulator on the model view.
 The system matches the coordinates, identifies the shape or regulator and

If it’s a regulated element it is placed in the model’s element list.
If it’s a regulator it becomes the selected regulator.

 Shift clicking allows the user to select multiple shapes
 The system traverses the regulator tree to identify all associated shapes and regulators.
 The system updates the history
Exit condition:

The selected shape/regulator will appear highlighted (with primary highlights) on the
model-view, the graph view, and the string view.
The shapes and regulators associated directly and those associated by transitivity will also
be highlighted in secondary and ternary highlights respectively.
Associations are highlighted on the graph view.
The shapes or regulator controls become available

Special requirements:
The system relies on OpenGL selection mechanism to match the coordinates with the
shape/vertex and return a shape/vertex ID
Variations of “select a regulator” include (i) selecting all the shapes of a regulator by
clicking on the regulator, (ii) selecting all associations of a regulator by clicking on the
regulator

User_interface Model Regulated_elemen Regulator Reg_tree

7: set_selected_regulator

5: Add_to_selected_list

4: set_select_mode_primary
3: Matches_ccordinates

1: Set_interaction_mode_select

2: Select

6: Set_select_mode_primary

8: Traverse_10

8.1: Set_associated_elements_select_mode_secondary

ARCHITECTURAL EXPLORATIONS APPENDIX D 305

D.2.2.2 Select an association

Entry condition:
 A shape or a regulator is selected and its direct associations are highlighted on the model.
 The associations are depicted and highlighted on the graph view.
Flow of events:
 The user points and clicks the mouse over the association on the graph view
 The system identifies it as the selected association
 Shift clicking allows the user to select multiple shapes
 The system updates the history
Exit condition:
 The shapes and the regulator of the selected association will appear highlighted (with
 primary highlights) on the model-view and the string view.
 The association controls become available.
Special requirements:

A variation of “select an association” include selecting all shapes of a specific association
by clicking on the association.

RegulatorElementAssociationModelUser_interface

2: set_select_mode_primary

3: set_selected_association

5: set_select_mode_secondary

4: set_select_mode_secondary

1: select_from_graph_view

ARCHITECTURAL EXPLORATIONS APPENDIX D 306

D.2.2.3 Select a vertex, an internal-regulator, or an internal-association

Entry condition: A shape or regulator is selected
Flow of events:
 The user makes a second click on the shape

All the vertices and internal regulators and internal associations appear on the model, and
the graph view and the string view.
The user selects the vertex or internal regulator in the same way as select a shape or
regulator
The user selects a subshape-association in the same was as select an association
The system updates the history

Exit condition:
 The user deselects the shape.

User_interface Shape Vertex Internal_regulato

3: Set_visual_mode_structure

5: Select_04

4: Select_04

2: Second_click

1: Select

ARCHITECTURAL EXPLORATIONS APPENDIX D 307

D.2.3. Viewing Usecases

D.2.3.1 Show/hide/emphasize shapes and regulators

Entry condition: There are shapes and regulators in the model
Flow of events:

The user selects one of the following
a shape
a regulator
an association
all-shapes
all regulators
all associations

The user turns on/off the visibility of the selected item
The system sets the visibility flag for the selected item
The user adjusts the transparency level of the selected item
The system sets the alpha value for the selected item
The user adjusts the line thickness of the selected item
The system sets the line thickness for the selected item
The system updates the history

ElementUser_interface

4: set_line_thickness

3: set_transparency

2: set_visibility

1: select_04

ARCHITECTURAL EXPLORATIONS APPENDIX D 308

Deletion Use-cases D.2.4.

D.2.4.1 Delete a vertex or a shape

Entry condition: A shape or vertex is selected
Flow of events:
 The user chooses to delete the selected element
 The system sets the interaction mode as “delete element”
 The system deletes the shape or vertex and
 The system traverses the regulator tree to deletes the image-shapes of this shape/vertex

For deleted vertices, the system traverses the external regulator tree to propagate change
to associated image shapes
The system removes all references to it (and its image-shapes) from regulators and
associations
The system removes it from the models element list
The system updates the history

Exit condition: The model view, graph and string views are updated.
Special requirements:

User_interface Regulator shape_vertices Reg_treeModel

2: Select

9: Remove_all_references

7: Remove_all references

8: deletes_image_shapes_vertices

10: remove_from_element_list

5: remove_from_element_list

6: traverse_10

4: delete

1: set_interaction_mode_delete

3: dissociate_original_shapes

ARCHITECTURAL EXPLORATIONS APPENDIX D 309

D.2.4.2 Delete a regulator

Entry condition: A regulator is selected
Flow of events:

The user chooses to delete the selected element
The system sets the interaction mode as “delete element”

If it is a non-generative regulator, all shapes are dissociated from the regulator but remain
as independent shapes

If it’s a generative regulator, Its input shapes are dissociated and Its output shapes are
deleted

If the regulator is in a sequence, the original shapes of this regulator become the original
shapes of the succeeding regulator
The system deletes regulator from the regulator tree and removes all references to it.
The system traverses the regulator tree, and regenerates it starting from the deleted
regulator.
The system updates the history

Exit condition: The model view, graph and string views are updated.

User_interface Regulator shape_vertices Reg_treeModel

2: Select

9: Remove_all_references

7: Remove_all references

8: deletes_image_shapes_vertices

10: remove_from_element_list

5: remove_from_element_list

6: traverse_10

4: delete

1: set_interaction_mode_delete

3: dissociate_original_shapes

ARCHITECTURAL EXPLORATIONS APPENDIX D 310

D.2.5. Tree Traversal Use-cases

D.2.5.1 Traverse a regulator tree (System use-case)

Entry condition: The user selects or changes an element in the regulator tree
Flow of events:
 Traversal begins from a shape

The shape notifies its observers (associations or regulators)
The observers (associations or regulators) update their other shapes (based on
the new values and the regulator’s formula)
These other shapes notify their other observers (associations or regulators)

Traversal begins from a regulator

The regulator goes through its regulated elements (shapes or associations)
The regulator updates its direct elements
The associations update their shapes (based on the new values and the
regulator’s formula)
The shapes notify their other observers (associations or regulators)

Exit condition:
The notification-update process recursively continues until there are no more observers
(associations or regulators)

shape_vertex RegulatorAssociationUser_interface

2: modify

1: modify

2.2.1: update

1.2.3.1: update_other

1.1.1.1: update_others 1.1.1: regulate

2.2: update

2.1.1: update
2.1: regulate

1.2.3: update_other

1.2.2: update_other 1.2.1: regulate

1.2: notify

1.1: notify any update to shape will
cause a notify
this is a recursive process,
until there is no more
observers

ARCHITECTURAL EXPLORATIONS APPENDIX D 311

D.2.6. Shape Modifications Use-cases

D.2.6.1 Modify a shape

Entry condition: A shape is selected in the model, and shape controls are available
Flow of events:
 The user modifies an attribute of a the shape (attributes = color, alpha, line thickness)
 The system sets the new values for this shape

or
 The user modifies a vertex of the shape

or
 The user modifies the internal regulator of the shape

or
 The user replaces the shape

or
 The user subdivides the shape

or
 The user moves or rotates the shape
 The system adjusts the position or rotation parameters
 The system traverses the external regulator tree of the configuration and testing for the
 constraints and propagating the replacement to all associated shapes
 The system updates the history
Exit condition:

The drawing view, graph views, and the string view are updated to show the modified
shape

UserInterface Shape RegTree

8: Update_other_shapes

7: Traverse_10

6: subdivide_16

5: replace_15

4: modify_internal_regulator_14

3: modify_vertices_13

2: modify_attribute

1:

ARCHITECTURAL EXPLORATIONS APPENDIX D 312

D.2.6.2 Modifying the shapes controlled by constraint regulators

Entry condition: The user modifies the shape
Flow of events:

The system tests the new shape configuration with the regulator’s formula
If the new shape configuration is conforming with the regulator’s constraints

The system updates the shape
Otherwise

If the system is in “keep constraint mode” (left mouse)
The shape remains in its initial configuration

If the system is in “remove constraint mode” (right mouse)
The shape is dissociated from the regulator and
 Its configuration is updated.

Special requirements:
 Each regulator will have its specific test formula and significant modifications

This use-case is applicable to the following regulators.
• ALIGNMENT/ BOUNDARY: Moving/rotating
• PROPORTION/ DIMENSION/ AREA-VOLUME: Resizing
• ANGLE : Rotating
• DISTANCE/ ADJACENCY/ OVERLAP: moving
• CONTAINMENT: moving/ rotating/ resizing

UserInterface RegulatorModel Shape

2.1.1: Evaluate

6.1: dissociate

7: execute_modification

6: dissociate

4: Ignore_modification

2.2: execute_modification

2.1: notify

5: negative_remove

3: negative_keep

2.1.2: positive

2: modify

1: select

ARCHITECTURAL EXPLORATIONS APPENDIX D 313

D.2.6.3 Modify (move) a vertex in a shape

Entry condition: A vertex within a shape is selected in the model
Flow of events:
 The user moves the vertex (by dragging the mouse or by adjusting the coordinate values)
 The system sets the new vertex position

The system traverses the internal regulator tree, and propagates the vertex move, therefore
updating the whole shape. (This can cause a change in form, dimension, and/or size of the shape)

userInterface ExternalAssociatioInternalRegulatoVertex ExternalRegulatoShapeInternalAssociatio

2.1.1.1: update

2.2.1: notify 2.2.1.1: update
2.2: notify

2.1: notify
2.1.1: update

2.2.1.1.1: update:

2: move-rotate

1: select

ARCHITECTURAL EXPLORATIONS APPENDIX D 314

D.2.6.4 Modify the Internal Regulators of a Shape

Entry condition: An internal regulator within a shape is selected in the model
Flow of events:

The user manipulates the regulators parameters (geometry, parameters, number, and
variations)

The system traverses the internal regulator tree and propagates these changes to the
regulated vertices, as well as to all associated vertices, therefore updating the shape.

InternalAssociatioInternalRegulato Vertex ShapeExternalAssociatio ExternalRegulatouserInterface

2: modify

1: select

4.1: update

2.2.1: update

4: notify

2.1.1: notify

3: notify

2.2: update

2.1: update

4.1.1: update

ARCHITECTURAL EXPLORATIONS APPENDIX D 315

D.2.6.5 Replace a shape

Entry condition:
 A shape is selected in the model and shape controls are available
Flow of events:

The user selects another shape from the shape library, which appears on the shape
preview
The user chooses to replace the selected shape on the model with the one in shape library
The system replaces the internal regulator tree of the shape, while keeping its location
(first vertex), and other attributes intact

ShapeLibrary Model Shape ExternalRegulatouserInterface Association

3.2.1.1.1: update

3: replace_shape

1: select

2: choose_shape

3.2.1.1: update3.2.1: notify

3.1: get_reg tree

3.2: set_reg_tree

2.1: preview

ARCHITECTURAL EXPLORATIONS APPENDIX D 316

D.2.7. Association Use-cases

D.2.7.1 Associate a shape, vertex, or regulator to a regulator

Entry condition:
There is at least one shape or item and one regulator in the model

Flow of events:
The user selects an item(s) to be regulated (this can be a shape, vertex, or a regulator)
The user selects a regulator
The user chooses to associate

 (press a button or drag the right mouse and drop it on the regulator)
If it’s a non generative regulator:

The system adds the item to the list of regulated elements pertaining to the
selected regulator.
The item will have a reference to the regulator

If it’s a generative regulator:
The regulator instantiates an association which assigns this item as the original,
The regulator generates n number of images-items and adds them to the image
list of the associations.
The association will be added to the list of regulated elements pertaining to the
regulator.
The item will have references to the association and to the regulator.

The system updates the history
Exit condition:

The regulator and the item form an associated branch in the regulator tree.
The regulator will regulate this item for the first time indicating that the association
succeeded.

Special requirements:
The regulator will regulate this item (image-shapes/vertices/regulators) every time the
regulator tree is traversed.
The user can set the regulators parameters before or after the association

ARCHITECTURAL EXPLORATIONS APPENDIX D 317

UserInterface ShapeModel AssociationRegulator

1: select

13: regulate

6.1: update
6: regulate

11: add_observer

10: instantiate_images

12: add_association

9: add_observer

8: add_original

7: instantiate

5: add_observer

4: add_element

3: associate

2: select

ARCHITECTURAL EXPLORATIONS APPENDIX D 318

D.2.7.2 Associate a regulator to all the shapes in a branch of the regulator tree

Entry condition:
There are several generative regulators (with image shapes) in a sequence

Flow of events:

The user instantiates a new regulator or select a regulator
The user selects a shape in the regulator tree
The user chooses to associate the new regulator to all shapes branching from this shape
The system updates the history

Exit condition:

The system traverse the regulator tree (from the selected shape) associating each shape
(in this branch) to the new regulator

Special requirements:

To associate all shapes in the tree associate, the user needs to select the first shape.

Regulator AssociationUserInterface ShapeModel

2: select

1: select

4: associate_17_for_each_reg

3: associate_shp_to_all_regs

ARCHITECTURAL EXPLORATIONS APPENDIX D 319

D.2.7.3 Associate a subset of image-shapes to a regulator

Entry condition:
 There is at least one generative regulator with images shapes

Flow of events:

The user instantiates a new regulator or select a regulator
The user selects the desired images shapes (shift click)
 or
The user selects an association
The user chooses to associate these shapes to the new regulator
The system updates the history

Exit condition
The system associates each of these selected shapes to the new regulator

UserInterface ShapeModel Regulator Association

2: select_many

3: associate_17

4: regulate

1: instantiate or select

each shape selected
will be associated

ARCHITECTURAL EXPLORATIONS APPENDIX D 320

D.2.7.4 Dissociate a shape from a regulator

Entry condition:
There is at least one shape or item and one regulator (associated to each other) on the
model.

Flow of events:
The user selects the shape or regulated item
The user selects the regulator
The user chooses to dissociate these

If it’s a non generative regulator:

The shape is removed from the list of regulated elements pertaining to the regulator
The shape’s reference to regulator is deleted

If it’s a generative regulator:
All image shapes remain but are dissociated from the regulator

The original shape’s reference and image shape’s reference to regulator and to the
association are deleted.
The association is deleted

These image shapes become independent shapes on the model
Exit condition:
 The shapes are no longer regulated by this regulator

UserInterface Shape Regulator AssociationModel

9: remove_observer

8: remove_images

10: remove_association

7: remove_observer

6: remove_original

11: delete

5: remove_observer

4: remove_element

3: dissociate

2: select

1: select

ARCHITECTURAL EXPLORATIONS APPENDIX D 321

D.2.7.5 Relate a set of shapes

Entry condition:
There are shapes and regulators in the model,

Flow of events:

RELATE a set of shapes
The user selects the shapes
The user chooses to relate them
The system generates a new regulator
The system puts these two shapes in its association
The user chooses the identity for this new regulator

 Or
RELATE a shape to an existing association

The user selects a shape
The user selects an association
The user chooses to relate them
The system puts the selected shape in the selected association

The system traverses the regulator tree and updates the newly related shapes to fit the
regulator’s parameters
The system updates the history

Special requirements:
This use-case occurs when the user generates a configuration, then realizes that some
objects have a relation that can benefit from regulation

ARCHITECTURAL EXPLORATIONS APPENDIX D 322

AssociationShapeUserInterface Model Regulator

9: select

8: select

2: select

1: select

10.1: add_element

11: add_observer

5: add_observer

10: relate

3: relate

13: update

4.1: add_elements

3.1.1: instantiate

12: regulate

7.1: update
7: regulate

3.1: instantiate

4: add_elements

6: set_identity

ARCHITECTURAL EXPLORATIONS APPENDIX D 323

D.2.7.6 Modify the number/density of elements generated by the regulator

Entry condition:
An association is selected

Flow of events:
The user modifies the number of shapes/vertices generated by the regulator

If the number of shapes is increased

The system instantiates new shapes/vertices and associate them to the
regulator.

If the number of shapes is decreased
The system deletes the extra shapes and removes reference to them

The user modifies the density of shapes/vertices generated by the regulator

The system adjusts the number as well as the factor, so that the extent
remains the same.

Special requirements:

If a regulator is selected, all its associations are updated
Only applicable to generative regulators

Shape RegulatorAssociationModelUserInterface

3: decrease_number

2: increase_number

1: select

2.2: add_elements

3.2: delete_shapes

3.1: remove_elements

2.1: create new shapes

5: update 4: regulate

ARCHITECTURAL EXPLORATIONS APPENDIX D 324

D.2.7.7 Choose the subset of image-shapes to generate

Entry condition:
An association is selected and the association controls are available: A list of image
shapes become available for editing

Flow of events:

The user chooses the images to be generated (checks them)
or
The user chooses to use the pattern mode of generation and
The user enters the number of pattern (on-off)

The system updates the generated images according to the users choices

it deletes some images-shape and
it instantiate other-image shapes
The association is grouped according to the adjacent generated shapes

Special requirements:
If a regulator is selected, all its associations are updated
Only applicable to generative regulator

ShapeAssociationModel Asso_grpUserInterface

2: set_alternate_generation

3: choose_gen_index

1: select

2.1: set_generated_shapes

4.2: remove_groups

4.1: add_groups

4: re-organize

3.1: set_generated_shapes

ARCHITECTURAL EXPLORATIONS APPENDIX D 325

D.2.7.8 Set/modify the discrete/continuous/combination factors of an association

Entry condition:
An association is selected and the association controls are available: A list of image
shapes become available for editing

Flow of events:

The user chooses the continuous/discrete/ parameters
or

If the user prefers the combined mode (partly continuous and partly discrete)
The user chooses the indices that are continuous
The system organizes the association in groups according to the indices in the combined
mode

Special requirements:

The default is discrete for external regulators
The default is continuous for internal regulators

If a regulator is selected, all its associations are updated
Only applicable to generative regulators

ShapeAssociation Asso_grpUserInterface

3: choose_cont_index

2: set_continuity

1: select

4.2: remove_groups

4.1: add_groups

4: re-organize

3.1: set_continuous_shapes

ARCHITECTURAL EXPLORATIONS APPENDIX D 326

D.2.7.9 Set exceptions and variations within the generated set

Entry condition:
An association is selected and the association controls are available: A list of image
shapes become available for editing

Flow of events:

The user chooses the image-shapes to be exceptions
These will not be regulated as the other images, and it will behave as an exception.
The user modifies the transformation factor for this image shape.
The system will flag this as an exception and store its user defined factor vector.
This factor will override the common transformation factor and will behave as exception.

Special requirements:

If a regulator is selected, all its associations are updated
Only applicable to generative regulator

ShapeAssociationUserInterface Regulator

5.2: update

5.1: get_exception_value 5: regulate

3: set_exception_value

2: choose_exception_index

1: select

4: set_exception_shapes

ARCHITECTURAL EXPLORATIONS APPENDIX D 327

Regulator Modification Use-Cases D.2.8.

D.2.8.1 Modify the regulator

Entry condition:
A regulator is selected

Flow of events:
The user moves or rotates the regulator

or
The user manipulates the regulator’s endpoints

or
The user modifies the direction vector for the regulator

or
The user modifies the major parameters of the regulator

or
The user modifies the dimension of the regulator
The regulator re-regulates its dependent shapes/vertices to accommodate the change in geometry
or number or parameters of the regulator
The system traverses the regulator tree to update all the associated shapes and vertices.

Exit condition:

The regulator and the model is updated on the model, graph and string view

Regulator Association Tree ShapeUserInterface

3: select

4: modify

2: ,modify

1: select

9: update:

7.1: update7: update

6: update

8: traverse

5: regulate

ARCHITECTURAL EXPLORATIONS APPENDIX D 328

D.2.8.2 Activate/ de-activate a regulator or a category of regulators

Entry condition:
The model view is available
There is at least one regulator (associated to shapes) in the model

Flow of events:

The user selects a regulator or selects all-transformation or all constraint regulators
The user chooses to activate or deactivate the selected items
For activation:

The active attribute of the selected regulators is set to true
For deactivation
The active attribute of the selected regulators is set to false

Special requirements:

When a regulator is deactivated, changes to this regulator will not affect the shape/vertices it
controls; similarly changes to shapes associated though this regulator will not affect the other
shapes/vertices in the association.

ShapeRegulatorUserInterface

3: set_value

2: set_target_variable

1: select

2.1: get_target_variable

ARCHITECTURAL EXPLORATIONS APPENDIX D 329

D.2.8.3 Move a regulator

Entry condition:
 A regulator is selected

Flow of events:

The user drags the regulator on the model view
 or
The user enters the x, y, z coordinates for the regulator’s position

For point regulators the system resets the point’s coordinates to the new position.

For line (p+dt) and plane (p+dt+er) regulators the system resets the starting point’s (p) coordinates
to the new position.

UserInterface Regulator

2: set_activation

1: select

ARCHITECTURAL EXPLORATIONS APPENDIX D 330

D.2.8.4 Rotate a regulator

Entry condition:
 A regulator is selected

Flow of events:

The user enters the rotation along the x, y, z axis to set the regulator’s orientation
 or
The user sets the arbitrary axis (x, y, z) and its rotation degree.

For point regulators the system resets the point’s coordinates by multiplying the point p by the
rotation matrix defined by the new user-defined orientation

For line and plane regulators the system rotates the line/plane by multiplying the starting point and
the direction vector/vectors by the rotation matrix defined the orientation sliders: R(p+dt) and
R(p+dt+er)

UserInterface Regulator

3: set_coordinate_p

6: rotate_coordinate_p

5: set_rotation

4: select

2: set_position

1: select

7: rotate_vectors

ARCHITECTURAL EXPLORATIONS APPENDIX D 331

D.2.8.5 Manipulate the regulator’s endpoints

Entry condition: A regulator’s endpoint is selected

Flow of events:

The user moves the endpoint (by dragging the mouse or by adjusting the coordinates values)
The system moves the endpoint to the specified position and revaluates the direction vector/s.

Special requirements:

To move an edge two endpoints must be selected

RegulatorUserInterface Vertex

3: adjust_vector

2: set_position

1: select

D.2.8.6 Modify the direction vectors defining the regulators

Entry condition: A regulator is selected

Flow of events:
The user enters the coordinates for

the start point
the line vector
the plane vectors
the volume vectors

 The system updates the regulator definition and displays the new regulator in the model view

RegulatorUserInterface

3: set_vector

2: set_point

1: select

ARCHITECTURAL EXPLORATIONS APPENDIX D 332

D.2.8.7 Set (add/remove) an identity to a regulator

Entry condition: The regulator controls are available

Flow of events:

The user selects a regulator
The user chooses the desired identity (turns on or off)
The system adds/removes the chosen identity into/form the regulator’s identity list
The system updates the name of the regulator

Special requirements:

Each regulator may have one instance of a specific identity

IdentityRegulatorUserInterface

5: remove_identity

2: Add_identity

1: select

6: delete

3: instantiate

7: update_regulator_name

4: update_regulator_name

ARCHITECTURAL EXPLORATIONS APPENDIX D 333

D.2.8.8 Set the dimension of the regulator

Entry condition: The regulator controls are available

Flow of events:

The user selects a regulator
The user chooses the desired dimension (point, line, plane, or circle if applicable)
The system the regulator’s dimension

Special requirements:
Each regulator may have one instance of a specific identity

UserInterface Regulator Identity

3: set_dimension

2: set_dimension

1: select

ARCHITECTURAL EXPLORATIONS APPENDIX D 334

D.2.8.9 Modify the major parameter for regulators

Entry condition: A regulator is selected

Flow of events:

The user adjusts the transformation factor of the regulator
 translation distance

rotation degree
curve factors
dilation factors
shear factor

The user adjusts the min and max or module values for the parameters or the constraint regulators.

 ANGLE/ DISTANCE/ DIMENSION/ AREA-VOLUME/ OVERLAP

The user adjusts the attribute, types and cycles values for the variation regulators.

The system set the transformation parameters

Special requirements:
 Note: reflection has no specific parameters other than geometry

IdentityRegulatorUserInterface

6: set_offfset

4: set_min_max_mod

2: set_factors

1: select

6.1: 6.1set_offset

5: set_min_max_mod

3: set_factors

ARCHITECTURAL EXPLORATIONS APPENDIX D 335

D.2.8.10 Insert a regulator in a sequence

Entry condition: A regulator is selected

Flow of events:

The user invokes the regulator controls

The user chooses to insert a regulator
The system creates a new regulator

The system inserts the new regulator in the regulator tree (before the selected regulator) by
updating the pointers

The original shapes of the succeeding regulator become the original shapes of the new
regulator
The original and images shapes of the new regulator become the original shapes of the
succeeding regulator

The regulator tree is re-generated (starting from the new regulator)

The user sets the identity of the new regulator
The user sets the parameters of new the regulator

UserInterface RegulatorGraph Shape

4: rearrange_images_&_original

3: insert

2: instantiates_or_select

1: select

ARCHITECTURAL EXPLORATIONS APPENDIX D 336

D.2.8.11 Delete a regulator from a sequence

Entry condition:
 A regulator is selected

Flow of events:
 The user chooses to delete it

The system deletes the regulator from the regulator tree updating the pointers

The original shapes of this regulator become the original shapes of the succeeding regulator
The images shapes of this regulator are deleted

 The regulator tree is re-generated (starting from the deleted regulator)

RegulatorGraph ShapeUserInterface

2: delete

1: select

3: rearrange_images_&_original

ARCHITECTURAL EXPLORATIONS APPENDIX D 337

D.2.8.12 Swap the order of two regulators

Actors: Developer

Entry condition:

Two regulators are selected
The regulator controls are available

Flow of events:

The user chooses to swap the order of these two regulators
The system swaps the order of the two regulators in the regulator tree by updating pointers

The original shapes of the first regulator become the original shapes of the second
regulator
The original and image shapes of the second regulator will become the original shapes of
the first regulator

The regulator tree is re-generated (starting from the swapped regulators)

UserInterface RegulatorGraph Shape

4: rearrange_images_&_original

3: swap

2: select

1: select

ARCHITECTURAL EXPLORATIONS APPENDIX D 338

D.2.8.13 Subdivide a regulator

Entry condition:
 A regulator is selected

The regulator controls are available

Flow of events: The user chooses to subdivide the regulator

The system generates a subdivision regulator
The initial–selected regulator is set as the original of the subdivision regulator (and it is rendered
invisible).
The user enters the number of subdivisions (let say k)
The user chooses by factor or by number
The user chooses whether the subdivisions are to be connected or independent shapes.

The user can also set the formula for the subdivision regulator (the default is a form in the
direction of the selected regulator)

The system generate k new regulators (the images for the subdivision regulator)

The system divides the factor/number of the selected regulator by k
The systems sets the factor/number for each new k regulators
The system sets the differential factor for the new regulators based on the formula of the
subdivision regulator.

Each new regulator will have its set of output shapes.
If connected, each new regulator will have “as the original shape” (the last shape generated of the
preceding regulator in the subdivision)

If the selected regulator was in a sequence, (it is an insert)

The system replaces the initial regulator with the subdivision regulator in the sequence.
The output shapes of all the new regulators will become originals for the succeeding regulators

Special requirements:

Subdivision applies to all factors of the active identities of the initial regulators and all numbers in
the regulator’s associations.
Merging is achieved by deleting the subdivision regulator. (The original is restored)
Number, formula, connection-flag, and subdivision type can be modified anytime.

ARCHITECTURAL EXPLORATIONS APPENDIX D 339

Model Regulator Nested_regulatoUserInterface graph

4: chooses_number_factor

3: enter_num_k

2: subdivide

1: select

8: set_parameters

9: place_k_reg_in_nested_reg

6: instantiate_k

5: instantiate

10: replace_reg_by_nest

7: derive_factors_number_divide

ARCHITECTURAL EXPLORATIONS APPENDIX D 340

	CH (00)_0TitlePAGE.pdf
	CH (00)_1TitlePAGE.pdf
	CH (00)_2ABSTRACT.pdf
	CH (00)_3ACKNOWLEDGEMENT.pdf
	CH (00)_4CONTENTS.pdf
	CH (01)_INTRODUCTION.pdf
	1.1. Motivation
	1.2. Scope
	1.3. Research Synopsis
	1.4. Thesis Statement

	CH (02)_BACKGROUND.pdf
	Constraint-Based Representations
	SketchPad (Sutherland 1963)
	The Sketcher (Medjdoub 1999)
	CoDraw (Gross 1991)
	Briar (Gleicher 1991)

	Associative Representations
	ReDraw (Kolarevic 1993)

	Design Grammar Representations
	DiscoverForm (Carlson 1991)

	Hybrid Representations
	SEED Layout (Flemming 1995)
	Floor Layout and Massing Study Programs (Harada 1997)
	Performance Simulation Interface (Suter 1999)

	Commercial Systems
	Revit, a Parametric Building Modeler
	GenerativeComponents (Aish, 2005)

	Mathematical Representation of shapes and patterns
	Shape Pattern Representation (Cha 2004)
	A Generative Theory of Shape (based on group theory) (Leyton

	Comparative Analysis
	Opportunities

	CH (03)_FRAMEWORK.pdf
	3.1. Design Structures
	3.1.1. Categories of Design Structures
	3.1.2. Units of Design Structures
	3.1.2.1 Topological Relations
	3.1.2.2 Hierarchical Relations
	3.1.2.3 Geometric Relations Forming Symmetry Structures
	3.1.2.4 Geometric Relations Forming Grid Structures
	3.1.2.5 Geometric Relations Forming Variational Structures
	3.1.2.6 Geometric Relations Forming Non-Regular Structures

	3.1.3. Representation of Design Structures
	3.1.4. Transformation of Structures

	3.2. Empirical Observation of Design Structures
	3.2.1. Experimental Setup
	3.2.2. Regulating Elements as Design Strategies
	3.2.2.1 Representing Structures
	3.2.2.2 Structuring the Sub-Problem
	3.2.2.3 Managing Part -Whole Hierarchy
	3.2.2.4 Scaffolding the Design Process
	3.2.2.5 Organizing Topology and Geometry
	3.2.2.6 Restructuring of Problem Parameters

	3.3. The ICE Framework for Exploring with Design Structures
	3.3.1. Regulators
	3.3.1.1 Topological Regulators
	3.3.1.2 Hierarchical Regulators
	3.3.1.3 Geometric – Transformational –Regulators
	3.3.1.4 Geometric – Constraint – Regulators
	3.3.1.5 Geometric – Variational – Regulators
	3.3.1.6 Geometric – Operational – Regulators

	3.3.2. The Dynamics of Regulators
	3.3.3. Notation and Implementation

	CH (04)_NOTATION.pdf
	4.1. The ICE Notation Syntax
	4.2. Regulators Categories and Types
	4.2.1. Transformation Regulators
	4.2.2. Variation Regulators
	4.2.3. Constraint Regulators
	4.2.4. Topological Regulators
	4.2.5. Hierarchical Regulators
	4.2.6. Operation Regulators

	4.3. Regulator Generation Methods
	4.4. Regulator Composition
	4.5. ICE Conventions
	4.5.1. Shape Encapsulation
	4.5.2. Indices and Shape Dimension
	4.5.3. Shape Access
	4.5.4. Shape Resolution
	4.5.5. Distribution and Identity

	4.6. Generation and Transformation in ICE
	4.6.1. Capturing Generation
	4.6.2. Capturing Transformation

	4.7. Shape Representation
	4.7.1. Linear Shapes
	4.7.2. Planar Shapes
	4.7.3. Volumetric Shapes
	4.7.4. Shape Transformations

	4.8. Pattern Generation and Transformation
	4.8.1. Cyclic and Dihedral Patterns
	4.8.2. Frieze Patterns
	4.8.3. Wallpaper Patterns

	4.9. Representational Schemata
	4.9.1. Simple Generative Schemata
	4.9.2. Complex Generative Schemata
	4.9.3. Hierarchical Schemata
	4.9.4. Grid Schemata
	4.9.5. Topological Schemata
	4.9.6. Dynamic Schemata
	4.9.7. Schemata Encapsulation

	CH (05)_PROPERTIES.pdf
	5.1. Shape Information
	5.1.1. Boundary Elements and Key-Elements
	5.1.2. Sub-shapes
	5.1.3. Lengths, Area, and Volumes

	5.2. Definitions and Analogies
	5.2.1. Equality and Equivalences
	5.2.2. Coincidence and Extension
	5.2.3. Coincidence-based Relations and Operations
	5.2.4. Maximal and Subshape

	5.3. Regulator Interrelationships
	5.3.1. Variational regulators
	5.3.2. Constraint regulators
	5.3.3. Topological regulators
	5.3.4. Hierarchical regulators
	5.3.5. Operation regulators
	5.3.6. Conflict Identification

	5.4. Multiple Representation
	5.5. Determining Transformation Steps
	5.6. Design Space in the ICE Representation

	CH (06)_EXAMPLES.pdf
	6.1. Architectural Elements
	6.2. Half House to House 10
	6.2.1. The Generation of Half House
	6.2.2. The Transformation of Half House to House 10

	6.3. Calatrava’s Art Museum at Milwaukee
	6.3.1. Describing the Roof Structure Using ICE

	6.4. Ethnographic Example
	6.4.1. The Annotated Studio
	6.4.2. Snapshots from the Design Studio
	6.4.3. Multiple Representations of a Snapshot

	CH (07)_IMPLEMENTATION.pdf
	7.1. Overview
	7.1.1. Engineering Concepts
	7.1.2. Usability and Interaction Concepts

	7.2. Regulated Elements
	7.3. Regulators
	7.3.1. Dynamic Associations
	7.3.2. Simultaneous Composition of Regulators
	7.3.3. Regulator Controls

	7.4. Schemata
	7.4.1. Successive Composition of Regulators
	7.4.2. Regulating Continuous Shapes
	7.4.3. Regulating Regulators

	7.5. The Model
	7.6. History and Process Capture

	CH (08)_CONCLUSION.pdf
	8.1. Comparative Analysis
	8.1.1. ICE and Constraint-Based Representations
	8.1.2. ICE and Associative Representations
	8.1.3. ICE and Design Grammars
	8.1.4. ICE and Mathematical Representations
	8.1.5. ICE and Solid Modeling
	8.1.6. ICE and Computing Languages

	8.2. Contributions
	8.3. Future Work
	8.3.1. Extending the ICE Framework
	8.3.2. Potential Applications for the ICE Framework

	CH (09)_BIBLIOGRAPHY.pdf
	CH (10)_MATHEMATICS.pdf
	Representation of points
	Representation of Lines
	Representation of Planes
	Transformation regulators
	Group properties of Transformations (mortenson 1995)

	Transforming the geometry of regulators
	Variation regulators
	Constraint regulators
	TOPOLOGICAL regulators
	Hierarchical regulators
	Operation regulators
	Intersection of two lines
	intersection of two planes
	Intersection between a line and a plane

	Composition of Regulators
	Regulating Regulators

	CH (11)_PATTERN.pdf
	Cyclic and dihedral patterns
	Frieze patterns
	Wallpaper Patterns

	CH (12)_ENGINEERING.pdf
	D.1.1. Shape Bridge Object model
	D.1.2. Regulator Bridge Object model
	D.1.3. Observer Object Model
	D.1.4. ICE Implementation Object Model
	D.1.5. Matrices Object Model
	D.2.1. Instantiation Use-cases
	D.2.1.1 Instantiate a new shape
	D.2.1.2 Define a new shape by composing regulators
	D.2.1.3 Instantiate a new regulator

	D.2.2. Selection Use-cases
	D.2.2.1 Select a shape or a regulator
	D.2.2.2 Select an association
	D.2.2.3 Select a vertex, an internal-regulator, or an internal-association

	D.2.3. Viewing Usecases
	D.2.3.1 Show/hide/emphasize shapes and regulators

	D.2.4. Deletion Use-cases
	D.2.4.1 Delete a vertex or a shape
	D.2.4.2 Delete a regulator

	D.2.5. Tree Traversal Use-cases
	D.2.5.1 Traverse a regulator tree (System use-case)

	D.2.6. Shape Modifications Use-cases
	D.2.6.1 Modify a shape
	D.2.6.2 Modifying the shapes controlled by constraint regulators
	D.2.6.3 Modify (move) a vertex in a shape
	D.2.6.4 Modify the Internal Regulators of a Shape
	D.2.6.5 Replace a shape

	D.2.7. Association Use-cases
	D.2.7.1 Associate a shape, vertex, or regulator to a regulator
	D.2.7.2 Associate a regulator to all the shapes in a branch of the regulator tree
	D.2.7.3 Associate a subset of image-shapes to a regulator
	D.2.7.4 Dissociate a shape from a regulator
	D.2.7.5 Relate a set of shapes
	D.2.7.6 Modify the number/density of elements generated by the regulator
	D.2.7.7 Choose the subset of image-shapes to generate
	D.2.7.8 Set/modify the discrete/continuous/combination factors of an association
	D.2.7.9 Set exceptions and variations within the generated set

	D.2.8. Regulator Modification Use-Cases
	D.2.8.1 Modify the regulator
	D.2.8.2 Activate/ de-activate a regulator or a category of regulators
	D.2.8.3 Move a regulator
	D.2.8.4 Rotate a regulator
	D.2.8.5 Manipulate the regulator’s endpoints
	D.2.8.6 Modify the direction vectors defining the regulators
	D.2.8.7 Set (add/remove) an identity to a regulator
	D.2.8.8 Set the dimension of the regulator
	D.2.8.9 Modify the major parameter for regulators
	D.2.8.10 Insert a regulator in a sequence
	D.2.8.11 Delete a regulator from a sequence
	D.2.8.12 Swap the order of two regulators
	D.2.8.13 Subdivide a regulator

