
Interactive Computational Support for
Modeling and Generating

Building Design Requirements

Halil I. Erhan

Submitted to the School of Architecture of
 Carnegie Mellon University in partial fulfillment of the requirements

for the degree of Doctor of Philosophy
December, 2003

School of Architecture and
Institute for Complex Engineered Systems (ICES)

Carnegie Mellon University

Thesis Committee:

Professor Ulrich Flemming, Ph.D. (Chair)
School of Architecture,

Human-Computer Interaction Institute (HCI), and
Institute for Complex Engineered Systems (ICES)

Carnegie Mellon University

Professor Ömer Akın, Ph.D.
School of Architecture and

Institute for Complex Engineered Systems (ICES)
Carnegie Mellon University

Professor John R. Hayes, Ph.D.
Psychology Department and

Center for Innovation in Learning (CIL)
Carnegie Mellon University

I hereby declare that I am the author of this dissertation.

I authorize Carnegie Mellon University to lend this dissertation to other institutions or
individuals for the purpose of scholarly research.

I further authorize Carnegie Mellon University to reproduce this dissertation by
photocopying or by other means, in total or in part, at the requires of other institutions or

individuals for the purpose of scholarly research.

Halil I. Erhan

Copyright © 2003 by Halil I. Erhan
All rights reserved

PhD Thesis 1/14/04 i

Abstract

Developing design requirements specification or an architectural program for a recurring
building type offers unique opportunities for the programming phase in design. Recurring
building types are repeated in different contexts, yet their general functional aspects do not
change.

However, current practice makes only limited use of these opportunities. The use of
passive programming media and manual methods together with non-standardized
representation formats create problems with continuity, with upgrading programming
knowledge, and with handling complex design requirements. Computer-based tools are
generally limited to simple database or spread-sheet applications. Only few of these tools
provide some generative mechanisms for formulating design problems separate from
solution generation.

I believe that computer-assisted generative tools can assist programmers in partially
alleviating the bottlenecks mentioned above and reduce the cognitive loads posed by using
traditional manual techniques for handling complex programming information. Based on
case studies and an extensive literature survey, I developed a general and flexible
framework that models architectural programming knowledge as a generalized (extended)
means-ends analysis; it can be made operational in the form of a computer-based support
tool that can be adapted by users to any building type and is particularly suited to support
programming recurring building types.

RaBBiT is a first prototype application. It is distinguished by the following features: (a)
the ability to computationally capture reusable programming knowledge based on a set of
concepts that are general enough to accommodate various programming styles while
remaining operational; (b) simplification of the designer-computer interaction to make the
application usable, even programmable to a degree, for non-computer programmers; and
(c) the ability to generate design requirements as output that can be used by other
generative design and decision support tools. The first prototype consists of an object-
oriented application that is highly integrated with a direct-manipulation user interface.

ii 1/14/04 Thesis Proposal

PhD Thesis 1/14/04 iii

Acknowledgments

I thank my wife, Nesil, and our children, Emre and Efe, for their great patience and the
sacrifices they have made for my education. I believe Nesil’s name should be on this study
instead of mine; she encouraged, supported, and motivated me at every turn even when I
was ready to give up. I miss my family in Turkey every day I stayed away from them; I
thank my mom and dad, my dear brother, Haluk, and my sister, Hatice; if I deserve to be
proud of this study, I would like to share it with you.

I can’t express enough my gratitude to Prof. Flemming for being my advisor. If it were not
for him, I would not have been able to finish this research (although I also think more
needs to be done). I learned many things from him, not necessarily all of them academic.
Prof. Flemming will continue to inspire me as a professor, researcher, mentor, and friend. I
am also deeply thankful to Prof. Akin and Prof. Hayes for their invaluable support, great
understanding, and inspiring advice. I enjoyed every moment when I had a chat with Prof
Krishnamurti; his stories about Taiwanese culture are worth listening to.

I am indebted to my friends, Jonah, Hoda, Ipek, and Tanyel (from oldest to youngest). I
am thankful for their support in all phases of my study, and for their friendship.
Particularly, Jonah was a great help when it came to code writing and target practice. Ipek
and Tanyel have been very kind by sharing their lunch with me, not to mention their
remarkable comments on RaBBiT. I specially thank Ms. Fox and Ms. Davis for helping all
of us graduate students when we needed it. I would need more pages if I wanted to list all
of my friends who provided me with their support; they have become not only my friend
but also family.

Izmir Institute of Technology has been very generous in providing me with financial
support during the early years of my education; I want to thank each of the members of
this institution who provided assistance to me. Prof. Flemming provided the rest of the
financial support through his projects; another special "thank you" goes to him. I would
also like to thank Ms. Kampert and Luis (Rico-Gutierrez) not only for their great help in
finding some extra funds but also their invaluable encouragements during the most
difficult times.

Thank you God, for everything!

iv 1/14/04 PhD Thesis

PhD Thesis 1/14/04 iii

Table of Contents
Abstract .. i
Acknowledgement... ii
Table of Contents ... iii
List of Figures .. x
List of Tables.. xiii

Chapter 1 Introduction
1.1 Background ... 1

1.1.1. Programming as problem specification in architectural design..... 1

1.1.2. A brief review of programming for design 1

1.1.3. Characteristics of and bottlenecks in programming 2

Programming media and manual programming methods 2
Non-standardized representations .. 3
Continuity of knowledge .. 4
Upgrade of knowledge .. 4
Level of complexity... 4

1.2 Motivation... 5

1.2.1. Programming for recurring and non-recurring building types 5

1.2.2. Design support tools .. 5

1.3 Research Agenda .. 7

1.3.1. Overview ... 7

1.3.2. Scope ... 7

1.3.3. Objectives and Approach... 8

1.4 Summary ... 10

Chapter 2 Architectural Programming
2.1 Architectural Programming in Design .. 13

2.1.1. Definitions ... 13

2.1.2. Common elements of definitions... 14

2.2 Evolution of Architectural Programming ... 14

iv 1/14/04 PhD Thesis

2.2.1. Brief History...14

2.2.2. A formal programming discipline ...16

2.2.3. Emergence of design guidelines...16

2.3 Approaches to and Models of Architectural Programming...................17

2.3.1. Approaches to programming and design..17

Integrated approach ...17
Separated Approach ...18
Interactive-iterative approach ...19

2.3.2. Process models of architectural programming20

2.4 Observations and Summary...22

2.4.1. Characteristics of the programming approaches and models.........22

2.4.2. A common pattern ..23

Chapter 3 Case Studies: Three Recurring Building Types
3.1 Programming Recurring Building Types...25

3.1.1. Overview ..25

3.1.2. Selection of building types ...25

3.2 Information Types used in Programming Recurring Building Types....26

3.2.1. Activity decomposition structures..26

3.2.2. Deriving spaces from activities ..28

3.2.3. Deriving spatial information from
organizational structures and building users30

3.3 Program Parameters for Recurring Building Types32

3.3.1. Roles of program parameters ...32

3.3.2. Calculation of Area Requirements ...32

Incremental method ...33
Choose-and-use method ..33
Formula-based method ..34

3.3.3. Spatial relationships. ..34

3.4 Parameters, Formulas, Logic Statements, and Procedures35

3.4.1. Components and constructs..35

3.4.2. Graphical representation of component-construct relationships37

PhD Thesis 1/14/04 v

3.5 Observations and Summary .. 39

Chapter 4 Conceptual Framework
4.1 Programming as Information Refinement Process 43

4.1.1. Step-wise refinement of requirements ... 43

4.1.2. The proposed model vs. existing models....................................... 43

4.2 The Model in Relation to Means-Ends Analysis. 44

4.2.1. Means-Ends Analysis (MEA).. 44

4.2.2. Generalized MEA .. 45

4.2.3. Example Scenario .. 45

4.3 Applicability of the Framework.. 47

4.3.1. The framework and programming recurring building types 47

4.3.2. The framework at work:
a partial example for a recurring building type 47

4.3.3. Framework at work: non-recurring building type test case 49

4.4 Summary ... 50

Chapter 5 System Definition: Features and Requirements
5.1 Architectural Programming System.. 51

5.1.1. RaBBiT .. 51

5.1.2. User characteristics .. 51

5.1.3. Basic functionality of the system... 52

5.2 Knowledge Modeling Features and Requirements 52

5.2.1. Overview ... 52

5.2.2. Structural requirements.. 52

5.2.3. Behavioral requirements .. 59

5.3 Program Generation Features and Requirements 60

5.3.1. Overview ... 60

5.3.2. Structural requirements.. 61

5.3.3. Behavioral requirements .. 62

5.4 Summary ... 62

vi 1/14/04 PhD Thesis

Chapter 6 Technology Selection for RaBBiT
6.1 System Layers and Technologies ..63

6.1.1. RaBBiT’s system layers ...63

6.1.2. The main concepts used in RaBBiT ...63

6.1.3. Programming paradigm and technology ..65

6.2 Object-oriented (OO) Programming..65

6.2.1. Overview ..65

6.2.2. Sources of software quality ..65

6.2.3. Modularity and Reusability for RaBBiT ..67

Class structure ..67
Inheritance ...68
Polymorphism ..69

6.2.4. Object configuration...69

6.2.5. OO representation of the knowledge models70

6.3 Production Systems ...71

6.3.1. Programming paradigm for program generation............................71

6.3.2. Production systems...72

6.3.3. RaBBiT and Production Systems ...72

6.3.4. Transforming programming knowledge model to
a rule-base schema ...74

6.3.5. User interface ...75

6.4 Data Structures for Knowledge Modeling...75

6.4.1. Data structure requirements ...75

6.4.2. Data organization techniques ...75

6.4.3. The graph structure in RaBBiT ..76

6.5 Model-View-Controller Architecture and System Layers.....................78

6.5.1. Model-View-Controller Architecture ...78

6.5.2. RaBBiT’s MVC Architecture...79

6.5.3. The model in RaBBiT ..79

Programming knowledge schema...80
Information nodes ..80
Associations ...80
Information categories ..80

PhD Thesis 1/14/04 vii

Architectural program .. 80
Program schema ... 81

6.5.4. The controller sub-system of RaBBiT ... 81

RaBBiT session manager ... 81
Information category manager .. 82
Programming knowledge model manager 82
Interaction manager... 82
Association manager.. 82

6.6 Implementation Constraints .. 83

6.6.1. Programming Language .. 83

6.6.2. Graph representation.. 83

6.6.3. Parametric associations.. 84

6.6.4. Program generation and information sharing 84

6.6.5. Production system shell ... 84

6.7 Summary ... 85

Chapter 7 Developing RaBBiT
7.1 Behavioral and Structural Models .. 87

7.1.1. Overview ... 87

7.1.2. Behavioral models ... 87

7.1.3. Structural models ... 88

7.1.4. Usability Considerations.. 89

7.2 Use-case Driven Software Development .. 89

7.2.1. Overview ... 89

7.2.2. Software development process .. 90

7.2.3. USDP and Unified Modeling Language (UML) 91

7.3 Use-Case Descriptions .. 94

7.3.1. Overview ... 94

7.3.2. Session control use cases ... 96

Start a new session... 96
Open an existing project .. 96
Start a new project ... 97

viii 1/14/04 PhD Thesis

Define a model for requirement information category levels.....97
Save a project (knowledge model) ..98
Close a project ..98
Exit a session ...98

7.3.3. Knowledge modeling use cases..99

Create (Insert) a component... 99
Insert constructs into a component ..100
Insert a construct with a resource value101
Insert construct with a reference value101
Insert construct with an expression value102
Insert a global construct ..102
Insert an association between two components103

7.3.4. Program generation use cases ..103

Provide project-specific information ..103
Modify global parameters ..104
Generate a program ...104

7.4 System-User Interaction ..107

7.4.1. Conceptual and physical design of GUIs107

7.4.2. Direct-manipulation paradigm ...107

7.4.3. Interaction style in RaBBiT..107

7.4.4. Model-world metaphor for RaBBiT...108

7.5 GUI Design of RaBBiT ...109

7.5.1. GUI Composition of RaBBiT ..109

7.5.2. Usability heuristics for RaBBiT ...111

7.6 Summary..114

Chapter 8 Conclusions
8.1 Observations and Summary...115

8.1.1. Overview ..115

8.1.2. Architectural programming ..115

8.1.3. The bottlenecks of architectural programming115

8.1.4. Programming for recurring building types.....................................115

8.1.5. Information refinement and GMEA ...116

PhD Thesis 1/14/04 ix

8.1.6. RaBBiT .. 116

8.2 Contributions .. 117

8.2.1. Contributions at the theoretical level... 117

8.2.2. Contributions at the practical level .. 119

8.3 Future Work .. 120

8.3.1. Overview ... 120

8.3.2. Usability and usefulness analysis .. 121

8.3.3. Multiple system integration ... 121

8.3.4. Adapting framework and RaBBiT... 121

 Bibliography .. 123

 Appendix A: Case Studies

 Appendix B: Program Generation

 Appendix C: Object-Oriented Models and RaBBiT
(in CD)

PhD Thesis 1/14/04 x

List of Figures
FIGURE 2.1.Integrated approach...17
FIGURE 2.2.Segregated Approach. ...18
FIGURE 2.3. Interactive approach. ..19
FIGURE 3.1.The USARC activity structure ..27
FIGURE 3.2. Partial AHCF activity structure..27
FIGURE 3.3.Partial ESPS activity structure. ...28
FIGURE 3.4.Activity decomposition, dependency, and relationship network28
FIGURE 3.5. Corresponding spaces to educational activities in a USARC.29
FIGURE 3.6.Spatial decomposition of out-patient surgery area....................................29
FIGURE 3.7.The spaces that the ESPS creative program activities take place30
FIGURE 3.8.Non-spatial factors effecting spatial requirements in a USARC31
FIGURE 3.9.Patient-volume and staffing pattern effect the spatial requirements.31
FIGURE 3.10.School capacity and type effect activity composition and

 change spatial requirements. ..32
FIGURE 3.11.Analysis of spatial area requirements of a study desk setting.................33
FIGURE 3.12.Graphical symbols used in the representation...38
FIGURE 3.13.The graphical representation of components and

constructs relationships in USARC programming....................................38
FIGURE 3.14. The graphical representation of components and

 constructs relationships in AHCF programming.39
FIGURE 3.15. Components and constructs in ESPS programming...............................39
FIGURE 4.1.The strictly-hierarchical refinement model

(a) vs. the proposed model (b). ...44
FIGURE 4.2.Decomposition of a problem into successive means and ends45
FIGURE 4.3.Sample transition from high-level to low-level requirements46
FIGURE 5.1.Overall system structure: users and functions...52
FIGURE 5.2.Sample dependency associations with and conditions..............................56
FIGURE 5.3.Complex dependency associations..57
FIGURE 5.4.Sample relational associations expressed with labels58
FIGURE 5.5.Structural requirements for programming-knowledge model...................58
FIGURE 5.6.(a) the sample model before remove operation and (b) after remove

operation..60
FIGURE 6.1.The incremental and iterative programming process supported by

 the system...63
FIGURE 6.2. Programming knowledge concepts and

 their representations in the model ..64
FIGURE 6.3.Objectives of a quality software and means for achieving them66
FIGURE 6.4.Inheritance relations among requirement classes (UML notation)69
FIGURE 6.5.Same composition and association (UML notation).................................70
FIGURE 6.6.The generic architecture of rule-based systems. 72
FIGURE 6.7.Partial example for programming school buildings.73

PhD Thesis 1/14/04 xi

FIGURE 6.8.A sample graph suitable for program knowledge modeling.77
FIGURE 6.9.Model-View-Controller architecture...78
FIGURE 6.10.Modules of the system adapting the MVC architecture..........................79
FIGURE 7.1.Phases and products of use case-driven

software development (Flemming et al., 2001) ..91
FIGURE 7.2.Class structure organized in accordance with the MVC architecture93
FIGURE 7.3.RaBBiT’s main window (a) without a project and

(b) with a project loaded. ..97
FIGURE 7.4.Dialog for requirement information category level modeling98
FIGURE 7.5.A sample component’s views (a) without and (b) with constructs.100
FIGURE 7.6.The GUI elements for invoking the insert construct use cases.100
FIGURE 7.7.Views for inserting (a) reference and

(b) expression values for constructs. ..101
FIGURE 7.8.Boolean and numeric global constructs ..103
FIGURE 7.9.Program generator dialog..104
FIGURE 7.10.A part of the programming schema in XML definition105
FIGURE 7.11.Partial program data and its sample view as generated by RaBBiT106
FIGURE 7.12.A snapshot from the graph representing a partial knowledge model.109
FIGURE 7.13.Snapshot from RaBBiT’s main window..110
FIGURE 7.14.Mouse icon changes for error prevention (a) Illegal and (b) legal

dependency association...112
FIGURE 7.15.Sample dialogs for (a) rule violation and (b) error prevention.113
FIGURE 7.16.Shortcuts and accelerators for experienced users....................................113

xii 1/14/04 PhD Thesis

PhD Thesis 1/14/04 xiii

List of Tables
TABLE 2.1. The terminology used in each of

the architectural programming approaches.................................24

TABLE 3.1. The averages for square footage and number of exam/patient
treatment rooms. From MGMA (1999)
survey of group practices and space planning.34

xiv 1/14/04 PhD Thesis

PhD Thesis 1/14/04 1

Chapter 1 Introduction

1.1 Background

1.1.1 Programming as problem specification in architectural design

Design studies define design as a process comprising overlapping patterns of design
problem specification, solution generation, and evaluation. During this process, design
progresses from more abstract descriptions of the whole (conceptual design) to more
detailed description of the same whole (detailed design).

This research, in overall, addresses the design problem specification phase of architectural
design. Design researchers state that design problem specifications and representations of
such specifications play important roles in defining a framework for design and constitute
critical information in design generation. (Reitman, 1964; Cross, 1997; Hinrichs, 1992,
pg. 10; Akin and Akin, 1996). This is mainly because "...the problem solving begins with
creating a problem formulation [representation and specification]” Simon (1998, pg. 108).

I agree with these authors and also believe that in architectural design, the problem
specification phase is an important part of the overall design process and deserves special
attention. The specification of an architectural design problem typically starts with
collecting and analyzing high-level information about design requirements, which
basically is non-computable and soft. Some of these requirements can be captured by a set
of computable and hard concepts. For example, depending on higher-level requirements
such as image, activity composition, site location, orientation, budget etc., the
programmer structures lower-level requirements such as the number and size of spaces
that have to be addressed in a design solution.

1.1.2 A brief review of programming for design

I refer to the problem specification process in architectural design as architectural
programming. The process includes the following activities: (a) searching, filtering, and
structuring the information relevant to the needs of a building, (b) generating the design
requirements from the structured information, and (c) documenting the requirements in an
architectural program. Akin et al. (1995, pp. 153) divide this process into four major
steps:

1. Specifying all the design requirements

2. Deriving functional (and physical) descriptions of the architectural problem

2 1/14/04 PhD Thesis

Introduction

3. Documenting the architectural program

4. Updating the architectural program during design.

Sanoff (1977) and Hershberger (1999) describe programming as the dynamic and
interactive "definitional stage” of design. In this stage, an architectural programmer
makes decisions about “the plan for the procedures and organization of all the resources
necessary for developing a design within a specific context and with specific
requirements” (Duerk, 1993, pg. 27). Programmers (or designers) document in a program
what they understand about the problem before they attempt to solve it. By using the
program, a designer investigates the design problem and its context (Pena et al., 1987).

A program is an organized collection of information in the form of guidelines and
statements describing desired organizational, functional, and physical properties of a
building to be designed—or a product to be designed in a more general sense. These
statements may also include objectives and actions to be performed in order to accomplish
a design. The program can be stated in many forms. For example, a client may give oral
directions to a master-builder to build a house in a rural context, or the client may produce
specifications and requirements in written form for a contemporary high-rise building in a
big city. These examples represent opposite ends of the spectrum in which a program can
be expressed. Designers communicate about a design problem and generate alternative
design solutions in accordance with the design requirements stated in a program.

1.1.3 Characteristics of and bottlenecks in programming

Current architectural programming practice was investigated by Akin et al. (1995; Donia,
1998) who interviewed six national architectural firms. As part of their investigation, the
researchers attempted to discover the basic characteristics of architectural programming,
concentrating specifically on potential bottlenecks for design requirement specification.
The study identifies some of these bottlenecks, which could be partially overcome through
computational support. The following is a review of their findings in connection with the
architectural programming literature investigated as part of this research (Chapter 2).

Programming media and manual programming methods

The two main causes that create bottlenecks in architectural programming are the use of
passive programming media (such as paper, computer-based word processing and drawing
files) and the manual methods employed in the process. These two bottlenecks are tightly
coupled to each other (Akin et al., 1995, pp. 153; Donia, 1998, pp. 3, 24).

Passive media hinder the dynamic association of different pieces of program information
with each other. A program—in all likelihood—comprises diverse types of information,
which can be expressed in diverse formats such as textual (e.g. performance

PhD Thesis 1/14/04 3

Background

requirements), graphical (e.g. bubble diagram), or tabulated (e.g. a spatial area
requirement table) (Kumlin, 1995). Even though the information in a program describes
interrelated ideas and decisions that form a whole, each piece of information is confined to
its representation format due to the passive nature of the programming medium. For
example, whenever a building function is added to or removed from the requirements, we
expect that this change is propagated to and reflected in all of the associated information
(for example, information in the spatial requirements table or functional relations
diagrams may have to be updated). The passive medium does not facilitate these kinds of
change propagations or updates, because there is no seamless information association
between the different formats. Therefore, handling information updates becomes a
complicated task (Akin et al. 1995, pg. 154).

The use of manual methods in the process is an outcome of the use of passive
programming media—or vise versa. Each piece of information in a program is generated
and compiled manually. The consistency and integrity of the program information are also
manually maintained by the programmer(s) (Akin et al, 1995). A programmer updates a
program document (text) by propagating any change that occurs in any part of the
program to the other associated parts manually and one-by-one. Even though some
computer applications are employed in generating partial program information, the
programmer basically uses the cut-and-paste method in maintaining the consistency in a

document1.

In design requirements specification, currently used representation media and manual
methods are also not very efficient when it comes to adapting an existing program in order
to generate a new program (Akin et al., 1995, pg. 153). Since the existing program in all
likelihood exists in paper form or some other passive medium, its content has to be
investigated by the programmer in its entirety to determine its applicability to the new
case. This effort becomes even more labor-intensive if there are many applicable
precedents. Investigating each precedent and establishing associations between relevant
information demand considerable time and effort. I believe, in addition, that while
adapting existing precedents to a new project, opportunities to improve the programmatic
aspects of a particular building type may also be lost.

Non-standardized representations

Another bottleneck in adapting precedents is related to non-standardized representation
formats. This becomes obvious in the architectural programming literature in which

1. "Linking and embedding" data between different computer applications doesn’t solve this problem, since
these techniques are only useful for displaying the information in one file in one application to another file in
another application. The semantic contents of the files are not associated and automatically updated.

4 1/14/04 PhD Thesis

Introduction

different authors represent the same type of information in different formats (Pena, 1989;
Palmer, 1981; Kumlin, 1995; Duerk, 1993; Hersberger, 1999). This has also been noted in
(Akin et al., 1995, pp. 153), who report that they could not find a "consensus" about the
use of (textual and visual) representations in architectural programming. If each precedent
has been generated by different individuals or groups, the challenges in adapting program
information from one case to another become even more pronounced due to non-
standardized formats. If a programmer needs to adapt a program generated previously by
another programmer, the information has to be translated from one format to another. In
current practice, no automation tool addresses this aspect of programming.

Continuity of knowledge

As a side-effect of the inefficiencies of manual methods and non-standardized
representation formats, continuity of the use of programming knowledge cannot always be
guaranteed. Regenerating program information becomes inevitable each time a new case
emerges. Experience gained and lessons learned become difficult to generalize and record
across similar projects.

Another continuity issue, which is partially tackled in Akin et al. (1995, pp. 153), is posed
by human role players. Clients, programmers and designers possess the knowledge of and
have experience with a specific programming method. If the involvement of one of these
role players in the project is interrupted or terminated, the knowledge possessed by that
player is lost, and a new role player has to start from the beginning. In addition, experience
in programming is not easily shared across programming teams and firms for the reasons
explained above.

Upgrade of knowledge

It is essential for the success of future projects that the programming knowledge about a
building type be continuously upgraded. This knowledge has to become available to other
programmers working on similar cases as well. Insights and new knowledge discovered in
each case should result in knowledge "upgrades" that are shared between and reusable by
interested programmers. However, due to the methods used in practice, new insights are
carried to the next project only through personal experience and the general literature,
which is often not up-to-date and in any case requires interpretation if it is to be applied to
a new design situation.

Level of complexity

The level of design problem complexity is another factor that contributes to the difficulties
of architectural programming. Managing complexity through manual methods and passive
programming media becomes more challenging when the number of design elements, the

PhD Thesis 1/14/04 5

Motivation

parameters used to specify these elements, and the relationships between these elements
increase. This may also diminish the consistency of the program information.

1.2 Motivation

1.2.1 Programming for recurring and non-recurring building types

The case studies conducted as part of this research emphasize that the design requirements

generation phase1 is different for different building types [see Chapter 3]. These
differences are especially pronounced between recurring building types and non-recurring
building types. By a recurring building type, I mean a class of buildings with specific
functional (activity) and organizational patterns which are shared by other buildings in
that class. Some examples of recurring building types are health care facilities, schools, or
public service buildings. A non-recurring building type has a unique identity and
functional requirements; examples are fine-art centers, national monuments etc.

The case studies also demonstrated that recurring building types offer opportunities for
more efficient and effective specification methods of design requirements. Recurring
building types are repeated in different contexts, yet their general functional aspects do not
change. Their program components and the relationship between these components are
usually well-understood. Typical functions, user characteristics, and general
organizational issues establish a common ground for each project. Most probably, a
precedent architectural program already exists and can be adapted for a new project.

However, the same bottlenecks observed in architectural programming practice apply to
programming recurring building types as well. The problems caused by the use of passive
programming media and manual methods negatively affect the process of programming
recurring building types as described above. In addition, non-standardized representation
formats, problems with continuity, difficulties with upgrading programming knowledge,
and complex design requirements impede the process.

I introduce in this research a novel computer-assisted generative method able to assist
programmers in partially alleviating the bottlenecks identified above. The method is based
on a careful investigation of the programming-related aspects of recurring building types.

1.2.2 Design support tools

Design research mainly concentrates on three areas: describing design, providing tools to
support design, and automating design generation, if possible. These studies are highly
coupled with each other.

1. I will use the term "design requirements" synonymously with "design problem specification" from now on.

6 1/14/04 PhD Thesis

Introduction

Design support research has these major concerns:

• how computers can assist designers, and in what area

• how design problems can be represented for computational support

• how computers can generate solutions using these representations

• how computers can help us to evaluate the quality of the generated solutions.

Some design researchers have addressed the problem of seamlessly integrating
computational design support tools with each other. As an example, the SEED (Software
Environment to support the Early phases in building Design) project (Flemming et.al.,
2001) attempted to cover almost all of these areas in the domain of architectural design. It
has to be noted that these tools are not intended to exclude human designers from the
design process; as stated, they are meant to support design activities or to assist designers.

Much of design research concentrates on generative aspects of design computation; the
problem specification phase is not addressed as often. In addition, I found not much work
in the literature on support tools that can be employed for design problem specification,
particularly for architectural programming. Some recent studies have focused on
supporting this process in a computer environment. Maybe the most ambitious effort is
SEED-Pro, which was developed as part of the SEED project (Akin et al. 1995; Donia,
1998). Other existing tools are limited to simple database or spread-sheet applications.
Only few of these tools provide some generative mechanisms for formulating design
problems separate from design generation. They usually deal with specific criteria of
interest for a particular application integrated into a solution representation or implied by
the solution algorithm (such as stacking-blocking (Zhang, 1999), cost estimate etc.).

I intend to show in the present work that the success achieved by SEED-Pro can be
extended by a system with the following features: (a) the ability to computationally
capture reusable programming knowledge of any recurring building type based on a set of
concepts that are general enough to accommodate various programming styles while
remaining operational; (b) simplification of the designer-computer interaction to make the
application usable, even programmable to a degree, for non-computer programmers; and
(c) ability to generate architectural programs as output that can be used by different
generative design and decision support tools.

PhD Thesis 1/14/04 7

Research Agenda

1.3 Research Agenda

1.3.1 Overview

The present research attempts to explore the following three main subjects: (a)
architectural programming as problem specification; (b) specifying organizational,
functional, and physical design requirements for architectural design of recurring building
types; and (c) design and prototype implementation of a computer application supporting
specifically architectural programming of recurring building types. Scope and objectives
of this work are delineated below.

1.3.2 Scope

This study focuses on developing a knowledge model to be used for capturing
organizational, functional, and physical information used in architectural programming in
the context of specific building types (the types themselves are not predefined). Use of this
model is intended to facilitate the generation of architectural requirements for a particular
project of that building type. In order to arrive at such a model, I reviewed the body of
general design knowledge as it is available today along with more specific knowledge in
the architectural design domain. I then applied the model to develop a generative and
computational support tool specifically for modeling requirements in architectural design.

For a successful implementation of the computational tool, I explored formal
representations for the knowledge model and programming information that can be
generated. The representations are view-independent and include only data and operations
relevant for the model or program; they do not predetermine how the data can be
presented (viewed) for a particular client application or by a user. While the formal
representation enables the knowledge-model to be implemented in a computer
environment, the view-independent content allows it to be displayed or exported in any
desired format. We may call this view and content separation.

In order to narrow the scope of the study, I concentrated on design requirements
specification for recurring building types. I did this for the following reasons:

1. There exists a considerable amount of knowledge about and precedents of recurring
building types, which are well documented in design manuals, building-type litera-
ture, regulations, codes etc. Any architectural design that involves a recurring build-
ing type can take advantage of this knowledge and the experience gained from the
precedents.

2. The information and methods used in design requirements specification for recurring
building types are well-structured relative to the ones used in programming non-
recurring building types. This is mainly because programmers employ more clearly

8 1/14/04 PhD Thesis

Introduction

defined and frequently used information (data) and methods (operations). In addition,
the types of information and methods used show similarities across different building
types.

3. During this research, I have not encountered a study that explores programming dif-
ferent recurring building types and investigates their differences and similarities. An
investigation of the design requirements specification for recurring building types
could help programmers overcoming the challenges posed by the bottlenecks listed in
previous sections. Furthermore, such an investigation can help design researchers
more clearly define and improve requirement specification methodologies for other
recurring design situations.

1.3.3 Objectives and Approach

I suggest that the bottlenecks in architectural programming can be considerably alleviated
through computer-aided requirements modeling based on a conceptual framework that is
flexible enough to allow for

• modeling all types of computable program information,
• sharing program information with other computational tools, and
• providing a usable and interactive programmer-application interface.

In order to test this hypothesis, this research aims to develop a conceptual framework
which is general enough to cover most of the processes described in the literature and
other resources relating to recurring building types. It is crucial that the framework remain
operational enough to guide the design of an experimental computer application.

Within this overall goal, this research pursued the following objectives:

• To conduct a detailed inquiry into architectural programming and investigate com-
monalities across recurring building types.

In order to achieve this objective, I conducted an extensive literature review [Chapter 2]
and several case studies [Chapter 3]. The literature review includes findings about the
nature of architectural programming in general. It establishes essential concepts and terms
as well as a range of programming techniques employed. It also shows that different
authors have different views of design requirement specification in architectural design.
The case studies attempt to provide a detailed documentation on programming for three
selected recurring building types and one non-recurring building type [see Chapter 4]. The
case studies expose methods, techniques, patterns of use, as well as commonalities of
programming for selected recurring building types.

PhD Thesis 1/14/04 9

Research Agenda

• To delineate a conceptual framework for programming based on the findings from the
first objective such that it can guide development of a prototype computational pro-
gramming tool.

The literature review and case studies demonstrate that architectural programming is a
hierarchical information-refinement process that is incremental and iterative in nature.
During the process, higher-level, non-spatial requirement information is transformed into
lower-level and spatial requirements. In this study, I describe a framework for capturing
the refinement process as an Extended (Generalized) Means-Ends Analysis (EMEA), in
which one means to achieve a higher-level requirement becomes an end at the next level
and, unlike common means-ends analysis techniques, one means can be used to achieve
multiple ends. Means and ends are structured such that taken together, they form an
acyclic-directional graph. The nodes of the graph represent requirements that are means as
well as ends (except for the leaf nodes). The links between nodes represent the means-
ends relationships, i.e. dependencies among different requirements at different information
levels.

• To explore how architectural programming (of recurring building types) can be sup-
ported by state-of-the-art computational tools in a generative computer environment
and how the proposed framework can be adapted by that tool.

This objective is addressed by designing and implementing the prototype of an interactive
architectural programming tool as a proof-of-concept application based on the conceptual
framework. The application is named RaBBiT: Requirement Building for Building Types.
RaBBiT is intended to assist architectural programmers or designers to interactively
model the type-specific programming knowledge of any building type and to generate
architectural programs for a project of this type.

RaBBiT’s internal architecture is developed using object-oriented software engineering
techniques—which are proven to be effective for many the software projects (Rumbaugh
et al., 1991, pp. 9). The architecture encapsulates programming domain model in objects
that represent requirements as component and parameters of the requirements as construct
objects. The associations and relationships between the requirements information are
captured through specialized dependency and relationship objects. An acyclic and
directional graph data-structure captures these objects and defines a model which maps to
a (building) type-specific domain model. This model can be stored persistently as well as
shared with other applications through model transformation.

The object-oriented architecture of the system provides a modular and extendible
structure. These two concepts are essential for flexibility in software design (Meyer, 1997,
pp. 51). Object-oriented programming enables us to flexibly organize not only the system

10 1/14/04 PhD Thesis

Introduction

architecture but also the domain knowledge model contained in the system. This domain
model is used for generating organizational, functional, and physical design requirements
encapsulated in domain objects [Chapter 5].

• To implement a human-computer interface which is easy to use and enjoyable to work
with.

RaBBiT utilizes current interactive human-computer interface technologies. It provides a
direct-manipulation style user interface, where domain objects can be created through
simple interactions such as point-and-select and drag-and-drop in a modeling area.
Complex operations—such as model and data consistency checking, and change
propagation—are performed by the system hidden from the user. However, the user is
informed of any such changes when necessary through simple dialogues. The graphical-
user interface components, such as windows, buttons, menus, icons, and pointers, provide
a consistent look and interaction across other window-based applications. In addition, the
look-and-feel of RaBBiT can adapt to the native computer platform that the user operates
on. RaBBiT’s human-computer interface was designed and developed as an integral part
of the software development.

An important feature of RaBBiT’s user interface is that it enables architectural
programmers to use terms of their choice when modeling a building type. Therefore, the
application does not impose any terminology to be used for the identification of domain
objects. For example, the user can call a component object a "requirement" or
"requirement information."

1.4 Summary

In this chapter, I briefly investigated design requirements specifications in architectural
design and identified some of the bottlenecks of current programming practice. I also
described the differences between of programming recurring and non-recurring building
types. The challenges caused by the bottlenecks are common for both recurring and non-
recurring building types. However, in most of the cases, programming recurring building
types can be considered relatively well-structured in comparison to non-recurring building
types; this may helps us to define less ambiguously the information used and methods
employed in design requirements specification of recurring building types. It will also be
helpful in establishing the data and operations that can be used in the design and
implementation of an experimental prototype of a computational tool for design
requirements specifications, i.e. architectural programming.

PhD Thesis 1/14/04 11

Summary

The experimental computational tool that I propose, RaBBiT, adapts a framework for
modeling domain knowledge in architectural programming. The framework is based on
the findings of the case studies coupled with the literature review. Primarily, the
framework shows us how to capture architectural programming knowledge—particularly
reusable information—of any recurring building type in the form of an extended means-
ends-analysis. A knowledge model based on the framework can be used to generate
requirements for a particular project. In other words, the knowledge model contains
generic and reusable information pertaining to a specific building type; and each time a
program of that type is needed, the knowledge model is used in generating design
requirements.

Programmers interact with the system through a direct-manipulation style human-
computer interface. While the system maintains a view-independent knowledge model
and program, the user-interface can provide different presentations of the model through a
group of objects called managers.

12 1/14/04 PhD Thesis

Introduction

PhD Thesis 1/14/04 13

Architectural Programming in Design

Chapter 2 Architectural Programming

2.1 Architectural Programming in Design

2.1.1 Definitions

In early phases of architectural design, architectural programming is used to understand
the requirements a proposed facility must satisfy. Based on these requirements, the
preliminary design decisions are made (Palmer, 1981; Sprecklemeyer, 1982). Therefore,
programming involves gathering, compiling, and evaluating information that aims at
determining the needs of a facility and the facility’s organizational, functional, and
physical requirements.

The literature on architectural programming is heterogeneous. This starts with the terms
used to denote the programming process itself. Some of the terms are “architectural
analysis” (Pena and Caudill, 1959), “building programming” (Davis, 1969),
“environmental programming” (Farbstein, 1976), “functional programming” (Davis and
Szigeti, 1979), “facility programming” (Palmer, 1981; Preiser, 1985,1993; Sanoff, 1992),
“design programming” (GSA, 1983), “project programming” (White, 1985), and “space
programming” (Kirk and Spreckelmeyer, 1988). Hershberger (1999) states that the only
reason for programming in architectural design is to achieve an “architecture” that
responds effectively to the environment, to user (client and occupant) requirements, to
functional and performance needs, and to many other factors. Since the main focus of the
present research is architecture in this sense, I will stick with the term “architectural
programming” in accordance with Hershberger.

Authors also cannot agree on a single general definition of architectural programming.
Below are some of the definitions found in the literature:

Pena (Pena et al. 1987): Programming is “a process leading to the statement of an
architectural problem and the requirements to be met in offering a solution”. Program-
ming and design are two unique processes mutually exclusive. Design succeeds pro-
gramming, and programming is a separate phase in the overall design process.

14 1/14/04 PhD Thesis

Architectural Programming

Duerk (1993): Architectural programming is “the systematic process of gathering and
analyzing information about a building or other setting, and then using that informa-
tion to create guidelines for the performance of that setting.”

Chery (1999): Architectural programming is “...the research and decision-making pro-
cess that defines the problem to be solved by design.”.

Hershberger (1999): Architectural programming is the first stage of architectural
design. In this stage “relevant values of the client, user, architect and society are identi-
fied; important project goals are articulated; facts about the project are uncovered; and
facility needs are made explicit.”

2.1.2 Common elements of definitions

Even though these varying definitions reflect different attitudes about programming,
almost all of the authors agree on the following points:

1. Architectural programming is the first step of the architectural design process in
which a design problem is specified.

2. During programming, a wide range of information is gathered, compiled, and
documented in the form of a program that represents a shared understanding of the
design problem between design participants and other stakeholders.

3. The design solution is not the main concern for programming (Pena et al., 1987).
Rather, programmers document what they understand about the problem.

4. The main goal of programming is to contribute to the achievement of high-quality
architecture.

An architectural program has to define an architectural design problem in such a way that
the description should be complete and specific enough for design generation. “A good
architectural program does not anticipate what a project should look like or what it should
be made of. It should describe the desired performance (requirements) and leave to the
designer the development of forms to accommodate those performances” (Cherry, 1998).
Other researchers and practitioners agree with this view (Pena, 1982; Hershberger, 1999;
Duerk, 1993).

2.2 Evolution of Architectural Programming

2.2.1 Brief History

According to several authors, there has been always a programming phase in architectural
design practice (Kumlin, 1995). Before the modern age, when people needed a new
“shelter” (building or facility) for a particular purpose (dwelling, religious, defense etc.),

PhD Thesis 1/14/04 15

Evolution of Architectural Programming

they gave some form of brief and functional instructions to the builder, who could also be
the designer. Even the most complex (in historical context) buildings could be built with
these instructions. This type of interaction and instruction was sufficient in pre-modern
times for the following reasons:

• Buildings had less complex functions and design solutions were conventional;

• Builders could adapt well-known programs to new designs. A practicing architect, or
even a builder, could heuristically decide functional needs and spatial requirements.
There was little need for elaborate instructions.

• Technological changes were slow, and available technologies were sufficient and
well-known. There was no need to specify them explicitly. If needed, this was done
during construction.

• There were few institutions that needed complex facilities (such as religious build-
ings). The requirements for these facilities were also well-known.

Over time, architectural design and building types became more complex. In the early
eighteenth century, nation states and government institutions needed more complex and
specialized facilities to accommodate their newly emerging functions. The industrial
revolution also required new complex building types. With the addition of new types of
civic complexes, this created a need for a formal and elaborate programming phase
(Preiser, 1985; Pena and Focke, 1987; Sanoff 1992; Kumlin 1995). Technological
advancements added more complexity to building design and designers needed more
detailed design directions.

Some of the earlier architectural programs were prepared for architectural design
competitions and showed that architectural programming was turning into a prominent
phase in design. These programs helped the creation of very famous architectural projects.
Examples of these projects are the Paris Opera House by Garnier (1861-1874) and the
Amsterdam Stock Exchange Building by H.P. Berlage (1898-1903) (Kumlin, 1995). These
precedents lead to the recognition of architectural programming as a separate discipline in
architectural design.

However, it was only in the 1960s that programming was formally introduced into the
literature by authors such as Wheeler (1966), Horowitz (1967), and Agostini (1968)

(Preiser, 1985). Pena and Focke of Caudill Rowlett Scott1 (1975; 1987) established a more
formal process for programming. Architectural programming was subsequently

1. This firm later became CRS and CRSS and is currently known as Hellmuth, Obata and Kassabaum.

16 1/14/04 PhD Thesis

Architectural Programming

investigated both at a theoretical level and as a process by Sanoff (1977; 1988), White
(1985), Duerk (1993), Kumlin (1995), Cherry (1998), and Hershberger (1999).

2.2.2 A formal programming discipline

The initial rationale for programming was the need to establish effective communication
among designers, builders, and users of the built environment (Preiser, 1977). This need
became especially obvious for the design and construction of complex facilities. Most of
the complex design cases were related to governmental, industrial, and institutional
facilities, which eventually required substantial and sophisticated architectural programs.

This lead governments officially to accept architectural programming as a separate
professional activity in the project delivery life cycle. In Canada, for example, the Public
Works Department recognized programming as part of an eleven-phase building delivery
life cycle (Preiser, 1985). In the USA, the General Services Administration prepared a
two-part handbook for architectural programming that describes the process of
programming in the governmental context (Zeisel, 1982). In the United Kingdom,
architectural programming was similarly recognized as part of the building delivery life
cycle (Hall, 1996).

2.2.3 Emergence of design guidelines

Architectural programming has become particularly important for large organizations and
government agencies with highly "complex and substantial construction programs,
frequently consisting of repetitive building types", such as offices, factories, schools etc.
(Preiser, 1985; 1986). Therefore, government, industrial, or institutional agencies have
started to compile design guidelines for their future facilities. These guidelines explicitly
define the general design criteria that can be applied to specific projects. The "Design
Guidelines on U.S. Army Services Schools" are an example. It contains state-of-the-art
programming criteria at the level of individual space categories as well as the entire
building and site development (Department of Army) (Preiser, 1985).

Other government agencies and large organizations, such as education departments, health
organizations, or private corporations, also created design guidelines to be used as a
reference in programming and designing their facilities. The Facilities Standards for the
Public Buildings Service (PBS-PQ100.1) is an example. Another example is the
"Postsecondary Education Facilities Inventory and Classification Manual" (Physical
Facilities, 1992) that provides definitions and a coding structure for documenting and
classifying spaces in higher-education facilities (colleges and universities). Similarly, the
Ohio School Design Manual was developed for various types and sizes of schools to
assure a certain level of quality across the school districts in the state (OSDM, 2002). The

PhD Thesis 1/14/04 17

Approaches to and Models of Architectural Programming

United States Army Reserve also maintains a design manual for the construction of its
training centers (AR 140-483, 1994).

Guidelines for programming various building types can also be found in the general
programming literature. Most of these are not developed for or by a particular institution
or agency. For example, the programing guidelines for ambulatory health care facilities
published by Malkin (1982; 1989; 1997; 2002) provide general descriptions of these
facilities including their space requirements. The guidelines also cover information
relating to medical space planning, such as occupancy, equipment use, and esthetical
concerns. Bobrow et al. (2000) also cover health care facilities and their characteristics.
Legget et.al (1977), Ortiz (1994), and Perkins (2001) deal with elementary and secondary
school facilities and provide various types of programming guidelines and criteria that
address many of the functional and physical needs of these facilities. Other authors
provide architectural programming resources for other buildings types.

2.3 Approaches to and Models of Architectural Programming

2.3.1 Approaches to programming and design

Approaches to architectural programming differ in two main areas: (a) when architectural
programming starts and ends (stages of programming and design), and (b) the purpose of
architectural programming in the general design process (Akin et al, 1995). These
approaches can be categorized into three groups (Rabinson and Weeks, 1999; Hersberger
1999).

Integrated approach

In this approach, design itself is viewed as programming (Rabinson and Weeks, 1984). It
is assumed that a design problem cannot be comprehensively understood before the design
starts. Any definition of a design problem will be premature until there is an attempt to
find a solution for it. Therefore, the entire design process integrates architectural
programming and design generation (Figure 2.1). In this approach, a program (document)
is not necessary; the design representations record both the program and the solution.
Since programming is integrated into design generation, the outcome of programming is
part of the final design documentation.

FIGURE 2.1.Integrated approach.

Programming

Design

18 1/14/04 PhD Thesis

Architectural Programming

I agree with Cherry (1998, pp. 11) that this approach is applicable only to small projects,
where the designer and programmer are the same person who has experience with the
design problem at hand. In more complex design situations, the designer is usually given
project information regarding the budget, organizational structure, functional and spatial
requirements, etc., which describe a framework for design at the outset. This certainly
requires a pre-design requirements specification effort to collect information and compile
it for design.

Separated Approach

In the second approach, architectural programming and design (solution generation) are
separated. This separation is believed to be necessary for maintaining the integrity of each
of the phases (i.e. programming and design) and for avoiding trial-and-error design
alternatives (Figure 2.2).

FIGURE 2.2.Segregated Approach.

Pena (1977), who advocates this approach, states that "program is problem seeking, then
design is problem solving". A problem cannot be solved unless it is understood at a
sufficient level of details. Kumlin (1995) also agrees with this and states "programming
must be based on a segregated (separated) program-then-design approach applied at the
beginning of any defined task and completed more or less prior to the commencement of
design".

In the segregated approach, an architectural program is a utility for design that is
"regarded as a (isolated) step in the early stages of design" (Akin et al, 1995). The purpose
of the program is to define user needs that will be addressed with design entities later.
Program documentation stops as design starts.

There are two basic rationales behind this approach. The first one is that programming
should precede design so that inefficient design and prejudiced solutions are eliminated
(because the problem formulation is known when design begins). The second rationale
reflects the fact that there are numerous parties with different backgrounds involved in
design. Separating programming from solution generation lets each participant
concentrate on that aspect he or she is interested in. For example, the programmer
concentrates on defining the problem and the designer concentrates on finding solutions
for the defined problem. Programing involves more verbal, numerical, and relational
information; whereas in design, esthetical, form-related, and spatial information

Programming Design

PhD Thesis 1/14/04 19

Approaches to and Models of Architectural Programming

dominates. Separating these two phases allows different designers who are given the same
design program to generate different design solutions. (Kumlin, 1995)

But in this approach, programmers have to anticipate almost every problem that can
emerge during design, which is very difficult, if not impossible, in most cases. For
example, the most feasible form to accommodate a function may conflict with the budget
requirements. Programmers may not notice this conflict prior to design. But designers
would have to revise the requirements in the architectural program, a situation not allowed
in the separated approach.

Interactive-iterative approach

This approach integrates programming with design in the form of repetitive program-
design-feedback loops or iterations (Kumlin, 1995). The loops occur throughout the
design process (Straub, 1980; McLaughlin, 1988) (Figure 2.3). At each iteration, the level
of detail in the design solution increases. As design ideas become clearer, the
corresponding program is revised accordingly (Cherry, 1998).

FIGURE 2.3. Interactive approach.

In the interactive approach, design is accepted as a heuristic process that evolves from the
general to the specific (Duerk, 1993; Cherry, 1998). In contrast to the separated approach,
programming is not a one-time, self-contained task. The iterative approach accepts
programming and program documentation as a dynamic process extending through the
entire design process. The program therefore evolves parallel to the design solution.

In this approach, an architectural program becomes a framework for design. The basic
purpose of a program is to serve as "the complete inventory of design requirements and
criteria of design evaluation" (Akin et al, 1995). The program includes the evolving and
changing architectural design requirements and becomes an "informal contract" between
the client and the designer.

The advantage of the integrated approach is that it covers "the most striking aspects of
design, that it progresses from more abstract descriptions of the whole (an initial program

and conceptual design) to more detailed description of the same whole (detailed design)."1

Programming and design take place with many iterations and feedback loops. We see this

1. From discussion by my advisor Prof. Ulrich Flemming

Programming Design

20 1/14/04 PhD Thesis

Architectural Programming

most clearly when we realize how design progresses from functional requirements to
sketches, and on to more detailed descriptions at different scales and at different levels of
resolutions. At each scale, designers should have access to information appropriate for
that scale—at different levels of resolution different types of requirements are needed. The
interactive approach assures that the design requirements are generated in parallel with the
solution as needed. Therefore, I believe that the interactive approach is more appropriate
and feasible than other two approaches introduced in the literature.

2.3.2 Process models of architectural programming

When it comes to specific process models, authors differ again, but all introduce a series
of specific and mainly sequential (with or without feedback loops) programming
activities. The steps deal generally with information gathering, program preparation,
program documentation, and program evaluation.

One of these process models is outlined by Farbstein (1976) and later broadened by
Preiser (1985). In the initial step in this model, a programmer investigates the design
problem and states the main purpose of the project. In the following phase, the
organizational goals and objectives of the client, which are derived from the building user
characteristics and their expected behaviors and the purpose of the project, are
documented. The stated objectives and goals are translated into specific building functions
referring to the departmental names of the organizations, such as administration, meeting,
security etc. The functions are broken down into sub-functions that need spatial
allocations. As the functional requirements become clearer, functional relationships are
determined, and each function is further detailed by adding physical requirements. The
functional and physical requirements—which the authors refer to as performance
criteria—are then used for determining space specifications. As part of space
specifications, programmers determine spatial adjacency, accessibility, and constituency
relations. Subsequent to the completion of the first draft of a program, programmers
discuss alternative requirements to the ones specified in the first draft.

Pena and his colleagues (Pena, 1959; Pena et al., 1977; Pena et al., 1987) significantly
influenced the theoretical foundations of programming practice. The function of
programming, in their model, is "strictly limited to problem analysis, and synthesis is left
to the designers". At the first step of Pena’s programming model, a brief problem
description is derived. This is followed by collecting, organizing, and analyzing the
program information and sorting it into a standard program information table, which

comprises function, form, economy, and time1 categories. The categorization facilitates a
systematic investigation of each piece of program information. The programmers derive
project goals from each of the information categories. The goals yield to the definition of

PhD Thesis 1/14/04 21

Approaches to and Models of Architectural Programming

project specific facts that usually refer to the project objectives. The determined facts are
used in finding the concepts for the project that cover the performance requirements. The
programmer determines the project needs encompassing specifics of the project
requirements such as spatial requirements, space allocations, spatial relations, cost etc.

Sanoff (1977) introduces programming activities at two levels. At the first level, the
programmer collects program information and establishes the project’s main purpose. The
compiled information is transformed into the goals and objectives of the design. The
programmer derives the performance criteria of the project considering the stated goals
and objectives. The performance criteria describe functional and physical requirements of
the project as well as some basic parameters (such as area per occupant, project budget
etc.). At the second level, the programmer determines the quantitative requirements of the
project relating to each of the functional and physical requirements. The quantitative
requirements capture equipment needs, space allocations, spatial relations etc.

Duerk advocates “issue-based programming”, which is a hierarchical decision-making
process (Duerk, 1993, pp. 20, 36). The first step derives the mission statement of a project.
The values, which involve defining the special needs and overall qualitative features of the
facility, are determined at the next step. The values form a base for defining program
issues, such as image, function, structure, organization etc. and their priorities for a
project. The issues are handled according to their priorities and evolve to project goals.
The goals address the project requirements more specifically than values and issues. The
programmer derives performance requirements from the specific goals. The performance
requirements comprise both the quantitative and qualitative attributes of the facility to be
designed. The concepts and object specifications detail the possible physical and spatial
requirements. The information generated during this process is documented at an
increasing level of detail.

Kumlin (1995) bases his approach on Pena’s model, but proposes a more flexible model in
which priority issues, objectives, program concepts and design concepts are developed
from a standard information checklist, which is also used for management of the
programming process. The checklist includes priorities, program objectives, concepts,
space standards, organization diagrams, space list, affinities, grouping diagrams, flow
diagrams, spatial data, and environmental requirements. The checklist is also used for
compiling equipment data, site information, existing facility analysis, cost and budget
(feasibility), and some other types of information. The granularity of the design
requirements increases as the checklist becomes complete.

1. Category definitions are influenced by the Vitruvian triad venustas (delight), commoditas (utility), and firmi-
tas (firmness).

22 1/14/04 PhD Thesis

Architectural Programming

Cherry (1998) proposes a six-step process, which starts with project background research.
This is followed by a mission statement that captures the overall project description. The
context of the project is studied and defined following the mission statement. The project
goals and objectives are identified based on the project context information. The
programmers select strategies for achieving the project goals and objectives. The outcome
of the applied strategies leads to establishing the project’s quantitative requirements. Each
requirement becomes a solution criterion for the design generation.

In "value-based" programming, Hershberger (1999) proposes a sequence of transition
from more abstract to more concrete programming decisions. The initial step in this
process is to define the purpose of the project. At the next step, the programmer
determines the values of the project pertaining to the client, users, site, climate,
programmer, and even to the designer. The values lead to functional, social, physical, and
physiological issues. The issues discovered at the previous stage yield to more specific
project goals and objectives. Each objective leads to the definition of various project facts,
in turn; facts are used to determine the specific (functional, budget, physical) needs (i.e.
performance requirements) of the project. At the lowest level, spatial requirements are
derived from the stated project needs.

These models cover the main process-related issues in architectural programming. Other
models for architectural programming are mostly derivations or repetitions of these
models with slight variations.

2.4 Observations and Summary

2.4.1 Characteristics of the programming approaches and models

I observed the following characteristics from the described approaches and model

• In programming, the programmers formulate a given design problem. In some
approaches, problem formulation takes place as an integral part of design generation;
in others, it is viewed as a separate process from design generation. However, a more
comprehensive and more feasible approach is to interactively continue programming
through out the design process (interactive approach).

• A common characteristic of the described models is that design requirements gradu-
ally evolve from higher-level information to lower-level (mostly spatial) and more
detailed design requirements. At the higher-level, project goals and objectives are
stated. At the lower levels, the programmers express the physical (spatial) and func-
tional properties of facilities to be designed.

PhD Thesis 1/14/04 23

Observations and Summary

• Making form-related decisions, such as the shape of windows or rooms, is not part of
programming—at least for the interactive and segregated approaches. In other words,
programmers stay clear of any design decision.

• Process models differ in the methods by which the client’s organizational goals and
objectives are analyzed. The differences manifest themselves in how programmers
collect information and how they sort the collected information into different infor-
mation categories.

2.4.2 A common pattern

Independent from the terms used and their meanings, a common pattern emerges: All
authors treat programming as a process of step-wise refinement of program information,
in which most abstract information is first derived—such as goals—and then transformed
into more concrete and detailed requirements—such as spatial properties and relations.

Table 2.1 presents the transition from abstract goals to concrete requirements and the
terms used by different authors. When I looked at the terms and their meanings used by
different authors, I observed some fundamental similarities. That is, authors frequently use
different terms to refer to similar concepts (steps). For example, "the mission statement"
of a project is used in a similar sense to "purpose of the project". "Design concept"
(Kumlin, 1995) and "solution criteria" (Chery, 1998) actually refer to "spatial
requirements" (Hershberger, 1999). In the table, the background of terms has the same
shade if the terms have similar meanings. The transition from higher- to lower-level
requirements, on the other hand, is represented by changes in the density of the
background shade from lighter to darker grey.

24 1/14/04 PhD Thesis

Architectural Programming

He
rs

hb
er

ge
r

(1
99

9)

Pu
rp

os
e o

f th
e

pr
oje

ct

Va
lue

s

Iss
ue

s

Go
als

 an
d

ob
jec

tiv
es

Fa
cts

Ne
ed

s

Sp
at

ial

Re
qu

ire
-

m
en

ts

Ch
er

ry

(1
99

8)

Mi
ss

ion

sta
tem

en
t

Co
nte

xt
de

fin
i-

tio
n

Go
als

 an
d

ob
jec

tiv
e

ca
teg

or
ies

St
ra

teg
ies

 fo
r

go
als

 an
d

ob
jec

tiv
es

So
lu

tio
n

cr
i-

te
ria

Ku
m

lin

(1
99

5)

Mi
ss

ion

sta
tem

en
t

Pr
ior

ity

sta
tem

en
ts

Iss
ue

s

Pr
og

ra
m

ob
jec

tiv
es

Pr
og

ra
m

co
nc

ep
ts

De
sig

n
co

nc
ep

ts

Du
er

k
(1

99
3)

Mi
ss

ion

sta
tem

en
t

Va
lue

s

Iss
ue

s

Go
als

Pe
rfo

rm
an

ce

re
qu

ire
me

nts

Co
nc

ep
ts

 an
d

ob
jec

t
sp

ec
ifi

ca
tio

ns

Ve
rg

er
 an

d
Ka

de
rla

nd
 (1

99
3)

Ma
in

go
al

De
sig

n i
ss

ue
s

Go
als

Ne
ed

s

Sp
at

ial

re
qu

ire
m

en
ts

Pa
lm

er

(1
98

1)

Mi
ss

ion
 of

the

 fa
cil

ity

Fa
cto

r
ca

teg
or

ies

As
ce

rta
in-

me
nts

Pr
ed

ict
ion

s

Re
co

m
m

en
-

da
tio

ns

Fa
rb

st
ein

(1

97
7 a

nd

19
85

)

Pu
rp

os
e

Go
als

Pe
rfo

rm
an

ce
cri

ter
ia

Sp
ac

e
sp

ec
ifi

ca
-

tio
ns

Ma
rk

us

(1
97

2)

Mi
ss

ion

sta
tem

en
t

Sy
ste

ms

Sy
ste

m
go

als

De
sig

n
iss

ue
s

Sp
at

ial

re
qu

ire
m

en
ts

W
hi

te

(1
97

2)

Mi
ss

ion

sta
tem

en
t

Fa
ct

ca
teg

or
ies

Pr
oje

ct
fac

ts

Ne
ed

s

Re
qu

ire
m

en
ts

Pe
na

(1

96
9,

19
77

)

Pr
ob

lem

de
sc

rip
tio

n

Inf
or

ma
tio

n
ca

teg
or

ies

Go
als

Fa
cts

Co
nc

ep
ts

Ne
ed

s

TA
B

LE
 2

.1
.

 T
he

 te
rm

in
ol

og
y

us
ed

 in
 e

ac
h

of
 th

e
ar

ch
ite

ct
ur

al
 p

ro
gr

am
m

in
g

ap
pr

oa
ch

es
.

PhD Thesis 1/14/04 25

Chapter 3 Case Studies:
Three Recurring Building Types

3.1 Programming Recurring Building Types

3.1.1 Overview

Architectural programming, in general, involves complex information handling. The
complexity is due to the huge amount of information handled, the variety of information
types encountered, and the methods used in compiling a program. Program information
ranges from the client organization’s goals and objectives to the spatial needs to
accommodate the client organization’s activities. Programmers systematically take this
information as input and produce an architectural program as output for a design project.

When programming a non-recurring building type, programmers must generate the
program from scratch. On the other hand, recurring building types provide programmers
with a relatively well-established collection of program information in the form of design
guidelines, manuals, standards, and other published resources. They may also have access
to precedent programs or are personally familiar with the building type at hand.
Programmers are able to take advantage of this information because it eliminates the need
for an investigation of general programmatic issues in detail. The present case studies
explore basic commonalities of programming information and methods of recurring
building types, to be used in forming a conceptual programming framework as indicated
in Chapter 1. This chapter presents a summary of the case studies; a full description can be
found in Appendix A.

3.1.2 Selection of building types

I hypothesize that there are commonalities among the methods and concepts that
programmers use when programming different recurring building types. In order to test
this hypothesis, I investigated relatively well-established architectural programming
processes as they occur for ambulatory health care facilities (AHCF), United States Army
Reserve Centers (USARC), and elementary and secondary public schools (ESPS). I
selected these types primarily for the following reasons:

• There is a huge demand for new facilities, at least when it comes to AHCFs and
ESPSs.

26 1/14/04 PhD Thesis

Case Studies: Three Recurring Building Types

• Each building type has unique functional, organizational, and social characteristics.
This gives us a wide spectrum of requirement types to study.

• Each of the selected building types is relatively complex. Therefore, findings from

studying these building types may be easily applied to less complex building types.1

Secondary reasons for selecting these building types:

• The organizational structures of the selected building types are well established,
where recurring needs of the organizations can be relatively easily observed.

• Private and public organizations as well as individual researchers have documented
design guidelines for each of these building types. These guidelines include the gen-
eral missions of the client organizations that show substantial similarities.

3.2 Information Types used in Programming Recurring Building
Types

3.2.1 Activity decomposition structures

In this study, I use the term activity structure to denote the major functions and functional
relationships that a facility accommodates. In the following, I give examples of the
activity decompositions of the investigated building types.

In a typical USARC, two major groups of activities take place: training and training-
related maintenance and support activities (DG, 1984). Training activities consist of five
main groups: administration, instruction, assembly, storage-support and special training.
In addition, special army equipment-use training (such as weapons, tank turret, or
simulation) can take place as an extension of the special training activities. The
maintenance group consists of maintenance activities that are training-oriented and of area
maintenance support activities. Direct and general support activities consist of ancillary
functions such as dressing, tool storage, shop management etc. These activities support
both organizational and area maintenance activities. The activity structure for USARC is
shown in Figure 3.1.

1. Fast-food stores that belong to a chain, for example, are also a recurring building type, but the complexity
level is not as high as for the selected types.

PhD Thesis 1/14/04 27

Information Types used in Programming Recurring Building Types

FIGURE 3.1.The USARC activity structure

An AHCF comprises three groups of activities that form the backbone of its activity
structure (Figure 3.2). The first group includes activities common to all medical
specialties. The second group contains activities that are shared between one or more
specialty, but not by all. The third group belongs to one particular specialty and is not
required for the other specialties. For example, examination of patients is a common
activity for all specialties, whereas refraction test is a specialized activity for
ophthalmology. The medical specialties such as otolaryngology or internal medicine may
require specimen testing, but psychiatry and ophthalmology do not. Thus, specimen
testing falls into the second group of activities. Depending on the medical specialty, the
activity structure changes. Figure 3.2 shows the common AHCF activities; the activities in
other groups are shown in Appendix A in detail.

FIGURE 3.2. Partial AHCF activity structure

Formal school activities fall into three main groups: educational, administrative, and
support activities (Figure 3.3). The educational activities consist of mastery program and
creative (group) program activities (Legget et.al. 1977). In the mastery program, students
learn through oral and written instructions and exercise reading, mathematics, and
language skills. Creative activities place emphasis on discovery, creativity, and problem-
solving skills. Social studies, science, art, music, and physical education form this activity
category. Both mastery and creative programs are interwoven to form a complete
educational program. The administrative activities, on the other hand, are separate and
assure that the school’s operation is planned and managed without any problem or delay.

AHCF

Common

Semi-specialized

Specialized

Examination

Consultation

Patient Waiting

Office Management

Support

Minor Surgery

Out-patient surgery

Clinic Support

Medical Procedure
Support

28 1/14/04 PhD Thesis

Case Studies: Three Recurring Building Types

They range from record-keeping to curriculum and schedule assignments. Support
activities provide basic services such as food service, library services, student health
service, sanitation etc.

FIGURE 3.3.Partial ESPS activity structure.

The activity structure for ESPS can expand to include other activities (such as community
education, parent meetings, extra-curricular sport activities etc.); or it can be modified to
accommodate different approaches to education.

In each of the activity decompositions studied, I observe that the overall function of the
facility is decomposed into specialized activities. The specialized activities, in turn, are
hierarchically divided into more specialized sub-activities until a desired level of activity
resolution is reached. This common pattern can be viewed as a hierarchical tree. However,
when the dependencies and relationships between activities in the different branches of the
tree are considered, the tree structures transform into more complex networks of activities
(Figure 3.4). These networks specify a facility’s spatial organization and can be
represented with a graph.

FIGURE 3.4.Activity decomposition, dependency, and relationship network

3.2.2 Deriving spaces from activities

Design guidelines pre-define spaces and describe them generically. If an activity can be
decomposed into sub-activities, the space accommodating this activity is also decomposed
into sub-spaces such that each sub-space corresponds to one specialized activity. Usually,
however, design guidelines do not explicitly deal with activities at the lower levels; rather,

Educational
Mastery Program

Creative Program

Administrative
PESS Activities

Support

Education and
Administration Support

Facility Support

A

A2

A3

A4

A11

A12

A13

A1

A31

A32

A33

PhD Thesis 1/14/04 29

Information Types used in Programming Recurring Building Types

they tend to describe an activity in a broader sense and directly introduce the spaces in
which all sub-activities take place.

In a USARC, the educational activity group involves instructional training of unit
members. The group decomposes into instructional education and individual study. In
instructional education, an instructor trains groups of 25-30 unit members in a single
classroom. In the individual study, each unit member studies alone, for example, in a
library, reading-room, or learning-center. The USARC design guidelines directly describe
the required spaces for instructional education and individual studies without explicitly
describing the sub-activities that these spaces accommodate (DG, 1984). However, the
space names implicitly indicate which activity the spaces serve. The main spaces
accommodating the educational activities are shown in Figure 3.5.

FIGURE 3.5. Corresponding spaces to educational activities in a USARC.

Similarly, the major AHCF activities are broken down into sub-activities that are assigned
to respective spaces or zones. For example, out-patient surgery is common to all medical
specialties. The space which accommodates this activity is called out-patient surgery
room and requires a complex surgery setting. The spatial properties of this room are
mainly derived from this setting. A patient who undergoes out-patient surgery is observed
in a recovery room subsequent to the surgery and then released on the same day of the
operation. Therefore, a patient preparation and a patient recovery room accessible from
the surgery room are needed and complement the surgery area (Figure 3.6). AHCF spaces
are broadly described in the respective design literature, which describes the activities
with enough detail so that programmers are able to derive additional spatial needs
(Malkin, 1989; 1997).

FIGURE 3.6.Spatial decomposition of out-patient surgery area.

The typical spaces in which ESPS activities take place are broadly pre-defined in design
guidelines and the literature. For example, the creative group activities in ESPS take place
in a specialized program area, which is decomposed into a music room, science lab, art

30 1/14/04 PhD Thesis

Case Studies: Three Recurring Building Types

room, computer lab, gymnasium (if preferred, with a stage), media/video center, and
library (Figure 3.7). The library and gymnasium are typically required spaces. The others
are recommended spaces and can be added to the program if certain criteria are satisfied—
such as budget, student population, site. In some cases, multiple activities can be
accommodated in a single space. For example, a gymnasium can also serve as auditorium.
Creative activities additionally may need an agricultural shop, business classroom,
homemaking room, industrial art room, technical drafting room (or CAD room),
vocational shops (e.g. woodworking, auto repair etc.), and band room. Other specialized
spaces, such as a student lounge or parent education classrooms are also required when
certain conditions are satisfied, such as budget.

FIGURE 3.7.The spaces that the ESPS creative program activities take place

When an activity is needed in a facility, the design guidelines circumvent a detailed
investigation of the related sub-activities and sub-spaces and directly provide typical
spatial requirements. Therefore, the selection of spaces can become a straight-forward and
well-defined process.

3.2.3 Deriving spatial information from organizational structures and building users

Organizational structures and the building’s users are two other factors that effect the
spatial needs in a facility. Design guidelines typically do not explicitly specify these and
very often capture organization or user information through some higher-level
parameters—such as the medical specialty, school type, army unit structure etc.—and
lower-level parameters—such as the number of doctors, school population, number of unit
members etc. In the following, I describe the effects of organizational structure and users
on spatial requirements in relation to the activities that the users perform.

An army reserve unit and the ranks of its members are the outcome of the mission
assigned to that army unit. The unit structure grows hierarchically as the mission of the
unit gets more complex. In response to the changes in the unit structure, the hierarchy of

Creative Program
Activities

Music Room

Science Labs

Art Room

Computer Lab

Gymnasium

Auditorium

Media/Video
Center Earth Sciences

Biology

Specialized
Spaces

Agriculture
Shop

Homemaking

Drafting Room

Locker's Room

Business
Classroom

Industrial Art

Vocational
Shops

Chemistry

Physics

Storages

Showers

PhD Thesis 1/14/04 31

Information Types used in Programming Recurring Building Types

ranks changes. These changes result in more or less complex spatial requirements
(Figure 3.8). For example, a training building’s capacity is based on a parameter called
rated capacity, which is the "aggregate authorized strength [number of troops] of all units
programmed for assignment to the center" (AR 140-483, pg. 1). This parameter
corresponds to the maximum number of reserves that a facility can accommodate at the
same time. The changes in the rated capacity and rank structure are reflected in a program
through changing values of the respective parameters in formulas that are used for
deriving needed spaces and their spatial requirements.

FIGURE 3.8.Non-spatial factors effecting spatial requirements in a USARC

Programming an AHCF can commence either by setting an expected or projected patient
volume—which influences staffing patterns—or with a pre-determined staffing pattern—
which is used in formulas calculating how many patients can be served in a unit of time,
say per hour. Therefore, the patient volume and staffing pattern are highly associated with
each other (Figure 3.9). For example, a certain number of physicians with a certain
specialty may predetermine the number of patients that can be examined in an AHCF. This
association consequently influences the spatial requirements, such as adding rooms to or
removing rooms from the program, changing area allocations or number of rooms.
Therefore, both patient volume and medical staffing pattern, along with other higher-level
pieces of information, play important roles in determining spatial requirements.

FIGURE 3.9.Patient-volume and staffing pattern effect the spatial requirements.

The spatial configuration of an ESPS changes depending on the type of a school
(elementary, middle, or high school) and student population. For example, in elementary
schools, each classroom is reserved for a particular class and grade, and the students only
leave the class for creative program activities. In middle and high schools, on the other
hand, students are not assigned to a particular classroom; rather, they attend each lecture in
a different classroom, which is reserved for a particular subject (math, literature etc.). The
students move from one classroom to another during breaks between classes. Therefore,
the number of classrooms in an elementary school is given by the student capacity divided

Unit Structure Rank
Structure

Activity
Composition

Activity

Spatial
Requirements

Assigned AR
Mission

Staffing Pattern

Patient Volume
Activity
Composition

Activity Spatial
Requirements

Specialty

32 1/14/04 PhD Thesis

Case Studies: Three Recurring Building Types

by the class size; but in a secondary school, the maximum school capacity can be
calculated by multiplying the average class size with the total number of instructional
spaces including classrooms, labs, music room etc.

FIGURE 3.10.School capacity and type effect activity composition and change spatial
requirements.

3.3 Program Parameters for Recurring Building Types

3.3.1 Roles of program parameters

Parametric relationships between requirements play an important role in programming
because they pose constraints for the generation of requirements. For example, the number
of patients that will be seen by a doctor during a definite time period poses a constraint for
the generation of spatial requirements for waiting spaces, circulation paths and the number
of the required exam rooms (Malkin, 1989, pg. 20, 47). The number of doctors that
practice in a particular AHCF influences design requirements by altering other
parameters like the number of nurses or number of exam rooms.

The relations between parameters are both transformational and generative. They are
transformational when a parameter is transformed to other parameter. They are generative
when they help to generate other associated parameters or, at the lowest-level, result in
design requirements.

The generation and transformation of parameters observed in the programming of AHCFs
can also be found in programming other recurring building types. For example, the
number of students that attend school is used together with standards about recommended
class sizes for calculating the number of classrooms. In turn, the number of classrooms can
influence programming decisions about other spatial requirements. By a similar reasoning
technique, spatial requirements for each classroom are derived from the number of
students and the unit area required for each student. Multiplication of the number of
students in a classroom with the allowable unit area for each student gives the area
required for each classroom.

3.3.2 Calculation of Area Requirements

In general, the area of a space is parametrically derived from factors such as work flow,
activities, status recognition of occupants (e.g. the principal of a school or the
commanding officer in a USARC), and fittings (e.g. furniture, equipment, devices etc.).

School Capacity

School Type

Activity
Composition

Activity Spatial
Requirements

PhD Thesis 1/14/04 33

Program Parameters for Recurring Building Types

Based on these factors, I divided commonly used methods for calculating the size of
spaces into three basic groups.

Incremental method

In the incremental area calculation, the areas required for equipment, furniture and devices
and their operations (considering ergonomics and anthropometric data) are added up. For
instance, as demonstrated in Figure 3.11, the area that a study desk occupies is, let’s say,
13 sqf., and 4 sqf for a chair. The total area for a study desk setting is then 17 sqf. plus 15
sqf. required for the activity itself (a person sits in front of the desk and uses drawers,
moves along a side of the desk on a chair etc.). The total area requirement then amounts to
32 sqf. However, the area required for the chair overlaps with the area of operation, and
the area that the chair occupies must be subtracted from the 32 sqf. total area. The final
figure the is 28 sqf.

As the example demonstrates, this method is analytical. In general terms, the total area
requirement becomes the sum of all the areas where sub-activities taking place. The length
and width of the required area are also determined through this method. The following
algorithm implements this method:

for each required space S for an activity

add S to required space list

if S does not overlap with a space S’ in the required space list

add area of S to total required area

else

add difference of area of S minus area of S’

FIGURE 3.11.Analysis of spatial area requirements of a study desk setting

Choose-and-use method

In the choose-and-use method, values for parameters that are related to spatial
requirements are picked from well-established sources and plugged into formulas. The
literature contains studies aiming at standardizing spatial requirements for different

34 1/14/04 PhD Thesis

Case Studies: Three Recurring Building Types

building types. The provided data are usually based on personal experience (Kobus,
1997), surveys (MCMA, 2001), analytical techniques similar to the first method (Malkin,
1989), or well-established standards (BCHS, 1974-1 and 1974 - 2)(Chiara and Callender,
1990).

TABLE 3.1. The averages for square footage and number of exam/patient treatment
rooms. From MGMA (1999) survey of group practices and space planning.

Formula-based method

The third method is based on pre-determined and tested formulas. In order to calculate an
area, parameters that influence the calculation of a spatial requirement are incorporated
into a set of formulas. By assigning values to each parameter in a formula, the required
area can be calculated. For example, in order to calculate the area requirement for a
waiting space in an AHCF, the number of required seats in the waiting room is first
calculated. The number of seats is then multiplied by a coefficient, the unit area per
person (Malkin, 1989, pg. 27). Formulas to calculate the number of seats (nS) and the
waiting area (aW) can be expressed as follows:

where P is the average number of patients that a physician sees in an hour; D is the
number of physicians; E is the number of exam rooms; and A is a unit area per person
coefficient, which differs from one specialty to another.

3.3.3 Spatial relationships.

The case studies revealed four typical of spatial relations that programmers have to
consider. The first one is that a space may need to be located at a certain physical distance
from certain other spaces. This can be called a required proximity. For example, in school
buildings, cafeteria and kitchen must be in close proximity so that the food from the
kitchen area can be delivered to the service area located in the cafeteria without any
interruption.

Type of practice Square feet
per physician

of exam rooms
per physician

Multi specialty 1497 2.12

Cardiology 1201 1.33

Family practice 1565 3.10

Internal medicine 1500 Not available

OB/Gyn 1653 2.78

Ophthalmology 1527 2.53

Orthopedic surgery 1843 2.32

nS 3 P D×() E–[]×=
aW nS A×=

PhD Thesis 1/14/04 35

Parameters, Formulas, Logic Statements, and Procedures

The second relation type is accessibility; it either limits or permits accessibility from one
space to another. For example, in school buildings, only authorized personnel can access
service areas (such as kitchen and mechanical rooms); students should not have direct
access to these areas. In addition, accessibility can be of other types, such as physical,
visual, or acoustical.

A third relation type is spatial overlap. This occurs when one space is used for multiple
activities. Multi-purpose spaces, such as cafeteria or gymnasium, are examples for this
relation. Activities such as ceremonies, presentations, large group meetings, and even
some non-school activities can be performed in these spaces.

The final relation type is containment (or constituency). This occurs when a space contains
other spaces. In an AHCF, for example, an out-patient surgery unit contains a preparation
room, surgery room, and recovery room. Each contained space may have affinities to any
one of the other spaces. For example, a surgery room has to have direct physical access
from patient preparation and recovery rooms. The recovery room should be isolated from
public spaces forming a proximity constraint between the recovery room and the spaces
which have public access.

3.4 Parameters, Formulas, Logic Statements, and Procedures

3.4.1 Components and constructs.

Requirement information found in the case studies can be composed of two basic groups:
components and constructs.

Components are complex information bundles encapsulating related requirement
information such as specialty, activity, and spaces. Constructs refer to parameters,
constants (coefficients), formulas (expressions), procedures, and conditional statements.
They are defined in this study as follows:

Parameters: A parameter refers to any factor that allows for a range of variations or
restricts the result from a procedure or equation. Parameters can be common among build-
ing types (such as number of occupants, budget, activities, site, area per occupant) or spe-
cific to a building type, such as specialty for ambulatory health care facilities or class size
for a public school building.

Parameters can be of different types, such as numerical (e.g. number of physicians, stu-
dents or the unit members), boolean (true or false), or user-defined types (e.g. private, pub-
lic, semi-public space use). Parameters can be independent of or dependent on a
component (space, activity or specialty). For example, the number of physicians is a
parameter which does not depend on either a spatial requirement or a specialty, whereas

36 1/14/04 PhD Thesis

Case Studies: Three Recurring Building Types

the number of patient that a physician sees in an hour is a parameter that changes from
one specialty to another.

Constants: These are quantities with fixed values in a specified programming context
(such as coefficients). For example, the area required to accommodate a specific piece of
equipment or the minimum number of required toilet stalls is given as a constant. As
another example, the exam room coefficient is a constant used in calculating the number
of exam rooms for different specialties.

Formulas: Formulas take the form of equations or rules and are used to establish depen-
dencies between parameters and constants. For example, the number of exam rooms (nE)
depends on the number of physicians (nF) and the exam room coefficient (cEC) for a med-
ical specialty (S). The following formula represents this relation:

Similarly, for calculating the administrative support area (aAS) considering the number of
units (nU) in a USARC, the following formula is used:

Conditionals: This construct type represents logical relationships between parameters.
For example, if the number of physicians (D) is greater than or equal to 3, then a complex
business office (Bd) is required; otherwise a small business office will be sufficient. The
first parameter (D) is a numerical and the second (Bd) a logical boolean (binary) parame-
ter. The conditional statement can be expressed as follows:

Procedures: A procedure is a sequence of instructions that perform a specific decision-
making task in programming (such as calculating the number of classrooms in an elemen-
tary public school). These constructs encapsulate one or many formulas and logical state-
ments in a package that manipulates multiple parameters at a time. For example, the
following formula can be used to calculate the number of toilet stalls in an AHCF:

f: S eEC→
g: nE nF f S(),←
g nF f S(),() nF f S()×=

f: nU aAS→

f nU() 120 sqf nU
50
-------⎝ ⎠
⎛ ⎞ 60 sqf×+=

if D 3≥()
Bd true=
Bd false=⎩

⎨
⎧

f: S Tc→
g: S Fx→
h: TS S D,←
h S D,() g S() D f S()×()+=

PhD Thesis 1/14/04 37

Parameters, Formulas, Logic Statements, and Procedures

where TS is the number of toilet stalls; Fx is the minimum number of toilet stalls required
in medical office with a particular specialty S (expressed as function g); D is the number of
physicians and Tc is a specialty-dependent coefficient (expressed as function f).

However, this formula is not sufficient enough in most of the cases, such as for a urology
clinic, for which the number of toilet stalls can be calculated with the following procedure
incorporating the formula shown above.

If the number of doctors is smaller than or equal to 3, then 2 toilet stalls are needed, else

use the general method in calculating the number of toilet stalls as expressed in formula h.

This procedure is verbally described by Malkin (1989). I converted the description into
pseudo-code as written above. Similarly, other parameters, formulas, procedures etc. can
be derived from verbal statements in the design guidelines or literature related to
programming a particular building type.

Constructs can be either encapsulated in a component or stand alone. For example, the
number of physicians does not depend on any component (i.e. specialty, activity, or space),
whereas the number of patients that a physician sees in an hour is a parameter that
changes from one specialty to another. Similarly, the number of students and school type
are independent parameters in programming an ESPS. But the required unit area per
student is a dependent parameter because its value changes from one type of instructional
space (such as lab or classroom) to another.

3.4.2 Graphical representation of component-construct relationships

I represent the relationships between components and constructs graphically by using the
symbols shown in Figure 3.12. In this representation, activities are shown as shaded
rectangles with rounded corners and spaces are shown as rectangles with dark borders.
Independent parameters are shown with the parameter name in a rectangle and a
parameter symbol in a circle attached to the rectangle by a line. Dependent parameters and
constants are shown as rectangles with light borders and attached to the related
components by a line. Formulas and procedures are also attached to components by lines,
but the line has an arrowhead pointing to the component to which they relate. All
constructs are represented as rectangles with light border lines. The diamond-head arrow
represents spatial aggregations (or spatial constituencies).

u: TS S D,←

u S D,()
TS 2= D 3≤
h S D,() else⎩

⎨
⎧

=

38 1/14/04 PhD Thesis

Case Studies: Three Recurring Building Types

FIGURE 3.12.Graphical symbols used in the representation

An example of this graphical representation is shown in Figure 3.13. The figure represents
partially the spaces accommodating the organizational maintenance activities for
USARCs and how their physical properties are calculated through attached constructs.
The program components and constructs are derived from the army building design
guidelines and design manuals (see Appendix A). Similarly, Figure 3.14 and Figure 3.15
show partially how the components and constructs in AHCF and ESPS relate to each
other. Each of the these diagrams is explained in detail in Appendix A.

FIGURE 3.13. The graphical representation of components and constructs relationships in
USARC programming.

<Space>

<Activity> <Independent
parameter>

S

<Formula/
Procedure>

<Dependent
parameter>

Components Constructs

<Aggregation>

Storage

Mech./Custodial
Room

Controlled
Waste Storage

Flammable
Storage

Shop Office

Work Bay

Tools and Parts
Room

Toilets

Organizational
Maintenance Shop

Organizational
Maintenance Activities

Number of Unit
Members

U

Number of Full-time
Personnel

FP

Number of Administrative
Personnel

AP

Number of Vehicles

V

A=120

A

A

A

A

N

A = 96

A = 75

A

A = OMS.AP x 60 +
OMS.FT x 120

A = Max (Area (OMS) x
0.03, 50) N = V/4

A = N x [(40 x 20) + (4 x
40) + (4 x 20)]A = Max [(Number

(Workbay) - 1) x 25 +
96, 200]

A = Max [(Number
(Workbay) - 1) x 25 +
50, 200]

IF V > 9
 OMS.assigned = TRUE
ELSE
 OMS.assigned = FALSE

Independent
parameter

Formula
(calculates area)

Procedure
(determines the number
and area of a space)

Dependent
parameter
(Area)

Components
(space and activity)

Procedure

PhD Thesis 1/14/04 39

Observations and Summary

FIGURE 3.14. The graphical representation of components and constructs relationships in
AHCF programming.

FIGURE 3.15. Components and constructs in ESPS programming.

3.5 Observations and Summary

Four general observations emerged from the case studies.

1. Programming recurring building types is similar to programming non-recurring
building types in that design requirements at higher-levels are gradually refined into
lower-level design requirements. Higher-level design requirements relate to abstract
information, such as activities, organizational structure, occupant needs etc. At lower-
levels, the spaces, physical properties of the spaces, spatial relationships are derived.

2. The information used in generating higher-level and lower-level design requirements
(such as those regarding the client organization and its needs) is relatively predefined

Main Office

Insurance

Bookkeeper

Office Manager

Medical Records

Business Office
IF D > 4 and Bd = TRUE
Then N = 1

IF D > 2 and Bd = TRUE
Then N = 1

Business

N = 1

N

N

N

N

PEDIATRICSP = 3 Ec = 3 Cc = 1 Bd =
TRUE

TL =
(2,1)

LB (La,
Ld)

S =
FALSE

Ms =
TRUE

Ns =
TRUE

IF D > 2 THEN
Bd = TRUE

IF D < 3 THEN
LB (FALSE, FALSE)
ELSE
LB (TRUE, TRUE)

PEDIATRICS
CLINIC

Number of
Physicians

D

P :Number of patients seen by a physician in an hour
Ec :Exam room coefficient
Cc :Consultation room coefficient
Bd :Business office detail
SL :Staff lounge variable required
Ms :Minor surgery room required
Ns :Nurse station required
TL(Fx, Tc) :Toilet variables

(Fx: Fixed) (Tc: Optional)
LB (La, Ld) :Laboratory variables

(La: Lab-required) (Ld:Complete)

Science Labs

Earth Sciences

Biology

General/
Physics

Chemistry

Creative Program
Activities

AN

AN

AN

School TypeSchool
Capacity

AN

STSC

ApS =
40

ApS =
50

ApS =
50

ApS =
50

Maximum
Class Size

maxCS

ApS : Area per student
A: Area
N: Number
SI: Student increment

Values:
Elementary
SecondaryA = maxCS x ApS

if (ST = Elementary)
N = Round_up (SC/SI)
else N = 0
A = maxCS x ApS
if (ST = Secondary)
N = Round_up (SC/SI)
else N = 0
A = maxCS x ApS
if (ST = Secondary)
N = Round_up (SC/SI)
else N = 0

SI=
400

SI=
400
SI=
600
SI=
600

40 1/14/04 PhD Thesis

Case Studies: Three Recurring Building Types

and well-structured for recurring building types. Therefore, the refinement process in
programming recurring building types can be less labor-intensive than for non-
recurring building types. For example, the commonalities in spatial needs of school
facilities can provide ready-to-use data. The organization of the school activities and
building user characteristics do not need to be rediscovered every time a new public
school design is needed. The only differences between ESPS projects may be in the
school type, school (population) capacity, and some other contextual constraints (such
as budget, site, climate etc.).

On the other hand, in programming a community center—as a non-recurring building
type example—most of the needed information is not available in advance. Therefore,
programmers have to discover the project goals and objectives based on the unique
needs of the community (building users), activities to be accommodated, functions of
the facility, spatial needs etc.

3. Requirements specifications are multi-directional. That is, one non-spatial
requirement can lead to one or more spatial requirements as well as one or more non-
spatial requirements. Similarly, a spatial requirement may generate additional spatial
requirements or may cause other related non-spatial requirements to be reviewed.

Take a school building as an example. One non-spatial requirement could be that as
part of the curriculum, chemistry experiments will be conducted. This requirement
can generate other requirements such as direct access from labs to all of the class-
rooms. In addition, conducting chemistry experiments leads to the generation of mul-
tiple design requirements for a laboratory space with specific equipment, dimensions
and layout. As other non-spatial requirements (such as scheduling the laboratory
hours, number of students planned to be accommodated in school and budget limita-
tions etc.) are considered, the resulting web of requirements and their influences on
each other become hard to manage. The problem of defining this web becomes a con-
siderably challenging task when the requirements are studied in their entirety.

In conventional programming, generation of requirements and propagation of require-
ment changes are manually performed. This potentially reduces the integrity and
effectiveness of the requirements. Besides, even with manuals and written standards
at hand, it is very labor-intensive to manage literally hundreds of dependencies that
need to be observed between building components and their underlying intent. Pro-
gramming professionals are able to manage these only due to their sustained experi-
ence with similar problems over years. On the other hand, I demonstrated that
systematic and logical operations (methods) are at work during this process, such as
generate-propagate-update cycles, which can be automated.

PhD Thesis 1/14/04 41

Observations and Summary

4. Different design requirements are based on different types of information, and each
type of information is handled through disconnected representations. Working with
disconnected information negatively affects the efficiency and effectiveness of
generating design requirements. If a certain parameter at any given level changes,
changes in other parameters at different levels have to follow. Take, for example,
changing the projected number of students in a ESPS; a change in this parameter not
only dramatically changes quantitative spatial requirements, but also causes certain
activities to be added to or removed from the program. Current representation
techniques are not seamlessly capable of accomplishing such change propagation.

Another example is the representation of requirement relationships. Relations of
spaces can be represented in different formats, such as affinity matrix, diagrams, and
lists. Each of these representation techniques shows the same concept, and a change
in one of these has to be carried to others. Therefore, manual changes or updates of
design requirements are frequently required. Maintaining up-to-date information
(data) consistently becomes very tedious.

5. As the case studies have demonstrated, the process of generating lower-level
requirements from higher-level requirements for programming recurring building
types can be very structured, but at the same time, can be very complex. When other
complex issues (such as equipment usage, engineering, codes, regulations) enter, the
need for more enhanced generative methods for design requirements specification
becomes even more pronounced. Similarly, the case studies demonstrate that the
relatively well-structured nature of the process of programming recurring building
types presents opportunities for supporting this process in a computational
environment.

42 1/14/04 PhD Thesis

Case Studies: Three Recurring Building Types

PhD Thesis 1/14/04 43

Programming as Information Refinement Process

Chapter 4 Conceptual Framework

4.1 Programming as Information Refinement Process

4.1.1 Step-wise refinement of requirements

The case studies coupled with the literature review demonstrate that programming—in
essence—can be generally characterized as an information refinement process where
higher-level (non-spatial) requirements are gradually transformed into measurable and
operational (spatial) requirements at the lower-levels. This transformation process is
exemplified by various authors (Duerk, 1993, pp. 20, 36; Cherry, 1998, pp. 122;
Hershberger, 1999, pp. 367; Kumlin, 1995, pp. 144). I generalize these approaches in the
present chapter in the form of an open-ended and extensible model that can be used for
any programming case, rather than only for a particular approach.

Figure 4.1a. shows the model in an abstract form. At the highest level, the main goal of a
project, which is not refined at this stage, is depicted by a large circle. At each successive
level, pieces of requirement information are recursively detailed to a granularity that
provides enough information to specify requirements at the next level. The diagram uses
smaller circles to show the refined information at each refinement level. The relationships
between requirements are shown by connecting lines—which may refer to dependency,
data use, parameter transformation, information generation etc.

4.1.2 The proposed model vs. existing models

The main difference between the proposed model and the current approaches—such as
Duerk’s (Duerk, 1993, pp. 20)—is that it does not require strictly hierarchical step-wise
refinement; different design requirements at different levels can compose a web of
relationships (Figure 4.1 a and b). However, strictly hierarchical refinement represents a
special case that is also covered by the model. In addition, unlike current approaches, the
proposed model provides a flexible level structure that does not fix the number of

44 1/14/04 PhD Thesis

Conceptual Framework

information (refinement) levels; it also remains flexible with respect to terminology and
degree of resolution, which remain under the programmer’s control (Table 2.1).

FIGURE 4.1.The strictly-hierarchical refinement model (a) vs. the proposed model (b).

Purely hierarchical refinement models allow only one-to-many relationships and fail to
comprehensively represent webs of not strictly hierarchical dependencies and
relationships. The need for these becomes apparent when we look, for example, at how
spatial affinities are established among multiple spaces, which are the outcome of multiple
requirements. In a more concrete example from ESPS programming, the number of
students influences multiple requirements such as the staffing pattern and number of
classrooms. Furthermore, the number of classrooms is not the only outcome of the number
of students, but other requirements as well, such as school type—which, in turn, is derived
from other requirements (see Chapter 3 and Appendix A for more details).

4.2 The Model in Relation to Means-Ends Analysis.

4.2.1 Means-Ends Analysis (MEA)

The proposed model resembles Means-Ends Analysis (MEA), a problem-solving method
first introduced in the General Problem Solver (GPS) (Newell & Simon, 1963; Simon,
1989, pp. 36-37). MEA involves solving problems by successively reducing the
differences between an initial and a desired state (Sternberg, 1996, pp. 483). In addition,
the fundamental MEA strategy for solving a problem is to decompose the solution process
into a series of steps each of which comprises its own initial and desired states and
operators (Figure 4.2).

mission

goals

objectives

concepts

(a)

level 1

level n

level 2

level 3

level ...

(b)

PhD Thesis 1/14/04 45

The Model in Relation to Means-Ends Analysis.

FIGURE 4.2.Decomposition of a problem into successive means and ends

A MEA problem solver starts by applying means to an initial state, which generates many
desired states as new ends. These ends are then taken as initial states for the next
refinement step. By applying associated means to the present initial states, the problem
solver generates desired states at the next lower level. This step-wise resolution of means
and ends recursively continues in a fashion that turns means to achieve a higher-level goal
into ends at the next level. The process stops at the lowest desired level where required
ends are derived.

4.2.2 Generalized MEA

In (architectural) programming, ends at each level can be achieved by more than one
means. Unlike in MEA, the transition from higher-level to lower-level requirements is not
necessarily a strictly hierarchical search for a solution; it is rather a multi-directional
generative and hierarchical refinement process. This multi-directionality creates possible
cycles in the process. In order to manage these cyclic relationships among requirements,
MEA needs to be extended so that one means can satisfy different ends. Therefore, the
model presented here forms an extended (generalized) version of MEA (GMEA). GMEA
has the following potential advantages: (a) it is general enough to capture all processes
observed in the case studies or described in the literature, and (b) it is operational enough
as basis for formalization and computer application.

4.2.3 Example Scenario

In order to demonstrate the applicability of the proposed framework to established
programming methods, I describe a scenario that adapts Duerk’s (1993) method to derive
missions, goals, objectives, and design requirements.

The process, as shown in Figure 4.3, starts with a mission statement, which can be divided
into specific operational goals. However, the mission statement is not the only source of

End

Means Means Means

Means Means Means Means

Means Means Means

Means

Means

End End End

End End End

End
Means

End

Means Means Means

Means Means Means Means

Means Means Means

Means

Means

End End End

End End End

End
Means

46 1/14/04 PhD Thesis

Conceptual Framework

generating goals because goals themselves can generate other goals; for example, Goal 1
is generated mainly from the mission statement, but also in part from Goal 2. At the same
level, Goal 2 leads to the generation of Goal 4. In the next step, each goal is expressed in
terms of specific objectives, such as performance requirements. These objectives become,
at a lower-level, specific design requirements (concepts), such as spatial properties. In
deriving one requirement, information provided in multiple requirements may be used.
For example, design requirement 3 is generated using the information provided in
objective 2, objective 3, and requirement 1.

FIGURE 4.3.Sample transition from high-level to low-level requirements

As illustrated by the diagram, there exist inter-requirement relationships between both
higher and lower levels at each refinement step. A goal may generate another goal; an
objective may generate another objective; and a design requirement may generate another
design requirement. The activities, organizational structures, occupancy etc. are
incorporated in the refinement process as requirement information.

When we apply GMEA to the structure described above, an end can be the main goal
which can be achieved through the sub-goals as means. As the sub-goals become ends, the
objectives become means to achieve them. At the following level, the design requirements
become the means to achieve the objectives. Design requirements are specific and mostly
spatial. Taken together, they specify concretely how the main goal (mission statement) can
be accomplished by a proposed facility. By employing means-ends reasoning at each
level, the programmer thus generates the lowest-level design requirements step-wise from
the high-level ones.

Goal 1

Objective 1

Design
Requirement 1

Design
Requirement 2

Design
Requirement 3

Objective 2

Mission statement

Goal 2 Goal 3

Objective 3 Objective 4

Goal 4

Lower-level

Higher-level

R
es

ol
ut

io
n Activities

Organizational
Structure

Occupancy
Schedule
Budget
Site etc.

Goal 1

Objective 1

Design
Requirement 1

Design
Requirement 2

Design
Requirement 3

Objective 2

Mission statement

Goal 2 Goal 3

Objective 3 Objective 4

Goal 4

Lower-level

Higher-level

R
es

ol
ut

io
n Activities

Organizational
Structure

Occupancy
Schedule
Budget
Site etc.

PhD Thesis 1/14/04 47

Applicability of the Framework

4.3 Applicability of the Framework

4.3.1 The framework and programming recurring building types

Note that Duerk’s method—like the methods proposed elsewhere in the general
programming literature—is not restricted to recurring building types and intended to be
generally applicable to programming. This means that the proposed model is also
applicable to non-recurring building types. I will return to this at the end of the present
section.

Programmers dealing with a recurring building type can take advantage of some short-
cuts—if we may call them thus—extracted from design guidelines or gained through
experience. The programmers can use the short-cuts to compile lower-level program
requirements directly without the need of investigating a chain of intermittent
requirements.

The short-cuts are fundamentally pieces of reusable program information in the form of
programming rules derived from established knowledge and expertise about the
organizational structures, functional requirements, and their physical implications for a
recurring building type. A programming rule for programming an ambulatory health care
facility, for instance, is the requirement of assigning a separate consultation room for each
physician in internal medicine (i.e. the number of consultation rooms is equal to the
number of physicians in an internal medicine clinic.) This is derived from the facts that (a)
physicians need private offices, and (b) they consult with their patients before or after the
examination, which is confidential and cannot take place in other spaces. Therefore, the
established knowledge and expertise with this building type reduces programming
complexities, and the rules provide fast and systematic decision-making mechanisms.

4.3.2 The framework at work: a partial example for a recurring building type

When we apply the framework to programming a school facility, the steps of a suitable
hierarchical refinement process can be—partially—described as follows:

• The main goal (mission) is stated as end.

Example: Design an elementary public school for 350 students in the State of Ohio.

• The goals are stated as means to achieve the main goal.

Example: In the school, the students should be grouped as specified in the Ohio School
Design Manual (OSDM), which states that the students have to be
distributed evenly in separate classrooms.

48 1/14/04 PhD Thesis

Conceptual Framework

• The means become ends, and sub-goals (objectives) are stated as means to achieve
the higher-level goals. In the following, three sub-goals are derived from four rules
taken directly from guidelines in the Ohio Design Manual.

Rule 1: The class size should not be larger than 25 students per class.

Rule 2: If there are more than 5 classrooms, they should be clustered in groups of
maximally five.

Rule 3: The unit area per student in classrooms should be a minimum of 30 square feet
and a maximum of 35 square feet.

Rule 4: The circulation area required in a classroom cluster should be at least 30% of
the total area of the classrooms.

Application of these rules leads to the following spatial requirements as new lower-level
ends.

Example: Provide three clusters of 5 classrooms to accommodate 350 students.

Example: Each classroom should be 750 square feet.

Example: In each cluster, the circulation area should be 1125 square feet.

The example shows how established programming knowledge and its capture through
programming rules enable programmers directly to derive lower-level design
requirements by just evaluating certain critical programming parameters. Based on these
parameters, a programmer is able to derive quickly basic functional requirements of a
facility and the physical attributes of its spaces.

The rules are based on intermittent goals and objectives that are not stated explicitly (like
the rationale behind a maximum class size) and apply these to the critical parameters to
derive directly lower-level specifications. Programmers who use the rules do not need to
engage in extensive research to investigate intermediate functional and physical
requirements of the facility. This would indeed be practically infeasible for any given
project.

However, I do mean to imply that the goals and objectives implicit in guidelines for
recurring building types should never be questioned. It is indeed the responsibility of their
authors to monitor their implications on a continuous basis. All I want to point out is that
they are ubiquitous for recurring building types, provide shortcuts for programmers, and
can be incorporated into the proposed framework and captured by the components and
construct concepts introduced in the preceding chapter.

PhD Thesis 1/14/04 49

Applicability of the Framework

4.3.3 Framework at work: non-recurring building type test case

I wanted to test to what extend the model captures the programming information for non-
recurring building types. For this purpose, I demonstrate in the present section how the
abstract concepts mentioned in the framework can be mapped onto a real-world example:
the program for the design of the National Humanities Center at Raleigh, NC, a unique

facility for which no precedents existed at the time of its inception1.

The mission statement is a brief statement of the specific purpose of the project.

Example: The mission of the project is to create a National Humanities Center which
will house 40-50 scholars in residence and allow them to explore common
issues from a variety of points of view.

Goals are statements about the level of quality that is desired in the final project, yet
general enough to be inclusive of a wide set of performance and design requirements.

Example: The center should encourage interaction between scholars to stimulate new
ideas and collaboration, and to provide new information and perspectives
about issues.

Example: Each scholar should be provided with a setting where the scholar can isolate
him or herself from other public or semi-public activities and concentrate on
his or her study. The scholars should feel that they own this setting and be
encouraged to modify as they wish.

Objectives are performance requirements which define the measurable level of functions
that a design must provide. Measurements can be binary, scalar, judgements or consist of
an acceptable range of physically measurable values. Goals are refined into specific and
operational objectives.

Example: The researchers meet periodically to exchange ideas. For the meetings,
formal and casual meeting settings (spaces) should be provided. The formal
meeting spaces should provide privacy for the group as well as adequate
spatial area to make the space reconfigurable for different needs
(presentation, group discussion, hands-on training etc.). The meeting spaces
should also have access to the spaces which store furniture and equipment.

Example: Each scholar conducts research individually. In addition, a scholar may
invite other people to discuss their research in a private setting. Therefore,
individual researchers should be given their own spaces where they can
modify the space for their needs. These spaces should provide adequate
visual stimulation without being distracting.

1. The program was implemented and the design of the center was published in Architecture+Urbanism No.
135 December 1981 issue.

50 1/14/04 PhD Thesis

Conceptual Framework

Design requirements are statements directly referring to the physical (spatial)
characteristics of the building to be designed. Like performance requirements, these are
more specific and measurable than goal statements and constitutes the lowest-level and
spatial (or physical) requirements.

Example: One seminar room for organized group meetings of at least 25 occupants
should be provided. The seminar room should be square and allow flexible
furniture layout and sitting configurations. The area requirement for the
seminar room is minimum 30 sqf. and maximum 40 sqf. unit area per person.

Example: The seminar room should have access to a storage where chairs, tables, and
presentation equipment are stored. The area for the storage should not be
less than 10% or more than %20 of the seminar room.

Example: For each scholar, a private study area accommodating a 3’ x 3’ meeting
table with three chairs, a 3’ x 4’ study desk, and two 3’ x 8’ shelves to store
books should be provided. The furniture may be replaced by other furniture
or the room layout may be changed by the individual scholar who occupies
the room.

Example: The area required for each individual study room is 175 sqf. (possibly 12’ x
14.5’)

These portions of the program document illustrate precisely the step-wise refinement
process postulated by the proposed framework. The case therefore demonstrates that the
proposed framework can also be utilized for capturing the information refinement process
for non-recurring building types.

4.4 Summary

In this chapter, I brought together my observations on architectural programming from
both the case studies and the literature review. I redefined programming—for the purposes
of this research—as a hierarchical information refinement process resembling MEA to
accommodate multi-directional and not strictly hierarchical generative and configurative
processes observed in programming.

I also demonstrated by example that the framework can capture programming for both
recurring and non-recurring building types. Furthermore, I conclude that the proposed
framework can be adapted for a computer-aided architectural programming tool because
of its generality and formal structure.

PhD Thesis 1/14/04 51

Architectural Programming System

Chapter 5 System Definition:
Features and Requirements

5.1 Architectural Programming System

5.1.1 RaBBiT

The system that is developed as part of this research is called RaBBiT, which stands for
Requirements Building for Building Types. I found the requirements building metaphor
appropriate for the purpose of the proposed application because (a) the word "building" is
commonly used in both construction and software engineering, and (b) the notion of
building alludes to the most basic activity that the system is envisioned to facilitate:

modeling building requirements in a structured form1.

5.1.2 User characteristics

The target users of RaBBiT are those with a particular interest in architectural
programming for specific building types. Specifically, the primary users are architectural
programmers playing one of two roles: architectural programming knowledge modeler
(APM) or program composer (APC). An APM will design type-specific knowledge
models in RaBBiT; an APC will use the knowledge model to generate and compose a
program for a particular project with RaBBiT’s assistance. After a program is generated,
the APC should be able to modify the generated program.

The primary users of RaBBiT are not assumed to be experts in computer programming.
Therefore, other than writing basic mathematical expressions—such as the ones used in
spreadsheets—an APC and APM should not be required to write computer programming
code.

The secondary users are other CAD reasoning systems (users) and clients who want to
utilize a model or a generated program in their own domain of interest—such as layout
generators or budget planners.

1. The word "building" is defined in www.dictionary.com as "to form by combining materials or parts; to
develop or give form to according to a plan or process"

52 1/14/04 PhD Thesis

System Definition: Features and Requirements

5.1.3 Basic functionality of the system

The basic function of RaBBiT is to provide interactive support for programming-
knowledge modeling of and program generation for any recurring building type.
Knowledge modeling will involve formulating and composing building requirements as a
collection of re-usable and type-specific concepts and their relations. These concepts will
be used in generating program information for a given project. Computational
representations of the model and generated programs can be (a) shareable with other
applications; (b) viewed—displayed and documented—in a format of a user’s choice, i.e.
they are view-independent; and (c) persistently storable in and transferable between
computers through network connections. Figure 5.1 shows an overview of the system
functions.

FIGURE 5.1.Overall system structure: users and functions

5.2 Knowledge Modeling Features and Requirements

5.2.1 Overview

The following sections outline the structural and behavioral requirements of RaBBiT for
programming-knowledge modeling. These features are derived from the framework—the
programming model and GMEA as introduced in Chapter 4—and are essential for guiding
the system design. The structural requirements define the types of information
(abstractions) that should be represented in the model; the behavioral requirements specify
how the model should respond to any possible change. Note that these requirements are
intended to guide the design and implementation of the system, not to describe the system
in detail—later sections will be more specific.

5.2.2 Structural requirements
1. RaBBiT should assist programmers in assembling a programming-knowledge model

that captures (building) type-specific programming information and parameters. Part
of this information relates to activities, user characteristics, organizational structure,
spaces, equipment etc. The model should be flexible enough to accommodate all
possible types of information as observed in the case studies and found in the

literature. The model should comprise the following information types (blocks)1.

Program

Model

OutputRaBBiT

Knowledge
Model

Program
Schema

Model
programming
knowledge

Compose
Program

Other users/
clients

APC
transform

generate
use

APM

PhD Thesis 1/14/04 53

Knowledge Modeling Features and Requirements

• Programming information relating to a salient programming concept or a requirement
should be captured in an information type called component. For example, a
component can represent a space, a piece of equipment, a function, or a particular
user. Each component should have a description and a name designating the concept
or requirement it represents. Components should be able to contain parameters of
arbitrary type and number, such as numeric, text, boolean, association, digital file
links (e.g. to graphic images or internet addresses) etc. The order and number of
parameters in a component should be determined by the users and not be imposed by
the system. Components provide programmers with a data type generic enough to
represent any concept used in architectural programming.

• Parameters will be specified in an information type called construct. Each construct
should have a name, data type (numeric, boolean, text etc.), and a value. The value of
a parameter can be directly assigned by the users or derived from a function. It should
be possible to specify relationships between parameters, or more precisely, between
their values so that the value of one parameter can be derived from the value of other
parameters. These dependencies will be called parametric associations in the
following.

• The case studies clearly point to the crucial role played by certain critical
programming parameters for each building type. They constitute main decision nodes
from which decisions are derived when composing an architectural program for a
recurring building type. For example for programming an USARC, the number of
unit members forms a critical parameter. The critical parameters in the knowledge
model should be represented in a special information type called global construct.
This type will ensure that the critical parameters can be represented independent from
other information types and accessed without the need for an extensive search in the
model. The programmer will enter the values of global parameters when generating
programs for a given project or exploring alternative programs for the same project.

• An association between components can belong to one of two information types:
dependencies or relationships—called, respectively, dependency and relational
associations in the following.

2. RaBBiT should provide a feature for categorizing programming concepts and
requirements—contained in components—according to the information levels they
belong to. The number of information levels and the name of each level (category)
should be determined by the user and not be imposed by the system. This feature can

1. The naming conventions used here are intended only to make the system requirements easy to understand.
They are internal to the present document and not necessarily intended to be used by the users or the system.
During system design, these names can be used or changed as desired.

54 1/14/04 PhD Thesis

System Definition: Features and Requirements

be used to sort requirements information into semantically related groups, such as
defined in a particular (architectural) programming approach or in design guidelines.
If the programmer chooses not use this function, RaBBiT should grant this choice.

3. The knowledge model in RaBBiT should be able to capture functional, conditional,
and nested associations between pieces of programming information and parameters
associated with them, including the parametric associations introduced above.

• Functional associations are an important structural feature that defines dependencies
between pieces of program information, particularly between parameters. Take the
simple rule in calculating the number of exam rooms in an AHCF as an example. In
this rule, there is a functional association f between the number of doctors (nD) and
number of exam rooms (nE) such that the number of exam rooms (nE) is equal to the
ceiling of the number of doctors (nD) multiplied by a medical specialty coefficient
(C), i.e. nE is a function of nD.

• Conditional associations1 capture conditional dependencies between different pieces
of program information. A conditional association is simply an if-then-else (If
<conditions> then <actions> else <alternative actions>) statement or rule that
establishes a conditional association between parameters. The if part or antecedent
expression defines a condition that must be satisfied for the association to exist. It
evaluates to true or false. The then part or consequent expression describes the action
that must be performed if the antecedent expression holds true. The (optional) else
part of the rule is similar to the then part; but it is processed when the antecedent
expression evaluates to false.

As a simple example, assume that the area for the cafeteria (aC) in a school building
can be calculated based on the number of students (nS) such that if the number of
students is less than x, the area per student is k sqf., else it is m sqf. This association
can be expressed by the following function f:

1. The meaning of the term "conditional association" differs here from that used in statistics.

f: nD nE→
f nD() nD C×=

f: nS aC→

f nS()
nS k× nS x<
nS m× else⎩

⎨
⎧

=

PhD Thesis 1/14/04 55

Knowledge Modeling Features and Requirements

Conditional associations can also be used for decisions that change depending on
whether or not a set of parameters satisfies certain conditions. For example, in
programming an USARC, the following dependency condition can be used: An army
reserve unit is given organizational maintenance mission (OMM) if 10 or more
motorized vehicles (nV) are assigned to a USARC. If that becomes the case, program
for that USARC should have organizational maintenance shops (OMS), else OMS are
excluded (i.e. do nothing).

• Nested associations contain multiple functional and conditional associations
configured such that they are evaluated together. For example, assume in the example
given for the conditional association above that in addition to the mission, the number
of officers (nO) becomes a factor in deciding whether or not we should include OMS.
The number of officers in turn is a parameter with a functional association f to the
number of unit members (nU). The project budget (B) is also a factor in effecting this
decision such that it is compared to the actual cost (Ca) of the OMS: if the budget is
greater than (Ca), OMS spaces are added to the program. A function h is used for
calculating the total cost by adding the cost of each space si given in a set of OMS
spaces (S). The cost of each space is calculated by a cost function. The following
statements describe the nested association (g) among these parameters and
associations.

The expression g can also be

4. RaBBiT should provide mechanisms to specify dependency associations from higher-
level requirements to lower-level requirements—or programming concepts for that

f: nV include OMS→

f nV()
true nV 10≥
false else⎩

⎨
⎧

=

f: nU nO→ f nU() nU() 50⁄=

h: S Ca→ h S() tcos si()
i 1=

si S∈

∑=

g: include OMS nV nU S B,,,← g nV nU S B,,,()=

true B h S()>

false else⎩
⎨
⎧

f nU() k>

false else⎩
⎪
⎨
⎪
⎧

nV 10≥

false else⎩
⎪
⎪
⎨
⎪
⎪
⎧

g nV,nU,S,B() nV 10≥() f nU() 10>() B h S()>()∧ ∧=

56 1/14/04 PhD Thesis

System Definition: Features and Requirements

matter. This type of association is mainly needed to establish a requirement
decomposition mechanism from higher-level information to lower-level information
such that the resolution of the requirements can increase at the lower-levels.

From the perspective of the general framework introduced in the preceding chapter,
the dependencies determine which ends can be achieved with which means.

A dependency association should be specified by an information type having
references to a source and a target component and a condition. In Figure 5.2, assume
that A and B are higher-level requirements and are achieved by lower-level
requirements a1 and ab, and ab and b1 respectively. For A to be achieved by a1, the
condition c1 on this dependency must be true.

FIGURE 5.2.Sample dependency associations with and conditions

• The source component represents an end and the target component a means to achieve
this end. One component can be a source for as well as be a target of many
dependency associations. For example, in Figure 5.2 ab is a means to achieve both A
and B.

• Each dependency should accommodate a conditional association that is used for
evaluating whether or not a dependency is valid in a given situation. This feature is
needed in cases where a requirement can be achieved by another requirement if a
certain condition is satisfied.

As a real example in AHCF programming, we want to include a minor surgery room
if the given medical specialty is internal medicine—or any other specialty that
requires a minor surgery room for that matter. Therefore, the spatial requirements will
include a minor surgery room if the specialty condition is satisfied, else the room will
be excluded—and all the other lower-level requirements depending on this room. In
this example, the source of the dependency association can be a component
describing a spatial zone, the target is a component containing information of the
surgery room, and the condition of the dependency is "specialty should be equal to
internal medicine". Result of the condition will be used to decide if the zone should
include this room or not.

A

b1a1

B

ab

c1 c2 c3 c4

PhD Thesis 1/14/04 57

Knowledge Modeling Features and Requirements

• The conditional association in dependencies become especially useful when we want
to make decisions based on the possible existence of certain other requirement in the
program. Assume that in a school program, two higher-level (activity) goals have
been created: (a) extracurricular student activities and (b) community and parent
education should be accommodated (Figure 5.3). The student activities can be
accommodated in two alternative ways; (1) in a multipurpose hall that can be used for
student-body meetings, graduation ceremonies, or dining or (2) in separate spaces, an
auditorium for student-body meetings and ceremonies, and a cafeteria for dining.

The selection of one of the alternatives for accommodating student activities can be
based on some conditions—such as if the number of students is greater than a certain
number, include a cafeteria and an auditorium, else include a multipurpose hall.
Community education, on the other hand, can take place in the same multipurpose
hall if the decisions about extracurricular activities have been made. Conversely, if
community education is considered before extracurricular activities, a multi-purpose
hall will be created, and when the extracurricular activities come under consideration,
the existence of this space has to be taken into account.

This example illustrates that when we have dependencies among conditions that
emerge dynamically during programming, the order in which the decisions are made
matters, and conditions must be formulated such that the right decisions are always
made. One implication of this example is that conditional expressions must be able to
assert the existence or non-existence of certain components in the current state of the
program. More generally, we have to conclude that cross-dependencies make the
programming process non-monotonic; i.e. conditions that do or do not exist at one
point may or may not exist later on. I will return to this issue in the next chapter.

FIGURE 5.3.Complex dependency associations

5. RaBBiT should allow for relational associations between different requirements that
belong to the same category or group: spatial affinities are such a group. For example,
as shown in Figure 5.4, assume that ab, a1, and b1 are rooms such that a1 has an

Extracurricular
Activities

Community
Education

Multipurpose HallAuditoriumCafeteria

Condition
[ac]:

Condition [ae]:
if (Condition [ac] and
Condition [ad]) = false
then true else false

Condition
[ad]:

Condition
[be] :

a

c d e

b

58 1/14/04 PhD Thesis

System Definition: Features and Requirements

adjacency relation to ab and a proximity relation to b1. RaBBiT should enable users
to assert such relationships in the knowledge model.

FIGURE 5.4.Sample relational associations expressed with labels

Figure 5.5 shows the information types outlined in the structural requirements above. A
component typically contains multiple constructs. Each construct can have at most one
parametric association that can be used to derive its value. Parametric associations can be
of functional, nested, or conditional. A nested association may have references to many
other parametric associations. A relational association keeps reference to two components
and is expressed by a label. A dependency association also has references to two
components, but unlike relational association, it specifies the direction of the dependency
through target and source components to capture means-ends relations. Each information
level may contain multiple components for the purpose of grouping (classification) of
pieces of domain knowledge information.

FIGURE 5.5.Structural requirements for programming-knowledge model

b1a1 abadjacent

proximity x

Programming Knowledge Model

description

name

Construct manydescription

name

value

Functional ConditionalNested

Parametric
Associations

Component

source
target

Dependency
Association

Relational
Association label

2

Information
Level

many

level

name

0..1

expression

Sub-, super Information type
supertypesubtype

<name> Information type container contained
Contains

refers referred
Has reference to<name> Property

many

PhD Thesis 1/14/04 59

Knowledge Modeling Features and Requirements

5.2.3 Behavioral requirements
1. RaBBiT should be able to dynamically propagate any changes made in one

programming requirement to all other requirements connected through associations.
A similar behavior can be observed in spreadsheets where a value changed in one cell
is propagated to all other cells having a reference to the changed cell through
formulas. However, unlike spreadsheets, RaBBiT will use parameters in associating
pieces of information and will have a generative capability.

Change propagation especially becomes important for assuring the continuity,
completeness, and validity of a knowledge model in RaBBiT. When the user changes
part of the programming information, such as the name of a requirement or a
parameter, all of the associations having reference to the changed information should
be informed of the change so that they can update their content. Let’s consider the
following example; A parameter x is referenced in a functional association f
determining the parameter y of requirement R. If the user changes the name of the
parameter x to parameter z, requirement R will not be aware of this change without
change propagation; therefore, the knowledge model will be invalid and inconsistent.
The change propagation feature will ensure that requirement R and, in turn, the
functional association f and parameter y will handle this change as it occurs and the
model adjusts accordingly.

Before change: . .

After change: . . .

Similarly, if the requirement R changes, all of the parameters associated to the
program information captured in requirement R should be informed of this change.

2. RaBBiT should dynamically update the state of a working model during knowledge
modeling. The programmer will add, remove, or modify requirement information and
dependencies, represented in components, constructs, and associations respectively.
Each of these actions will make the model state change; for example when the
programmer removes a requirement connected with dependency associations to other
requirements, all associations should also be removed from the model—with the
user’s permission. The model state change should be synchronized with the user input
and visible to the user. In addition, the model’s state should be persistently storable at
a given time when the system is running (save feature).

Figure 5.6 shows an example of the state change of a model before and after a
requirement is removed. Assume that the user removes requirement ab. RaBBiT
should update the model by removing the associations from or to requirement ab as
the operation is completed.

f: parameter x parameter y requirement R∈→

f: parameter z parameter y requirement R∈→

60 1/14/04 PhD Thesis

System Definition: Features and Requirements

FIGURE 5.6.(a) the sample model before remove operation and (b) after remove operation

3. To maintain consistency and correctness of a model, RaBBiT should ensure that
changes made in the model are consistent within the internal representation (data
structure) and views. As programming information is entered, the knowledge model
will gradually evolve in the form of a complex data structure. During this process,
information added or removed should not interrupt the settled state of the model. For
example, establishing a dependency association from one requirement to the very
same requirement—or any cyclic relation, for that matter—violates the model and
creates an inconsistency. Similarly, a parameter cannot have a functional or
conditional association to itself.

4. When programming concepts and requirements are sorted according to an
information level structure, RaBBiT should ensure that a lower-level requirement
depends on only either the requirements in the same level or higher-levels, not on
requirements in the lower-levels. This will ensure a proper transition from higher-
level to lower-level programming information. Note that the information category
structure is an optional feature: in case it is not used, all programming requirements
are grouped under one level.

5.3 Program Generation Features and Requirements

5.3.1 Overview

This section outlines the requirements for program generation in RaBBiT. Like the
requirements for knowledge modeling, the generation requirements are grouped under two
types. Structural requirements specify the type of information and data used in program
generation—and in the generated program itself. Behavioral requirements identify
RaBBiT’s functions for both generating program information and transforming a program
model for sharing with other applications. Program information is captured in a
computational representation called program data. The structural organization of a
program will be based on a schema called program schema.

A

b1a1

B

ab

c1 c2 c3 c4

A

b1a1

B

c1 c4

(a) (b)

proximity x

adjacent

proximity x

PhD Thesis 1/14/04 61

Program Generation Features and Requirements

5.3.2 Structural requirements
1. As explained above, a knowledge model contains reusable (generic) program

information and associations for a building type. A program is a composition of
requirements generated by evaluating the associations defined in a knowledge model.
A knowledge model is created for a specific building type, not for a specific project; a
program is generated for a specific project and contains only the information relevant
to that project.

2. RaBBiT should have a generic, modular program schema able to capture
requirements as program data—possibly distributed over information levels. The
program schema should allow for a mapping between information in the knowledge
model and in the program. The schema should specify the structural organization of
information in a program and the program should adhere to this schema. Neither
program nor program schema should enforce a document view—i.e. both should be
view-independent. In other words, program data and schema should be structure-
oriented, not presentation-oriented.

A generated program will be composed of requirements following the program
schema specifically designed for RaBBiT’s program generation feature. Client
applications that use a generated program have to transform the program data through
schema transformation:. This transformation can result in either a formatted
architectural program document or another form of program data to be used for other
purposes. Formatting of the program data can comply with a particular document
style—such as defined in the architectural programming literature.

3. The information types used in the knowledge model, such as components, constructs,
and associations, should be able to export their content as program data. For example,
information specified in a component will be mapped to its corresponding
representation in the program schema. Therefore, components should provide the
program generator with queries for exporting its content in terms defined in the
program schema.

4. The program schema should be in a shareable format, like the one used in Extensible
Markup Language (XML) documents and schema definitions.

5. In addition to the information extracted from the knowledge model, the program
schema should accommodate the following information (a) project name, location,
description; (b) client name, address, contact name, e-mail address, and fax and phone
numbers; (c) program version, date, description. When possible, a default or system-
assigned values can be used in program generation, e.g. project date.

62 1/14/04 PhD Thesis

System Definition: Features and Requirements

5.3.3 Behavioral requirements
1. RaBBiT should provide a program generation mode that can assist programmers in

composing an architectural program for a particular project. The programmers will
primarily enter or change values of critical programming parameters in the system;
RaBBiT will update the knowledge model in accordance with these changes and
generate all the relevant program information for the given project.

2. The operations of the program generation mode should not compromise a knowledge
model’s integrity, consistency, and correctness. Programmers should not be allowed
to change the semantics (domain knowledge) of the program while RaBBiT is in
program generation state (mode).

3. The program generation feature should be able to check the validity of the generated
program (data) against the program schema. A generated program should be
compared to the programming schema. If a generated program matches the program
schema, it is said to be valid.

4. RaBBiT should create an output file for each program generated; the file will include
only the data and not any view-depended information. The content of the file should
not require a particular application to open it; therefore, a text-based output file—
such as in XML syntax—will be appropriate. Document formatting and view
generation will be handled through schema transformation. For this purpose, RaBBiT
should provide at least one schema transformation to demonstrate how the generated
program data can be formatted for other uses.

5.4 Summary

In this chapter, I define the very essential system features and requirements of RaBBiT
under two categories: knowledge modeling and program generation. For knowledge
modeling, RaBBiT’s architecture should contain three types of entities: (a) components
representing requirements, (b) constructs representing parameters, and (c) associations
representing dependencies and relations between components and their constructs. The
relations between constructs are captured by parametric associations which can be
conditional, functional, or nested. In program generation, a program schema follows the
programming information structure defined in the knowledge model, and a program
generation mechanism creates programs for specific projects using both the knowledge
model and the program schema. The generated program should follow some standard data
transfer formats such as XML.

The specified features and requirements are going to be used in the selection of
appropriate software engineering technologies and in the design of the system.

PhD Thesis 1/14/04 63

System Layers and Technologies

Chapter 6 Technology Selection for RaBBiT

6.1 System Layers and Technologies

6.1.1 RaBBiT’s system layers

RaBBiT is intended to allow users to capture programming knowledge in dynamic
knowledge bases through a set of graphical user interfaces that enable users to
interactively define architectural programming models in their own terms. RaBBiT is also
intended to allow users to generate and modify architectural programs. The entire process
is incremental and iterative. RaBBiT supports this process through two system layers: a
programming knowledge modeler and a program generator (Figure 6.1). By using the first
layer, the user is able to define a type-based architectural program model for a recurring
building type that includes higher- and lower-level program information, including
associations among pieces of information. Using the second layer, a user is able to
generate an architectural program by applying the knowledge model to a specific project
whose critical parameters are input by the user. If needed, the user is able to re-enter the
parameters and regenerate a new program; to modify the generated program; to add more
details; or to change the programming knowledge model.

FIGURE 6.1.The incremental and iterative programming process supported by the system

6.1.2 The main concepts used in RaBBiT

Programming knowledge refers to the domain knowledge about programming a building
type as understood by architectural programmers outside the context of RaBBiT
(Figure 6.2). This knowledge can be partially structured and captured in various media
and representations.

Architectural Program
Knowledge Modeler

Architectural Program
Generator

Architectural
Programmer

Architectural
Program

Architectural Programming System: RaBBiT

64 1/14/04 PhD Thesis

Technology Selection for RaBBiT

A programming knowledge model captures programming knowledge in terms of RaBBiT
concepts such as program requirements, parameters, requirement relations, and parametric
relations. This model is internal to RaBBiT. Program knowledge modeling—or knowledge
modeling for short—refers to the task of defining a programming knowledge model with
the help of RaBBiT. Once it has been defined, such a model can be saved persistently in
some form.

Knowledge modeling is based on a programming knowledge schema which comprises
symbolic and generic computational representations each of which corresponds to one
specific type of RaBBiT concept. The definitions of the schema and the representations
used are integral parts of RaBBiT—users cannot change these definitions, only developers
are allowed to do this. For example—in the object-oriented programming terms
introduced below—a programming knowledge schema can be a collection of classes and
their associations that can be instantiated to build a knowledge model.

FIGURE 6.2. Programming knowledge concepts and their representations in the model

A program schema defines a set of rules for ordering and sorting information captured in a
programming knowledge model; it is internal to RaBBiT. The schema describes in what
order the program information is sorted independent of the content of a program. A typical
rule, for example, defines the order of how construct properties are sorted, such as name,
description, (value) type, value, and a list of all associated constructs. The program
schema also serves as a reference for transforming a program from its original form to
another form in some other schema. For this purpose, every time a program is generated, a
program schema definition containing metadata about the program data is also created.

Programming
Knowledge Schema

Structures:
Component
Component Association

Dependencies
Relations

Construct (types)
Text
Boolean
Number
Resource

Parametric Associations

RaBBiT Program

A collection of
program information
generated by RaBBiT

System Modules / Parts
Graphical user interfaces, Interaction control functions etc.

Program Schema

Metadata about a
program’s data.

Program Generator
Uses knowledge
models to generate
programs following
rules defined in the
program schema
definition

Program Schema
Definition
Rules in ordering and
sorting program
information

APC

Programming Knowledge

APM

Programming
Knowledge Model

In session

Concepts:
Requirements
Requirement relations
Parameters
Parametric relations

Programming
Knowledge Model

Persistently stored
(shareable and
serialized forms)

PhD Thesis 1/14/04 65

Object-oriented (OO) Programming

A program is the collection of all relevant pieces of programming information for an
instance of a particular recurring building type as generated by RaBBiT under the
directions of the users; it is based on an underlying programming knowledge model and
structured according to a program schema. Users can modify a program after it has been
generated without the need to modify the underlying programming knowledge model or
program schema.

6.1.3 Programming paradigm and technology

In developing an application such as RaBBiT, the most appropriate programming
paradigm or paradigms must be selected based on the nature of the application. It is
obvious that the layers of RaBBiT must computationally represent robust knowledge
models and implement generative functions reasoning on these models. The first layer is
used for knowledge modeling and the second layer for reasoning on the acquired
knowledge. The object-oriented (OO) programming paradigm is a promising candidate for
the first layer, because we can capture programming knowledge by using objects
corresponding to the domain concepts. A rule-based production system appears
appropriate for the second, program generation layer because it offers convenient means
to express the rules about how the objects are related and used in decision making along
with the conditions under which these rules must be applied considering the objects at
hand at any given time during program generation; production rules are a prime candidate
for handling such dynamically changing conditions and the actions contingent on them. In
the following, I discuss these technologies in the context of this research.

6.2 Object-oriented (OO) Programming

6.2.1 Overview

I favor the OO paradigm for the purposes of knowledge representation in RaBBiT. There
are two basic reasons behind this decision: (a) OO programming is currently the most
promising paradigm to guarantee general quality attributes of software (Meyers, 1988 and
1997); and (b) the paradigm provides convenient technologies—such as inheritance,
polymorphism, object composition—for designing a system for capturing a programming
knowledge model as envisioned here and for defining the underlying schema. I will
elaborate each of these advantages below.

6.2.2 Sources of software quality

Although there have been debates about the capabilities of OO programming and
technologies (Ling, 1993; Hymes, 1995; Elrad et al., 2001), OO programming is currently
the state-of-the-art for developing software systems because it provides advantages over

66 1/14/04 PhD Thesis

Technology Selection for RaBBiT

(a) conventional programming techniques—such as functional programming—by loosely
coupling data structure and behavior; and (b) over alternative programming paradigms

(such as aspect-oriented programming1) that are not commonly practiced and tested yet in
their entirety. My own experience (Flemming et al, 2001) confirms the claims made by the
pioneers of OO programming in its favor (Meyer 1988; Rumbaugh, 1991; Su and Chen,
1993; Oesterreich 1999)

A general discussion of programming paradigms is out of the scope of this research2. In
the following, I summarize the arguments in favor of OO programming (Meyer, 1988) and
relate them to the present context.

Meyer lists both external and internal factors for achieving quality software. Figure 6.3
outlines a hierarchy of these factors in terms of goals, means, principles, and approaches
to satisfy general quality attributes. External factors refer to aspects of concern to users
and fall into two main groups: reliability and maintenance. A software system is reliable if
it is able to perform tasks as defined by requirements (correctness) and to function even in
abnormal conditions (robustness). A system’s maintainability is defined by its ability to
(a) adapt to changes through use of simple system architectures with decentralized
modules (extendibility), (b) reuse system modules for new applications (reusability), and
(c) easily combine and interact with other systems (compatibility).

FIGURE 6.3.Objectives of a quality software and means for achieving them

1. Aspect-oriented programming is described in (Elrad et al. 2001a and 2001b; Katara, M. and S. Katz. 2003)
2. For detailed information about programming paradigms refer to (Czarnecki and Eisenecker, 2000).

Quality Software

External
Factors

Internal
Factors

Reliability

Maintenance

Correctness

Robustness

Extendibility

Reusability

Compatibility

Modularity

Reusability

Decomposablity

Composablity

Understandablity

Continuity

Protection

Variation in Types

Variation in Data
Structures and
Algorithms

Related Routines

Representation
Independence

Commonality within
Subgroups

Linguistic
Modular Units

Few Interfaces

Small Interfaces

Explicit
Interfaces

Information
Hiding

Routines

Packages

Overriding and
Generacity

Principles

Approaches

Goals

Means

Objectives

PhD Thesis 1/14/04 67

Object-oriented (OO) Programming

Internal factors are the means to achieve external factors (goals) and “perceptible” only to
software developers. These means are divided into two groups: modularity and reusability.
Modularity is key to both reusability and extendibility and depends on the combined
effects of five features: decomposability, composability, understandability, continuity, and
protection. Decomposability relates to reducing the complexity of a system by dividing it
into a set of less complex sub-systems or modules, while composability means that system
modules can combine with each other to form a larger system. Software developers should
be able to understand the function of a module by having to look only at a small set of
related modules (understandability). Continuity means that a small change in a module
must require only a change of just a few other modules. A module’s state can be altered
only through certain specified methods (protection).

Modularity as defined by the above five features can be achieved by observing five
principles: providing a modular structure where the modules represent meaningful
concepts in the application domain or for application programmers; connecting modules
with few, simple and well-defined interfaces; and information hiding such that only
module interfaces are exposed to other modules and not their implementation. Reusability
can be achieved through the following approaches: (a) a module should include all
routines operating on that module; (b) module routines—also known as methods—must
implement “well-defined” operations; (c) packages must be used for grouping all
modules, routines, types, constants, and variables that are related to an important
conceptual part of the system.

6.2.3 Modularity and Reusability for RaBBiT

In order to deliver the features that are crucial for modularity and reusability, the OO
paradigm relies crucially on classes, inheritance, and polymorphism (Rumbaugh et al.,
1991, pp. 9). Below, I describe these concepts by giving examples on how they can be
applied in the context of RaBBiT.

Class structure

Classes are used for abstracting domain concepts such that each combines (packages) the
common structural and behavioral properties of a domain concept in a class definition.
For example, in the RaBBiT context, program requirements and parameters can be
represented through component and construct classes, respectively. A component class
may describe a requirement, and a construct class may represent a parameter as defined in
Chapter 5.

Objects are instances of classes and represent unique entities created at run-time. For
example, a secretary room (requirement) can be an instance of a component class and the
parameter minimum area requirement in the secretary room can be an instance of a

68 1/14/04 PhD Thesis

Technology Selection for RaBBiT

construct class associated with it. The types of attributes or properties an object can have
are those of the class it instantiates, whereas the values of these attributes are determined
in interaction with other objects or with the user. There can, of course, be many objects
instantiating the same class, and they typically differ in terms of their attribute values.

Note that a property of an object can be another object attached to it. In this way, behavior
can be associated with object properties such that the responsibilities of an object can be
delegated among its properties. For example, a change in the value of a parameter can be
handled by the construct object representing it. This simplifies the structure of the object
and of the class that defines its properties, thus increasing modularity. I will return to this
in the section on object composition below.

The structural and behavioral properties of an object can be of two types. The first type
directly corresponds to the properties of the domain concept it represents; the second type
refers to implementation-oriented properties, such as how an object is saved by the
system, which is of interest only to developers, not to users.

Inheritance

Inheritance provides a mechanism through which the common properties of different
classes can be factored out by establishing a super- and sub-class hierarchy among the
classes. Each sub-class inherits properties it shares with other sub-classes from a common
super-class, possibly over several levels of the hierarchy. For example, name, description,
and update are common properties of the component and construct class. Therefore, each
can be a sub-class of a more abstract class, RaBBiT Concept (Figure 6.4), which defines
the common properties so that components and constructs can inherit them. This type of
inheritance extends to shared behavioral properties. For example, components and
constructs can inherit methods to update content or propagate change. But note also that a
sub-class can have unique properties that are not inherited from a super-class (but can be
inherited by a sub-class of the class).

Inheritance reduces code repetition. Another advantage is that every instance of a sub-
class can be used in a place where an instance of one of its super-classes is expected. For
example, all instances of component, construct, and association classes can be treated as
instances of the RaBBiT Concept class. This feature lies at the core of polymorphism
described briefly below.

PhD Thesis 1/14/04 69

Object-oriented (OO) Programming

FIGURE 6.4.Inheritance relations among requirement classes (UML notation)

Polymorphism

Polymorphism allows (computer) programmers to redefine shared behavior in a sub-class.
For example, components and constructs may need different update methods. Under
polymorphism, each of these classes can implement its own version of the method and
thus overwrite the definition in its super-class (provided all versions have the same
signature). The proper version of the method is selected at run-time by a mechanism called
dynamic binding. For example, when at a certain point the update method is called for an
instance of a RaBBiT Concept, the selection of the method depends on whether this
instance is, in fact, a construct or a component. In other words, programmers do not have
to write explicit conditional or case statements to guarantee that the proper method is used.

Polymorphism and inheritance thus go hand-in-hand and are the main means by which
OO achieves the modularity and flexibility that are its hallmark. For example, given a
super-class RaBBiT Concept, polymorphism enables the programmer to write different
implementations of the update or propagate change methods for any number of sub-
classes, such as components, constructs, and associations. More importantly, sub-classes
can be added to the program at any time and re-implement any shared method so that the
addition does not require any (or only minimal) changes in the existing code: Under
dynamic binding, no case distinctions have to be added to the program wherever instances
of the new sub-class may appear at run-time.

6.2.4 Object configuration

Objects can have relations with other objects. For example, a dependency relates a source
with a target object. In order to capture relationships like these, we can use object
composition techniques that are an integral part of OO programming: association and
aggregation.

update content()
propagate change()

name
description

RaBBiT Concept

Component Construct

check status()
Association

Dependency Relation

70 1/14/04 PhD Thesis

Technology Selection for RaBBiT

Object association is a technique that enables an object to refer to another object, where
the two object do no effect each other’s existence; i.e. if one object is deleted, the other
object survives—only the relation between them must be eliminated. In aggregation, an
object becomes part of another object so that its existence depends on the existence of the
container object—the two objects have to be deleted together.

For example, a dependency relation represented as an object (see below) can be associated
with two component objects, where the two components can exist in the model
independent from the dependency object. Furthermore, a condition object can be
aggregated into this dependency object, where the condition object has no meaning
outside the dependency relation, i.e. should be deleted when the dependency is deleted.
Another example of object composition is a component object that is a composition of
multiple constructs. In turn, the knowledge model itself can be an object that is composed
of component, association, or other related objects.

FIGURE 6.5.Same composition and association (UML notation)

6.2.5 OO representation of the knowledge models

A programming knowledge model in this research merges architectural programming rules
and requirements to support a configurative and generative process, not a search for a

solution1 as used in other problem solving situations. The building blocks of a
programming knowledge model can be defined as classes with features that are typical for
OO programming.

In particular, types of requirement associations can be defined in association classes that
can be used for representing architectural programming rules, i.e. each association class
can implement how a programming rule effects program generation. This approach has
advantages from the implementation and use perspectives.

From the implementation perspective, it enhances modularity and extensibility because it
makes component classes as "light-weight" (simple) as possible: they have to represent
only requirements, not how they relate to other requirements in the model. This can
eliminate the need for modifying the component class—attributes and the methods that
manage them—every time a new type of association (class) is introduced. New types of
associations can be defined as sub-classes of a general association class through
inheritance, for example, dependency and relational associations. Another advantage is

1. Particularly this feature is addressed in GMEA, which separates it from general MEA.

Component
source
target

Construct

*

Condition
*

Dependency

1

PhD Thesis 1/14/04 71

Production Systems

that the relations between requirements can be managed at the model level, not in the
components, which allows users to modify—during run time—association objects
independently of component objects, for example, to change conditional associations or
labels attached to them. As a result, instances of associations become part of the model as
distinct entities that are able to take over various responsibilities during modeling and
model updates; for example, they can adjust themselves following a change made in the
model because—unlike link attributes—they can be aware of other associated objects
such as dependency conditions.

From the use perspective, users can manage the requirements and their relations as distinct
entities independently from each other. This leads to a "plugable" structure that can be
dynamically created and changed during interactive modeling without effecting the
internal states of the related component objects. Once an association object is inserted into
a model, the model has to respond to this change. This is a plausible approach since during
program generation, a model will be queried for its content and has to know all of its parts.
For instance, the user may want to see all the dependency associations: Instead of asking
every component object to expose its dependencies, the model will have them ready for
the user as independent objects. In addition, the associations and the conditions that they
contain can be copied and modified together without disturbing other objects. The copies
can then be used for associating other components that have the same association type. For
example, assume A, B, C, D, and E are component objects; (A depends on B), but
other relations are not established yet. The dependency association can be interactively
modified such that the users can copy this object and use the copy to set a relation between
C and D (). This will create a new dependency association between C and D by
using the same conditional logic as the one between A and B. If the user wishes, this
condition object can be altered independent from the component objects. In addition, one
end of the association can also be edited; for example can be changed to or

, if this is logically applicable.

6.3 Production Systems

6.3.1 Programming paradigm for program generation

RaBBiT’s system layer for generating programs can be implemented using a
programming paradigm that allows for flexible definitions of program generation rules
that can be applied on programming knowledge models described above. The need for
programming rules whose applicability depends on conditions—together with the GMEA
structure—offers an opportunity for a rule-based production system—a class of
knowledge-based expert systems in artificial intelligence.

A B→

C D→

A B→ A E→

E B→

72 1/14/04 PhD Thesis

Technology Selection for RaBBiT

6.3.2 Production systems

A production system (Figure 6.6) supports flexible and modular programming structures
based on conditional knowledge expressed in the form of productions or rules. A rule is
simply an if-then (If <conditions> then <actions>) statement that establishes a relationship
between a condition or a context and the actions that can take place under these conditions
or in this context. The if part of a rule, also called its left-hand side or antecedent part,
describes the condition, typically as a logical expression or clause that evaluates to true or
false. The then part, also called the right-hand side or consequent part, specifies the
actions that can be performed if the antecedent part holds true. A rule whose antecedent
clause is true, given the current state of working memory, is said to be ready to execute or
to fire (Flemming, 1994, pp. 5).

FIGURE 6.6.The generic architecture of rule-based systems.

A collection of rules that captures some domain expertise is the domain-dependent
knowledge or rule base of a production system. In addition, a production system contains
a domain-independent inference engine as an integral part (Russel and Norvig, 1995, pp.
297 and 313). It is able to "match" at any given time the left-hand sides of all rules against
the current state of working memory, i.e. to determine which rules can fire. If there is more
than one such rule, the inference engine applies some conflict resolution strategy to select
a single rule for execution, which is likely to change some portion of working memory.
After this, the match-select-execute cycle is initiated again.

The order in which the rules appear in a rule base is arbitrary, which leads to a flexible
organization that can incrementally expand, whereas in another type of system, changing a
condition may trigger revisions over the complete system (Haley, 2001). Production
systems therefore allow programmers to acquire and refine domain knowledge in an
incremental, step-by-step fashion (Rychener, 1976).

6.3.3 RaBBiT and Production Systems

Since production systems can directly support the incremental refinement and evolution of
knowledge bases as required for RaBBiT, they constitute prima facie a promising
programming paradigm for implementing the program generating layer in RaBBiT. Let’s

User Interface
Working Memory

Knowledge Base

Inference Engine

User

Programmer

Knowledge Acquisition
(Programming) Facility

Reasoning System

PhD Thesis 1/14/04 73

Production Systems

consider the example taken from programming school buildings in previous chapters
(Figure 6.7)

FIGURE 6.7.Partial example for programming school buildings.

We can state one of the rules (condition [ae]) leading to the requirement for a multi-
purpose hall as follows:

IF extra-curricular activities are required
and the other conditions to have multi-purpose hall are satisfied (such as budget)

THEN the school will have a multi-purpose hall.

This rule can be defined in RaBBiT terms as follows:

rule generate multi-purpose hall for extra-curricular activities {

IF: there is a component (object) representing extra-curricular activities
and there is a dependency from extra-curricular activities to multi-purpose hall

with dependency condition true
and there is NO component representing a multi-purpose hall
(in working memory)

THEN:
generate a Multi-purpose hall
(insert a component representing Multi-purpose hall into working memory)

}

The condition "if there is no component representing a multi-purpose hall" ensures that the
multi-purpose hall is not duplicated. This is needed because the dependency association
[be] also will try to generate a multi-purpose hall, i.e. there is a chance that at a certain
time during program generation, the requirement for a multi-purpose hall is generated
twice (or multiple times).

Consider the condition on dependency [ae]: the multi-purpose hall for extra-curricular
activities will be added to the program if cafeteria and auditorium are not added.
Therefore, we need another rule that removes the multi-purpose hall from the program
when cafeteria and auditorium are added. However, this rule also must consider the

Extracurricular
Activities

Community
Education

Multipurpose HallAuditoriumCafeteria

Condition
[ac]:

Condition [ae]:
if (Condition [ac] and
Condition [ad]) = false
then true else false

Condition
[ad]: Condition

[be] :

a

c d e

b

74 1/14/04 PhD Thesis

Technology Selection for RaBBiT

dependency [be], since the multi-purpose hall requirement could have been generated as a
result of dependency [be].

rule switch to Multi-purpose hall alternative {

IF: there is a component representing cafeteria
and there is a component representing auditorium
and there is a dependency from a component to multi-purpose hall

with a dependency condition false
THEN:

remove Multi-purpose hall from the working memory)
}

6.3.4 Transforming programming knowledge model to a rule-base schema

The OO model representing programming knowledge does not include "rules" in a form
that can be used in a production system directly. Therefore, the parts of the knowledge
model that possibly contain rules must be transformed into a rule-base schema. This can
be achieved by a program (or a subsystem of RaBBiT) that searches the conditional
knowledge captured in the model for dependency and conditional association objects and
translates these conditionals into rules. For example, the dependency [ae], in the example
above, can be a dependency object containing a condition that implies a rule. The
transformation of all conditional knowledge will provide a rule-base that can be used for
reasoning in program generation. During this process, objects such as component and
constructs in the programming knowledge model can be inserted into the working-
memory of the production system, which in turn will fire the relevant rules.

However, it must be noted that transforming the conditional knowledge as defined in the
programming knowledge model into rules is not a trivial task and poses some risks,
because the transformation will force the knowledge model to change from its intended
state defined by architectural programmers to a different form that will be used by a
different technology. Some of these risks are loss of information and errors caused by the
transformation (Noy and McGuinness, 2001). Indeed, we may even need an additional set
of transformation rules apart from the rules in a programming knowledge model. This may
require some extra afford and will be non-trivial, given the complexities inherent in
programming knowledge models.

For program generation, one alternative programming paradigm is a rule-based production
system. However, using such a system will require a complex model-transformation and
rule-translation mechanisms, as mentioned. Before directly implementing program
generation module by using production system, I would like to test another alternative that
is purely based on OO paradigm. This part will be designed and implemented with OO

PhD Thesis 1/14/04 75

Data Structures for Knowledge Modeling

programming that it can generate programs, possibly, by simulating the behavior of a
production system.

6.3.5 User interface

In production systems, the user provides information about the problem to be solved; the
system then attempts to provide insights derived (or inferred) from the rule-base. This
interaction between user and the system may occur in two basic forms: (a) domain-experts
(and rule-based programmers) define and modify the application domain knowledge
(rules) in the system and (b) the system asks users to direct the process by answering
questions or inputting data while the system is running. The second interaction is simple
and straight-forward if the system is already built and running. The first type of
interaction, however, still poses challenges to both the programmers of the rule-based
system and the users because it depends on knowledge acquisition as an independent
process. The main challenge to programmers is to provide a facility through which the
users can actually define the domain knowledge in the system without having low-level
programming expertise (Clark et al., 2001; Barker et al., 2001). The first layer in RaBBiT
can serve this purpose.

6.4 Data Structures for Knowledge Modeling

6.4.1 Data structure requirements

A collection of requirements and dependencies among them form the backbone of a
knowledge model. The selected structure should directly support the incremental
refinement and evolution of a knowledge model. In other words, the structure should
allow architectural programmers to incrementally acquire and refine domain knowledge
without the need to reorganize the entire collection of requirements and associations when
a new condition or special case is added to the system. The structure should provide means
to define, modify, and remove a requirements or dependencies between two existing
requirements at any given time and without a substantial change in the knowledge model.

6.4.2 Data organization techniques

The organization of data in RaBBiT can be managed by different data representation
techniques such as decision trees, flow charts, or graphs. However, not all of these are
equally efficient in meeting the data structure requirements mentioned above.

Control of the depth and breadth of the branching pose a challenge in decision trees
especially when a programming knowledge model is interactively defined and complex—
which is the case at least for the three recurring building types studied in this research. In
addition, multiple dependencies may have to be executed in some conditions, but decision

76 1/14/04 PhD Thesis

Technology Selection for RaBBiT

trees allow only one branch to be selected among given alternatives, i.e. only one
consequent rule is executed along the branches. This can be overcome by using highly-
coupled multiple decision trees, but this solution reduces efficiency—if it can be made to
work at all in the present context. In addition, if a requirement is removed from the
decision trees, all subsequent branches are removed recursively, which poses problems for
multiple conditionals as they exist in the dependency web of requirements (Section 4.1.2).

Flow charts exhibit the same shortcomings. Especially, as the flow chart grows larger,
conditionals become more complex, which leads to rigidity and a program composition
that is hard to revise.

If there is only a small number of rules, the use of flow charts or decision trees can be
efficient. This could be the case, for example, in programming a simple recurring building
type, such as a fast-food store. However, as the program requirements become more
complex, like in the building types studied in the case studies (see Chapter 3), the number
of programming rules gets larger, which makes flow charts and decision trees less
efficient.

Graphs, on the other hand, present a fairly flexible structure. A graph consists of vertices
(nodes) and edges connecting certain pairs of vertices and, unlike decision trees, the exact
geometric pattern is not specified. As a generalization of lists and trees, graphs come into
play where lists and trees are not sufficient to model more complex relations. For example,
each node has at most one parent, and zero or more children in a tree, whereas in a graph,
each vertex simply has zero or more neighbors. In representing programming knowledge,
each vertex can represent a requirement, and edges between vertices can represent the
associations between different requirements. A graph can be modified easier than a tree or
a flow chart as changes effect only the modified requirement locally and, if they exist, the
(neighboring) requirements connected with associations to the modified requirement. The
rest of the structure—and therefore the model it represents—stays intact.

6.4.3 The graph structure in RaBBiT

Note that not any graph structure is appropriate for representing programming knowledge
models that comprise an ordered assembly of requirements with dependency associations
from higher- to lower-levels (see Section 4.1.1). In addition, relational associations can be
set regardless of the information level of two requirement. Therefore, the graph should be
able to accommodate directed edges for dependencies and bidirectional edges for relation
associations. Furthermore, higher-level information cannot depend on lower-level
information; therefore, edges representing dependencies as specified in this research
should form an acyclic graph, i.e. a graph without cycles. For relational associations, there
is no such restriction.

PhD Thesis 1/14/04 77

Data Structures for Knowledge Modeling

The graph that can be used in representing a programming knowledge model in RaBBiT
can be formally described as such that is a set of all component nodes

(requirements) and is a set of the relational associations (dependencies and relations)

between these nodes. Dependency associations form a sub-graph of

() such that and , where represents the set of directional

dependencies as one type of edge. In addition a set of dependency associations

showing a path from any requirement to the same requirement is an empty set

(), i.e. cycles and loops of dependencies are not allowed. Relation associations also

form a sub-graph of () such that , , and a dependency

association is not a member of . contains the second type of edges.

Briefly, the graph for representing a programming knowledge model can be defined as
, , and is acyclic and directional.

Consider the sample graph given in Figure 6.8, where the nodes represent requirements
and edges dependency and relational associations.

FIGURE 6.8.A sample graph suitable for program knowledge modeling.

The set of all requirements is , and the set of all the relations is

. The set containing the nodes in the

dependency graph is and the edges of dependency graph are contained

in the set . The set of the nodes in the relation graph is

 and the set of relation edges is . An

advantage of graphs is that nodes may not have any connecting edges but still can be part
of a graph, such as the node .

G V E(,) V

E

Gd Vd Ed,() G

Gd G⊆ Vd V⊆ Ed E⊆ Ed

P Ed⊆

v V∈ v

P ∅=

Gr Vr Er,() G Gr G⊆ Vr V⊆ Er E⊆

ed Ed∈ Er Er

Gd Vd Ed,() Gr Vr Er,()∪ G V E,()= Ed Er∩ ∅= Gd

A

E

B

D

C

[A
E]

r

[A
E]

d [AD]d

[DC]r

F

[B
D

] d

[CB]d

[AB]r

V A B C D E F, , , ,{ , }=

E AE[]r AE[]d AD[]d AB[]r BD[]d CB[]d DC[]r, , , , ,{ , }=

Vd A B C D, , , E{ , }=

Ed AE[]d AD[]d BD[]d CB[]d, , ,{ }=

Vr A B C D, , , E{ , }= Er AE[]r AB[]r DC[]r,{ , }=

F

78 1/14/04 PhD Thesis

Technology Selection for RaBBiT

6.5 Model-View-Controller Architecture and System Layers

6.5.1 Model-View-Controller Architecture

The Model-View-Controller (MVC) architecture was first introduced by Trygve
Reenskaug in SmallTalk-80—an object-oriented programming language (Krasner and
Pope, 1988; Burbeck, 1992). MVC was originally developed to map the traditional input,
processing, and output roles into the graphical user interface realm. However, MVC and
the other architectures derived from it (such as Presentation-Abstraction-Control) have
evolved into a common pattern used generally in current software engineering practice
(Buschmann et al., 1996, pp. 134; Bosch, 2000, pp. 142; Veit and Herrmann, 2003).

The MVC architecture insists on a clear separation among the object model (abstraction)
of the real-world concepts in an application; the views, which are visualizations of the
state of the model; and the controlling mechanism, which establishes communication
between the model and the view and offers facilities to change the state of the model. This
separation creates the benefits of reusability, modularity, and flexibility of the system or its
parts because designing, adding, removing, or modifying a system component can be
independently managed; specifically, changes made in one part remain local, i.e. do not
lead to ripple effects throughout the system, and the different parts are reusable
independently of each other.

The controller is the only part that connects a view with the model. Ideally, the model
cannot have a direct reference to either a view or a controller. The basic MVC architecture
is shown in Figure 6.9. Note that more than one view can be attached to the same model,
and all views are automatically updated when the model changes. Note also that although
the model, view and controller are isolated in design, they are in constant communication
with each other during execution.

FIGURE 6.9.Model-View-Controller architecture

handles the
user's
interaction with
the view and
the model

Controller

abstracts and
encapsulates
domain objects
and their
behavior

Model

User

display model
change

request model
change

model change
request data

Viewdisplay model

input

View

renders the
appearance of
the model in the
user interface

View
handles the
user's
interaction with
the view and
the model

Controller

handles the
user's interaction
with the view
and the model

Controller

PhD Thesis 1/14/04 79

Model-View-Controller Architecture and System Layers

6.5.2 RaBBiT’s MVC Architecture

RaBBiT should adapt the Model-View-Controller (MVC) architecture for clear separation
of sub-systems and layers that show semantic and logical differences and have loosely
coupled responsibilities. RaBBiT should have two layers—as mentioned in Section 6.1—
based on its functionality: (a) the programming-knowledge modeling layer, and (b) the
program information generation layer. If we implement these based on the MVC
architecture, we arrive at the following sub-systems for RaBBiT: (a) the model (M)
representing programming knowledge models captured in representations as defined in
the programming knowledge schema, (b) the controllers (C) consisting of manager objects
that control the flow of information, delegate responsibilities, and facilitate interactions
between the system and the user; and (c) the views (V) which expose the system functions
and present the knowledge models to the user or to other systems (Figure 6.10) .

FIGURE 6.10.Modules of the system adapting the MVC architecture.

6.5.3 The model in RaBBiT

This sub-system is responsible for capturing knowledge models and program information.
It contains the input and output of knowledge modeling and program generation processes
and only persistent components of RaBBiT. The controllers and views are transient and
recreated each time a RaBBiT session starts.

View Controller Model

Programming-Knowledge
Modeling View(s)

Information Categories
View

ArchitecturalProgram
View

ArchitecturalProgram
View

RaBBiT Session
Manager

Information Category
Input Manager

Architectural Program
View

Program Generation
Manager

Programming
Knowledge Model

Program Generator Layer

Knowledge-Modeler Layer

Program Data
Extractor

Program Generation
View

Program Knowledge
Model Manager

Parametric Association
Input View(s)

Interaction Manager(s)

Parametric Association
Input Manager

Associations

Program Information
Nodes

Architectural Program

Program Information
Schema

Information Category
Model

80 1/14/04 PhD Thesis

Technology Selection for RaBBiT

Programming knowledge schema

This part of the model sub-system contains classes as the internal representation of the
programming knowledge of a building type. Taken together, these classes provide a
flexible, reusable, and modular object-oriented schema as described in Section 6.2.4. This
schema should be able to capture a programming knowledge as specified in Chapter 5. A
programming knowledge schema contains program information in components,
constructs, and associations which, together these are combined in a graph structure.
Therefore, this schema supports the graph representation of the knowledge models (see
Section 6.4.3).

Information nodes

These parts contain requirements in the form of components and constructs and are part of
the graph as nodes (vertices). The parametric associations are encapsulated in these nodes
along with the properties (attributes) of each component and construct.

Associations

These parts of the model represent dependency and relational associations and form the
edges of the graph. The programming knowledge model keeps a record of which
dependency or relational association relates to which components. To make the structure
flexible, these associations must have their unique representation as objects, as specified
in Section 6.2.5.

Information categories

The programming information nodes can be classified within groups that semantically
separate requirements. Each category has a unique name and a category level number. The
system is able to import, export, and save a category model independent from the
knowledge model that it is used for. In this way, users may choose a predefined
information category model when a new programming knowledge modeling process
begins.

Architectural program

A program must meet the requirements specified in Section 5.3. The content of a program
will be generated by the system based on a programming knowledge model. A generated
program will follow the structure defined in the program schema. Although an
architectural program is an output generated by the system, it must be treated as part of the
model sub-system in the MVC architecture.

PhD Thesis 1/14/04 81

Model-View-Controller Architecture and System Layers

Program schema

This part of the model sub-system must meet the requirements specified in Section 5.3.
The schema will be generic enough to be used for program (data) generation and program
schema transformation purposes, and it will contain metadata about the program data.
Every time a program is generated, RaBBiT will provide the program schema in some
form such that other users who are interested in transforming the program data from one
form to another will have a metadata reference .

6.5.4 The controller sub-system of RaBBiT

Users will interact with RaBBiT and manipulate the knowledge model through graphical
user interfaces, which are parts of the view sub-system of MVC. This interaction is always
channeled through managers, which are part of the controller, not the view. This
separation allows the interface (view) classes in the view sub-system and model classes in
the model sub-system to be independently modified, actually reused in other applications.
As an advantage of this separation, the views will not directly manipulate the model; all of
the interactions will be managed by the managers, which will also ensure that the model
and its views are synchronized at any given time, and that the consistency of the model is
maintained during knowledge modeling. Therefore, the managers, or the control sub-
system as a whole, are responsible for connecting views to the model and delegating
responsibilities to instances of specialized classes in any sub-system in response to user
input; but they are not allowed to execute programming tasks as such.

Distributing the responsibilities of the controller over several managers—as opposed to
combining them in a single class—increases the modularity and extendibility of the
controller and of RaBBiT as a whole. Taken together, the RaBBiT managers have three
responsibilities. The first is to manage the interaction between RaBBiT and the computer
(system). A second responsibility is to communicate with each other to make sure that the
user-system interaction is synchronized. For example, managers controlling the views and
managers controlling the model communicate with each other to assure that the system
runs without any problem. The third responsibility is to change the mode of the system
from knowledge modeling to program generation, each of which requires a unique setting
of the system state. For knowledge modeling, the knowledge model can be changed
dynamically, but when the generation phase starts, the knowledge model should not be
altered but remain accessible.

RaBBiT session manager

An instance of this control class is created at the start of a RaBBiT session. The session
manager is responsible for instantiating view classes and connecting a knowledge model
with these view objects. The session manager is also responsible for persistently saving or

82 1/14/04 PhD Thesis

Technology Selection for RaBBiT

retrieving saved knowledge models. When a new knowledge model is created, the session
manager delegates information category definition to other specialized managers. In
addition, the session manager coordinates the system running in a particular computer
platform (hardware and software) with platform-specific tasks such as file storing, file
loading, external resources invocation etc.

Information category manager

This manager is responsible for managing information level categories prior to starting the
definition of a programming-knowledge model—for a particular building type. The
session manager asks this manager to open the views in which the user will define
information categories. As the information categories are defined by users, the
information category manager creates an information category model (and its
computational representation) and passes it to the session manager—or a sub-manager—
that will make the category model a part of the programming knowledge model. The
information category manager also can (a) import an existing information category model
from storage; (b) save the current model so that it can be used in modeling a different
knowledge-model; or (c) rename an existing information category model and persistently
store it.

Programming knowledge model manager

This manager is specifically responsible for coordinating actions or events that directly
change a programming knowledge model. It is in direct communication with the
interaction manager (see below) and the session manager. It receives messages from the
knowledge model and passes them to relevant managers when they go beyond its own
responsibility.

Interaction manager

This manager is responsible for coordinating the user-system interaction during
knowledge modeling with the rest of the system, including parts of the model and
controller sub-systems. Each knowledge modeling-related action that a user performs in a
view is handled by this manager, except for parametric association definitions, which are
handled by the respective parametric association managers.

Association manager

This manager is instantiated by the session manager when RaBBiT starts and is invoked
by the interaction manager when the user wants to establish a parametric association
between different programming parameters, i.e. between constructs. Mainly, the
association manager is responsible for creating a parametric association view in which the

PhD Thesis 1/14/04 83

Implementation Constraints

user can interactively compose functional, conditional, or nested associations. After an
association has been defined, the association manager delegates updating the model to the
interaction manager, which, in turn, delegates this task to the programming knowledge
model manager.

6.6 Implementation Constraints

6.6.1 Programming Language

RaBBiT should be written in Java, which uses a pure object-oriented Application
Programming Interface (API) providing a set of routines, protocols, and tools as building
blocks for developing an application. Along with complex and primitive data types, such
as maps, lists, sets, and hash-tables, the Java API comes with UI building components,
such as frames, panels, buttons, tables, trees etc., packaged in the Abstract Widget Toolkit
(AWT) and Swing libraries. The Swing library is more sophisticated and provides the
most commonly used features for building a GUI. The Swing components adapt the MVC
pattern/architecture mentioned above—but note that MVC generally applies to the system
architecture overall, whereas in Swing, each GUI is treated as one module made up of
MVC parts (classes).

Furthermore, Java and its run-time environments are platform-independent, which makes
porting an application between different platforms, operating systems, and hardware easy
and reliable. Therefore, design-support systems designed and implemented in other
platforms can be incorporated into design through an uninterrupted exchange of
information.

In addition to the standard Java API, I use available third-party Java libraries that make it
easy to extend the software programming environment so that the first prototype of
RaBBiT can be designed and implemented in a shorter time and with tested and robust
software subsystems.

6.6.2 Graph representation

An example of a third-party programming library I plan to use is JGraph1, a fully
standards-compliant graph component for Java that supports the extended display and
editing of graphs (Adler, 2002; JGraph, 2003). JGraph is appropriate for implementing
RaBBiT because it is fully compatible with Java and provides a clear and efficient (GUI
component) design adapting the MVC pattern. In JGraph, "...the basic architecture is the
same as for standard Swing components, and the method and variable naming complies
with Java code conventions. This has the advantage of reduced learning costs, and existing

1. JGraph and JEP libraries and application frameworks are open-source and come with public-use licenses.

84 1/14/04 PhD Thesis

Technology Selection for RaBBiT

source code can be reused, resulting in shorter development time" (Adler, 2002, pp. 1).
JGraph enables in-place editing and vertex handling; it also provides mechanisms for data
transfer and marquee selection. JGraph enables dynamically creating a graph with its
edges and vertices through extendable Java classes. In implementing RaBBiT, the flexible
components provided in the JGraph library should be used to their full extend.

6.6.3 Parametric associations

RaBBiT should use the Java Expression Parser (JEP) (Kolaroff, 2002) to input
expressions of parametric associations (in text form) and parse these expressions into
architectural programming constructs. JEP allow users to enter an arbitrary formula as a
string, and instantly evaluate the expression. It also supports user-defined variables,
constants, and functions. A number of common mathematical functions and constants are
also included. However, JEP does not provide a function for evaluating if-then-else
conditional expressions; i.e. it is not intended to implement conditional statements as
required in conditional associations. However, I used JEP’s extensibility to implement a
sub-system which allows users to enter conditional associations. I also added other
functions that are used for calculating minimum or maximum values for two given
numbers, getting the floor or ceiling of a calculated value, and rounding a given decimal
number.

6.6.4 Program generation and information sharing

I intended to specify system requirements at a level of detail that does not prescribe a
specific technology for program data structuring and schema transformation. But for the
first prototype, the Extensible Markup Language (XML) should be considered (W3C,
2003)—or a similar technology that is capable of implementing the features specified in
the system requirements. XML is a meta markup language for text-based documents
which contain data as strings of text. The types of schema and data configurations
(organizations) mentioned in the system requirements are commonly used in the Internet
for electronic publishing using XML. In addition, data and schema transformations are
possible with XML that are increasingly being utilized in software systems that exchange
a wide variety of data for online or local computing (Harold and Means, 2002).

6.6.5 Production system shell

In case the experimental prototype designed and implemented by using OO technologies
becomes ineffective in generating programs, the second layer of RaBBiT should build on
a production system shell that can be relatively easy to integrate to the system. For the

purpose of this study, I preferred to use the OPSJ1 production system development
environment (shell) from Production Systems Inc. (Forgy, 1998). The main criterion in

PhD Thesis 1/14/04 85

Summary

selecting the OPSJ is that it enables a full system integration of production rules with
different object-oriented schemas defined in Java. The domain rules can recognize each
object definition without having an interface application between rules and objects—
however it still uses wrapper classes for representing domain objects in working memory.
Secondly, the OPSJ—like the Java programming environment—is platform-independent
and can run on different platforms. Third, like any application using Java, software
programmers can take advantage of rich Java programming libraries. Finally, the inference
engine of OPSJ uses the proprietary Rete II algorithm, a very advanced version of the Rete
algorithm, which is the accepted industry standard for a pattern-matching algorithm
needed by production system inference engines (such as CLIPS and ART uses Rete). The
algorithm handles a large number of rules and data faster and more accurately than earlier
versions (Forgy, 1998).

6.7 Summary

In this chapter, I discussed software development technologies considering the unique
needs of RaBBiT. For programming knowledge models and the definition of such models,
I favor OO programming because of the technologies that it provides for flexible,
extensible, and modular system architectures.

The data structure for representing requirements (or programming knowledge models) is
defined as a directed acyclical graph. The MVC architecture is chosen as basic system
architecture of RaBBiT. In addition, this chapter sets certain constraints on the
implementation such as use of Java as programming language with its API, integrating
JGraph and JEP subsystems. If the experimental prototype cannot perform program
generation as specified, OPS/J will be used as production system shell for implementing a
rule-based system for program generation.

1. A full version of the OPSJ is provided to me with no charge to be used in this study by the Production Sys-
tems Inc. (www.psd.com). Other libraries and application frameworks are open-source and come with public-
use licenses.

86 1/14/04 PhD Thesis

Technology Selection for RaBBiT

PhD Thesis 1/14/04 87

Behavioral and Structural Models

Chapter 7 Developing RaBBiT

7.1 Behavioral and Structural Models

7.1.1 Overview

One of the most challenging parts in designing systems for interactive knowledge
modeling is providing effective and efficient interactions between the system and its users.
This challenge is even more pronounced when the system has to provide a facility through
which users can actually build a model of domain knowledge without having low-level
computer programming expertise (Clark et al., 2001; Barker, Porter, and Clark, 2001).
This is clearly the case with RaBBiT, a main objective of which has been to enable users
to build programming knowledge models for building types and to generate architectural
programs, using the terms of their choice without entering low-level (computer)
programming code.

Ideally, the user-system interaction issues are addressed in the very early stages of
software development and continue to be addressed throughout the process. Developers
typically handle these issues during the specification of the behavioral and structural
models of a system parallel to the design of its graphical user interfaces (GUIs). The
present chapter briefly describes how I developed these models for RaBBiT and how I
addressed interaction issues through a set of GUIs in the software development process.
An investigation of software development (engineering) itself is out of the scope of this
research.

7.1.2 Behavioral models

Behavioral models capture "time-dependent" dynamic behaviors of a system defined by
"logically correct sequences of interactions" and activated by "permissible events—exter-
nally visible stimuli [from users or automated actors] and responses [from the system]"
(Booch et al. 1999, pp. 169). Developing behavioral models is one of the most essential
part of object-oriented software design and implementation (Meyer, 1991). These models
are typically depicted in multiple diagrams that show the system from different views at
different resolutions—such as activity, sequence, state, collaboration (Meyer, 1991, pp.
85; Booch et. al., 1999, 233).

88 1/14/04 PhD Thesis

Developing RaBBiT

There are various software engineering strategies proposed for capturing a system’s high-
level behaviors: use-cases, scripts, scenarios, mechanisms, walk-through etc. (Coyne et
al., 1993). Among these, the most reliable and proven-to-be-effective one is the use-case
approach, particularly for the object-oriented design and development of an interactive
system (Coyne et al., 1993; Armour and Miller, 2001; Flemming et al., 2001). Use cases
are typically written in plain English following a pre-determined format, and their logical
order and relations can be captured in a more formalized use case diagram, which also
becomes the central part for modeling the behavior of a system—or a subsystem (Booch
et.al. 1999, pp. 226 and 233). Based on my previous experiences in both teaching object-
oriented programming and implementing various types of applications, I found the use-
cases appropriate for developing RaBBiT as well.

A use case describes a "sequence of actions an actor (user) performs using a system to
achieve a particular goal" (Rosenberg 1999, pp. 38) or "a sequence of actions a system
performs that yields an observable result of value to a particular actor" (Booch et al. 1999,
pp. 19). Leffingwell and Widrig (2000, pp. 135) describe the use-case approach as an "...
integral to the software methodology [of] object-oriented software engineering... [which]
is a way of describing a [complex] system’s behavior from the perspective of how the var-
ious users interact with the system to accomplish their objectives." I will discuss the use-
cases I developed for RaBBiT below.

7.1.3 Structural models

Structural models describe the types of concepts in the system and the various kinds of
static relationships that exist among them—for this reason they are also sometimes called
static models. A structural model is gradually developed through three stages. In the first
stage, domain concepts are explored in relation to the system requirements. This stage is
followed by defining the classes corresponding to the domain concepts. However, it must
be noted that there is often no direct mapping between domain concepts and the software
that might implement them (Fowler and Scott, 1999); a domain concept can be addressed
by multiple system parts. In this second stage, relationships and interfaces between classes
are also studied. This includes formulating the associations and generalizations of classes.
The third stage aims at increasing the granularity of the structural model for a particular
implementation. Therefore, each class is described in detail (methods and attributes) and
how its instances communicate with the instances of other classes.

Behavioral models and structural models are highly coupled with each other; structural
models show a system’s static view, while behavioral models represents the dynamics of a
system. These two models are developed parallel to each other, except that the use cases
come before the static model and govern the whole process and each of these models feeds

PhD Thesis 1/14/04 89

Use-case Driven Software Development

information to the other one. A class discovered in the structural model is studied in the
behavioral models to determine its interfaces for communicating with other classes in ref-
erence to the related use case.

7.1.4 Usability Considerations

Nielsen describes usefulness as "the issue of whether a system can be used to achieve
some desired goal [task]" (Nielsen, 1995, pp. 24). Usefulness is broken down into two
aspects: utility and usability. Utility addresses the system’s functionality with respect to
the user’s needs. Usability concerns how well the functionality of a system can be used by
the users. Usability is measured with respect to five quality factors: learnability, efficiency,
memorability, error prevention and handling, and subjective satisfaction of the users
(Nielsen, 1995). Dix et al. (1998) group these factors under three categories: learnability,
flexibility, and robustness.

Learnability is a measure of how fast a system’s users begin to use effective interactions
to achieve maximal performance. It relates to the principles of predictability, familiarity,
generalizability, consistency.

Flexibility refers to the multiplicity of ways the user and the system exchange
information. There are several principles at work when it comes to flexibility: taking
dialog initiative, supporting multiple tasks at a time, delegating the control between
system and user, representing one concept in multiple ways, and customizing the GUI for
different situations (adaptability and adaptivity).

Robustness relates to how successfully a system supports the achievement and
assessment of the user goals. The core principles for robustness are observability of the
internal state of the system, responsiveness of the system to the users actions, visibility
and completeness of the system functions, and recoverabilty from an error—if error can’t
be prevented.

A good GUI design considers these factors and makes system use intuitive. It also
corresponds to the user’s mental model of how the system behaves. In the design of
RaBBiT, these factors (and the principles they rely on) provide attributes for the
measurement for usability.

7.2 Use-case Driven Software Development

7.2.1 Overview

In use case-driven software development, use cases are the primary information used in
designing the GUIs of a system. They specify both the tasks a user performs and how the
system behaves under these tasks (Armour and Miller, 2001). They help GUI designers in

90 1/14/04 PhD Thesis

Developing RaBBiT

understanding the sequence of the actions in accomplishing a task along with when and
what information is needed by the system or by the users. Use cases also can be used as a
benchmark for measuring the level of usefulness of a system along the aspects outlined
above.

Use cases provide a common thread that runs through all software development phases
(Jacobson et al. 1999). They specifically guarantee the desired system functionality
through all development phases and to integrate all phases by giving them a shared focus
that always keeps this functionality utmost in the developers' mind (Flemming et al,
2001).

7.2.2 Software development process

The Unified Software Development Process (USDP)1 provides effective methods for OO
system development (Jacobson et al. 1992; 1999). This process is use-case driven,
architecture-centric, iterative, and incremental. It is based on four phases in the following
order: inception, elaboration, construction, and transition. Developers produce different
"products" (defining the system) at every phase, and at every cycle the detail of the
products increases.

I adapted an agile2 version of USDP for developing RaBBiT. A full-scale use of USDP
would be more appropriate for large development teams and for complex projects
(Cockburn, 2002a). Although RaBBiT is also a complex project, managing its complexity
doesn’t require using USDP to its full extend: RaBBiT has been developed as a proof-of-
concept prototype by one person in a limited amount of time. In this context, "agile"
means effective, maneuverable, light-weight, and sufficient (Cockburn, 2002a).

In this agile version, I do not apply all the methods to document the software design in its
entirety as it is prescribed in (Jacobson et al. 1999); rather, I keep the documentation just
sufficient to guide the implementation of the system. For example, I intentionally drop
most of the overlapping methods used in USDP or replace the formal representations of
software concepts—or products in USDP terms—with simple (hand) sketches and notes;
in most cases, these sketches were sufficient enough for implementation. I prefer to place
the primary emphasis on the use-cases; and a secondary emphasis on implementation and
incremental testing in small loops. I would like to emphasize that my approach (agile

1. A discussion of USDP and other processes is out of the scope of this study. For more information see (Jacob-
son, 1992; Jacobson et al., 1999; Leffingwell and Winrig 2000; Cockburn, 2002a; Cockburn, 2002b). For the
UML see (Booch et al., 1998; Jacobson et al., 1999; UML, 2002; Fowler and Scott, 2002).

2. For agile software development refer to http://agilemanifesto.org/ (last visited on November, 12 2003) and
http://www.agilemodeling.com/ (last visited on December, 12, 2003)

PhD Thesis 1/14/04 91

Use-case Driven Software Development

USDP) is not novel; it is inspired by other similar (and mostly overlapping) approaches
such as described in (Cockburn, 2002b; Agile Modeling, 2003).

7.2.3 USDP and Unified Modeling Language (UML)

USDP uses the UML notation to specify a framework for system development and
implementation (UML, 2002; Booch et al., 1998; Fowler and Scott, 2002). The notation
comprises graphical figures to represent software architecture, modules, and functionality,
where each of the representations embodies behavioral and structural aspects. These
representations include use-case models, classes, behavioral and structural (object)
models, interfaces etc.

Figure 7.1 shows the products that I obtained in each phase of the agile USDP. Each
product corresponds to a concept in UML. It must be noted that I used these products for
rapid system implementation; the quality of the formats I use is not of professional grade.
In most of the cases they are sketches that are clear enough to capture an idea quickly and
test its applicability in the implementation. Only after I implemented an idea successfully,
did I clean up the corresponding product to be used in the next iteration. For example, I
never worked on a complete set of use-cases that specify every aspect of the system, but
documented only the essential use-cases. I will talk about this in the coming sections.

FIGURE 7.1.Phases and products of use case-driven software development (Flemming et
al., 2001)

Initial specification: The initial specifications for RaBBiT include basic system and
context requirements identifying the overall structural and behavioral features and
constraints. I determined these specifications by studying the domain of discourse through

the case studies and literature review1. Note that the final form of the initial specifications
for RaBBiT has been established after several iterative loops, even after the system

1. The literature review is in Chapter2, case studies is in Chapter 3, and system requirements is in Chapter 4
and 5.

Process phases

Initial
specifications Use cases

Object model,
static

Object model,
dynamic

Code Validation

Interaction
sequence
diagram

Use case
diagram

Text in
plain English

English text
in templates

Class
diagram

Source
code

Text
 log

92 1/14/04 PhD Thesis

Developing RaBBiT

implementation started. Therefore, they reflect the system requirements as they have
evolved, not what was specified very early in the process. For example, initially I
specified a weight attribute to be attached to each dependency association, but later I
found out—after discussing with my advisor and implementation—that this attribute was
not needed.

Use case development: The initial specifications yield to use-cases at the next phase. I
described the use-cases semi-formally through several refinement iterations (see Section
7.3.1 for an example use case). These iterations provided a description of the desired
system functionality in architectural programming terms. I even discovered new ideas or
problems while developing the use-cases that I was not aware of during the initial
specifications or implementation phases. For example, through a couple of iterations, I
noticed that certain initially specified interactions between the users and RaBBiT were not
possible to implement—or would increase implementation complexity. An example is the
use-case for the expression editing. When users are editing an expression (parametric
associations) they need to interactively select constructs located in components. This
requires keeping both the expression editing dialog and the main window, where the
component is located, active. However initially I specified in the use case that the
expression editing dialog would be modal so that when expressions were edited, the other
parts of the knowledge model could not be accessed. In the redefinition of the use case I
removed the modal dialog constraint and added that only construct selection should be
allowed on the model during expression editing.

Object model (structural): I defined the classes that are required in implementing
RaBBiT in object-oriented programming. I arranged the classes following the MVC
architecture as described in Chapter 6. The classes representing a programming
knowledge model constituted the programming knowledge schema; the view classes
defined the GUI part; and the manager classes are internal elements that manage the
interaction between the instances of model and view classes. As a part of this phase, I

developed a class diagram defining a schema for the application1. Note that the class
diagram introduces a considerable number of "helper" classes that do not directly fall in
any MVC sub-system. For example, for change propagation, I needed specialized objects
capturing a change when it occurs. These objects are passed between all the other objects
having an interest in this change. Discovering these kind of objects takes place during the
iterative loops between system development phases.

The class structure of RaBBiT contains more than 180 classes (excluding the classes in
third-party libraries). These classes are "packaged" in accordance with their

1. A complete set of class diagrams are included in the RaBBiT CD attached to this document.

PhD Thesis 1/14/04 93

Use-case Driven Software Development

responsibilities and the MVC architecture. Figure 7.2 shows some of the classes in their
respective packages and the relationship between these packages.

FIGURE 7.2.Class structure organized in accordance with the MVC architecture

Object model (behavioral): I developed the most essential interaction or sequence
diagrams that depict which objects are involved in which use case and what part of their
public interfaces are being used. These diagrams are particularly useful in defining the
interaction between manager objects and view and model objects when users are
performing a particular task. Through these diagrams, I was able to capture the required
public interfaces (methods) in each class along with the information that needed to be
passed between these interfaces. For example, again in change propagation, the objects in
the knowledge model receive the change object through their public interfaces (method
calls)— is an example.

Code: In this phase, the code for all classes in the class diagrams was produced, use case-
by-use case. This was crucial because I was able to test even partial implementations of
use cases without considering the other parts. For example, when a GUI element was
implemented, I was able to test its look-and-feel by actually displaying the GUI without
implementing the functions (tasks) it delivered—i.e. without connecting the GUI element
to its corresponding manager object, which may not exist at the time. I incrementally

public void update (ChangeObject change) {...}

94 1/14/04 PhD Thesis

Developing RaBBiT

implemented the steps of the action sequence defined in each use case in the GUI by
connecting its methods to the manager objects’ call-back methods. This way, I was also
able to track the effects of each step of the use case on the system. When an unexpected
effect occurred, I only checked the partial implementation, where the problem occurred
most of the time.

Validation: This phase tests the code, again use case-by-use case.

These phases do not follow each other in a strict "waterfall" model. Rather, the process is
meant to be highly iterative and incremental with numerous feedback loops.

7.3 Use-Case Descriptions

7.3.1 Overview

In our view (Flemming et al, 2001), use cases describe a meaningful task or result of value
an actor (i.e. a user of the system in a specific role) may achieve. A meaningful task, in
turn, is a sequence of actions or operations that must be executed together to achieve some
goal. The task is self-contained in the sense that after the last task has been performed, an
actor has choices in selecting a next task to execute. An example is the Insert a
Component use case, which determines a specific task in knowledge modeling in RaBBiT.
This task consists of a sequence of actions (select command, point location, define
constructs, enter a name etc.) that must be executed if the goal of the task is to be
achieved. It is self-contained because it does not determine what went on before or can go
on after its execution. On the other hand, adjusting the view settings, in itself, would not
be a use case because it is a task that has meaning only within another, larger task.

What constitutes a meaningful task for an application depends very much on the level of
granularity at which the application is considered and use cases are formulated (Flemming
et al., 2001). Selecting this level is a major design decision. In order to make system and
GUI implementation flexible, I particularly favor the use of a coarsely-grained and casual
format for studying use cases as opposed to finely-grained, fully-dressed and formalized
formats. The selected format for the use-cases addresses neither the GUI component nor
implementation, rather, for the sake of flexibility, it leaves these details to be resolved as
implementation progresses. This is exemplified by the "Insert A Component" use case
below.

Use case name: Insert a component (requirement)

Use case category: Knowledge modeling

Primary Actor: Architectural Program Modeler (APM).

PhD Thesis 1/14/04 95

Use-Case Descriptions

Description: The APM inserts a new requirement (component) into the knowledge
model by using the (graph) modeling area.

Preconditions: RaBBiT is running with a project open. If there is an active task (a task
that is in progress before this use case invoked), it can be interrupted by this task, i.e. the
active task is not modal. If information category levels are used, the APM has already
selected a proper level for the new requirement.

Flow of events (basic course):

1. The APM selects the insert component command.

2. If there is an active task and cancellation requires confirmation, RaBBiT asks the
APM’s to confirm cancellation. If the APM confirms, RaBBiT cancels the active task;
else the use case ends.

3. The APM indicates where to insert the new component on the GUI element used as

knowledge modeling area1. The location itself is computationally not important since
the geometric pattern of the graph is irrelevant.

4. RaBBiT creates a view and a model object for the new component with a default
unique name (such as Requirement N).

5. RaBBiT switches to the component editing state.

6. The APM enters a name and description for the new component, if needed.

7. The APM can continue with the "insert construct into a component" use case or
complete the present use case.

8. RaBBiT checks the integrity of the new component—such as uniqueness of name. If
the new component is invalid, RaBBiT asks the APM to correct the problem by
specifically pointing to the source of the error such as "The entered name <name> is
already used in another component, please change the name".

9. RaBBiT inserts the new component into the knowledge model and updates all the
views attached to the knowledge model.

10. RaBBiT registers the change in the graph for reverse operation (undo-redo) and
switches to the normal modeling state.

11. The APM can insert another component by returning to step 3. The APM can also
cancel the use case by selecting a new command.

Post-condition: A new component becomes part of the model and is displayed in views.

Alternative flows or exceptions: (not shown here)

1. Note that the physical design of the UI elements are not specified yet.

96 1/14/04 PhD Thesis

Developing RaBBiT

The use cases defining the behavioral model of RaBBiT are grouped under four
categories: (a) session control, (b) knowledge modeling, (c) program generation, and (d)
graph view manipulation (including view control and formatting). Below, I summarize the
use cases under first three of these categories. Note that the following describes only the
critical use cases; there are other use cases that provide accessory functions such as
component repository building, automatic graph layout, grid-snap setting etc. that are not
mentioned here.

7.3.2 Session control use cases

These use cases specify the interaction between the users (the APM or Architectural
Program Composer (APC)) and RaBBiT during a knowledge modeling session. Each
knowledge model is called a RaBBiT Project in the session, or in short a project in these
use cases. The APM can save a project at any time during the session. In addition, a
project can be loaded, saved, or renamed in different formats, such as Extensible Markup
Language (XML), at any given time during a knowledge modeling session. The session
control use cases also specify printing a knowledge model to the system’s printer or
capturing the graph as image. The following use cases describe how these tasks are
accomplished by the APM in interaction with RaBBiT.

Start a new session

The APM or APC initializes a new session in the computer by giving the operating system
a command reserved for RaBBiT. In a window-based system, the users can start RaBBiT
by double-clicking on the icon representing a short-cut for accessing the RaBBiT
executable file. When a RaBBiT session starts, RaBBiT displays the main window with
no project loaded (Figure 7.3a). The APM can initiate a new programming knowledge
model definition or open a persistently stored knowledge model for editing at this point.
Therefore, this use case is "uses"—in UML terms—two additional use cases: start a new
project and open an existing project. The APC is not responsible for creating a new
project, but opening an existing one, which is similar to opening a text file in a text editor.

Open an existing project

The APM or APC can open an existing project by locating the project in the computer’s
persistent storage devices in a standard file-dialog. In case a project is already loaded
before issuing the open command, the APM is given options to close the current project; if
the current project has changed since last save operation, the APM can save the current
project before opening another project or can cancel opening the existing project. If no
knowledge model is being edited as the open command is issued, RaBBiT loads the
selected project (Figure 7.3b).

PhD Thesis 1/14/04 97

Use-Case Descriptions

FIGURE 7.3.RaBBiT’s main window (a) without a project and (b) with a project loaded.

Start a new project

After a session starts, the APM selects the new project command from the given GUI
options (a button in a toolbox or a menu item from a pull-down menu). As a new project is
initiated, RaBBiT displays a dialog for defining a model for requirement information
category levels. If the APM prefers this, the use case relating to modeling information
category levels can be skipped and knowledge modeling starts without using category
levels.

Define a model for requirement information category levels

The APM can either build a new category level model or import an already defined and
persistently stored one from the system. The APM can design a category level model
according to any architectural programming approach or design guidelines; RaBBiT can
save this model to be used in other projects, if the APM chooses. If category levels are
required, they are used to group requirements information from higher to lower levels.
This use case is extended by various other use cases: add a category level, remove a
category level, change the level of a category, save (or save-as) category level model,
import a category level model, and apply the current category level model to the new
project. When the last use-case is invoked, RaBBiT starts a new knowledge model by
adopting the current category model. Figure 7.4 shows the dialog box designed to
implement these use-cases.

Detachable tool bars

Modeling (document) area

Menu bar

Status bar Graph modeling area

Tree view

Description (input) area

Requirement
repository pane

(Graph view)

98 1/14/04 PhD Thesis

Developing RaBBiT

FIGURE 7.4.Dialog box for requirement information category level modeling

Save a project (knowledge model)

The APM can save a project at any given time when the active function is not modal. If the
project is saved for the first time, the APM is asked to choose a location (in the system’s
persistent storage devices) and enter a name for the project. Only when both pieces of
information have been entered, RaBBiT saves the project and displays the name of the
project, for instance, on the window title. The APM must be able to save the knowledge
model at least in two formats: a binary or XML serialization. The extension of the file for
the first format must be unique, such as rbt; the extension of the file for the second format
must be xml. For renaming an open file, the APM interacts with the system in a similar
way.

Close a project

The APM can close a project at any given time when the active function is not modal.
When the APM chooses the close command, RaBBiT checks if the project has changed
since the last save operation. If so, the APM is given a chance to save the project or cancel
close a project use case. When the project is closed, RaBBiT displays an empty modeling
area and becomes ready to initiate editing a new or existing project.

Exit a session

The users (the APM or APC) can stop an active session at any given time by choosing an
exit command, provided that the active function is not modal. When the exit command is
issued, RaBBiT checks if any change has been made on the model. If this is not the case,
RaBBiT terminates; otherwise, the APM or APC can save the file before exit, return back
to editing, or proceed with exiting without saving the project.

PhD Thesis 1/14/04 99

Use-Case Descriptions

7.3.3 Knowledge modeling use cases

These use cases specify the interaction between the APM and RaBBiT when the APM is
modeling programming knowledge. The terms used are defined as follows:

Component: an object representing a requirement or a programming concept

Global construct: an object representing a critical programming parameter

Construct: an object representing a programming parameter that belongs to a component

Value: an object of simple type (text, number, boolean) or complex type (resource
location, reference, or parametric association) assigned to a construct to represent its
value.

Dependency: a connection object between two components showing dependencies with
direction and condition.

Relation: a connection object describing a relationship between two components

Expression: an object representing a parametric association assigned as a value to a
construct.

Reference: a value assigned to a construct that is read from another construct’s value.

Category level: an object that is used to classify a component according to requirement
information or programming concept level

Category hierarchy: an object model defining an order for classifying programming
information represented by components from higher- to lower-levels.

Knowledge model: a complex object model with a graph structure that is used for
composing programming information represented through components, constructs, global
constructs, dependencies, relations, and, if defined, category levels ordered in a category
model.

Create (Insert) a component

The APM selects the create component command from one of the GUI element handling
this function. The APM locates the position in which the new component will be inserted.
The command is observed by a corresponding manager object in RaBBiT that creates a
view of the component along with a component object to be stored in the knowledge
model. As the component is inserted, RaBBiT switches to the component editing state
(uses edit component use case). The component has to have a unique name describing the
concept or the requirement that it represents. The use case can continue with the insert
constructs use case or the APM can abort this use case. In case the APM prefers to define
constructs later, the APM can do this in another editing step. The APM can also enter a

100 1/14/04 PhD Thesis

Developing RaBBiT

description for the new component. This can take place either when the component is
inserted or in a separate editing use case. In case category levels are used, RaBBiT assigns
the new component to the category level selected before this use case initiated. RaBBiT
updates all the views of the knowledge model as the APM inserts the new component.

The GUI object representing a component object is determined in the physical design
phase of the GUI; sample component views are shown in Figure 7.5. The header shows
the name of the component, and the box with a number next to the name shows the
category level for this component with the color code of that level.

FIGURE 7.5.A sample component’s views (a) without and (b) with constructs.

Insert constructs into a component

The APM can initiate this use case either during the insert component or edit component
use cases; that is, a component must be in the editing state. In UML terms, this use case is
an abstract use case and specialized by the insert a construct with (a) a numerical, (b) a
boolean, (c) a text, (d) a resource, (e) a reference, and (f) an expression (formula) value
use cases. The APM initiates all of these use-cases in a similar way by invoking an action
on the corresponding GUI component from a RaBBiT view (such as menu item or button).
The GUI elements initiating these use case are implemented as shown in Figure 7.6.

FIGURE 7.6.The GUI elements for invoking the insert construct use cases.

Use cases a-c are straight-forward and follow an identical interaction sequence: The APM
selects the corresponding GUI object to initialize one of these use cases and RaBBiT
inserts a construct object both in the view and the component being edited—with a default
value and name. The APM can change the default value or name or edit them during a
separate editing step. These use cases are not described here in greater detail. Figure 7.5b

(a) (b)

PhD Thesis 1/14/04 101

Use-Case Descriptions

shows a component containing a reference, a numeric (with decimal points), and two
expression constructs in a table below the header part.

Insert a construct with a resource value

The APM can insert a construct into a component that has a value pointing to a Unified
Resource Locator object (URL) (W3C, 2003)—a file of any type persistently stored in the
system, including the local network or Internet. Essentially, this action can be used if an
external resource describes the programming concept or requirement (component) in more
detail in a data format that RaBBiT cannot handle, such as in external text documents,
images, computer-aided design (CAD) files etc. After the APM inserts the construct, the
APM can enter the location of the URL as the value of the construct; this also can be done
through a standard file browsing dialog.

Insert construct with a reference value

This use case defines how the APM assigns a value to a construct that it is going to be read
from an existing construct. The use case starts similar to inserting any other construct and
continues with the APM interactively selecting a component that contains the construct
whose value will be read. RaBBiT makes this component and its constructs selectable by
pointing. The APM points to the construct, and a new construct referencing the value of
the selected construct is inserted into the component currently being edited. The view that
displays the component with the referenced construct is shown in Figure 7.7a.

FIGURE 7.7.Views for inserting (a) reference and (b) expression values for constructs.

(a)

(b)

List of gathered
constructs

Current selected
component

Expression editing
area

Current selected
component

Inserts parameter name
in expression

102 1/14/04 PhD Thesis

Developing RaBBiT

Insert construct with an expression value

The APM issues the insert expression command and RaBBiT opens the expression editor
dialog box. The APM gathers constructs to be used in the expression by selecting the
appropriate components and constructs from the model. In the dialog box, (Figure 7.7b)
RaBBiT shows a list of the constructs gathered interactively. The APM can add other
constructs to the list at any time during expression editing. Expressions are formulas with
simple syntax similar to the one used in spreadsheets. The APM can either type these
expressions or build them interactively by selecting constructs from the construct list, after
which RaBBiT inserts the name of the selected construct into the expression. The result of
the expression is computed as it is defined and becomes the value of the new construct.
RaBBiT continuously informs the APM of any errors in the expression.

An example is the expression for calculating the total area of the administrative zone
shown in Figure 7.12. This zone may contain officer rooms, civilian offices, enlisted
offices based on the dependency conditions in the dependency associations from the
administrative zone to each of these spaces.

(if (Administrative Zone TO Officer Rooms == true, Total Area OF Officer Rooms, 0) +
if (Administrative Zone TO Civilian Offices == true, Total Area OF Civilian Offices, 0) +
if (Administrative Zone TO Enlisted Offices == true, Total Area OF Enlisted Offices, 0)) x
Circulation Area Coefficient OF Administrative Zone

This expression shows how a nested parametric association can be formed. Administrative

Zone to Officer Rooms refers to the conditional association included in the dependency
association from the Administrative Zone to the Officer Rooms. If this condition is satisfied,
the (parameter) Total Area of requirement Officer Rooms is added in the Total Area of

Administrative Zone. At the end of the expression, the sum of the areas is multiplied by the
Circulation Area Coefficient included in the Administrative Zone (requirement), which returns a
final value for the Total Area of Administrative Zone. Note that the expression editor manager
is responsible for reading the names of the parameters or the requirements that were
interactively selected by the APM—which reduces the cognitive load in remembering the
names of the parameters. However, the APM can also enter these names manually. Note
also that when the name or value of a parameter changes at any time during knowledge
modeling, RaBBiT propagates these changes to each expression having reference to that
parameter.

Insert a global construct

The APM inserts global constructs in a way that is similar to inserting components, but
with one difference: A global construct contains only one construct object. Please note
that global construct objects are not allowed to have dependency or relation associations,
but can be used in parametric associations.

PhD Thesis 1/14/04 103

Use-Case Descriptions

FIGURE 7.8.Boolean and numeric global constructs

Insert an association between two components

This use case defines how the APM inserts a dependency or relation association between
two existing components. In general, the APM follows the same steps for creating either
type of associations. First, the APM activates the appropriate association command, then
selects an existing component representing the source of the association. As the APM
moves the mouse over the target objects, RaBBiT checks if the component under the
pointer is a legal component for this associations. RaBBiT continuously (dynamically)
informs the APM of this and tells the APM from which component to which component
the association will be created (Figure 7.14 on page 112). When the APM locates the
target component, RaBBiT creates a model and a view object for the new association and
switches to association editing mode for (a) the dependency condition, if a dependency
association is created; or (b) the relation label, if a relation association is created. The
APM edits dependency conditions by using the expression editing dialog box and the
relation labels "in-place". If the dependency condition evaluates to "false", the
dependency symbol (lines) are rendered blue and red otherwise.

7.3.4 Program generation use cases

These use cases describe how the Architectural Program Creator (APC) and RaBBiT work
together in generating programs for a project by using a previously defined knowledge
model. Since the generation process is carried out internal to RaBBiT, the interaction
between the APC and the system is very simple and can be described in three main use
cases: provide project-specific information, modify global parameters, and generate a
program. The precondition for all of these use cases is that a knowledge model must be
open and the APC has issued the program generation command, which displays the
program generator dialog box (Figure 7.9).

Provide project-specific information

The APC enters project name, location, and ID in RaBBiT’s program generator dialog
box. In addition, the APC inputs client information such as name, phone number, e-mail,
and address. Each program generated for a project contains also version information. The
generation date is assigned by RaBBiT, and the APC must enter version number and
description. When RaBBiT generates a program, it places the project-specific information
at the beginning of the document.

104 1/14/04 PhD Thesis

Developing RaBBiT

FIGURE 7.9.Program generator dialog

Modify global parameters

Before RaBBiT displays the program generator dialog box, it gathers all of the global
construct objects (critical parameters) that govern the program generation. The box
presents these constructs in the rows of a table such that each row contains information
about one construct. The original values of global constructs as defined in the knowledge
model and a new value input area placed side by side. RaBBiT directly links the new
values to the global constructs in the knowledge model so that when the APC enters a new
value for a construct, RaBBiT updates the model and its views. Therefore, the APC
interactively can investigate the results of changes in the model.

Generate a program

The APC issues the generate program command in the program generator dialog box. By

applying its internal program generation algorithm1, RaBBiT generates a program as
output. RaBBiT asks the APC to select a location and a name for the file in which the
program will be stored. Note that this file is not in a view-dependent format; it contains
only plain program data. In order to view the program in a formatted display, the APC can
choose to produce a sample view as well. If this occurs, RaBBiT generates a sample view

1. Appendix B includes program generation algorithm, a sample generated program for a USARC, and its view
in html.

Global constructs

Project specific
information

PhD Thesis 1/14/04 105

Use-Case Descriptions

of the program (in html form), finds an application by which to display the view (e.g.
default web browser), and opens the view in the application.

I designed a (architectural) program schema (Figure 7.10) using XML following the
system requirements and the use cases defining program generation. RaBBiT generates
programs (data) in XML format following this schema. In addition, I designed a sample
view schema in XML Style Sheet format (i.e. xslt) for program (data) presentation in
HTML form. After a program is generated, RaBBiT uses Java’s XML transformation
package to transform the generated program into HTML form as defined in the XML Style
Sheet. Figure 7.11a shows a part of the program data ("full-time staff") in XML form, and
Figure 7.11b shows a view of that part in a web browser—which RaBBiT opens to display
the generated HTML file.

FIGURE 7.10.A part of the programming schema in XML definition

diagram

namespace c:\undo

children RabbitProjectInformation categoryList component construct

annotation documentation Comprises the hierarchical classification structure of the requirements
for a building type

source <xs:element name="RabbitProject">
 <xs:annotation>
 <xs:documentation>Comprises the hierarchical classification structure of the requirements for a
building type</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="RabbitProjectInformation" minOccurs="0"/>
 <xs:element ref="categoryList" minOccurs="0"/>
 <xs:element ref="component" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element ref="construct" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Extends to show
project-specific information

Components with no

Critical parameters

Information level assigned

Sorts all the components
with categories

XML Code

106 1/14/04 PhD Thesis

Developing RaBBiT

FIGURE 7.11.Partial program data and its sample view as generated by RaBBiT

- <category>

 <categoryName>Staff</categoryName>

 <categoryDescription>An Army unit ...</categoryDescription>

 <categoryLevel>2</categoryLevel>

- <component>

- <componentInformation>

 <componentName>Full time staff</componentName>

 <componentDescription />

 <categoryName>Staff</categoryName>

- <constructLocalAs>

 <constructName>Officers</constructName>

 <constructDescription />

- <constructObservedBy>

 <componentName>Full time staff</componentName>

 <constructName>Civilians</constructName>

- <value>

- <valueComplex>

 <type>Expression</type>

- <valueExpression>

- <value>

- <valueSimple>

 <type>integer</type>

 <integer>6</integer>

 </valueSimple>

 </value>

 <expression> roundup (Officers_OF_Full_time_staff * 2)
</expression>

- <valueReadFrom>

 <componentName>Full time staff</componentName>

 <constructName>Officers</constructName>

- <value>

- <valueComplex>

 <type>Expression</type>

- <valueExpression>

- <value>

- <valueSimple>.......

PhD Thesis 1/14/04 107

System-User Interaction

7.4 System-User Interaction

7.4.1 Conceptual and physical design of GUIs

In order to achieve a high usability level for RaBBiT, the UI design process is divided into
two distinct phases: conceptual and physical design as described in (Jacobson, 1999).
Conceptual design focuses on the features necessary to reflect the functionality of the
system and is based on the needs of the system and the user in their interaction with one
another (Armour and Miller, 2001). Physical design addresses the selection and
composition of user interface components based on the conceptual design. Although
logically distinct, the two phases are coupled with each other and form a larger iterative
process.

7.4.2 Direct-manipulation paradigm

The direct-manipulation paradigm was first introduced by Shneiderman (1982). It is
defined as an interaction technique characterized by rapid feedback, visible domain
objects, and incremental and reversible actions. The most significant feature of direct-
manipulation interfaces is the replacement of complex command languages with actions
that manipulate directly visible (domain) objects. Later, Hutchins and his colleagues
provided a more cognitive justification for direct manipulation based on a model-world
metaphor (Hutchins et al, 1986). In this metaphor, the UI is not only a medium between
the user and system, but represents the system from the user’s perspective. They call this a
user-centered UI that "is itself a world where the user can act, and which changes state in
response to user actions...Appropriate use of model-world metaphor can create the
sensation in the user of acting upon the objects of the task domain themselves." (Hutchins
et al., 1987, pp. 87). They call this form of interaction direct engagement.

The direct-manipulation paradigm is commonly used in current computer applications,
especially in those that heavily rely on (visual) graphical information. The benefits of
using direct manipulation are not limited to manipulating domain objects interactively, but
extend to interactive interactions that allow users to simultaneously observe the
consequences of an action (Dix et al, 1998).

7.4.3 Interaction style in RaBBiT

I believe that for the GUI of RaBBiT, direct manipulation is appropriate for the following
reasons: (1) the system can take advantage of inherent benefits provided in the direct-
manipulation paradigm and model-world metaphor; and (2) architectural programmers
with a design background are mainly trained how to organize visual information—such as
affinity diagrams and spatial layouts. A well-configured user interface and appropriately

108 1/14/04 PhD Thesis

Developing RaBBiT

designed system-user interaction based on direct manipulation paradigm can contribute to
increasing the usability of the system for these types of users.

RaBBiT’s components, constructs, and associations can be treated as domain objects
created by the user through a set of direct-manipulation GUIs. We can observe similar
types of interaction in the tools used for object-oriented system modeling—such as
supporting UML—where classes, their attributes, class generalization, and associations
are defined interactively in a graphical modeling area. Using a modeling area similar to
these, RaBBiT users can specify requirements and their relationships pertaining to a
building type by interactively manipulating the knowledge model.

7.4.4 Model-world metaphor for RaBBiT

I think that the most appropriate model-world metaphor for RaBBiT is graph modeling of
requirements. A graph is made up of nodes and edges connecting nodes as mentioned in
Chapter 5. In representing a programming knowledge model, there will be two types of
nodes: components and global constructs. The former encapsulate a requirement or a
programming concept; the latter represent the critical programming parameters.
Dependency and relational associations can be shown as lines connecting nodes on the
graph. From the associations point of view, the graph will be made up of two overlapping
sub-graphs. The dependencies form an acyclic directional graph and are shown by special
lines indicating the direction from a source to a target requirement. Each dependency will
also include a dependency condition. The relational associations, on the other hand, form a
sub-graph that is bidirectional and cyclic. The relational associations are represented by
lines with labels indicating the relationship between two requirements.

In RaBBiT’s UI, the user will be able to manipulate a programming knowledge model
through the nodes and lines of a graph. Manipulation of the graph includes creating nodes,
setting connections (associations) between nodes, composing nodes and connections in
groups, relocating existing groups, changing the nodes or associations individually etc.
Related to graph manipulation are ancillary functions for view manipulation and
formatting—such as zoom in and out, and pan.

Parametric associations, on the other hand, are too complex to be shown using nodes and
connections in the same graph. These associations could pollute the view of the graph
such that users can no longer assess the integrity of the view—and the model for that
matter. A solution is to use tables that can be modified through a spread-sheet-like
interaction. The parameters of each requirement can be represented as the rows of a
spreadsheet table; the tables, in turn, can be shown in the nodes of the graph. This can
contribute to the usability of the system because (a) spread-sheets are commonly used in

PhD Thesis 1/14/04 109

GUI Design of RaBBiT

architectural programming and a similar interaction will increase learnability, and (b) it
provides a sub-metaphor that reflects the nature of parametric associations.

Figure 7.12 shows a part of the graph representing the knowledge model in programming
USARCs. Each node represents a requirement that encapsulates its parameters in a
spreadsheet-like table. Dependencies are represented as lines with arrow heads pointing in
the dependency direction. Each line has an attached a box showing the dependency
condition (C), and result of the condition (R). Relationships are shown with routing lines
and attached labels.

FIGURE 7.12.A snapshot from the graph representing a partial knowledge model.

7.5 GUI Design of RaBBiT

7.5.1 GUI Composition of RaBBiT

The GUIs designed for RaBBiT correspond to the view sub-system of the MVC
architecture mentioned in Section 7.1.3. Each function or set of functions has a
corresponding view. When the use-case model is considered along with these views, both

110 1/14/04 PhD Thesis

Developing RaBBiT

the conceptual and physical design of RaBBiT’s GUI emerge. A snapshot of the physical
design of RaBBiT’s user interface is shown in Figure 7.13.

FIGURE 7.13.Snapshot from RaBBiT’s main window.

Like any standard window-based application, RaBBiT includes pull-down menus and
(detachable) toolboxes for invoking a desired function (described in the respective use
case in the conceptual design of the GUI). The graph modeling component is divided into
two parts for displaying different views of the graph model: a tree-view and a graph view.
Both of these views can be directly manipulated.

The tree-view area is used for displaying all requirements with respect to the information
category level under which they fall. The same area contains a tab labeled repository that

displays a requirements repository1 view. The users can store and retrieve requirements

1. Since this is an ancillary feature, it is not specified in the system requirements. It emerged as a side effect of
the iterative system design process.

PhD Thesis 1/14/04 111

GUI Design of RaBBiT

across different projects by using this area. A detachable (floating) area that can be used to
enter descriptions is placed below the tree-view area.

The graph-view is the main interaction area where a knowledge model is build. The status
bar at the bottom of the window informs the user of the state of the system or the
consequences of actions. During knowledge modeling, several dialog boxes are displayed
to assist the interaction between RaBBiT and its users. I will talk about these in the next
chapter.

7.5.2 Usability heuristics for RaBBiT

In developing RaBBiT, I followed GUI design principles and heuristics that are essential
for forming a base-line for a "user-friendly" system; these principles and heuristics are
based on Nielsen (1995) and Dix et al (1998). Coupled with the use cases, they provided
the guidelines for developing the UI and system-user interaction for RaBBiT.

The following usability heuristics were observed in designing RaBBiT’s GUI.

Visibility of the system status: The users of RaBBiT are kept informed by continued
feedbacks such that most of the changes done on a model are accompanied by
simultaneous updates in the relevant user interface components. For example, the active
function is both highlighted on the selected tool and displayed on the status bar. When
editing a requirement is completed, the result of editing synchronously becomes visible in
the GUI object representing the requirement.

Match between system and the real word: The system uses a language and concepts
familiar to the user. The users are given flexibility to use their own terms in naming
requirements and their associations. In addition, RaBBiT uses graph-modeling and spread
sheet table metaphors for the requirements building process, which, I think, will help the
user to form an appropriate mental model of the system (see Figure 7.12 on page 109).

User control and freedom: The users are able to cancel any active tasks through standard
actions that are common to other window-based applications—such as pressing the escape
key or mouse-click on an empty area cancels the active function. Furthermore, most of the
actions that have been implemented are reversible through undo-redo functions. Due to
performance-related considerations, I implemented RaBBiT to handle undo-redo actions
only 10 steps back; however, this can be increased up to an arbitrary number of steps by
modifying a value in a resource file.

Consistency and standards: Although I have not explicitly specified guidelines for
consistency, I intuitively followed a schema that most window-based applications use. The
user interface design is consistent in terms of using symbols, colors, words, situations, and
actions across the application. However, consistency is not blindly followed; if there is an

112 1/14/04 PhD Thesis

Developing RaBBiT

exception, the consistency is violated. In addition, users are given an option to choose
their own color schema for color-coding information categories. The color code is
displayed both on the branches of the tree-view of the model and on individual
components (see Figure 7.13 on page 110).

Error prevention and recovery: RaBBiT’s internal logic is designed to follow certain
error prevention and recovery rules in modeling. For example, a cyclic dependency
relation is not allowed when the user is configuring dependencies between multiple
requirements (Figure 7.15a). If the user’s action violates one of these rules, the system
interactively informs the user of the violated rule by displaying visual (GUI) clues. For
example, the icon at the mouse pointer changes based on whether a dependency
association being created is legal or illegal (Figure 7.14a and b). In this way, RaBBiT first
tries to prevent an error from occurring, and if an error cannot be prevented, users can
recover following the suggested solution displayed in error or warning dialog boxes. For
example, the box shown in Figure 7.15b is displayed when the user attempts to delete a
parameter that is being referenced in parametric associations. However, this feature is
implemented for only the essential modeling functions. For example, error prevention is
not provided for automatic graph layout, although error recovery (through undo-redo
functions) is available.

FIGURE 7.14.Mouse icon changes for error prevention (a) Illegal and (b) legal dependency
association.

The users can interactively change the source or target of a dependency association by
dragging either end of the association object onto the new requirement. If the new
association is illegal—because of a cyclic relation or duplicate associations between two
requirements—the user is warned of the situation, and RaBBiT automatically changes the
model back to the state before the illegal operation.

(a)

(b)

PhD Thesis 1/14/04 113

GUI Design of RaBBiT

FIGURE 7.15.Sample dialogs for (a) rule violation and (b) error prevention.

Recognition rather than recall: Interaction between the user and RaBBiT’s UI is based
on the direct manipulation of visible objects; hence, users do not have to remember the
syntax of the commands. All the actions and options become visible to the user during
visual object manipulation. For example, when creating a requirement node (component),
the user selects a button (or menu item) with an icon that is a visual abstraction of the UI
object to be created. The mouse pointer icon also changes with respect to what the user
and system are doing at a given state.

RaBBiT can recognize the active function and its context, enable all the relevant
functions, and disable the irrelevant ones that may cause an error if activated.

Flexibility and efficiency of use: The system tries to accommodate both experienced and
inexperienced users. Therefore, RaBBiT’s UI provides shortcuts or accelerators for
invoking functions by experienced users. Figure 7.16 shows a pull-down menu with menu
items and their accelerator key-combinations.

FIGURE 7.16.Shortcuts and accelerators for experienced users

(a) (b)

114 1/14/04 PhD Thesis

Developing RaBBiT

Aesthetic and minimalist design: RaBBiT’s GUI displays only relevant information;
redundant information that may confuse the users is hidden; for example, parametric
associations are only visible when requested. The users can also hide functions (on the
tool bars) which are not used as often. Colors, size of interface components and their
configuration are carefully chosen to form a simple, yet pleasing design. The APM can
adjust the size of the component and construct (visual) objects on the screen.

Help and documentation: Although this is an important feature to consider, due to time
limitation, RaBBiT’s documentation (manual) has not been completed.

Testing the usability of RaBBiT for a real-life case has also not been completed due to
time and resource limitations.

7.6 Summary

In this chapter, I described the strategies that I used in developing RaBBiT. One of the
most important decision was to use a custom-tailored software development process that
provides methods for OO programming, fits the limitations and the nature of the
application, and offers flexibly where needed. This process was based on agile (software)
modeling and methods used in USDP in connection with UML. RaBBiTs structural and
behavioral models were produced by using a selected set of USDP methods. I paid special
attention to usability and, therefore, to the GUI design of RaBBiT. The entire process was
driven by use cases describing the interactions between RaBBiT and its users.

RaBBiT uses two metaphors in building knowledge models: graphs building knowledge
models and spreadsheets for defining parametric associations. The first metaphor presents
a graphical environment in which users can visually observe the result of their actions.
The second metaphor reduces the complexity of defining programming rules through
parametric associations to interactively defining simple equations.

PhD Thesis 1/14/04 115

Observations and Summary

Chapter 8 Conclusions

8.1 Observations and Summary

8.1.1 Overview

The present research focuses on three basic subjects: architectural programming in
general; design requirements specifications for recurring building types as a specific
programming task; and design and prototype implementation of a computer application
supporting specifically architectural programming of recurring building types.

8.1.2 Architectural programming

Note that my conclusions about architectural programming are all based on a extensive
literature survey and three case studies. I also used results obtained from interviews
conducted by other members of the CMU community.

Architectural programming, as part of architectural design, is an incremental and iterative
process by which architectural design problems—ill-structured in essence—become better
defined (although they never become well-structured in their entirety) and are specified
through architectural programs. A program is typically refined to a desired level of detail
through several levels of decreasing abstraction and then becomes a starting point for
design exploration. As often as needed, designers and programmers go back and forth
between design and programming to either modify the established requirements or to
increase the level of details.

8.1.3 The bottlenecks of architectural programming

Regardless of the building type to be programmed (recurring or non-recurring), the
bottlenecks of the programming process do not change and are based on several factors:
(a) the use of passive programming media and of manual methods, (b) non-standardized
representations of program information, (c) the obstacles to continuity and upgrading of
programming knowledge, (d) the lack of domain-specific tools for managing complex
requirements and information-sharing.

116 1/14/04 PhD Thesis

Conclusions

8.1.4 Programming for recurring building types

Programmers derive, filter, and structure almost all of the required program information
from scratch when they generate a program for a non-recurring building type. On the other
hand, for programming recurring building types, programmers are able to take advantage
of established knowledge and expertise about the organizational structures, functional
requirements, and their physical implications for the planned facility. In many cases, the
knowledge and expertise are documented in design guidelines addressing most common
and recurring design requirements in a well-structured form. As a result, programming
becomes less labor-intensive.

Reusable pieces of information (requirements) can be systematically organized and well-
structured to form a set of programming rules and parameters for each recurring building
type. Rules and parameters can be stated in the form of procedures, formulas, and
variables, which can be represented computationaly. These expressions can be general
enough to be reused repeatedly as needed.

8.1.5 Information refinement and GMEA

Architectural programming is an information refinement process through which higher-
level non-spatial information is transformed into lower-level and spatial requirements.
However—and in contrast to some of the descriptions found in the literature—this process
is not strictly hierarchical since different design requirements at different levels can
compose a web of relationships. Strictly hierarchical models allow only one-to-many
relationships and they fail to comprehensively represent webs of not strictly hierarchical
dependencies and relationships.

The refinement process resembles Means-Ends Analysis, in which means to achieve a
higher-level goal become ends at the next level. However, in (architectural) programming,
ends at each level can be achieved by more than one means. Therefore, the transition from
higher-level to lower-level requirements is rather a multi-directional generative process
creating cyclic relations among requirements. In order to manage these cyclic
relationships, the model presented in this research forms an extended (generalized)
version of MEA (GMEA).

8.1.6 RaBBiT

I believe computational tools can assist architectural programmers to partially alleviate the
bottlenecks of programming—particularly for recurring building types. These tools can
particularly capture functional and physical performance requirements in formal
representations which can be used in other generative computational design-support
environments. For this purpose, I developed a prototype application to test to what extend

PhD Thesis 1/14/04 117

Contributions

and which part of the architectural programming process can be supported by
computational tools. I call the application RaBBiT. The major characteristic of RaBBiT is
its capability to interact with its users during programming knowledge modeling. RaBBiT
provides the following main functions: (a) computationaly capturing the programming
knowledge of any recurring building type, (b) simplifying the designer-computer
interaction, especially in the modeling stage, to make the application usable for non-
computer programmers, and (c) computationaly generating architectural programs as
output in a flexible format that can be adapted by different generative design and decision
support tools.

In developing RaBBiT, I followed a systematic software development process. After
studying the domain of discourse, I developed a conceptual framework formalizing (or
structuring) the domain knowledge in a computable form. The framework became a
reference for the definition of the system features and requirements. Based on these
requirements, I selected appropriate software technologies, such as use cases for defining
the system’s functionality, the OO paradigm for system design and implementation, MVC
for designing the system architecture, production systems for program generation, graphs
for representing programming knowledge models, and XML for program data definition
and program data transformation. These technologies are used for implementing RaBBiT
through an agile-USDP, a custom-tailored software development process combining agile
software development approaches with USDP. One important experience that I gained in
using agile-USDP is that the formality of strict methodological approaches (such as in
USDP) sometimes limits developers, who sometimes must ignore the formalism
considering the complexity and nature of the system.

8.2 Contributions

8.2.1 Contributions at the theoretical level

• Investigation of the bottlenecks of the programming process and the methods used by
the programmers.

I have not encountered a study—except (Akin, et al., 1995)—that documents the general
bottlenecks of programming process in detail at the theoretical level. The findings from
this study may initiate a discussion among not only the programming community, but also
design researchers who wish to develop computational programming support tools to
alleviate these bottlenecks. This research is intended to demonstrate the value of such
endeavors.

• A better understanding of architectural programming, specifically programming
recurring building types, as the design problem specification phase of architectural

118 1/14/04 PhD Thesis

Conclusions

design. This understanding is captured in a conceptual framework that is based on an
generalized (extended) means-ends-analysis and general enough to cover all
processes documented in the literature and in the case studies, while remaining
operational enough to guide the design of a computer application supporting
architectural programming.

Basic design considerations and program characteristics of different building types have
been studied and documented in the literature. However, I did not find a general study
investigating the higher-level characteristics of programming recurring building types, nor
did I find a procedural model general enough to cover all methodologies presented in the
literature. In fact, one of the more startling findings is that no two authors agree on the
terms and concepts to be used, although the overall information processing structure is
very similar across methods. I believe that the conceptual framework helps to elucidate
this underlying common structure and hope that this work may start a discussion in this
direction.

• The developed framework for programming knowledge modeling and program
generation also reflects cognitive processes of a programmer (or designer) during
architectural programming. The framework outlines a general model on how
programmers make decisions while structuring a given ill-defined (design) problem
towards a well-defined problem.

The generalized means-ends-analysis presented here can be considered a form and part of
design problem-solving. Design researchers (and possibly cognitive psychologists who
are interested in design) can use this framework for defining more general cognitive
models for design problem structuring. Indeed, the validity of the presented framework
can also be tested through these studies. Although this is not meant to be a direct
contribution to the design cognition area, the observations made can improve our
understanding of design.

• The exploration of how computer-assisted problem specification can take place in
computational design problem-solving.

Even though I address a very specific question—namely how to support architectural
programming through a computer application—this study falls into a more general
category of design problem specification in computational form. Computational design
generation and design decision support are two open-ended research areas in the design
research community. This study can become a test-bed for evaluating how computer-
assisted problem specification can contribute to the overall design process. The experience
gained and lessons learned from this study may inspire and motivate other design
researchers—including myself.

PhD Thesis 1/14/04 119

Contributions

From the software development perspective, discovering computationally representable
domain concepts can be trivial when these concepts are given in an appropriate form.
However, casting domain concepts in this form requires intimate knowledge about the
domain and about computer programming. Software engineers without knowledge about
the domain of discourse can fail to understand the actual problems in that domain. As part
of this research, I developed software for programming knowledge modeling and program
generation as someone who understands the domain and its needs relatively better than
someone who is not familiar with architectural programming. On the other hand, when it
came to making decisions on software development issues, I needed to study the software
engineering domain, which required some extra effort on my part. Combining the two
areas of expertise, I developed a conceptual framework for the development of
(architectural) programming software that I consider sound and clean from both the
computational and architectural perspective. I believe this actually demonstrates the
positive contributions that domain experts with some software engineering background
can make to application development. This idea, of course, is not novel, but I believe this
study is another contribution to both design and software engineering in this sense.

8.2.2 Contributions at the practical level

At the practical level, the present research makes the following contributions:

• Demonstration how to create a useful and usable computational design support
system that can assist architectural programmers in generating architectural programs,
and partially, if not completely, can alleviate the bottlenecks of the current
architectural programming process.

The proposed application was developed at a level that allows its feasibility to be tested in
real-world programming situations. However, detailed field tests of the proposed
application fall outside the scope of this study due to time limitations. Instead, I attempted
to follow the usability considerations proposed in the human-computer interaction
literature to the greatest possible degree when I developed the application.

• Design of an interaction process and a set of Graphical User Interfaces that enables
the users to define interactively both rules and domain concepts of a programming
knowledge model in the users’ own terms, and to generate and modify architectural
programs.

Knowledge modeling, in general, is an important research question in both the cognitive
sciences and software engineering. Particularly, capturing procedural knowledge (rules)
has been an issue in designing generative systems. I tackled this issue in the context of
architectural programming and developed a flexible definition for programming
knowledge models through which each knowledge category in programming recurring

120 1/14/04 PhD Thesis

Conclusions

building types can be defined by architectural programmers who are not computer
programming experts. The system is flexible enough to allow users to customize the
architectural program models according to their own preferences and to use their own
terms for defining rules and objects.

• Implementation of a computer system that provides a seamless integration of an
object-oriented application with human-computer interaction interfaces, aimed to
perform a series of tasks delegated between the user and the system itself and to
facilitate change propagation.

I initially planed to integrate two different system architectures; namely the Architectural
Program Modeler, an object-oriented application, and the Architectural Program
Generator, a rule-based production system. However, such a system would require a
complex model-transformation and rule-translation mechanisms form object-oriented
model to rule-based schema. Instead of directly implementing the program generation
sub-system in a rule-based production system, I experimented with an alternative that is
purely object-oriented. The sub-system uses the graph-traversal algorithm I developed for
generating programs and does not require model transformation or rule translation. The
experimental programs generated by this sub-system showed evidence that the rule-base
system may not be needed. However, making this decision will require a more
comprehensive testing of the system in a real-world context. But regardless of the
outcome, I believe this was an interesting experiment also from the software engineering
perspective.

8.3 Future Research Directions

8.3.1 Overview

During the course of this research, three important directions for future investigations
emerged. The first relates to the usability and usefulness of the system developed. The
second direction could focus on one of the most fundamental issue in computer aided
design: multi-directional integration of different computational design tools. The third
direction is the applicability of the developed framework and RaBBiT to other domains,
such as system configuration by using components and associations.

8.3.2 Usability and usefulness analysis

RaBBiT provides mechanisms to define programming knowledge models and generate
programs by using these models. However, the effectiveness of RaBBiT in capturing these
models needs to be tested from usability and usefulness perspectives. Usability tests are
required to measure how RaBBiT meets the usability criteria. In order to make unbiased

PhD Thesis 1/14/04 121

Future Research Directions

conclusions, these tests should be performed with real users and in real programming
situations. The aim would be to establish the effectiveness of RaBBiT in generating valid
architectural programs, i.e. to see if the programs can be used for real-life design
situations. A promising experimental design would be to see if some existing programs
could be regenerated by using RaBBiT and to compare the existing and the generated
programs in terms of both quality and ease of generation.

8.3.3 Multiple system integration

Although programs generated as output from RaBBiT are in a shareable data format, data
sharing is currently possible only in a unidirectional way: from RaBBiT to other client
applications. This data sharing is modal and requires data transformation. For example, if
a client application requests a model or generated program to be changed, this can be done
only manually with the current implementation. In order to take all of the advantages of
using multiple computational support tools for design, RaBBiT would have to provide a
multi-directional "dynamic link" mechanism between itself and other client applications
such that RaBBiT can respond to change-requests from client applications and the client
applications can directly link to RaBBiT, for example, to trace the reasoning behind
program generation. As another example, a client application used for budget optimization
may link to RaBBiT to generate programs several times after modifying critical
parameters without any human interruption.

8.3.4 Extendisility to other domains

Dependency and parametric associations are not unique to architectural programming. For
example, product modeling or system configuration use similar concepts. It would be
interesting to test if the framework defined in this study can be generalized (or tailored) so
that similar problems in other domains can be addressed in this framework. Theoretically,
this is possible. We can use the framework to configure a system that is composed of
multiple parts with different variations; the parts can be selected based on certain
conditions. The concepts in the framework, components, constructs, dependencies,
relations, and parametric associations are generic enough to model such a system, for
example, to configure computer (hardware). As a future research direction, I like to test
with experts from other domains to what extend the framework (and RaBBiT) can be used
their domains.

122 1/14/04 PhD Thesis

Conclusions

PhD Thesis 1/14/04 123

Bibliography

Agile Modeling 2002. www.agilemodeling.org

Agostini, E.J. 1968. Programming: Demanding Specialty in a Special World. Architectural Record, Sep-
tember.

Akin O. and C. Akin. 1996. "Frames of Reference in Architectural Design: Analyzing the Hyper-Accla-
mation (Aha!). Design Studies 17(4): 341-361.

Akin, Ö. 1986. Psychology of Architectural Design. London, Pion Limited.

Akin, Ö. 1994. Psychology of Early Design; Technical Report, Engineering Design Research Center,
Carnegie Mellon University, Pittsburgh, PA.

Akin, Ö. 1994a. Psychology of Early Design; Technical Report, Engineering Design Research Center,
Carnegie Mellon University, Pittsburgh, PA.

Akin, Ö. 1994b. Creativity in design. Performance Improvement Quarterly 7, 3, 9-21.

Akin, Ö. 1999. Variants of design cognition. Proceedings of the Knowing and Learning to Design Con-
ference held at Georgia Institute of Technology, April 27-28, 1999. Ed. into a book by Chuck East-
man, Mike McCracken, Wendy Newsletter.

Akin, Ö. and C. Akin. 1996. Frames of reference in architectural design: analysing the hyper-acclamation
(A-h-a!) Design Studies, 17, 341-361.

Akin, Ö., 1993. Architects' reasoning with structures and functions. Environment and Planning B: Plan-
ning and Design 20 (1993) 273-294.

Akin, Ö., B. Dave, and S. Pithavadian. 1992. Heuristic generation of layouts (HeGel) based on a para-
digm for problem structuring. Environmental and Planning B: Planning and Design. Vol. 1

Akin, Ö., Sen, R., Donia, M. and Zhang, Y., 1995. SEED-Pro: Computer assisted architectural program-
ming in SEED, in Journal of Architectural Engineering, ASCE, 1(4): 153-161.

Alder, G. 2002. Design and Implemetation of the JGraph Swing Component. White-paper in
www.jgraph.com/documentation. Last visited: November, 15 2003.

AM (Agile Modeling), 2003. The Official Agile Modeling (AM). http://www.agilemodeling.com/ (Last
visited on 11.12.2003)

AMGA, 2001. The American Medical Group Association. http://www.amga.org/

AR 140-483. 1994. Army Reserve Land and Facilities Management, Space Guidelines for U.S. Army
Reserve Facilities, Army Publications and Printing Command. (also available at http://
books.usapa.belvoir.army.mil/cgi-bin/bookmgr/BOOKS/R140_483/CCONTENTS).

124 1/14/04 PhD Thesis

Armour, F. and G. Miller. 2001. Advanced Use Case Modeling: Software Systems. NewYork, NY: Add-
ison Wesley Pub. Co.

Army, 2001. http://www.army.mil/usar/overview.htm. Last visited on August 22, 2002

Asimov, M. 1962. Introduction to Design. Englewood Cliffs, NJ: Prentice-Hall

Barker, K., B. Porter, and P. Clark. 2001. A library of generic concepts for composing knowledge bases
Proceedings of the international conference on Knowledge capture October 2001

BCHS. 1974 - 1. Equipment guidelines for ambulatory health centers. United States. Health Services
Administration. Bureau of Community Health Services. DHEW publication ; no. (PHS) 79-50066

BCHS. 1974 - 2. Space guidelines for ambulatory health centers. United States. Health Services Admin-
istration. Bureau of Community Health Services. DHEW publication ; no. (PHS) 79-50066.

Blythe, J., J. Kim, S. Ramachandran, and Y. Gil. 2001. An integrated environment for knowledge acqui-
sition. In International Conference on Intelligent User Interfaces, 13–20, 2001.

Bobrow, M. (Editor), T. Payette, R. Skaggs, R. Kobus, J. Thomas. 2000. Building Type Basics for Health-
care Facilities. John Wiley & Son Ltd., New York, NY.

Booch, G., I. Jacobson, James Rumbaugh, and Jim Rumbaugh. 1998. The Unified Modeling Language
User Guide. Addison-Wesley Publications Co. Reading, MA.

Booch, G., J. Rumbaugh and I. Jacobson., 1999. The Unified Modeling Language User Guide. New York:
Addison-Wesley.

Bosch, J. 2000. Design and Use of Software Architectures. Addison-Wesley Publication Co., Reading,
MA.

Buchanan, Richard. 1993. Wicked Problems in Design Thinking in V. Morgolin and R. Buchanan (eds),
The Idea of Design. Cambridge, Massachusetts. The MIT Press.

Burbeck, S. 1992. Application Programming in Smalltalk-80: How to use Model-View-Controller
(MVC). http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html. Last visited on August 7, 2002.

Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. 1996. Pattern-Oriented Software
Architecture, Volume 1: A System of Patterns. John Wiley & Son Ltd., New York, NY.

CDC and NCHS. 1998. National Hospital Ambulatory Healthcare Survey. www.cdc.gov/nchs/about/
major/ahcd/outpatientcharts.htm

Chandrasekaran, B. 1986. Generic tasks in knowledge-based reasoning: High-level building blocks for
expert system design. IEEE Expert, 1(3):23-30.

Cherry, E. 1998. Programming for design: from theory to practice. New York, NY: John Wiley and Sons
Inc.

Chiara, J.D. and J. H. Callender, (Contributors). 1990. Time-Saver Standards for Building Types. New
York, NY. McGraw Hill Text.

Chimaera, 2000. Chimaera Ontology Environment. www.ksl.stanford.edu/software/chimaera

Clark, P., J. Thompson, K. Barker, B. Porter, V. Chaudhri, A. Rodriguez, J. Thomere, S. Mishra, Y. Gil,
P. Hayes, and T. Reichherze. 2001. Knowledge entry as the graphical assembly of components. Pro-
ceedings of the international conference on Knowledge capture October 2001.

Cockburn, A. 2002a. Agile Software Development. NewYork, NY: Addison-Wesley Pub Co.

PhD Thesis 1/14/04 125

Cockburn, A. 2002b. Writing Effective Use Cases. New York, NY: NewYork, NY: Addison-Wesley Pub
Co.

COSMIC, 2002. http://www.openchannelfoundation.org/projects/CLIPS-ADA. Last visited on July 23,
2002.

Coyne, R.F., U. Flemming, P. Piela, and R. Woodbury. 1993. Behavior Modeling in Design System
Development. in U. Flemming and S.V. Wyk (eds.), CAAD Futures '93 (Proceedings of the Fifth
International Conference on Computer-Aided Architectural Design Futures). Amsterdam, Nether-
lands: Elsevier Science Publishers,. 1993 pp. 335-354.

Cross, N. 1996. Analysing Design Activity (N. Cross, H. Christiaans and K. Dorst; eds.), John Wiley and
Sons Ltd., Chichester, UK.

Cross, N. 1997. Descriptive Models of Creative Design: application to an example. Design Studies, Vol.
18, No. 4.

Cross, N. 1999. Protocol and Other Formal Studies. In Knowing and Learning to Design. (ed) Chuck
Eastman, Mike McCracken and Wendy Newstetter. Georgia Institute of Technology.

Cross, N. and A. Clayburn Cross. 1998. Expertise in Engineering Design. Research in Engineering
Design 10 (3). pp. 141-149.

Czarnecki, K. and Eisenecker, U.W. 2000. Generative Programming: Methods, Tools, and Applications.
Boston, MA: Addison Wesley.

David, Gerald and Francoise Szigeti. 1979. Functional and Technical Programming: When the Owner/
Sponsor is a Large or Complex Organization. Paper presented at the Fourth International Architec-
tural Programming Symposium.

Davis, Gerald. 1969. The Independent Building Program Consultant. Building Research

Davis, Gerald.1982. “The Relationship of Evaluation to Facilities Programming.” In Symposium of
Evaluation of Occupied Designed Environments. Atlanta, GA: Georgia Institute of Technology.

DG, 1984. Design Guide DG 1110-3-107, U.S. Army Reserve Facilities, Department of Army, Corps of
Engineers.

DGH79 Duda, R. O., Gaschnig, J. G., and Hart, P. E., "Model Design in the Prospector Consultant System
for Mineral Exploration," in Expert Systems in the Microelectronic Age, ed. D. Michie, Edinburgh
University Press, Edinburgh, 1979.

Dix, A., J. Finlay, G. Abowd, and R. Beale. 1998. Human Computer Interaction (2nd. ed). Europe: Pren-
tice Hall.

Domingue, J., 1998. Tadzebao and webonto: Discussing, browsing, and editing ontologies on the web,
WebOnto. In Procedings KAW’98.

Donia, M. 1998. Computational Modeling of Design Requirements for Buildings. Doctoral Thesis.
School of Architecture, Carnegie Mellon University. Pittsburhg, PA.

Duerk, D.P. 1993. Architectural Programming: Information Management for Design. New York NY:
John Wiley & Sons, Inc.

Dym, C.L. 1994. Engineering desing: a synthesis of views. New York, N.Y. Cambridge University Press.

126 1/14/04 PhD Thesis

Eastman, C. 1970. On the Analysis of Intuitive Design Processes, in G.T. Moore (ed.), Emerging Meth-
ods in Environment Design and Planning. Cambridge, MA. MIT Press.

Eastman, C. M. 1975. Spatial Synthesis in Computer-Aided Building Design. London, England. Applied
Science Publisher Ltd.

Elrad, T., M. Aksit, G. Kiczales, K. Lieberherr, and H. Ossher. 2001b. Discussing aspects of AOP. Com-
munications of the ACM Volume 44, Number 10 (2001), Pages 33-38. New York, NY: ACM Press.

Elrad, T., R. E. Filman, A. Bader. 2001a. Aspect-oriented programming: Introduction. Communications
of the ACM, Volume 44, Number 10 (2001), Pages 28-32. New York, NY, USA: ACM Press.

Farbstein, J. 1977. Assumptions in Environmental Programming. In Suedfeld, P. et. al. (eds.). The Behav-
ioral Basis of Design, EDRA Proceedings, Stroudsburgh, PA. Dowden, Hutchinson and Ross.

Farbstein, Jay D. 1976. Assumptions in Environmental Programming. In the Behavioural Basis of
Design: Proceedings of the Seventh Interhanional Conference of the Environmental Design
Research

Farbstein, J. 1985. Using the Program, Applications for Design, Occupancy, and Evaluation. In Preiser,
W.F.E. (ed.) 1985. Programming the Built Environment. New York: Van Nostrand Reinhold.

Farquhar, A. , R. Fikes, and J. P. Rice. 1997. A Collaborative Tool for Ontology Construction. Interna-
tional Journal of Human Computer Studies, 46:707–727.

Flemming U. and R Woodbury. 1995. Software Environment to support early phases in building design
(SEED): Overview. Journal of Architectural Engineering 1, 4 (December).

Flemming U., J. Adams, C. Carison, R. Coyne, S. Fenves, S. Finger, R. Ganeshan, J. Garret, A. Gupta,
Y. Reich, D. Siewiorek, R. Sturges, D. Thomas, R. Woodbury. 1992. Computational Models for
Form-Function Synthesis in Engineering Design. Technical Report EDRC 48-25-92. Engineering
Design Research Center, Carnegie Mellon University, Pittsburgh, PA.

Flemming, U. 1994. Artificial Intelligence and Design: A Mid-Term Review, in Knowledge-Based Com-
puter-Aided Architectural Design, 1994. Carrara G. and Y.E. Kalay (eds.). Elsevier, New York, pp.
1-24.

Flemming, U. and R. Woodbury, 1995. Software Environment to Support Early Phases in Building
Design (SEED): Overview. In Journal of Architectural Engineering, December 1995. Volume 1. No.
4. pp. 147-152. American Society of Civil Engineers, Architectural Engineering Division.

Flemming, U. and R.F. Baykan, 1992. Hierarchical Generate-and-Test vs. Constraint-Directed Search",
in Artificial Intelligence in Design 1992. J.S. Gero (ed.), Kluwer Academic Publishers, Boston, pp.
817-838.

Flemming, U. et al. 2000. The SEED Experience. Internal Report. Institute for Complex Engineered Sys-
tems, Carnegie Mellon University, Pittsburgh, PA.

Flemming, U. et. al., 1992. Computational Models for Form-Function Synthesis in Engineering Design.
Technical Report. Engineering Design Research Center, Carnegie Mellon University, Pittsburgh,
PA.

Flemming, U., H.I. Erhan, I. Ozkaya. 2001. Object-Oriented Application Development in CAD. Techni-
cal Report 48-01-01. Pittsburgh, PA: Carnegie Mellon University, Institute of Complex Engineered
Systems.

PhD Thesis 1/14/04 127

Forgy, Charles L., 1982. Rete: A Fast Algorithm for the Many Pattern/ Many Object Pattern Match Prob-
lem. Artificial Intelligence 19(1):17-37.

Forgy, Charles L., 1998. Benchmarking OPSJ. http://www.pst.com/benopsj.htm. Last visited on July 29,
2002.

Fowler, M. and K. Scott. 2002. UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage. New York, NY: Addison Wesley Pub. Co.

Freeman, P. and A. Newell, 1971. A Model for Functional Reasoning in Design. In Proceedings of the
INternational Joint Conference on Artificial Intelligence, pp. 621-633.

French, M.J., 1992. Conceptual Design for Engineers. The Design Council, London.

Gamma E., R. Helm , R. Johnson , and J. Vlissides. 1995. Design patterns: elements of reusable object-
oriented software. Boston, MA: Addison-Wesley Longman Publishing Co., Inc.

Gamma, E. and T. Eggenschwiler. 2002. JHotDraw as Open-source Project. http://jhotdraw.source-
forge.net. Last visited on August 7, 2002.

Gero, J. S. 1998. Conceptual designing as a sequence of situated acts, in I. Smith (ed.), Artificial Intelli-
gence in Structural Engineering, Springer, Berlin, pp. 165-177.

Gero, J. S. and Maher, M. L. 1997. A framework for research in design computing, in B. Martens, H.
Linzer and A. Voigt (eds), ECAADE'97, Osterreichischer Kunst und Kulturverlag, Vienna

Gero, J. S., 1998. Towards a model of designing which includes its situatedness, in H. Grabowski, S.
Rude and G. Green (eds), Universal Design Theory, Shaker Verlag, Aachen, pp. 47-56Glegg, G.
1969. The Design of Design. New York, N.Y. Cambridge University Press.

Gero, J. S.1990. Design prototypes: a knowledge representation schema for design, AI Magazine, 11(4):
26-36.

Gordon, Douglas E. and M. Stephanie Stubbs. 1988. Technology &Practice: Programming, ARCHITEC-
TURE, May 1988.

Griffin, N. L. and F. D. Lewis, 2002. A Rule-Based Inference Engine which is Optimal and VLSI Imple-
mentable, http://cs.engr.uky.edu/~lewis/papers/inf-engine.pdf. Last visited on July 2002.

GSA. 1983. Design Programming. PBS 3430.2. Wahington, D.C.: General Services Administration

Guindon, R., H. Krasner, and B. Curtis. 1987. Cognitive Process in Software Design: Activities in Early
Upstream Design, Proceedings of the Second IFIP Conference on Human Computer Inter

Haley, 2001. Answers to Common Questions About AI: A Reasonign Technology. www.haley.com. Last
visited: August 17, 2002.

Hall, A., 1996. Design Control: Towards a New Approach. Oxford, GB: Butterworth-Heinemann.

Harold, E.R. and W.S. Means. 2002. XML in a Nutshell (Second Edition). Sebastopol, CA: O’Reilly and
Associates Inc.

Hershberger, R. G. 1985. A Theoretical Foundation for Architectural Programming, in Programming the
Built Environment edited by Wolfgang F.E. Preiser, New York: Van Nostrand Reinhold.

Hershberger, R. G. 1999. Architectural programming and predesign manager. NY: McGraw-Hill Co.

Hinrichs, T.R., 1992. Problem Solving in Open Worlds: A Case Study in Design. Hillside, NJ. Lawrence
Erlbaum Associates, Publishers.

128 1/14/04 PhD Thesis

Horowitz, H. 1967. The Program’s the Thing. The Amercan Institute of Architects Journal, May.

Hutchins, E.L., J.D. Hollan, and D.A. Norman. 1986. Direct-manipulation interfaces. In D.A. (Eds.).
User Centered System Design. Hillside, New Jersey: Lawrence Erlbaum Associates.

Hymes, C. M., 1995. Conflicting class structures between the object oriented paradigm and users con-
cepts. Conference Companion on Human Factors in Computing Systems. Denver, Colorado, United
States. Pages: 57 - 58. New York, NY, USA: ACM Press.

Jackson, M. 1995. Software requirements and specifications: a lexicon of practice, principles and preju-
dices. New York, NY. Addison-Wesley Publication Co. and ACM Press.

Jacobson, I., G. Booch, J. Rumbaugh. 1999. The Unified Software Development Process. Addison-Wes-
ley Publication Co. Reading, MA.

JESS, 2002. http://herzberg.ca.sandia.gov/jess/. Last visited on August 9, 2002.

JGraph. 2003. www.jgraph.com. Last visited: November, 15 2003.

Jonassen, David H. 2000. Educational technology research and development : ETR & D. 48, no. 4

Katara, M. and S. Katz. 2003. Architectural views of aspects. Proceedings of the 2nd international con-
ference on Aspect-oriented software development Boston, Massachusetts March 17 - 21, 2003. pp.
1-10. New York, NY: ACM Press.

Kirk, S. and K. F. Spreckelmeyer. 1988. Creative design decisions : a systematic approach to problem
solving in architecture. New York, NY: Van Nostrand Reinhold

Kobus, R., R. L. Skaggs, M. Bobrow, J. Thomas and T.M. Payette. 1997. Building Type Basics for
Healthcare Facilities. New York. NY. John Wiley and Sons Ltd.

Kolaroff, S. 2002. Java Expression Parser (JEP). http://jep.sourceforge.net/index.html. Last visited on
August 7, 2002.

Krasner, G. and S. Pope. 1988. A Cookbook for Using the Model-View-Controller User Interface Para-
digm in Smalltalk -80. The Journal of Object-Oriented Programming (JOOP), August/September
1988.

Kroes, P. 2002. Design Methodology and the Nature of Technical Artefacts. In Design Studies 23 (2002)
pp. 287-302.

Kumlin, R.R. 1995. Architectural programming: creative techniques for design professionals. NY:
McGraw-Hill Co.

Lawson, B. 1979. Cognitive Strategies in Architectural Design. Ergonomics 22 (1). pp. 59-68.

Leffingwell, D. and Widrig, D. 2000. Managing Software Requirements: A Unified Approach. New
York, NY: Addison-Wesley.

Ling, TW, Peo, TK. 1993. Towards Resolving the Inadequacies in Object Oriented Data Models. Jn:
Information and Software Technology, Vol: 35, Issue: 5, pp.267-276.

Maher, L. M., M. B. Balachandran and D. M. Zhang. 1995. Case-Based Reasoning in Design. Lawrence-
Erlbaum Associates, Mahwah, New Jersey.

Malkin, J. 1982. The Design of Medical and Dental Facilities. New York, NY. John Wiley and Sons Ltd.

Malkin, J. 1989 (1st ed.). Medical and Dental Space Planning for the 1990s. New York, NY: John Wiley
and Sons Ltd.

PhD Thesis 1/14/04 129

Malkin, J. 1997 (2nd ed.) Medical and Dental Space Planning: A Comprehensive Guide to Design,
Equipment, and Clinical Procedures. New York, NY: John Wiley and Sons Ltd.

Malkin, J. 2002 (3rd ed.). Medical and Dental Space Planning: A Comprehensive Guide to Design,
Equipment, and Clinical Procedures. New York, NY: John Wiley and Sons Ltd.

Markus, T. 1972. Building Performance. New York, NY: Halstead Press.

Mayer, R.E. 1992. Thinking, problem solving, cognition (2nd ed.). New York. Freeman

McNeill, T., J. S. Gero, . and J. Warren. 1998. Understanding conceptual electronic design using protocol
analysis, Research in Engineering Design10: 129-140

Medical Group Managment Association (MGMA). 1999. Medical Office Space Planning Survey.
www.mgma.com./infocenter/faq-web.html#4

Meyer, B. 1997. Object-oriented Software Construction. 2nd Edition. Upper Saddle River, N.J. : Prentice
Hall.

Middleton, S. 2001. Training Decision Making in Organizations: Dealing with Uncertainty, Complexity,
and Conflict. Special Report. (http://www.workteams.unt.edu/reports/smiddltn.htm).

Newell, A. and H. A. Simon. 1972. Human Problem Solving. Englewood Cliffs: Prentice-Hall.

Nielsen, J. 1994. Usability Engineering. Boston, MA : Academic Press.

Noy, F.N. and D.L. McGuinness. 2001. Ontology Development 101: A Guide to Creating Your First
Ontology. SMI technical report SMI-2001-0880 (2001), Stanford University.

Oesterreich, B 1999. Developing Software with UML. Object-Oriented Analysis and Design in Practice.
Reading, MA: Addison-Wesley.

Paley, S. M., J. D. Lowrance, and P. D. Karp. 1997. A Generic Knowledge Base Browser and Editor,
GKB. In Procedings of IAAI’97. AAAI Press.

Palmer, M. A., ed. 1981. The Architect’s Guide to Facility Programming. Washington, DC. The Ameri-
can Institute of Architects; New York: Architectural Record Books.

Pazzani, M. and D. Kibler. 1992. "The role of prior knowledge in inductive learning", Machine Learning
9:54-97.

PBS-PQ100.1. 1996. Facilties Standards for the Public Buildings Service, US government General Ser-
vices Adminstration. www.gsa.gov/pbs/pc/tc_files/stds/pq100.pdf.

Pena, W., W. Caudill and J. Focke. 1977. Problem Seeking: An Architectural Programming Primer. Bos-
ton, MA. Cahners Books International, Inc.

Pena, W.M. and J. Focke. 1969. Problem Seeking. Houston. Caudill Rowlett Scott.

Pena, W.M., and W.W. Caudill, 1959. Architectural Analysis: Prelude to Good Design. Architectural
Record, May 1959. (pg. 178-182).

Pena, W.M., S. Parshall, and K. Kelly 1987. Problem Seeking: An Architectural Primer. Washington, DC.
Amercan Institute of Architects Press

Perkins, B. 2000. Building Types Basics for Elementary and Secondary Schools. John Wiley & Sons, Inc.
New York, NY.

130 1/14/04 PhD Thesis

Pierce, C., 1997. Group Practice Personnel Policies Manual. Medical Group Management Associations,
New York, NY.

Pierce, Courtney. 1997. Group Practice Personnel Policies Manual. Medical Group Management Asso-
ciations, New York, NY.

Preiser, W. F. E. (ed). 1978. Facility Programming: Methods and Applications. Stroudsburh, Pa.:
Dowden, Hutchinson and Ross

Preiser, W. F. E. 1993. Professional Practice in Facility Programming. New York: Van Nostrand Rein-
hold.

Preiser, W.F.E. (ed) 1985. Programming the Built Environment. New York: Van Nostrand Reinhold.

Protégé, 2000. The Protege Project. http://protege.stanford.edu

Rabinson, Julia, and J. Stephen Weeks. 1984. Programming as Design. Minneapolis, Minn.: Department
of Architecture, University of Minnesota.

Reitman, W.R. 1965. Cognition and thought: An information processing approach. New York: Wiley.

Rosenberg, D. (1999). Use Case Driven Object Modeling with UML. A Practical Approach. Reading,
MA: Addison-Wesley

Rothenfluh, T.R., Gennari, J.H., Eriksson, H., Puerta, A.R., Tu, S.W. and Musen, M.A. 1996. Reusable
ontologies, knowledge-acquisition tools, and performance systems: PROTÉGÉ-II solutions to Sisy-
phus-2. International Journal of Human-Computer Studies 44: 303-332.

Rowe, P.G. 1987. Design Thinking. Cambridge, MA. The MIT Press

Rumbaugh, James, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. 1991. Object Oriented Modeling
and Design. Enlewood Cliffs, NJ: Prentice-Hall.

Russell, S. and P. Norvig. 1995. Artificial Intelligence: A Modern Approach. Upper Saddle River, New
Jersey: Prentice Hall.

Rychener, M. D., 1976. Production systems as a programming language for artificial intelligence appli-
cations. Carnegie Mellon University, School of Computer Science. Ph.D. Thesis.

Sanoff, H., 1990. Methods of Architectural Programming. Van Nostrand Reinhold.

Sanoff, H., 1992. Integrating Programming, Evaluation and Participation in Design: A Theory Z
Approach (Ethnoscapes:, V. 7). Henry Sanoff.

Sheiderman, B., 1982. The future of interactive systems and the emergence of direct manipulation.
Behavior and Information Technology, 1(3): 237-256.

Sheiderman, B., 1987. Designing the User Interfaces: Strategies for Effective Human-computer Interac-
tion. New York: Addison-Wesley.

Simon, H. A. 1981. The Sciences of the Artificial (2nd ed.). Cambridge, MA. The MIT Press

Simon, H. A. 1996. The Sciences of the Artificial (3rd ed.). Cambridge, MA. The MIT Press

Simon, H.A. 1989. Models of Thought, Vol. I. New Haven, CT. Yale University Press.

Simon, H.A. 1989. Models of Thought. Volume II. New Haven, CT. Yale University Press.

Sims, W., & Becker, F., 2000. Planning and Programming Process, in Smith, P., Facilities Engineering
and Management Handbook: an Integrated Approach, McGraw-Hill Book Company .

PhD Thesis 1/14/04 131

Sims, W., 1978. Programming Environments for Human Use: A look at some approaches to generating
user oriented design requirements. in Rogers and Ittelson, New Directions in Environmental.

Smith, M.U. 1991. A view from biology. In M.U. Smith (ed.), Toward a unified theory of problem solv-
ing. Hillsdale, NJ. Lawrence Erlbaum Associates.

Sprecklemeyer, K., 1982. Architectural Programming as an Evaluation Tool in Design.Environmental
Design Research Association, Maryland

Sternberg, R.J. and P.A. Frensch. (Eds.) 1991. Complex problem solving: Principles and mechanisms.
Hillsdale, NJ. Lawrence Erlbaum Associates

Sternberg, R.J., 1996. Cognitive Psychology. Harcourt Brace College Publishers, Philadelphia, PA, 1996.

Straub, C. C. 1980. Lecture on architectural programming at Arizona State University, Tempe, Arizona

Su, S.Y.W. and H.-H.M. Chen. 1993. Temporal rule specification and management in object-oriented
knowledge bases. In N. Paton and M. Williams, editors, Rules in Database Systems., Workshops in
Computing, pages 73-- 91. Springer, September 1993.

Sumner, T., Bonnardel, N., & Kallak, B. H., 1997. The Cognitive Ergonomics of KnowledgeBased
Design Support Systems. Paper presented at the Proceedings of Human Factors in Computing (CHI
'97), Atlanta.

UML 2002. www.uml.org

Van Melle, W., Shortliffe, E. H., and Buchanan, B. G., "EMYCIN: A Domain-Independent System that
Aids in Constructing Knowledge-Based Consultation Programs," Machine Intelligence 3 (1981).

Veit, M. and S. Herrmann. 2003. Model-view-controller and object teams: a perfect match of paradigms.
Proceedings of the 2nd international conference on Aspect-oriented software development Boston,
Massachusetts March 17 - 21, 2003. pp. 140-149. New York, NY: ACM Press.

Verger, M., N. Kaderland. 1993. Connective Planning. New York, NY. McGraw-Hill

W3C, 2003. http://www.w3c.org. Last visited on November 5, 2003

WGPPF. 1992. Postsecondary Education Facilties Inventory and Classification Manual. Working Group
on Postsecondary Physical Facilities. bacweb.the-bac.edu/~michael.b.williams/

Wheeler, C. G. 1966. Emerging Techniques of Architectural Practice. Washington, DC. The American
Institute of Architects.

White, E.T. 1972. Introduction to Architectural Programming. Tucson, AZ. Architectural Media.

White, Edward T. 1985. Project Programming: A Growing Architectural Service, Architectural Program-
ming and Design Option, Graduate Program, School of Architecture, Florida A&M University,

WK81 Weiss, S. M. and Kulikowski, C. A., "EXPERT Consultation Systems: The Expert and Casnet
Projects," Machine Intelligence 3 (1981).

Zeisel J. and P. Welch. 1982. Adminstrative Handbook for Design Programming vol. 2. Cambridge, MA.
Building Diagnostics

Zeisel, J. and P. Welch. 1982. Techinal Handbook for Design Programming, vol.1. Cambridge, MA.
Building Diagnostics

Zimring, C., D.L Craig, 2001. Defining Design Between Domains: An Argument for Design Research a
la Carte (penultimate draft), in Design Knowing and Learning: Cognition in Design Education.

132 1/14/04 PhD Thesis

PhD Thesis 1/14/04

Appendix A: Case Studies

1. United States Army Reserve Centers

2. Elementary and Secondary Public Schools

3. Ambulatory Health Care Facilities

CoverPage

Case Studies on Programming
Recurring Building Types

Halil I. Erhan
School of Architecture and ICES
Carnegie Mellon University

May, 2001

Case Studies i

Table of Content

1. Introduction 1

Motivation 1
Objectives 2

2. Case Study: The United States Army Reserve Centers 3

Introduction 3
Basic USARC activity types and spatial designations 4

Training activities and spatial designations 4
Maintenance activities 11

Effects of army unit structure on a USARC architectural program. 13
Effects of army equipment and vehicles on the program 15
Area requirements calculations for USARCs 16
A graphical framework delinating spatial requirements generation for
USARC. 18
USARC activity affinities and their effect on design requirements 19

Low-level affinities: USARC spatial relationships. 19
Higher-level affinities: USARC activity relationships. 20
Representation of the affinity structures. 20

Summary and discussions. 22

3. Case Study: Elementary and Secondary Public Schools 25

Introduction 25
ESPS activities 26

Overview 26
Educational activities and spaces. 26
Administrative activities and spatial requirements 28
Support activities and spaces. 29

Effects of school type and school capacity on spatial requirements. 31
Spatial requirements generation for ESPS. 34
ESPS activity affinities and spatial requirements. 35

Overview 35
ESPS activity affinities. 36
ESPS spatial relationships. 38

Summary and discussions. 39

ii Case Studies

4. Case Study: Ambulatory Health Care Facilities 41

Introduction 41
Effect of the medicine speciality on the program 41
Activities in ambulatory health care facilities 43

Common activities 43
Semi-specialized activities and descriptions: 47
Specialized activities 49

Effect of a staffing pattern and patients on a program 56
 Effects of furniture, and medical instruments, equipment, tools on the
program. 59
Spatial area requirements calculation methods: 61
Synthesis of components in a framework 63

Framework components and constructs. 63
The number of physicians: The main independent variable for AHCF 65
Variables attached to specialty components. 65
Sample specialty with attached constructs 67
The sample space component with attached constructs 68

Activity affinities and their effects on spatial relationships 69
Summary 72

Bibliography 73

Appendix A: USARCs Space Assignments

Appendix B: ESPS Space Assignments

Appendix C: AHCFs Space Assignments

Case Studies iii

List of Figures
FIGURE 2.1.USARC major activity structure 4
FIGURE 2.2.Unit structure-rated capacity-space relation. 14
FIGURE 2.3.Unit structure-rank structure-spatial requirements relation. 14
FIGURE 2.4.Unit mission-activity composition-space requirements relation. 15
FIGURE 2.5.Combination of non-spatial factors effecting spatial requirements in a

USARC. 15
FIGURE 2.6.Army equipment and vehicles determine spatial requirements 16
FIGURE 2.7. Analyzing a computer programming instruction setting for two unit

members. 17
FIGURE 2.8. OMS spatial area decision structure in the framework. 18
FIGURE 2.9.An army unit member’s day sequence diagram based on the same use-

case. 21
FIGURE 3.1.ESPS activity structure. 26
FIGURE 3.2.ESPS educational activities and spaces. 28
FIGURE 3.3.ESPS spatial designations of administrative activities. 29
FIGURE 3.4. ESPS spatial designations of support activities. 31
FIGURE 3.5.School capacity and type affect activity composition and change spatial

requirements. 33
FIGURE 3.6. A partial view of the graphical framework for ESPS programming 34
FIGURE 3.7.A diagram selected from (OSDM, 2001, pg. 4103-1) as an example of how

spatial relationships (affinities) are represented in general. 36
FIGURE 3.8. Sequence diagram describing the activities, spaces and participants during

the lunch break. 38
FIGURE 4.1.Categories of ambulatory health care services. 42
FIGURE 4.2.Activity-staff-space interaction 57
FIGURE 4.3.Staff-requires-staff relation changes staffing pattern and spatial

requirements. 57
FIGURE 4.4.Patient-volume is determined by staffing, and staffing pattern is affected by

patient volume; the interaction affects the spatial requirements. 58
FIGURE 4.5.An activity requires equipment and it is used by staff; this changes spatial

requirements 59
FIGURE 4.6.Complete schema for program elements. 60
FIGURE 4.7.Analysis of spatial area requirements of a study desk setting 61
FIGURE 4.8.Components and constructs 65
FIGURE 4.9.Pediatrics specialty and attached constructs. 67
FIGURE 4.10.Updating the schema by considering proximity and accessibilities between

spaces. 69
FIGURE 4.11.Activity affinity analysis by UML interaction diagram 71

iv Case Studies

List of Tables
TABLE 2.1. Women’s latrine spatial-area calculation table (DG, 1984, pg.

46) 11
TABLE 2.2. Rated capacity for total authorized strength (AR 140-483, pg.

1). 14
TABLE 3.1. Area requirements are selected considering the school capacity

ranges. 32
TABLE 4.1. Activities and medical specialty (X represents required activities, C

represents the activity is required if certain conditions are
satisfied). 55

TABLE 4.2. MGMA (1999) conducted an informal survey of group practices
and their space planning. The averages for square footage and
number of exam/patient treatment rooms are listed in the table 62

Case Studies 1

1. Introduction

1.1 Motivation
We believe that recurring building types can offer opportunities for more efficient and
effective specification of design requirements. Recurring building types are repeated in
different contexts (including geographic location or social environments), yet their general
functional aspects do not change; their program components and the relationship between
these components are usually well-understood. Typical functions, user characteristics, and
general organizational issues form a common ground for each project. Most probably,
many precedent architectural programs already exist and can be adapted for new projects.

However, problems with use of manual methods and passive programming media, diffi-
culties with handling complex information, and non-standard representation techniques
used in current practice lead to inefficiencies and ineffectiveness in programming process.
A computer-assisted architectural programming can be one of the means to partial over-
come these difficulties. However, we believe that the system which will assist program-
ming must be based on findings of a careful investigation of programming-related
characteristics of recurring building types.

One way of discovering these findings is through an investigation of relatively well-estab-
lished architectural programming processes for recurring building types. As far as the
building types are concerned, we selected ambulatory health care facilities (AHCF),
United States Army Reserve Centers (USARC) and elementary and secondary public
schools (ESPS). The primary reasons for selecting these types are as follows:

• The different functionality of each building type provides a wide range of contextual
differences. This can help comparing different design requirements generation meth-
ods and finding their commonalities.

• In these building types, the institutional structures are well established and organiza-
tional issues are clear. Effects of these factors on programming and program can be
observed relatively easier than for non-recurring building types.

• Occupants (and users) of a recurring building type carry basic characteristic similari-
ties. Activities that occupants and users perform are independent from the location
(context) that the building is designed for.

• Each of the selected building types is relatively complex; therefore findings from
studying these building types may be easily applied to less complex building types.
(Fast-food stores that belong to a chain, for example, are also a recurring building
type, but the complexity level is not as high as for the selected types.)

• There is a huge demand for new such facilities, at least AHCFs and ESPS.
• Studies performed by private or public parties document standard requirements and

design guidelines for each type. These are easily accessible. However, most of these
studies do not address methodologies for programming, but present certain criteria
that a design can be evaluated against.

2 Case Studies

Introduction

1.2 Objectives
Specifically, the objectives of the case studies can be stated as follows:

1. To investigate architectural programing for selected recurring types, namely USARC,
AHCF and PESS, in a structured way.

2. To provide data for a detailed inquiry of commonalities in architectural programming
for recurring building types. Some of these commonalities will deal with generative
techniques of programming that we hope will help us answer the following questions:

• Is there a programming pattern that can be generalized for different types of
recurring building?

• What are the common leading concepts among programming different recur-
ring building types?

3. To determine if this process can be supported by state-of-the-art computational tools
so that the process becomes more seamless, and if so:

• to investigate if it is possible to interactively manage the generation of pro-
grammatic information.

• to systematically examine how such a computational tool can help to improve
architectural programming, both in conventional ways and in transferring
generated data to other generative computational tools (e.g. layout generator,
budget or scheduling applications etc.).

• Investigate the usage of such tools not only as part of support for early design
phases, but also for the detailed design.

Results of these studies are expected to improve our understanding of generative mecha-
nisms of design requirements specification. These mechanisms can be employed for two
purposes: first, they can help us improve the architectural programming process. Second,
we can support programming by implementing enhanced methods in computational tools.
Such a computational tool can be used for:

• Providing seamless links between different types of information through enabling
each piece of information of one type to communicate with related pieces of informa-
tion of other types.

• Enabling consistent and synchronized updates of the design requirements specifica-
tion of a particular program

• Generating design requirements in different formats
• Taking requirements available to other computational design support tools, such as

generating schematic layout, analyzing budget, staffing and scheduling
• Providing improved knowledge consistently about a specific building type.

Case Studies 3

Case Study: The United States Army Reserve Centers

2. Case Study: The United States Army
Reserve Centers

2.1 Introduction
Training is the backbone of the army activities. The new and updated military defence sys-
tems, methods and technologies create an increasing need for continuous training of the
army personnel. Also, as new recruits join to the army or promotions take place, the
importance of training becomes more clear. Therefore, training becomes an ongoing and
well-structured process to keep the army ready to accomplish given assignments with the
highest success rate and minimum damage.

As part of the army structure, the army reserve units (ARU) are not less focused in terms
of training. Because of the same reasons listed above, the ARUs have to be trained to the
same degree as any full-time army personnel. The reserves are the members of an Army
Reserve Unit defined in (Army 1, 2001) as follows:

"The U.S. Army Reserve is the active Army's federal reserve force (more than 1.100.000
reserve organized in 2000 units). It is made up of highly trained and ready-to-go combat
support and combat service support forces that can move on short notice to give the active
Army the resources it needs to deploy overseas and to sustain combat troops during war-
time, contingencies or other operations. It is the Army's main source of transportation,
medical, logistical and other units, and it is the Army's only source of trained individual
soldiers to augment headquarters staffs and fill vacancies in units."

The training of the ARUs takes place in the United States Army Reserve Centers
(USARC), which are strategically located in different geographic areas across the United
States of America. Along side their primary purpose, which is to assure training ARUs,
these facilities are planned to operate as a regular army facility (AR 140-483). The activi-
ties accommodated in a USARC are described in the following sections.

The reserves in a certain geographic area are assigned to a USARC facility located in the
same geographic area. Each group of reserves is scheduled to use the facility at a certain
drill weekend. Depending on the mission of the units, one or more of the units can use the
facility simultaneously. Besides the reserves, the facility accommodates a full-time staff
who performs administrative and support activities.

As a need for a new USARC facility emerges due to the different strategic decisions made
by the armed forces (such as the shifting a unit from one location to an other, upgrading or
extending the training activities, or increasing the number of reserves at a certain location
etc.), these facilities are designed and built by spending a significant amount of resources
and employing many architecture, engineering and construction specialists. Each time a
new USARC is to be built, the design requirements of the facility have to be determined
for the particular missions assigned to the units. A well-configured architectural program

4 Case Studies

Case Study: The United States Army Reserve Centers

can help to eliminate the misuse of the resources and assures that USARC activities are
performed effectively and efficiently in an appropriate architectural environment. The
resources spent and the challenges of configuring architectural programs for these facili-
ties make the USARCs an interesting recurring building type.

In this study, we are interested in the architectural programming of these facilities. In
order to understand the dynamics of programming and managing design requirements of
USARCs, we need to investigate typical parameters and methods used during the pro-
gramming process. The following sections will describe these issues in detail.

2.2 Basic USARC activity types and spatial designations
As stated before, in a typical USARC, two major activities take place: training and train-
ing-related maintenance and support activities. Training activities consist of four main
groups: administration, instruction, assembly, storage-support and special training (Figure
2.1). In addition to these, if required, special army equipment-use training (such as weap-
ons, tank turret or simulation) can take place in these facilities. Maintenance group
includes organizational maintenance activities, which are training oriented; and area main-
tenance support activities, which relate to maintenance of army equipment and vehicles by
full-time mechanics. Direct and general support activities consist of ancillary functions
which take place in dressing rooms, tool rooms, shop offices etc. and these activities sup-
port both organizational and area maintenance activities (DG, 1984).

FIGURE 2.1.USARC major activity structure

The activities along with sub-activities are explained in the following section. Assign-
ments of activities to spatial units (e.g. room, zone, gathering area etc.) are also described.
A complete list of space definitions and required area calculations is represented in
Appendix A.

2.2.1 Training activities and spatial designations

Administration: Administrative activities are divided into two specific catego-
ries: daily administration by permanent personnel and periodic administration by
AR personnel. The spaces in which these activities take place have two types of
use: exclusive by officers and common by enlisted personnel. The exclusive-use
spaces are reserved for ranking officers and personnel with special tasks (recruit-

Case Studies 5

Case Study: The United States Army Reserve Centers

ing, consulting etc.). The common-use and related activities take place in an
open-office space setting where workstations for office tasks are configured. The
common-office space is preferred to be surrounded by exclusive-use offices.

Space area allowances and designations of administrative activities depend on
two major factors. The first of these factors is the rank of the personnel who will
occupy the space, and the second one is the nature of the activity. The activity
descriptions are highly coupled with the ranking structure in USARCs. For
example, each full-time personnel who participates in administrative activities is
authorized to have 120 sqf. office area (open or closed space). During the drill
period, depending on the number of reservees (troops) to be trained, the rank
structure of the ARU changes. The officers with different ranks are authorized to
have office spaces of different size depending on their ranks. Therefore the rank
structure is reflected in the design requirements. If an ARU requires a major gen-
eral, he or she is allowed to have an office as large as 400 sqf, a brigadier general
is authorized to have 300 sqf. of space; for a colonel, 200 sqf of office space area
are authorized. The allowable office area for an officer increases parallel to the
the rank of the officer in the hierarchy.

The rank structure also reflects the number of troops in a particular army unit.
For example, in a company unit the highest ranked officer is a captain. The unit
contains minimum two platoons, which each is led by a lieutenant. In a platoon
there are minimum two squads consisting of 12 to 20 troops. Therefore, in a com-
pany led by a captain there are more then 50 soldiers. The maximum numbers is
specified by the army authorities according to the mission of the unit. The same
structure also applies to the ARUs.

In ARUs, the maximum number of reserves is defined as total authorized drilling
strength (number of reserves) of the largest drill (training) weekend. The largest
drill strength is headed by the highest ranked officer in the ARU. Usually, the
highest ranking officer during the largest drill weekend can represent how large
the training unit is and how reservees are grouped (namely platoon, company,
battalion, regiment etc.). It also has to be noted that the missions of the units who
are being trained in the same drill weekend can be different. Therefore the rank-
ing structure may not necessarily imply the type of the training taking place dur-
ing a certain drill weekend but the assigned missions do. During specifying the
design requirements of an USARC, the rank structure and its affects on the num-
ber of troops becomes a frequently used variable.

The common-use office spaces are also defined in terms of the maximum number
of personnel who will use these spaces during a drill period. For these spaces,
each personnel who will be trained as office personnel is authorized to have 60
sqf. open-office area. This number is standard for each USARC and calculated
after the analysis of the activities, which considers required furniture and equipe-
ment. For example, in unit-common office each personnel is given a study desk,
two file cabinets, and one visitor chair. Space allocation incorporates the required
area for each of these furniture per unit.

6 Case Studies

Case Study: The United States Army Reserve Centers

After adding the circulation paths to the open office areas, an initial area require-
ment for these office spaces can be determined. The area which is required for
intra-activity circulation must be equal to 15 percent of the total area required for
office spaces. Inter-activity circulation paths (e.g. from open-office space to
exclusive space) are specified as individual spaces.

Some of the administrative activities, such as recruiting and retention, require a
fixed spatial area which is independent from the rank of the personnel who
occupy the space. For example, a recruiting office in a typical USARC is autho-
rized to be 250 sqf. In this office officers, civilian and enlisted personnel work
together for recruiting activities.

Administrative support: The administrative activities include receiving and
distributing all inter- and intra-office correspondences, reproducing of army doc-
uments and paperwork, and automation-support (computer-based). The area
requirements for these spaces are based on the maximum number of reserves
being trained during a typical drill period. The required area decision is made in a
range which consists of a minimum and maximum value. For example, the area
requirements for support-offices are calculated as follows:

Area = 120 sqf + (Round_up (number of members/50) x 60 sqf).
if the required area is greater than 360 sqf then the area is 360 sqf.

The relationships of activities in office-spaces can be represented in the follow-
ing figure.

Assembly: In a typical ARU, one of the main activities is to assemble the unit-
members in an organized and ordered manner in an assembly hall. Usually, the
officers address the units about a particular issue involving the whole unit. The
assembly hall must be flexible enough to accommodate other functions such as
dining, full-unit training, special events, and ceremonies. The hall is used by
large groups for different activities which can’t take place in other spaces. The
space must have direct access to the spaces where administration, food service,
and instruction activities take place. The area requirement is calculated by incor-
porating the total authorized drill strength of the largest drill weekend into a for-
mula. As part of the assembly hall, a chair-storage space is required. The range of

Case Studies 7

Case Study: The United States Army Reserve Centers

area authorization is between 3000 and 6200 sqf. The area of assembly hall is
calculated as follows:

Area = 3000 + (Round_up (Number of members / 50) x 600)
if (Area > 6200) then Area = 6200 sqf.

Food service: The activity consists of preparing, cooking and serving the food
held in the food storage. It also includes cleaning and storing all utensils, pots,
dishes, trays and silverware. The area requirement for the spaces in which food
service activities take place is standard for all USARCs: 300 sqf. for food prepa-
ration, 150 sqf. for food storage, and 200 sqf. for scullery activities. In addition to
these, a 80 sqf. of office-space area is needed.

Instruction: These activities involve instructional training of unit members. The
activities can be grouped under two different settings: group instruction and indi-
vidual study. In group instruction, a certain number of personnel are educated by
an instructor. This activity usually takes place in the classrooms, which are
planned to accommodate 25-30 trainees and an instructor. The classrooms are
required to be flexible so that they can be divided by a movable partition. In the
individual study activities, each individual studies alone in a space such as
library, reading-room, or learning-center.

The area requirements for the classrooms can be calculated by two different
methods. The first one uses the total number of personnel (troops or unit mem-
bers) of the largest drill weekend. In this method, the following formula is
applied:

Area = 3000 sqf. + (Round_up (Number of members / 50) x 300 sqf.)

The second method is similar to the first one, but the formulation is different. In
this method, each individual who will be trained is authorized a 20 sqf. of class-
room area. The number of trainees is multiplied by this value. However, the first
method is preferred in the recent design guidelines (AR 140-483).

The number of classrooms can be calculated by dividing the number of members
of the largest drill weekend by the ideal classroom size, which is 25-30 reserves.
The classrooms must have direct connection to a training aid storage. The storage

8 Case Studies

Case Study: The United States Army Reserve Centers

area is 10 percent of the total classroom areas. Another requirement is that direct
daylight (e.g. window open to outside) should be provided to the classrooms.

If a USARC is authorized a COMSEC account (COMmunication SECurity
Training), a communication security training classroom and storage area are
additional required spaces. Each of these is authorized to have a 100 sqf. area.

For each USARC, an instructor room of 300 sqf. and a publication room are
additional required spaces.

Weapon storage: If a USARC is assigned weapon training, a special weapon
storage area is required. The storage is divided into two distinct zones: single-
served weapon storage (such as pistols or rifles) and crew-served weapon storage
(such as machine guns). The storage must be secure enough to prevent unautho-
rized entry and exit. A place where the weapons are repaired and maintained is
also required. The area calculation for the required spaces can be calculated as
follows:

Single-served weapon storage = 220 + (Round_up(number of members / 100) x 110) sqf.
Crew-served weapon storage = Round_up(number of crew_served weapons / 50) x 110 sqf.

Armorer = 110 sqf.

Total Area = Single-served weapon storage + Crew-served weapon storage + Armorer

General storage: Unit and individual equipment items are stored in specially
designated areas where standard 96 square foot storage cages are located. The
number of cages depends on two factors: the number of members to be trained
and the unit type. For example, if the unit type is "None school TDA" (i.e. if there
is not any training activity which take place in classrooms), one cage per incre-
ment or portion of 20 unit members is authorized. Fifteen percent of the storage
area is added as intra-functional circulation area. In addition to these areas, a
staging area, which must be equal to the unit storage area, is required. The stor-

Case Studies 9

Case Study: The United States Army Reserve Centers

age is managed by a supply officer, who is located in a 120 sqf. of office adjacent
to the storage.

Fifty square feet of janitorial storage area are required for each USARC. If the
facility is not planned to include organizational and area maintenance activities,
additional storage such as flammable storage and controlled waste storage is also
required. Facility maintenance and storage for custodial contractors are other
required spaces and their area calculation is as follows:

Area for facility maintenance and custodial contractors = 200 + (Round_up (number of mem-
bers / 10) x 100 sqf.
if (Area > 800) then Area = 800 sqf.

Similar formulas are used for calculating area requirements for storage. A com-
plete set of the formulas and functions are included in Appendix A.

Special training: These activities prepare the unit members for special missions.
Some of these activities are the followings: rifle shooting practice, photo process-
ing and analyzing, medical training, physical exercise, sensitive information pro-
cessing, solid material testing, drafting etc. The area requirement calculations
either depend on the number of members who participate in these training activi-
ties or a fixed area is authorized for each activity.

Among these activities, medical training is the most complex one and it requires
specialized spaces. However, this complexity is solved by a standard medical
facility program, which the overall space requirements of medical training facili-
ties are defined. This standard program is applicable for each USARC. For exam-
ple, in order to accommodate medical training activities, a 400 sqf. area is
needed. An additional 2500 sqf. area is required for physical examination activi-
ties. The training and physical examination activities are further broken down
into smaller activities, and each of these activities is assigned to a specific space.
Their relationships (and even spatial layouts) are defined in the medical zone pro-
gram.

10 Case Studies

Case Study: The United States Army Reserve Centers

Another activity which requires complex spatial features is band-training. The
spaces required for this activity include offices, practice booths, storage for
instruments, rehearsal room, recording room, library, and main rehearsal space.
Some of the design requirements (including the area requirements) for each of
these spaces are mentioned in (DG, 1984, pg. 58) and are applicable to all
USARCs.

Other special activities and their respective activity-to-space mapping are represented in
the following figure.

Case Studies 11

Case Study: The United States Army Reserve Centers

General support: These activities are divided into two types: auxiliary and facil-
ity support. The first group of activities requires men’s and women’s locker
rooms and latrine facilities. An alcove to locate vending machines for refresh-
ments and a kitchenette for full-time personnel are additional required spaces.
The second type of support activity deals with electrical-telephone-mechanical
distribution, which requires continuos maintenance.

The required area calculations for the first type of activities are based on two dif-
ferent methods. The first method consists of a formula in which the number of
members of the unit is incorporated. The second method uses standard data-
tables to select spatial requirements. A sample table for planning women’s latrine
is represented in Table 2.1. The table takes the peak occupancy as the guiding
variable, which assumes that 30 percent of the largest drill weekend would be
female. The spaces supporting the second type of activities have constant (fixed)
area requirements.

TABLE 2.1. Women’s latrine spatial-area calculation table (DG, 1984, pg. 46)

2.2.2 Maintenance activities

Organizational-maintenance: The purpose of organizational maintenance is to
train ARU assigned to mechanic positions. The maintenance training takes place
in the organizational maintenance shop(s) (OMS), which is required if more than

Peak
Occupancy

Water
Closets

Lavatories Showers Total
Fixtures

Spatial
area (sqf)

1 to 15 1 1 1 3 150

16 to 35 2 2 1 5 175

36 to 55 3 3 1 7 225

56 to 60 4 3 1 8 250

61 to 80 4 4 1 9 275

.....

12 Case Studies

Case Study: The United States Army Reserve Centers

10 vehicles are assigned to a USARC. The number of vehicles are calculated by
adding the number of all assigned wheeled and tracked vehicles, engineering
equipment. The OMSs have their unique spatial requirements. All of the mainte-
nance activities must be connected to work bay area, which provides a space for
servicing and repairing the assigned mobile and stationary army equipment. For
every increment of four assigned vehicles, one work bay is needed. The dimen-
sions of each work bay is standard (20 feet wide and 40 feet deep with a 14 feet
clear ceiling height). Four feet-wide walkways along each side of the work bays
are also required for circulation. The configuration of work bays depends on the
number of work bays needed, which should allow each equipment to enter and
exit without blocking the other vehicles.

Each OMS should provide outside work bays in front of the vehicle entrances,
which are the extension of work-bay area. The area requirements for outside
work bays are similar to the area requirements for indoor work bays, except they
don’t need an enclosure.

The area of work bays is calculated as follows:

Number_of_workbays = Round_up (number of vehicles / 4)
Area of work bays = [number of work bays x (40 feet x 20 feet)] + [(4 feet x40 feet) + (4 feet
x 20 feet)]

Other activities are performed in a space surrounding the work bay cluster.
Needed spaces are an office, a tools and parts room, a small latrine, a storage, a
battery room, a flammable storage room, a controlled waste storage, and a
mechanic/custodial room. The area requirements of these spaces depend on the
number of work bays required in a OMS. For example, in order to calculate the
area requirement for the battery room, the following formula is applied:

Area of battery room = 50 + [(number of work bays - 1) x 25 sqf]
if (Area > 200 sqf) then Area = 200 sqf.

The area of shop-offices is calculated based on the number of assigned full-time
administrative officers and the number of administrative personnel. The formula
which is used to calculate the area requirements of office space is defined as fol-
lows:

Shop office area = [number of adm. personnel x 60 sqf] + [number of adm. officers x 120 sqf]

Case Studies 13

Case Study: The United States Army Reserve Centers

Area maintenance support: As opposed to OMS, the primary purpose of these
activities is to service vehicles by the full-time personnel. Even though training
ARU mechanics is not an objective of these type of activities, they require set-
tings similar to OMSs. The area maintenance support activity shops (AMSA) are
the space in which the majority of the maintenance work is performed. If
required, these shops can be located in a separate location. If located in a USARC
facility, AMSA shares OMS’s work bays and support spaces. If this is the case,
some other unique spaces which are not listed in OMS are needed to accommo-
date full-time personnel. These spaces are a break area, men’s and women’s
locker rooms, a supply room, an electronics shop, a small arms repair shop con-
nected to an arms vault, and an instrument repair shop. Outside of each AMSA, a
service or access apron as wide as work bay clusters is required. In order to clean
vehicles, a wash platform is also required. A standard service apron and wash
platform is also needed.

The area calculations of work bays and other spaces in AMSA facilities are simi-
lar to the spatial area calculations for OMS facilities.

An equipment park is also required for parking army equipment and vehicles in a
safe place. Depending on the climate and the needed security level, the equip-
ment park can be either open or closed. A complete description of the spatial area
calculations is described in Appendix A.

2.3 Effects of army unit structure on a USARC architectural program.
The army is a highly organized institution. The unit structure hierarchically grows as the
mission of the unit gets more complex. The smallest part of an army unit is a soldier. A
certain number of soldiers (usually between 12 to 20) form a squad; two or more squads
form a platoon; two or more platoons form a company; two or more company form a bat-
talion etc. As the structure grows by addition of more units into regiment, brigade, divi-
sion, corps and army.

14 Case Studies

Case Study: The United States Army Reserve Centers

The structure of the army units is reflected in the physical facilities that the army uses
(Figure 2.2). For example, a training building capacity is based on a variable called rated
capacity; it is based on "aggregate authorized strength (number of troops) of all units pro-
grammed for assignment to the center" (AR 140-483, pg. 1). This variable corresponds to
"the maximum number of reserves that a facility can accommodate at all training assem-
blies." The rated capacity is selected from a standard table Table 2.2. The rated capacity is
used in formulas to calculate area requirements for different spaces. In previous section,
the number of members variable points to the value assigned to the rated capacity.

TABLE 2.2. Rated capacity for total authorized strength (AR 140-483, pg. 1).

FIGURE 2.2.Unit structure-rated capacity-space relation.

The hierarchical rank structure is also reflected in the physical requirements of a USARC.
As described earlier, the best example of this is that the spatial area of office spaces
increases as the rank of the officers assigned to these offices increases. For example, a
general is authorized to have 400 sqf. office space, and a lower rank, colonel, is authorized
to have 200 sqf. office space. Parallel to the increase in the rank, the number of members
of a unit increases as well (or vise versa). The increase in the number of members, as
described in activity-space designations, causes changes in the spatial area designations
and, consequently, affects activity-space assignments (Figure 2.3).

FIGURE 2.3.Unit structure-rank structure-spatial requirements relation.

Total authorized
strength

Rated
capacity

Under 55 N/A

55 to 75 60

76 to 125 100

126 to 175 150

176 to 250 200

... ...

determines

refers to

changes

Determines

changes

Case Studies 15

Case Study: The United States Army Reserve Centers

The mission requirement of the units assigned to a USARC is another determinant that
affects the spatial requirements. The mission, furthermore, is broken down into specific
activities, which in turn constitute an activity composition.

The mission assigned to an ARU determines the activities which take place in a USARC.
Each activity to be performed requires certain spaces (Figure 2.4). For example, if an
ARU trains to maintain army equipment, then a OMS facility becomes part of the spatial
requirements. Another example is when a unit is assigned for weapon-use training. In this
case, an army vault, a shooting range with a certain number of shooting lanes, an arm
repair space etc. are added to the program. Beside this interaction, the spatial-area and
dimensional requirements are calculated considering other variables, such as rated capac-
ity and space allowances per member.

FIGURE 2.4.Unit mission-activity composition-space requirements relation.

We observe that an ARU structure is the result of the mission assigned to the unit. As the
unit structure changes, the ranking structure of the unit members changes as well. The
combination of all of these relations is represented in Figure 2.5.

FIGURE 2.5.Combination of non-spatial factors effecting spatial requirements in a
USARC.

2.4 Effects of army equipment and vehicles on the program
The equipment and vehicles that are used during an ARU’s mission directly affect the
decisions made about the spatial requirements. We observed that each equipment or vehi-
cle can be in one of three basic states: stored in a location, being maintained/repaired by
unit members, or being used for training purposes. In each case, it occupies a space with
certain requirements. When equipment is not used, it is located in a parking area with
varying sizes depending on the equipment and vehicle types. Another example are army
weapons that are stored in arms vaults where the vaults area is determined considering the
sizes of the weapons, security concerns, accessibility to arm-repair shops or shooting prac-
tice ranges.

changesdetermines

refers to

16 Case Studies

Case Study: The United States Army Reserve Centers

The maintenance spaces must accommodate equipment and vehicles of different sizes,
therefore flexibility of these spaces is a desired feature. An example for this is the work
bays of an OMS. The vehicle that is maintained in these spaces can be of different types,
such as an armored vehicle or a multi-terrain vehicle (like a Hambee). The work bay’s spa-
tial requirements are optimized to accommodate all possible types of vehicles. Wireless
communication equipment is maintained or repaired as part of USARC activities. The
spaces where the equipment and vehicles are used are specified similar to spaces they are
maintained in (i.e. equipment and vehicle size- and operation-related features are incorpo-
rated into the spatial requirements).

The furniture which is used in both open- and private-office spaces is also a determining
factor of spatial requirements. In an open office, each individual (such as a clerk) is
assigned to a workstation with a study desk, a guest chair, an office chair, and two file cab-
inets. A standard furniture layout in a standard-size space is specified in army design
guidelines (DG, 1984, pg. 24).

Each equipment that the ARU members uses is associated with one or more activities.
Therefore, the effects of army equipment on the space requirements can be represented as
shown in Figure 2.6

FIGURE 2.6.Army equipment and vehicles determine spatial requirements

2.5 Area requirements calculations for USARCs
The area requirements of the activities which take place in a USARC are determined con-
sidering basically four types of information:

• number of members who perform the activity,
• rank of members who perform the activity,
• activity-specific description (including ergonomic and antropometric data),
• physical data about the equipment, vehicles, and furniture to be used, maintained or

stored.

As noticed, non-spatial information such as ergonomic data, or number or rank of unit
members, are considered in calculating area requirements of spaces in a USARC. Some of
the area calculation formulations are explained in Section 2.2. When these formulations
are generalized, we observe that each formula utilizes similar variables which refer to the
above listed four basic types of information. For example, in calculating area requirements
for an office-space for a ranked officer, we determine the area by considering the rank of
the officer, the office layout considering furniture area requirements, and the use of the
office itself in relation to other activities. However, for each office space and for each

requiresuse/maintain

Case Studies 17

Case Study: The United States Army Reserve Centers

officer rank, a predefined spatial area with its dimensions is listed in associated army doc-
uments such as (DG, 1984) and (AR 140-483, 1994). Selecting the value from these
sources eliminates the area calculation phase in most of the cases.

The area requirements of an OMS, on the other hand, are calculated by taking the number
of work bays as one of the reference variables. The number of work bays depends on the
number of pieces of equipment and vehicles which are assigned to the unit. The variables
in formulas to calculate area requirements can be extracted from the army standard docu-
ments as done in this study (such as (DG, 1986)(AR 140-143, 1994)). The area require-
ments either can be picked from the listed sources or the listed sources include standard
formulas in which values for each variable are assigned and the formulas result in the area
requirement. Therefore, the methods for area calculation present an organized systematic
pattern.

Spaces required by activities which aren’t standard for a USARC may not be included in
design guidelines. In such a case, the army provides the description of the activity, which
contains the typical participants of the activity, special equipment to be used during the
activity and affinities to other activities are contained. Design requirements for the spaces
which accommodate non-standard activities can be decided with an analytical method. For
example, let’s assume that a non-standard activity would be training the unit members in
computer programming. The number of members who will be trained in a session could be
a reference variable to start with. For each increment of two members, one computer may
be assigned (which is usually a decision made by the army planners). Therefore, the num-
ber of computers will be equal to half of the number of unit members who will be trained.
An area to accommodate two unit members, a computer and a work station (desk) can be
calculated by analyzing the activity-space requirements (Figure 2.7). The number of
workstations and the unit area requirements are multiplied. In order to finalize the area
requirements, the result is added to the sum of the required circulation area (which is stan-
dard 15% of the total activity area for USARC) and ancillary spaces (such as storage,
printer, and instructor desk etc.). During the analysis, additional equipment and furniture
which could be used during the activity can also be determined.

FIGURE 2.7. Analyzing a computer programming instruction setting for two unit members.

18 Case Studies

Case Study: The United States Army Reserve Centers

As described above, the methods to be used for area requirements can be one of three
types: selecting a value from a table, using a pre-determined formula, or analytical reason-
ing. Depending on the situation, the programmer can choose to use one of these methods.

2.6 A graphical framework delinating spatial requirements generation for
USARC.
In the previous sections, components which play an important role in the transition from
non-spatial requirement to spatial requirements are discussed. Activities and their compo-
sition, army unit structure and rank structure, and activity-dependent equipment-vehicle-
furniture are some of these components. In order to understand all of these components in
their entirety, we delineate a framework in which these components and their relationships
can be structured.

The framework that we intend to delineate is represented in Appendix A. The framework
is described by two types of representations complementing each other. The first represen-
tation contains formulas, functions, variables and conditional statements when used calcu-
lating the number and spatial requirements of spaces which accommodate USARC
activities. The second representation graphically describes the hierarchical structure of the
spaces. Both representation can be joined to describe the framework as shown in Figure
2.8 as an example. However, we preferred to simplify this in Appendix A by dividing it
into the representations that we mentioned here.

FIGURE 2.8. OMS spatial area decision structure in the framework.

In this framework, independent variables (such as the number of unit members, number of
army equipment-vehicles etc.) are used along with dependent variables (such as the num-
ber of work bays) in formulas and functions to make decisions about spatial requirements.
For example in Figure 2.8, an OMS and associated spaces are shown. If the number of
army equipment and vehicles assigned to a unit is more than 10, a USARC is assigned to
an OMS. The number of vehicles and equipment is decided by army authorities. After this
decision, spatial requirements for an OMS can be derived. Each requirement involves one
or more spaces, and each space’s spatial requirements are decided by applying associated

Storage

Mech./Custodial
Room

Controlled
Waste Storage

Flammable
Storage

Shop Office

Work Bay

Tools and Parts
Room

Toilets

Organizational
Maintenance Shop

Organizational
Maintenance Activities

Number of Unit
Members

U

Number of Full-time
Personnel

FP

Number of Adminstrative
Personnel

AP

Number of Vehicles

V

A=120

A

A

A

A

N

A = 96

A = 75

A

A = OMS.AP x 60 +
OMS.FT x 120

A = Max (Area (OMS) x
0.03, 50)

N = V/4
A = N x [(40 x 20) + (4 x
40) + (4 x 20)]

A = Max [(Number
(Workbay) - 1) x 25 +
96, 200]

A = Max [(Number
(Workbay) - 1) x 25 +
50, 200]

IF V > 9
 OMS.assigned = TRUE
ELSE
 OMS.assigned = FALSE

Case Studies 19

Case Study: The United States Army Reserve Centers

formulas and functions. For example, to decide the number of required work bays, we
divide the number of assigned vehicles and equipment by four, i.e. for each work bay, four
vehicles are assigned. The formula is not directly given in the standard documentations,
but can be derived from the descriptions. Similarly, area requirements for each work bay
are also provided in these standards. These requirements can be formulated in a function
where the area variables (such as the number and area) of work bays are calculated. The
demonstrated process can be extended to include generating other design requirements
(such as equipment assignment, mechanical, electrical, or structural requirements).

2.7 USARC activity affinities and their effect on design requirements
In previous sections, the USARC activities and their effects on spatial requirements have
been investigated. At the next level, we intend to investigate the USARC activity affinity
patterns and their reflection in the spatial requirements and affinities. This is because, we
believe that the spatial affinities are a way of describing how activity affinities in a given
organizational structure can be constructed and satisfied by a facility.

2.7.1 Low-level affinities: USARC spatial relationships.

The affinities between spaces are the outcome of the activity affinities. That is, if two or
more activities relate to each other, the spaces which accommodate these activities relate
to each other in some way. We observe that this can happen in three basic situations.

The first one is that a certain space may need to be located at a certain physical distance to
other related spaces. This can be called proximity. For example, In order to avoid the
noise, the rifle range should be located away from the medical wing. It also has to be
located close to the arms vault and arms repair shop to provide an isolated and safe access
to arms. The magnitude of the closeness (distance) can be specified depending on the size
of the facility and other spatial requirements.

The second situation occurs when different types of accessibility, such as visual, physical,
acoustic etc., from one space to other spaces are required. For instance, from the exclusive
offices to the common-use office area a direct access is required. Also, between the work-
stations located in the common-use office area, a certain level of visual accessibility is
needed to observe the trainees. The noise access from the assembly hall to the classrooms
is not a desired feature. Therefore, a zero level acoustic accessibility from assembly hall to
the classrooms can be specified.

In the third situation, a space may be used for multiple purposes (activities) at different
times. Therefore the spatial requirements including spatial affinities have to be specified
considering each of the activities. For example, the assembly hall is used for assembly,
large group training, ceremonies, and dining. Each of these activities may require the
assembly hall furniture and layout to be arranged differently. If the dining activity is
scheduled, the assembly hall is furnished with dining tables, and the space has to have
access to the food service area. If a ceremony takes place, the arrangement will change
and may be the tables and chairs will put in a storage area. Each of these activities consist
of their unique affinities to other activities and they are projected to space affinities. The
affinities between different activities taking place in the same space at different times
imply a spatial overlapping relation from one space to the very same space.

20 Case Studies

Case Study: The United States Army Reserve Centers

2.7.2 Higher-level affinities: USARC activity relationships.

We believe that the spatial affinities are derived from higher-level affinities such as rela-
tionship from one activity to other activities in an organizational structure. In the army
design guidelines (DG, 1984), affinities between activities are not explicitly mentioned,
but affinities between spaces are. From the spatial affinities and their descriptions, we
could derive the activities and their affinities to each other. Therefore, the spatial affinities
can be used to analyze the logic and patterns underlying behind spatial affinity require-
ments in army design guidelines. This process is similar to reverse engineering and the
results could provide us a more adaptable method in generalizing the USARC spatial
affinity structure.

In addition to spatial affinities, the design guidelines refer to the activity participants (unit
members, officers, mechanics etc.) who contribute to an activity and the activity’s relation
to other activities. For instance, the specification of an ranked-officer’s office refers to the
officer’s rank and role in the facility. If the officer supervises clerical training, then this
implies an affinity between what the officer does and what the clerical personnel does.
This relation can be interpreted as the officer’s office must have a direct access and visual
access to the clerical personnel training area.

The equipment and vehicles are also incorporated into activity affinity structure, and
therefore into spatial affinities. There are cases where a spatial affinity is required only
because an equipment or a vehicle is needed to be shared by two or more activities. For
example, the vehicle and equipment maintenance activities in work bays of an OMS share
the same space with AMSA activities. The main spaces (such as work bays) have an over-
lapping affinity to itself and the support spaces.

2.7.3 Representation of the affinity structures.

In order to represent affinities between spaces, affinity matrix, affinity diagrams or affinity
charts are used in conventional practice. Army design guideline (DG, 1984) uses spatial
adjacency diagrams to illustrate the spatial affinities. However, these techniques only rep-
resent the final state of spatial relationships, and make it difficult, if not impossible, to
understand the logic behind them. Understanding the complete affinity structure requires
more comprehensive methods where the activities are described, and their implications on
activity participants, equipment and vehicles, and spaces are explored. Also, as another
dimension, synchronization (time) of activities could be represented. These methods also
can help us manipulate the affinity structure without changing the essence of the require-
ments. Such an analysis can be done using UML methods and notations. Each space, per-
former (as role players), equipment and vehicles can be analyzed with their interactions
and interrelations. In order to illustrate how this could be achieved, a unit member’s day is
described in the following use-case.

1. The unit member enters to the main lobby
2. The full-time personnel is located in the administrative office
3. The unit member enters to the administrative office
4. The unit member reports to the full-time personnel
5. The full-time personnel authorizes the facility-use for the unit member

Case Studies 21

Case Study: The United States Army Reserve Centers

6. The unit member enters to the lockers through the main lobby and gets ready for
training activities

7. The unit member joins to the unit
8. The unit congregates in the assembly hall.

The same use-case can also be represented by using a sequence diagram. The beginning of
an army unit member’s day at the simplest form is represented by this method in Figure
2.9.

FIGURE 2.9.An army unit member’s day sequence diagram based on the same use-case.

Figure shows the first activities that a unit member performs as the day starts. The diagram
incorporates both the role-players and spaces in a time-based manner. In addition, it
explicitly depicts the activity sequences and involved factors (space, user, vehicle etc.).
Equipment and vehicles can also be added to the sequence diagram. This analysis tech-
nique can help us to establish a mechanism by which we evaluate an activity sequence
with the participants, equipment and vehicles, and reason about possible spaces and space
descriptions. For our sample case, direct access from administrative office to lockers is not
a required feature. The access to these spaces is provided through the main lobby, which
can also be the main entrance to the facility. The unit member can access the assembly hall
directly from the locker area. Where we don’t have a direct access, we may choose to
specify circulation spaces which are not mentioned before. However, this sequence may
change if the constraints on activity requirements change. For example, an electronic sign-

22 Case Studies

Case Study: The United States Army Reserve Centers

in and identification equipment may eliminate reporting to the full-time personnel.
Instead, a computer recognizes who requests entry to the facility’s restricted zones and
grand permission or not.

The army design guidelines include a set of spatial adjacency diagrams. However, as we
noted earlier, they are not as comprehensive as needed to understand the involvement of
role players, equipment, vehicles, and spatial areas in activities.

2.8 Summary and discussions.
Specifying design requirements for USARCs can be considered as a decision making pro-
cess, which starts with the decision of building one of these facilities. After the strategic
goals of the facility are established early in the process, decisions about non-spatial
requirements based on these goals are defined. These requirements determine the scope of
the project. Among the decisions are the type of the facility, activities and their composi-
tion, the ARU structure, and budget etc. In the next step, the non-spatial requirements lead
to a set of spatial requirements in the form of a space list, definitions and affinities.

In decisions about the spatial or non-spatial needs of an USARC, the activities and their
composition play an especially important role. If one of the goals requires an activity to be
accommodated in a USARC, spatial (quantitative and qualitative) needs are derived from
the description of the activities. In deed design guidelines are established to assume that
each activity requirement can be satisfied in the form of a space and its description (AR
143-144)(DG, 1984). Therefore, activity selection and composition constitute one of the
very first programming phases.

Adding a space as a requirement to the program results from the decision of adding an
activity to the activity composition. A gradual shift from required activities to required
spaces occurs during the programming process. This also incorporates equipment and
vehicles and activity participants. At each decision step, the resolution of the specified
requirements increases to provide a more concrete description of what should be satisfied
by the design. In this process, an activity’s relation to other activities (i.e. activity affini-
ties) is reflected in the spatial program in the form of spatial affinities.

Design requirements that can be stated with some type of quantitative measures are for-
mulated by using variables, formulas, and procedures. For example, the army unit struc-
ture is considered in design requirements through variables like the number of units,
number of full-time personnel, number of mechanics, the number of officers with different
ranks etc. Equipment and vehicle needs are also reflected in the design requirements as
variables such as number of vehicles, their physical and operational features (encapsulated
in variables such as area required to store or operate an equipment or a vehicle), and the
number of crew members who use the equipment. These and other variables are used in
formulas and procedures, which are employed in making decisions about the needs of a
USARC facility.

The design guidelines provide information about the variables and their use in formulas,
procedures, and logical statements. We observed two basic limitations with the informa-
tion provided. The first one is that the objective of the formulations are confined to deter-
mine limited types of needs, such as the space sizes. 1

Case Studies 23

Case Study: The United States Army Reserve Centers

The second limitation is the presentation and the use of the information, which is based on
some paper form. Obviously, the guidelines pages have to be manually browsed and the
relevant formulation has to be manually selected. The overwhelming task of information
compiling and update can become so complex that managing the information manually
results in a cumbersome situation.

In order to assist the decision making process by a computer application, the army engi-
neers designed a spread-sheet2 based on the information provided in design guidelines.
However, its use is limited to calculating certain values such as total area, gross area, cir-
culation area etc., and it is not capable of generating design requirements which are inter-
connected with each other. Consistency and correctness of the entered information is not
checked. Furthermore, conflicts between different formulations are not handled. A change
in one formula is not propagated through the spread-sheet. These are shortcomings par-
tially due to the challenges with developing spread-sheet applications, and partially due to
the limited implementation of the formulas.

We believe that the process of generating design requirements for USARCs can be mod-
elled and simulated in a specific computer application. This especially seems possible
given to the highly structured nature of the process. This process contains stages of decid-
ing the activities of a USARC, activity related spaces, and spatial requirements of these
spaces. We also believe that implementing the process in a computational environment
can provide opportunities for making the process more efficient and effective, and for
reproducing the final program in different formats which can be used by other computer
applications or for other documentation purposes. In this way, the re-use of the computer-
generated programs also becomes possible.

1. The application of these variables to the decision making process is included in Appendix A.
2. The spread sheet file is provided by the U.S. Army Construction Engineering Research (CERL) Center.
The spread sheet calculates the gross area, net area and circulation area in USARCs.

24 Case Studies

Case Study: The United States Army Reserve Centers

Case Studies 25

3. Case Study: Elementary and Secondary
Public Schools

3.1 Introduction
A statistical study conducted by the US Department of Education (DoE, 2000) and
National Center for Education Statistics (NCES) showed that the elementary and second-
ary education institutions constitute about 93% of the national education institutions. 73%
of these schools are supported by state and federal funds, i.e. these are public schools. As
of 2000, some 42.5 million of 52 million students from kindergarten through 12th grade
attend the elementary and secondary public schools (ESPS).

In order to provide school facilities to accommodate increasing student numbers, the
amount spent for school construction has increased 98% in the last six years (1994-2000).
The public funding spent for ESPS in the year 2000 alone exceeded 26.6 billion dollars
nationwide. These figures are projected to continue increasing parallel to the growth and
geographic shifts in the school-age-population. However, the public schools’s capacity
and quality have not reached a sufficient level to cover existing demand (Hebert and
Meek, 1990, pg. 11). Changes in the education systems and programs, and the completion
of old school’s life cycles are other factors that emphasize the need for new schools.

Currently, the major road-blocks in expanding the capacity and increasing the number of
ESPS facilities are the following: the lack of funding, the cost of accommodating new
requirements, which emerges from the adaptation of modern educational programs and
technology, and bureaucracy (Ortiz, 1994, pg.10; Hebert and Meek, 1990, pg. 11-16). We
believe that in addition to these, the conventional project delivery process forms another
road-block. The project delivery process passes through the stages of planning, design,
construction, occupancy and post-occupancy evaluation However, as one of the major
components of the systems, architectural programming and design requirement specifica-
tion, in particular, are not emphasized enough. At this stage, most of the cost-effective
planning and design approaches can be developed. In the current process, the quality (aes-
thetic, symbolic, environmental issues) of the school facilities are more emphasized than
how the school facility can be functional and economic, and yet satisfy the quality con-
cerns as well (Ortiz, 1994, pg.16,63-74; Cherry, 1999, pg. 132-138). Stating that, we don’t
mean that qualitative concerns are less important. On the contrary, in order to achieve
them, a rational and realistic approach should be adapted, particularly, for determining the
physical (spatial) needs. Most importantly, the time factor in planning such facilities
should be seriously considered. This includes the time spent on architectural program-
ming.

In the following sections, we investigate the programmatic issues of this recurring build-
ing type. We believe that the investigation will help us formulate a pattern in program-
ming ESPS facilities, determine the unique design requirements of ESPS facilities (such
as the main variables which can be used in determining the physical descriptions of
required spaces), and uncover the similarities and differences of programming these facil-
ities with the programming other recurring building types.

26 Case Studies

Case Study: Elementary and Secondary Public Schools

3.2 ESPS activities
3.2.1 Overview

The formal school activities are organized in three groups; educational, administrative and
support activities (Figure 3.1). The educational activities consist of mastery program
activities and creative (group) program activities (Legget et.al. 1977). The mastery pro-
gram activities deal with reading, mathematics, and language skills. Students learn
through oral and written instructions or they study educational material in a formal setting.
The creative activities place emphasis on discovery, creativity and problem solving skills.
Social studies, science, art and shop, music, and physical education form this group of
activities. Both mastery and creative programs are interwoven to form a complete educa-
tional program. The administrative activities, on the other hand, assure that the school’s
operation is planned and managed without any problem or delay. They span from record
keeping to curriculum and schedule assignments. The support activities provide basic ser-
vices such as food service, library services, student health service, sanitation etc.

FIGURE 3.1.ESPS activity structure.

The described activity structure can expand to include other activities (such as community
education, parent meetings, extra-curricular sportive activities etc.) or it may be altered in
different education programing approaches. But, for the purpose of this study, we can use
a simplified structure as represented in Figure 3.1. In any case, these basic activity groups
exist in each ESPS, but can be defined or accommodated differently.

3.2.2 Educational activities and spaces.

As mentioned before, educational activities are grouped under two categories. Activities
in the first category, which are part of the mastery program, take place in two types of
areas: general-purpose classrooms and specific education spaces. The general-purpose
classrooms are typically sized to accommodate 28 students and a teacher (maybe with an
assistant); but this number can change for different school districts or projects. Most of the
modern education approaches suggest keeping the number of students in a classroom
between 22-24 (Perkins, 2000, pg. 28).

Elementary and secondary school classroom requirements change depending on the
changing needs of and education programs for the students in different age groups. For
example, for an elementary school classroom, a project area within the classroom which
can be used for science, computer, and other equipment-intensive activities is required. On

Educational
Mastery Program

Creative Program

Administrative
PESS Activities

Support

Education and
Administration Support

Facility Support

Case Studies 27

Case Study: Elementary and Secondary Public Schools

the other hand, for secondary schools, specialized program areas (such as science rooms
and computer lab) replace project areas. In other words, these activities become more
complex and take place in separate locations. A locker area for secondary schools is
needed while it can be replaced with a wall-hanger unit in an elementary school class-
room. In addition, secondary school students are provided with individual tables and
chairs, whereas elementary school students can sit either at individual tables and chairs or
at group tables. In either case, the required space to accommodate classroom furniture
changes due to the change in the number of different age groups.

In order to accommodate students with special needs (such as students with learning or
physical disabilities, gifted-children etc.) who cannot attend school in regular classrooms,
the special education classrooms are provided. These classrooms has the same or half the
size of general classrooms in both elementary and secondary schools. For example, in
state of New York, Virginia, Ohio or Florida this number ranges from 6 to 12 (OSDM,
2001, pg. 4100; Perkins, 2001, pg. 35).

The number of classrooms needed in a ESPS equals to the projected school population
divided by the maximum number of students in a classroom stated in the education poli-
cies. In general, the required classroom area is calculated by the number of students in a
class multiplied by the allowable unit area per student. However, usually, each state pro-
vides guidelines and codes in calculating classroom areas. For instance, in New York, the
minimum standard for an elementary school classroom is 770 sqf based on 27 students. In
California, minimum space required in a classroom for each student must be not less than
30 sqf per student, and a classroom can not be smaller than 960 sqf. The Florida State
Education Board recommends 25 students per classroom for grades 1 through 3, at a range
of 36 to 40 sqf per student, and 28 students per classroom for grades 4 through 6, at a
range of 30-34 sqf per student (Perkins, 2001, pg. 30). In the Ohio School Design Manual
(OSDM) of the Ohio Department of Education, the maximum class size is suggested to be
25 students and the minimum area for each classroom is specified to be 900 sqf. (OSDM,
2001, pg. 6101-3).

The creative group activities take place in specialized program areas. Their spatial require-
ments may differ from one school to another depending on the budget and school popula-
tion. The spaces that accommodate these activities are music room, science lab, art room,
computer lab, gymnasium, (if preferred with a stage), media/video center, and library. The
library and gymnasium are typically required spaces by code, the others are recommended
spaces to be included in the program if the budget and student population allows. In order
to make use of the budget more efficiently, multiple activities can be accommodated in a
single space; such as a gymnasium, which can also serve as auditorium. If the school is a
high school, the program includes an agricultural shop, business classroom, homemaking
room, industrial art room, technical drafting room (or CAD room), vocational shops (e.g.
woodworking, auto repair etc.), and band room. As other activities are required by the
education program, depending on the budget, other specialized spaces, such as student
lounge or parent education classrooms, could be included.

The area requirements and number of these spaces differ in elementary schools and sec-
ondary schools. For example, in an elementary school with 400 or less students, one sci-
ence room with 1,000-1,400 sqf. area (or 40 sqf area per student in a class) is sufficient. A
1,000-1,200 sqf. science room (or 50 sqf area per student in a class) for every increment of

28 Case Studies

Case Study: Elementary and Secondary Public Schools

400 students is needed for a middle school. In high schools, science rooms become spe-
cialized laboratories such as biology, chemistry, or physics labs, which could be around
1,200 sqf. each (or 50 sqf per student). The number of labs is calculated based on the stu-
dent population. For each increment of 400 students, one additional physics lab and for
each increment of 600 students, one additional chemistry and one biology lab are needed
(OSDM, 2001, pg. 2300-2; Perkins, 2001, pg. 34).

The following figure shows the spaces needed for mastery and creative activity groups
which are mentioned above.

FIGURE 3.2.ESPS educational activities and spaces.

3.2.3 Administrative activities and spatial requirements

Administrative activities include, but are not limited to, record keeping and reviewing,
budget development, curriculum development and class scheduling, counseling, public
(parents) and school relations, student registration and graduation, faculty (teacher) meet-
ings. Essentially these activities take place in an office area which become the control cen-
ter for the school and contact point for parents, students, and faculty alike (De Chiarra and
Callender, 2001, pg. 225). Generally, the administration area is placed near the school’s
main entrance to enable direct visual supervision of visitors. Security has become an
increasing concern for schools and consequently for the architectural program of school
facilities. A reception area controlled from the administration area, security check point
and, if needed, security equipment area become important for a safe school environment.

There are two factors which determine the complexity of the functions in a school admin-
istration: the student population and the type of the school. First, if the student population

Educational

Mastery Program

Creative Program

General
Classrooms

Special Education
Classrooms

Music Room

Science Labs

Art Room

Computer Lab

Gymnasium

Auditorium

Media/Video
Center Earth Sciences

Biology

Specialized
Spaces

Agriculture
Shop

Homemaking

Drafting Room

Locker Room

Business
Classroom

Industrial Art

Vocational
Shops

Chemistry

Physics

Storages

Showers

Case Studies 29

Case Study: Elementary and Secondary Public Schools

increases, the school administration functions become more complex. Second, the respon-
sibilities of a high school administration are different than a middle school; and a middle
school administration functions are different than an elementary school administration.
Therefore, these complexities are reflected on the spatial requirements of administrative
spaces.

FIGURE 3.3.ESPS spatial designations of administrative activities.

The administrative office is described in the Ohio School Design Manual (OSDM, 2001)
as represented in Figure 3.3. The figure shows the suggested spaces that may be required
in an ESPS facility. Deciding which space will be added to the program depends on the
budget, school type, and school population. If one of these spaces is added to the program,
it should conform a minimum required area or a unit area per student requirements stated
in the school design manuals. Perkin (Perkins, 2001, pg. 34, 35) provides a table which
shows the typical spaces in the administrative area, spatial requirements, and whether or
not they are typically required.

3.2.4 Support activities and spaces.

Support activities in an ESPS aim at providing services for education, administrative, and
facility maintenance activities, yet not directly relate to scholastic instruction of the stu-
dents. The supporting activities tend to be accommodated in a centralized location in the
school building due to the need of students and teachers to access to these spaces easily.
Some of these activities are library services, food services and dining, personal and health
services (such as showers and restroom), teacher support services, large group meetings
and presentations. The spaces accommodating these activities are learning resource center
(also referred as media center which includes library, media room, and computer cluster
etc.), cafeteria, kitchen, storages, restrooms and showers, and faculty area.

Administrative

Reception Area

Secretarial Area

Principal's Office

Assistant
Principal's Office

Conference Room

Mail/Work/Copy
Room

Administrative
Storage

Vault/Records
Storage

In-school
Suspension

Guidance
Counselor's Office

 Guidance
Records/Storage

Guidance
Conference RoomParent/Volunteer

Room

Health Clinic

Itinerant Personnel
Office

Career Center

Office Area

30 Case Studies

Case Study: Elementary and Secondary Public Schools

Facility maintenance activities assure that the building systems (HVAC, mechanical, elec-
trical etc.) function properly and don’t cause any interruptions in education due to system
malfunctions. The basic spaces which support the facility maintenance activities are elec-
trical and mechanical closets, technology closet, central storage, sanitation supply storage,
loading and receiving area. The spatial needs for these activities are not limited to the
listed spaces. In addition the space names may change from one school program to
another. However, the listed spaces form a core of required spaces for facility support
activities and represented in Figure 3.4.

The calculation of area requirements of support and maintenance spaces are derived from
the number of students in the school, a fixed area suggested in design manuals, or a certain
percentage of the area of other related spaces (the space A relates to the space B and the
area A is equal to %X of the area B). For example, the area requirements for cafeteria in
an ESPS is calculated in OSDM as one-third of the student capacity multiplied by 20 sqf
per student or 3000 sqf, whichever is greater.

Area = (Student Population / 3) + 20
if (Area < 3000) then Area = 3000 sqf.

Similarly, the size of the reading room including inner-circulation area is equal to 10% of
the student capacity multiplied by 35 SF per student.

Reading Area = Student Population x %10 x 35 sqf.

As an example of the third method, the area of the mechanical and electrical space is equal
to the %7 percent of the sum of the program areas excluding building services.

Mechanical/Electrical Area = %7 x (sum (program areas) - building services)

The OSDM suggests 30 sqf for each of the custodial, electric and technology closets. The
size of these spaces is independent of the number of students and other spaces (OSDM,
2001, pg. 2200-11, 2400-14).

Case Studies 31

Case Study: Elementary and Secondary Public Schools

FIGURE 3.4. ESPS spatial designations of support activities.

It has to be noted that in programming for ESPS, the spaces listed above may not be
included in their entirety. Due to budget or site limitations, many large school spaces are
designed for shared functions, such as one single space for auditorium and cafeteria.
Another example is that the administration and resource areas are programmed on a
school-by-school basis and depend on staffing, operating budget, and other factors. There-
fore, determining the spaces of a ESPS program involves often a trade-off between differ-
ent space configurations and budget options. The trade-off decisions are made considering
the unique situation of the school project.

A complete list of ESPS space requirements can be found in Appendix B.

3.3 Effects of school type and school capacity on spatial requirements.
In the USA education system, the elementary schools consist of kindergarten through 5th
grade, and the secondary schools include grade 6 through grade 12. Grades 6, 7, and 8 are
taught in middle schools, and grades 9 through 12 in high schools. Depending on the
school type (elementary, middle, or high school) the spatial requirements change to

Support

Education and
Adm. Support

Facility Support

Media Specialist
Office

Workroom/
Storage

A/V Storage

Conference Room

Document
Storage

Faculty/Staff
Dining

Student Dining

Table Storage
Preparation

Area
Serving Area

Dry Foot
Storage

Cooler/Freezer

Ware Washing
Restrooms and

Locker

Media Center

Faculty Area

Cafeteria

General
Restrooms

Reading Room/
Circulation
Technology

Control Center
Multimedia

Production Room

Storage

Teacher's Room

Resource Room

Dining

Kitchen
Custodial

Closet
Electrical

Closet
Technology

Closet

Mechanical/
Electrical Space

Central Storage
Area

Loading/
Receiving Area

32 Case Studies

Case Study: Elementary and Secondary Public Schools

accommodate changing activities. For example, in elementary schools, each classroom is
reserved for a particular class of a particular grade, and the students only leave the class
for creative program activities. In middle and high schools, the students are not assigned
to a particular classroom; rather they attend each lecture in a different classroom, which is
reserved for a particular subject (math, literature etc.). The students, therefore, move from
one classroom to another during breaks between classes. The number of classrooms in an
elementary school equals the student capacity divided by the class size; yet in a secondary
school the school population is distributed over classrooms and specialized areas (such as
labs). The maximum school capacity for secondary schools can be calculated by multiply-
ing the average class size with the total number of instructional spaces including class-
rooms, labs, music room etc.

The activity composition of a school is also affected by school type. This is mainly
because, at each grade, the students incrementally learn more complex subjects, and com-
plexity of subjects leads to different instruction methods. In turn, each school type
requires different space types and requirements. For example, science in elementary
schools can be taught in regular classrooms, or in a general purpose lab. In middle schools,
more specialized general purpose science labs are needed, while in high schools, each sci-
ence branch is instructed in a related lab which accommodates the special needs of that
subject. In elementary schools, science students learn basic and simple concepts, and the
experiments do not require sophisticated settings. In high schools, on the other hand, more
complex experiment settings are needed, and each lab is equipped so that students can
conduct these experiment in a safe and pedagogically positive environment.

The school capacity is treated as a factor in school design manuals which affects the selec-
tion of activities, and therefore the selection of spaces and their sizes. The public authori-
ties may set an upper and lower limits of school capacities. For example, the Ohio Revised
Code requires that each classroom facility in an approved project must have a projected or
actual enrollment of at least 350 students. Therefore, the minimum required spaces for a
school are selected to accommodate at least 350 students.

The area requirements of certain spaces are calculated based on certain ranges of school
population. For example, in calculating the area requirements of instructional material
storage the following table is used. As the school capacity increases, the required area for
instructional materials increases: for increment of each approximately 400 students, an
additional 50 sqf of storage space is needed.

TABLE 3.1. Area requirements are selected considering the school capacity ranges.

As another example, the OSDM requires one physics lab for each increment of 400 high
school students accommodated in a school (OSDM, 2001, 2300-2). Thus, if the school
capacity is 800 students, at least two physics labs are required. Similarly, the area require-

School capacity
(students)

Area for Instructional
material storage (sqf)

350-450 50

451-800 100

801-1200 150

1201-1600 200

Case Studies 33

Case Study: Elementary and Secondary Public Schools

ments of the other spaces are derived from different formulas incorporating the school
capacity as one of the major parameters.

FIGURE 3.5.School capacity and type affect activity composition and change spatial
requirements.

Finally, an estimate of the total area of the school facility can be derived by using the unit
area per student, which is assessed based on existing school facilities and the school
capacities. In the OSDM (OSDM, 2001), the unit area range for elementary schools is rec-
ommended to be from 115 sqf per student to 125 sqf per student; for middle schools it
ranges from 140 to 150 sqf per student; and for high schools, the recommended area per
student falls into the range of 160 to 180 sqf. When the school capacity is multiplied by
the unit area per student, an approximate target area for a school facility can be obtained.
The result is used as a benchmark during allocating the budget and architectural program-
ming.

The school type and capacity, which are non-spatial parameters (as initial requirements),
determine the activity composition, which comprises school activities and their relations.
Each activity requires a specifically assigned space in a facility. However, due to the some
restrictions such as budget or site, more than one activity can be accommodated in one
space (e.g. cafeteria is used both for dining and large group gatherings). As seen in Figure
3.5, these non-spatial requirements (such as class size, school population, school type,
budget etc.) play an important role in determining the spatial requirements of a school
facility.

We can summarize these non-spatial parameters as follows:

• School capacity (the number of students that can or should be accommodated in a
ESPS),

• School type (elementary, middle, high schools, combination of elementary and mid-
dle schools, combination of middle or high schools, or combinations of all types in
one facility),

• Maximum number of students allowed in one classroom (maximum class size),
• Activity composition and activity relationships,
• Budget.

These parameters are used in formulas and procedures along with some spatial parameters
in order to calculate spatial area and number of spaces required in a ESPS.

School Capacity

School Type

Activity
Composition Activity Spatial

Requirements

34 Case Studies

Case Study: Elementary and Secondary Public Schools

3.4 Spatial requirements generation for ESPS.
In order to summarize the observations that we made during the analysis of architectural
programming of ESPS, we presented below a graphical framework. The framework con-
tains the activity-space couples, parameters which are used in spatial requirements calcu-
lation, and formulas and procedures. Each space name implicitly refers to the activity
which it accommodates, and each space (entity) is represented in a box, which may be
attached to one or more parameters, formulas and procedures. Formulas may include logi-
cal predicates or mathematical equations. If more than one formula is needed for making a
particular decision, the formulas are encapsulated in one procedure. In addition, proce-
dures can refer to other procedures. The parameters are divided into two groups: indepen-
dent and dependent. Independent parameters are those which are not directly attached to
an activity or spatial entity, and dependent variables are the ones which relate to an activ-
ity or spatial entity.

FIGURE 3.6. A partial view of the graphical framework for ESPS programming

The Figure 3.6 partially shows how this framework represents programming ESPS. In the
figure, as part of creative program activities, students are instructed science (physics, biol-
ogy, chemistry etc.) in a lab environment, where they can also conduct experiments (learn-
by-doing). The labs for these activities are physics lab, biology lab, chemistry lab, and
general purpose lab. In the figure, each of these labs are represented with a rectangular
box, and the activity which they relate to is represented with a rounded-corner rectangle.
We define independent parameters as the maximum class size (maxCS), the school capac-
ity (SC), and the school type. The class size and the school capacity are numeric parame-
ters, and the school type is a string parameter with a limited set of values. The dependent
parameters are attached to spatial entities, and each is assigned a specific value. The
required unit area per student for a particular space, the required area, the number of a
space, and the increment of the number of students are the dependent parameters in the

Science Labs

Earth Sciences

Biology

General/
Physics

Chemistry Creative Program
Activities

AN

AN

AN

School TypeSchool
Capacity

AN

STSC

ApS =
40

ApS =
50

ApS =
50

ApS =
50

Maximum
Class Size

maxCS

ApS : Area per student
A: Area
N: Number
SI: Student increment

Values:
Elementary
Secondary
Elementary & Secondary

A = maxCS x ApS
if (ST = Elementary)
N = Round_up (SC/SI)
else N = 0
A = maxCS x ApS
if (ST = Secondary)
N = Round_up (SC/SI)
else N = 0
A = maxCS x ApS
if (ST = Secondary)
N = Round_up (SC/SI)
else N = 0

SI=
400

SI=
400
SI=
600
SI=
600

Case Studies 35

Case Study: Elementary and Secondary Public Schools

example. The class size, the school capacity, the school type, the area per student, and the
student increment are parameters which are required from the programmers. The formulas
are used to calculate values for, such as, the number of a particular space and its area. The
procedures are represented in a box with an open-arrow head attached to the space box.
The procedure which is used to calculate the area requirements for a physics lab requires
values for the area per student, the student increment from the physics lab space box. It
calculates the area requirements by multiplying the unit area per student by the class size.
The number of physics lab is calculated if the school type is secondary school. If so, the
school capacity is divided by the student increment and the result is rounded to the next
integer value, which is assigned to the number of space parameter. For an elementary
school, no physics lab is needed.

This framework provides a graphical representation for describing how non-spatial and
spatial information is used in generating a design requirements for an ESPS facility.

3.5 ESPS activity affinities and spatial requirements.
3.5.1 Overview

In the ESPS programming literature, some spatial-affinity schemes for the ESPS facilities
are prescribed (OSDM, 2001; Perkins, 2001; De Chiara and Callender, 2001; Brubaker,
1998; Leggett, 1977). These schemes covers either very abstract spatial-affinities, which
are very ambitious and cannot apply directly in programming; or very specific-affinities,
which can apply to only one particular school facility. In both schemes, the actual motiva-
tions for why one space should relate to another is not described; which we believe that
this is more important than rigidly establishing spatial relationships without knowing the
rationale behind.

The spatial affinities is mainly derived from activity affinities. In the literature, there is not
an affinity schema which explains their consequences on spatial affinities. However, we
observed that the activities and their affinities (along with organizational structure) are the
major factors in establishing spatial-affinities. For example, the principle’s office, general
office, secretarial area, record storage, meeting rooms are some of the typical spaces allo-
cated in the school administration area, where different and related activities take place.
These spaces are allocated in relation to each other because the activities which take place
in them require a close proximity relationship (such as the principle supervises the admin-
istrative activities the office personnel meet periodically in the meeting rooms, the secre-
tarial personnel updates the student records and store them in the storage area etc.)
Similarly, the service activities (such as food preparation) are highly coupled with the
activities depending on these service activities (such as dining); therefore the service
spaces (such as kitchen) is located near by the served-spaces (such as cafeteria). The activ-
ity relationships may require occupants move from one location to another, and this may
imply a proximity relationship between these locations.

In a school facility, simultaneously, a wide range of activities take place. This creates a
very dynamic environment in which any interruption may cause inefficient functioning of
the school facility. The establishing spatial affinities based on activity affinities assures
that this dynamic environment functions properly. There may be other factors, such as pri-
vacy, acoustic isolation, security etc., which directly relate to activities and affect the spa-
tial relationships.

36 Case Studies

Case Study: Elementary and Secondary Public Schools

Symbolic representations of spatial affinities in the architectural programs also become an
issue when generating or interpreting the spatial-affinity requirements. The current repre-
sentation techniques of spatial-affinities (such as affinity diagrams as shown in Figure 3.7)
may cause designers to misinterpret the spatial relationships. For example, the representa-
tion of space symbols closer or at a distant to each other may imply that these spaces
should be located actually as they are depicted in the diagram. However, the location of
the main entrance could be from some other direction depending on the site and other
activity relations, or assistant principle’s office may also need to have access to secretarial
area or be located on the other side of the principle’s office. In addition, the representation
technique doesn’t include non-spatial information such as activity relations. However,
activity affinities combined with spatial affinities may convey a more comprehensive and
clear description of why a space should relate to another.

FIGURE 3.7.A diagram selected from (OSDM, 2001, pg. 4103-1) as an example of how
spatial relationships (affinities) are represented in general.

In the following, we analyze activity affinities and spatial affinities of ESPS facilities.

3.5.2 ESPS activity affinities.

In the literature, the ESPS activity relationships are not explicitly documented. However,
most of the programming guidelines and design manuals provide lists of required space
and their relationships. From the descriptions of spatial relationships and space names, we
understand what are the activity taking place in a school building and what kind of affini-
ties can exist between different spaces. By this way, we can establish a logic of transition
from spatial affinities to activity affinities.

Case Studies 37

Case Study: Elementary and Secondary Public Schools

This provide us the actual reasons for the need of a space or the relationship between dif-
ferent spaces. For example, the education activities are broken down into mastery and cre-
ative activities, which each of them complements the others in education program. The
classrooms and creative activity spaces (such as labs) are self contained in that the activi-
ties taking place in each of them does not directly relate to each other. In other word, the
students in a classroom do not interact with the students in a science lab. However, one
class leaves the classroom (or lab) and moves to another (class or lab) during a recess.
Therefore, students and teachers circulate periodically between different zones and spaces.
Unlike this example, in the administration area, secretarial activities directly relate to the
activities taking place in office areas. The staff and teachers located in these two zones
share common activities very often (such as teacher’s or staff meetings). In determining
the accessibility and proximity affinities between the mentioned spaces above, we evalu-
ate how the activities are performed and what possible activity affinities could exist.

In analyzing and representing activity affinities, we believe using the Unified Modeling
Language (UML) notations, particularly use cases and sequence diagrams, would be an
appropriate method (for details refer to Booch, G., J. Rumbaugh and I. Jacobson., 1999).
For example, in order to model the activities being performed during a lunch break, we
sequentially list each of the interaction between the parties and spaces involve in this
activity in a use case (Booch, G., J. Rumbaugh and I. Jacobson., 1999). A use case
describes a particular use of a system and during the use what kind of activities can occur
and what types of objects involve during the activity. Therefore, an ESPS is the system we
intend to partially model, and we analyze the activities which take places during the lunch
break. The participants who perform the activities and spaces are also included in the use
case.

1. The students are in the classroom.
2. The administration informs the lunch time
3. The teacher releases the students.
4. The students leave the class and move through the corridor.
5. The students line in front of the food serving counter in cafeteria.
6. The students sit and eat in the cafeteria.
7. The students dispose the food trays near kitchen.
8. The students leave cafeteria.
9. The students move through corridor to attend next class.

The same activity sequence is demonstrated by an activity sequence diagram (Figure 3.8).
In the diagram each space represented as an object (rectangle) and building users are rep-
resented with an actor symbol of the UML. The arrows connecting the objects or actors
describe the interactions between them, and the arrow head shows which object is active
during the interaction.

38 Case Studies

Case Study: Elementary and Secondary Public Schools

FIGURE 3.8. Sequence diagram describing the activities, spaces and participants during
the lunch break.

3.5.3 ESPS spatial relationships.

In ESPS facilities, we have observed that there are three basic spatial affinities. The first
one is that a space in a school may need to be located at a certain physical distance to other
related spaces. This can be called proximity. For example, cafeteria and kitchen has a close
proximity relation so that the food from kitchen area can be delivered to the service area
located in cafeteria without any interruption. The second is that accessing from one space
to another need to be limited for certain building users. For example, only authorized per-
sonnel can access to service areas such as kitchen and mechanical rooms. The students
should not directly access to the kitchen from cafeteria. Between the cafeteria and the
spaces where education activities take place (such as classrooms) there must be a noise
barrier. Therefore, the access type could be physical, visual, and acoustic. Other than
proximity and accessibility (physical, visual, and acoustical) affinities, a third one could
be the overlapping affinity, which occurs when one space is used for multiple activities.
For example, the cafeteria or gymnasium is a suitable example for this affinity type. The
activities such as ceremonies, presentations, large group meetings, and even some non-
school activities can be performed in these spaces.

Students : Classroom Teacher : Adminstration : Corridor Cafeteria Classroom

Case Studies 39

Case Study: Elementary and Secondary Public Schools

3.6 Summary and discussions.
ESPS programming starts with determining the non-spatial requirements (needs) of a
facility based on the education programs, projected and current student enrollment, school
type, construction and operation-sustaining budgets etc. As non-spatial requirements
become clear, the spatial requirements of the facility are derived from these requirements.
For example, the activities which are planned to take place in the school, are specified in
education programs and an activity composition is formed by considering the relation-
ships between each activity. The activities, in turn, yield to space requirements. The
spaces are usually named after the activity names that they accommodate. The activity
composition is transformed into spatial relationships, which could be proximity (distance
between two spaces), accessibility (acoustic, physical, and visual access), and overlapping
(two activities take place in the same space).

Other than activities, the school organization structure plays an important role in deter-
mining the spatial requirements. For example, the roles of the building users are reflected
on the requirements such that the principle of the school and the principle’s assistants usu-
ally require to have their own offices, while regular office personnel share the same office
area. Teachers, on the other hand, use the classrooms for both instruction and study pur-
poses.

The school population, suggested class size, and school type are the other parameters
which are used in calculating the numbers and physical properties of the spaces.

The design guidelines for ESPS programming provide most of the ESPS programming
information in a structured way. The information presented in these guidelines describes
the general quantitative and qualitative features of a school facility. For example, each
guideline or design manual describes the ESPS facilities by listing some general non-spa-
tial requirements (such as class sizes, the school capacity etc.) and spatial requirements
(such as the spaces to be allocated, their sizes). The most of the information is provided in
this documents and programmers only need to focus on each facility’s project specific
(unique) requirements.

40 Case Studies

Case Study: Elementary and Secondary Public Schools

Case Studies 41

4. Case Study: Ambulatory Health Care
Facilities

4.1 Introduction
AHCFs, also called medical office facilities in the literature, have gained importance
because of increasing demand for outpatient treatments. The basic objective of such facil-
ities is to provide health care services for patients who do not need over-night hospitaliza-
tion or long-term care. AHCFs, therefore, are distinct from hospitals, on the one hand, and
extended care facilities on the other hand. AHCFs are aimed at reducing the cost of pro-
viding medical services. Some of the basic reasons for this demand are the following
(Kobus et.al., 2000, pg. 1-7)(CDC and NCHS, 1998):

• There is a shift towards managed care because the cost of prevention is less than the
cost for healing acute illnesses.

• Both the increasing aging population and younger population are seeking for more
preventive medical care. The demand for preventive medicine will require building
more AHCFs.

• Improvements in the medical field and technology create a necessity of redefined spa-
tial requirements. These improvements also change patient-physician relations and
definitions of activities. New facilities have to accommodate these changing aspects
of care.

• Employers are providing insurance options to their employees, and most of their cov-
erage requires a step-by-step treatment procedure, where a patient would first see a
general physician before requesting service from a specialist.

• Rising cost of both providing and receiving medical treatments require a careful plan-
ning of medical facilities.

Health care is also becoming a universal service. And wherever quality health care is
offered, the patients from different places of the world come there to seek treatments. All
of these reasons make programming and designing such facilities interesting.

In the following sections, we wish to outline the variables which are considered in archi-
tectural programming (design requirements specification) of AHCF. Following this, we
would like to demonstrate how these variables gradually become spatial requirements dur-
ing the programming phase.

4.2 Effect of the medicine speciality on the program
The top-level variable for programming AHCF facilities is the health care service type,
which can be grouped under four classes. These classes are specialty-dependent and can
be listed as primary care, specialized medicine, diagnostic medicine and group practice
(Malkin, 1989, pg. 17). Each of these classes comprises both common and unique activi-
ties. The staffing pattern also shows differences in each class.

42 Case Studies

Case Study: Ambulatory Health Care Facilities

Primary care is composed of general practice, internal medicine and pediatrics. Basic
responsibilities of these specialities are to examine patients and, depending on the serious-
ness of the complaints, to provide treatment or to refer the patient to a specialist; to keep
patients’ health records; to consult or educate patients for issues related to preventive
medicine. The second class specialized medicine (such as obstetrics and gynecology, urol-
ogy or dermatology) involves with specialized patient care (such as pregnancy and fertil-
ity), consultation (such as about birth control and sexual diseases) and treatment of
illnesses occurring in certain parts of the human body. Diagnostic medicine, as the third
class, includes diagnostic activities. Performing medical tests, radiology, ultra-sound are
some of the activities carried in the third class health care services. Results of the tests are
interpreted by a diagnostic medicine specialist and documents are transferred to the physi-
cian who referred the patient. Group practice includes single- or multi-speciality activities.
The American Medical Group Association (AMGA) (AMGA, 2001) defines group prac-
tice as

"...the provision of health care services by licensed physicians and /or dentists practicing
in a structured organizational setting that has an identifiable and functionally integrated
system for both business and practice management. This includes shared facilities, equip-
ment, personnel, records and professional staff responsible for quality of care."

The objective of this practice is to provide more efficient staffing and space planning
through sharing resources for one or more types of specialties. Economics plays a very
important role for establishing a group practice. For example, providing diagnostic medi-
cine activities in a group practice is more cost-effective than providing the same services
in a single-speciality small medical office. This also brings advantages of receiving diag-
nostic results as soon as needed and helps keeping the records in the same organization.

FIGURE 4.1.Categories of ambulatory health care services.

Specialty is one of the main variables for the selection of activities and staffing. When we
decide an activity composition for a specialty, initially the services that this specialty will

Case Studies 43

Activities in ambulatory health care facilities

offer are decided. For example, a dermatologist’s office generally doesn’t need to include
a specimen testing lab, but it may need to have an ultraviolet treatment room. However,
the specialty is not the only criteria in making decisions about an activity composition.
Staffing, patients volume, number of physicians also play an important role. Take internal
medicine as an example: if the number of patients that will be seen is not sufficient enough
to afford an in-house radiology facility, this activity can be excluded from the require-
ments even though it is a required activity for this medicine speciality. On the other hand,
for economical reasons, an internal medicine facility may have to provide improved spec-
imen testing activities along with regular testing procedures, even though they are not
required generally. Therefore medicine speciality can determine an outline of basic activ-
ity composition for a AHCF, but it cannot enforce accommodation of all activities. Refine-
ment of an activity composition continues by reviewing the effects of other variables.

4.3 Activities in ambulatory health care facilities
From the architectural programming perspective, AHCF activities can be grouped into
three: The first group includes activities common among all specialties. The second group
contains activities that are shared between one or more specialty, yet not all of the special-
ties require these activities. The third group of activities are highly coupled with a specific
specialty and not required for other specialties. For example, examination of patients is a
common activity for each specialty, whereas testing of refraction of eyes is a specialized
activity only for ophthalmology. Also, some of the medical specialties such as otolaryn-
gology or internal medicine may require specimen testing, but psychiatry and ophtalmol-
ogy do not. Thus, activities like specimen testing fall into the second group of activities.

These activities are a major factor in determining the spatial requirements, because each
activity needs a space. From activities, essential spatial requirements can be derived
through evaluating required participants, required instruments, devices or tools, or how
often these activities occur. These aspects will be explained in the following sections.

In addition, each activity is known by an activity-related name. The space names are
highly coupled with the activity that they accommodate. Mapping from activity descrip-
tions to space names also needs to be investigated to understand the transition from an
activity to a space in the programming process. The following section describes the activ-
ities that directly affect architectural design requirements and mapping from activity
descriptions to space designations.

4.3.1 Common activities

Patient examination: Patient, physician and, if required, a nurse are involved in
this activity. The physician investigates the patients’ complaints. If preferred and
allowed by the physician, patient’s company can also join but plays a passive
role. The nature of the activity is private.

Examination requires a space where examination and routine consultation with
patients take place. There are two basic considerations. The first one is related to
the area requirements. If a general purpose examination room is needed, area
requirements depend on allocating a full-size exam table, a built-in sink cabinet
with drawers and cabinets above, a dressing alcove (which is optional), a desk for

44 Case Studies

Case Study: Ambulatory Health Care Facilities

note taking, one mobile and one regular chair. Standard area for such a room is
about 96 sqf (8 x 12 feet); however, again it can be increased or decreased
depending on the situation. If special equipment, such as EKG or treadmill, is
needed, the area is recalculated by incorporating the area required to accommo-
date the equipment.

The number of exam rooms depends on the medical specialty and the number of
physicians. For example, for an internal medicine practice an average of 2.5
exam rooms is needed for each physician (Malkin, 1989, pg. 47). If there are
three physicians specialized in internal medicine, there is a need for 8 exam
rooms.

Consultation: Depending on the stage of the treatment, the physician explains
the possible reasons for the patient’s complaint, refers patient to other specialists
or to diagnostic services. If the results from diagnostic services are at hand, the
physician explains the findings to the patient. The activity is a private discourse
between the patient and the physician.

The activity takes place in a consultation room, which is also the private office of
the physician. The typical furniture of the office is a study desk with chair, book
shelves, and depending on the budget, a couch or chairs for patients to seat. The
minimum size for this room is about 96 sqf. (8x12 feet). Each physician is
assigned a consultation room in an AHCF. The number of the consultation rooms
must be equal to number of physicians.

Waiting: Patient and patient’s company wait for being called for examination,
completion of paperwork, pre-examination activities (such as weight and height
measurements), post-examination activities (waiting for prescription or paper-
work to be completed), and examination-independent activities (e.g. shots, pay-
ments, or even resting after the examination).

The waiting room is where the activity takes place. Area requirements for waiting
spaces depend on the number of physicians and the number of patients that a
physician can see in an hour. The area is calculated by multiplying the number of
seat requirements and unit area requirement per seat. The calculation of area
requirements is explained in detail in Section 4.6.

Case Studies 45

Activities in ambulatory health care facilities

Patient-, staff- and medical office- information management: Managerial or
secretarial staff keeps medical, insurance and payment records of patients. For a
new patient, a new file is created; for a current patient, patient’s record is
retrieved before the examination. One of the managerial activities is to schedule
staff working hours and schedule patient visiting times.

The business office is the location where these activities take place. The business
office may contain other spaces such as insurance office, bookkeeper office,
office manager’s office, reception, medical record archive. The existence of each
space depends on the number of physicians. In a normal-volume office, there is
usually one office manager, one insurance person, two receptionists, and one
staff member for every two physicians (Malkin, 1989, pg. 65).

Auxiliary: Activities in this designation are supported by rest rooms, water foun-
tains or vendor machines. These spaces serve waiting patients and their compa-
nies, and staff. There is also a need for a staff lounge where staff members can
rest, eat or socialize.

Rest rooms constitute toilet stalls, urinals and sinks. The number of these constit-
uents depends on the specialty and number of physicians. Rest room area to be
allocated is calculated considering the number of toilet stalls and sinks. For hand-
icap access, a rest room design incorporates design criteria instructed in the
American with Disabilities Act (ADA).

Any office with more than three employees has generally a staff lounge with the
average size of 96 sqf. The staff lounge includes a counter with cabinets and sink,
under-counter or regular-size refrigerator, microwave oven and coffee machine.

Office, medical, and hygienic supplies storage: Different storage facilities are
needed for different supplies. Each storage is maintained by different staff; for
example, nurses are responsible for medical supply, office staff takes care of stor-
ing office supplies and archiving out-dated paperwork.

46 Case Studies

Case Study: Ambulatory Health Care Facilities

For each increment of three physicians, as a standard, there must be a storage
space allocated with a minimum size of 5 sqf.

Minor surgery: Minor surgery such as treating accident cases, removing burned
tissues, treating cuts is performed by a specialized physician who is accompanied
by one or more nurses. Sometimes local anesthetics is also needed. People
accompanying the patient may stay with the patient during the operation if it is
allowed by the physician.

The activity takes place in a large exam room (12 x 12 feet). The examination
table is replaced with an operation table with a suspended operation light. Cabi-
nets and counter are designed to accommodate minor surgery-related equipment
and tools. For small AHCFs, immobilization treatment by casting also takes
place in this room. Therefore, the space must be sized accordingly.

Out-patient surgery: This activity requires more complicated surgery settings
and devices than minor surgery. Local or general anesthetic may be needed dur-
ing the surgery. Also, a patient is kept in a recovery room following the a sur-
gery. The patient is released on the same day of the operation. Internal medicine,
otolaryngology, plastic surgery, general surgery, and orthopedic surgery special-
ties may perform this activity. If the volume of the office is relatively low, (for
example, there are only two physicians practicing in the office) this activity and
minor surgery can take place in the same space.

Out-patient surgery requires a motorized operation table and an operation light
suspended from the ceiling over the table. Built-in cabinets to store surgery
instruments, linens, and a sterilization area are other factors effecting spatial
requirements. The activity also needs a patient recovery room and a patient prep-
aration room connected to the surgery room.

Case Studies 47

Activities in ambulatory health care facilities

Medical procedures support: Physician’s aides or nurses assist the physician
by performing pre-examination and post-examination tasks. Some of the tasks
are weighing patients, sterilizing instruments, sorting or dispensing drug sam-
ples, giving injections, performing routine lab tests or contacting patients over
the phone. Depending on the speciality, the activity can expand to include other
tasks such as nurse practitioners’ role in obstetrics gynecology.

The nurse station (room) is the space where staff supporting medical activities
are take place. The station size depend on the number of aides who will use the
station. The number of supporting staff can be estimated on the basis of each
physician requiring one or two aides depending on the practice. For each addi-
tional supporting staff over three, 10 sqf. additional space is added to a standard 8
x 12 feet space. The typical space furniture is a 6 feet long counter with wall and
base cabinets and a study desk for each supporting staff.

4.3.2 Semi-specialized activities and descriptions:

Semi-specialized activities are performed by some of the medical specialties (which are
explained in Section 4.2.) and not a necessary part of all specialties like common activi-
ties. Semi-specialized activities include the following:

Specimens testing: Sample specimens from patients are tested by expert staff.
The patient provides tissue, blood, or urine samples to be used for analysis and
diagnosis. Nurses or technicians take a blood or tissue sample and compile the
analysis results. The physician may also want to examine the samples during the
testing stage.

The activity takes place in a laboratory. Depending on the specialty, a waiting
area in front of the lab, a blood drive room, and a lab storage can be added. The
lab must have easy access to a toilet. Area requirements for these spaces are also
affected by specialty-specific additional activities. Lab equipment and cabinets
play an important role in the layout of the spaces.

Immobilization treatment of fractures: This activity consists as putting a cast
on a fractured area of the body. The activity may require diagnosing a fractured
area before applying a cast. if the number of immobilization treatments per-
formed in an office (like number of patients seen by the physicians or number of
physicians) justifies it, a local X-ray may be required; otherwise, the patient is

48 Case Studies

Case Study: Ambulatory Health Care Facilities

referred to a radiology provider. This activity is specific to general practice and
orthopedic surgery.

The activity takes place in the same room where minor surgery takes place in a
general practice. For orthopedic surgery, the space has to be furnished to accom-
modate a full-size table in the center of the room as well as cast materials and
storage. If the room has an X-ray machine, its area requirement has to be consid-
ered. If the X-ray taking happens in a separate space, the casting space must be
located close to the X-ray room.

Electrocardiogram (EKG): This activity records the electrical activity of the
heart on a moving strip of paper. The electrocardiogram detects and records the
electrical potential of the heart during contraction. The activity is usually per-
formed by a specialist technician or by a nurse. The patient is either asked to lie
on an exam table or perform certain exercises such as walking on a treadmill.
This activity requires mobile and stationary high-tech devices. The activity is
performed in general practice and internal medicine.

The activity takes place in an room slightly bigger than an average exam room. A
treadmill, an EKG device, and a full-size exam table are accommodated in the
room. The room is designated as EKG room.

Radiology: This activity consists of taking and studying of X-rays. The activity
takes place at different stages, and these stages involve technical staff, physician
and patient. Preparation of a patient (undressing and, if necessary medication giv-
ing), X-ray taking, providing protection for the technician, film processing, film
storing, evaluating and diagnostics are related activities. This activity is part of
general practice, internal medicine, otolaryngology, urology and orthopedic sur-
gery.

The main activity occurs in an X-ray room, which is supported by a dark room, a
control alcove, a film filing archive and a film viewing alcove. A dressing area,
which could be 3x3 sqf area enclosed by curtains, for patients is also required.
The combination of all of these spaces is called radiology service. The facility’s
spatial requirements include some technical complexities which are due to
advanced technology or devices used in the activity. A room with a full size X-
ray machine occupies a minimum of 120 sqf. The room must be insulated to pre-
vent the danger of radiation. Depending on the specialty and the patient volume,

Case Studies 49

Activities in ambulatory health care facilities

smaller X-ray machines can be used. The size of the X-ray room changes in
response to changes in the spatial requirements for the equipment.

Proctoscopy: Proctoscopy is used to examine the rectum by using endoscopic
techniques. "It is used to locate, identify, and photograph pathologic alterations,
to obtain biopsy material and perform other surgical interventions, and for deliv-
ery of medication" (Cancer Medical Dictionary). Biopsy material is sent to test-
ing labs for further analysis. A patient, a nurse and a specialist physician are
involved in the activity. The activity must be connected to preparation for testing
activities (both for physician and patient), and access to a rest room must be pro-
vided. Internal medicine, urology, and obstetrics and gynecology are specialties
which require proctoscopy testing.

A proctology room is the space where the activity take place. The room includes
a full-size exam table in the center of the room, a dressing area, a counter and
cabinets. A 20 sqf. preparation area, which is adjacent to the proctology room, is
also required. The room must have access to an ADA-compliant rest room. As a
pre-condition for this room’s addition to the program, there must be at least four
physicians practicing in the same internal medicine office or three physicians
urology.

4.3.3 Specialized activities

Specialized activities are unique to only one of the medical specialty as introduced in Sec-
tion 4.2. These activities can consist of the following:

Pulmonary function treatment: Treatment occurs after patient screening. The
patient’s pulmonary dysfunctions is treated by letting him or her breath pressur-
ized air with medication. A positive-pressure (breathing) device, an EKG device
and some other exercise devices are used during the treatment. A pulmonary
technician, a physician and a patient participate in the activity. This activity is
unique to internal medicine.

The activity takes place in pulmonary lab. There are three possible configura-
tions for the lab. In the first setting, pulmonary screening and treatment take
place in one space. In the second one, pulmonary screening is combined with car-

50 Case Studies

Case Study: Ambulatory Health Care Facilities

diovascular screening. In the third setting, pulmonary screening is accommo-
dated in a separate space from pulmonary treatment. The selection of
configuration depends on the patient volume. The first setting is useful for low-
volume medical offices. The second and third settings could be selected if the
volume is medium and high, respectively. The area requirement for the activity is
about 10 x 10 sqf.

Hearing-impairment diagnosis and treatment: A patient’s hearing ability is
measured or treated in a soundproofed space. A technician, a patient and if neces-
sary a physician participate in the activity. This activity is specific to otolaryngol-
ogy.

The space for this activity is called an audio room, which includes a sound-
proofed booth about 30 sqf. and an observation space that will accommodate a
study desk and audio equipment. The technician visually observes the patient’s
reactions through a window to the audio booth. The area required for these activ-
ities is about 120 sqf.

Refraction power measurement of the eyes: This activity is special to ophthal-
mology. Complicated devices are used for refraction testing of the eye, where the
patient is asked to read several sizes of shapes from a certain distance (20 feet
from chart to patient). Before certain other tests, patients are given drop medica-
tion to dilate the pupils of the eyes; medication requires a certain time to show
effect. The activity requires special lighting configuration that can be adjusted
from dark to different levels of lighting. A nurse or a physician and a patient par-
ticipate in the activity.

This activity and patient examination take place in the same room for ophtalmol-
ogy. The main constant that affects the room size is the distance of 20 feet for
reading the symbols on a chart. This can be reduced to half by using a special set-
ting with a mirror and a projector. The width of the space can be the same as for a
regular exam room. The furniture and equipment accommodated in the room are
refraction instruments, a special refraction measurement chair with attached opti-
cal devices, and computer-controlled eye-screening equipment. The room size
can be 10 x 14 sqf.

Case Studies 51

Activities in ambulatory health care facilities

Electrolysis and facials: The activity is usually associated with cosmetic sur-
gery. The removal of unwanted body hair by electrocuting the hair roots with an
electrified needle and applying cosmetic medicine to the operated areas are two
major tasks performed by a nurse or a physician.

A typical exam room with an additional area to accommodate an electrolysis
device is sufficient to support this activity. This space is called as electrolysis
room.

Ultraviolet therapy: Certain skin diseases can be treated by subjecting the skin
to ultraviolet light. The ultraviolet light source is usually located in a silver foil-
lined box in a room that a patient can fit in. If the light source is located in a
room, therapist also can enter to the room with the patient. The area requirement
for this activity depends on the configuration. An ultraviolet booth (box) occu-
pies about 4x5 sqf. in a room which must be as large as an exam room. A mobile
ultraviolet treatment box can also be used if the number of physicians in the
office is less than three (i.e. a low-volume medical office).

Interview patients with allergy complaints: As the activity name explicitly
states, this is specific to immunology and allergy specialties. When a patient vis-
its a physician’s office for the first time, a nurse asks the patient several questions
to gain knowledge about the patient’s health history. The answers of the patient
can directly be recorded on a paper form or entered into a computer application
by the nurse. The nature of this discourse is private.

The space in which an interview takes place must accommodate a desk (2x4 feet)
and three chairs (one for the nurse, one for the patient and one for the patient’s
company). It is called as interview room or history alcove. A 6x6 sqf. space is
sufficient for this activity. The number of interview rooms is determined by allo-
cating one room for each increment of two physicians.

52 Case Studies

Case Study: Ambulatory Health Care Facilities

Allergy medication-shots: Allergy medication is given to a patient, and the
patient is expected to stay in the ACHF until the physician makes sure that the
patient’s body does not show adverse reaction to the medication.

The activity requires two distinct spaces, one where the shots are applied and one
where the patient is observed after the shot. These spaces are called shot room
and observation room, respectively. They must be adjacent to each other.

Allergy symptoms diagnostics: Usually allergy reasons are not clear at the out-
set, and the patient must undergo several allergy tests to reveal possible causes of
the complaints. The patient lies on an examination table and a nurse or a techni-
cian performs the tests by applying allergens. The patient’s reaction to each aller-
gen is recorded and passed to the physician for further diagnosis and treatment
decisions. Sometimes, the allergist observes the reactions directly.

The activity takes place in a test room, which requires an area to accommodate an
exam table adjacent to a wall, a counter with cabinets, and enough space to use a
mobile table for allergens. The optimum area for these is about 96 sqf.

Group therapy: Psychiatry requires a space for group therapy. The space must
accommodate several patients, a physician and, if needed, a recording nurse or
typist. The setting should be relaxing, conversation-motivating and not distract-
ing.

The group therapy area is calculated by considering the number of patients
attending a session at a time. This number changes from one psychiatrist to
another; however, between 15 to 20 sqf area per patient is accepted as a reason-
able standard. The room must be designed to accommodate seating for each
patient, a chair for physician, and possibly an aide to take notes. The session can
be recorded on video or audio media. The layout must consider these factors as
well.

Case Studies 53

Activities in ambulatory health care facilities

Encephalography: The electrical activity of a patient’s brain is measured with
an instrument that records electrical potentials on the scalp. Physicians and tech-
nicians who practice neurology perform the activity.

In an encephalograph recording room, the patient lies on a full-size exam table.
Connections to an encephalograph are attached to the patient’s head. The patient
is observed from an adjacent observation room. In order to accommodate the
required furniture and equipment, the observation room needs an area as large as
an exam room (12 x 8 sqf.).

Electromyogram: An instrument is used to measure if a muscle is deteriorating
and if it can be rehabilitated. It is used by a physician or technician (nurse) in a
special setting. The results of the measurement show the strength of the muscle
and indicate if the nerves are effected. Neurologist or nurses perform the activity.

A room that accommodates electromyogram device mounted on a movable table
is required. The room can be slightly smaller than an exam room (10 x 10 sqf.)

Cysto examination: A patient with a urinary complaint is examined by cystos-
copy. If required by physician, an X-ray device is used in the same room along
with a cystoscopic table. A patient and an urologist are involved in this activity.

If there is only one physician practicing in the office, one cysto-exam room is
sufficient. The room accommodates X-ray equipment mounted over a full size
table on the ceiling. A control area, dressing area and a dark room to process X-
rays are additional spaces required. For each increment of two doctors, an addi-
tional cycto-exam room without X-ray is required along with a cycto-exam room
with X-ray. The cysto-exam room with X-ray requires about 12 x 18 sqf. Without
X-ray, the room size can be as big as an exam room.

54 Case Studies

Case Study: Ambulatory Health Care Facilities

Physical Therapy: The activity involves the treatment of physical dysfunction
or injury by the use of different types of exercises at different intensity levels. It
is intended to restore or facilitate normal function or development of the patient.
The activity is specific to orthopedic surgery.

There are two different methods for physical therapy. The first method requires a
patient to lie on a special table with a stress motor attached at one end. A thera-
pist performs hot-cold and stress therapies. These occur in a massage therapy
room. The second method uses special devices and equipment for treatment. The
space which accommodates this activity can be called active exercise room. The
area requirements depend on the selection of devices or equipment. Generally,
for a one-physician practice, there is a 16 x 18 sqf. area requirement. The area
can be increased by 1.5 times for each additional physician to accommodate the
increased number of patients.

In this section, the activities of AHCFs and their relationships to medical specialties have
been summarized. These are also represented in the following table Table 4.1. The
required activities for each medical specialty are marked by an "X". As described before,
some activities are required if certain conditions are met (such as the number of physicians
must be equal to a certain value etc.). The conditional activities are marked by a "C" in the
table. Conditional activities must be included in an architectural program when these con-
ditions in the activity descriptions are satisfied. For example, in order to accommodate a
detailed business activity (with insurance, bookkeeping, office managing etc.), the number
of physicians practicing internal medicine in an AHCF should be equal to or more than
three; else the program’s business will be performed by only one or two staff members.
This will be discussed in the following section (Section 4.4) in greater detail.

We also observe that activity descriptions are used in the initial phase of design require-
ments specification for deciding the needed spaces. In the following phase, required
spaces are named and their spatial requirements are concluded. An activity’s name is usu-
ally reflected in the name of the space where it takes place (mapping from activity names
to space names).

Case Studies 55

Activities in ambulatory health care facilities

TABLE 4.1. Activities and medical specialty (X represents required activities, C
represents the activity is required if certain conditions are satisfied).

Primary Care Specialized Medicine

G
en

er
al

Pr

ac
tic

e

In
te

rn
al

M

ed
ic

in
e

Pe
di

at
ric

s

O
bs

te
tri

cs
 a

nd

G
yn

ec
ol

og
y

O
to

la
ry

ng
ol

og
y

O
ph

th
al

m
ol

og
y

D
er

m
at

ol
og

y

Pl
as

tic
 S

ur
ge

ry

Al
le

rg
y

Ps
yc

hi
at

ry

N
eu

ro
lo

gy

G
en

er
al

Su

rg
er

y

U
ro

lo
gy

O
rth

op
ed

ic

Su
rg

er
y

Patient Examination X X X X X X X X X X

Consultation X X X X X X X X X X X X X X

Waiting X X C X X X X X X X X X X X

Information
Management C C C C C C C C C C C C C C

Auxiliary C C C C C C C C C C C C C C

Medical Storage X X X X X X X X X X X X X

Minor Surgery C C C C C C

Out-Patient Surgery C C C X X

Medical Support X X X X X X X X X

Specimen Testing C C C X C X X

Immobilization
Treatment X X

EKG X X

Radiology C C X C X

Prostoscopy X X X

Pulmonary Function
Treatment X

Hearing Treatment X

Refraction Power
Measurement X

Electrolysis X X

Facials X X

Ultraviolet Therapy X

Allergy Patient
Interview X

Allergy Shots X

Allergy Diagnosis X

Group Therapy X

Encephalography X

Electromyogram X

Cysto Examination X

Physical Therapy X

C
om

m
on

 A
ct

iv
iti

es
S

em
i-s

pe
ci

al
 A

ct
iv

iti
es

S
pe

ci
al

iz
ed

 A
ct

iv
iti

es

56 Case Studies

Case Study: Ambulatory Health Care Facilities

4.4 Effect of a staffing pattern and patients on a program
A staffing pattern (as one of the main variables in shaping an architectural program) is
highly coupled with the activities taking place in each medical specialty. The staffing pat-
tern specifies the people and their organizational structure (who does what and who works
for whom).

Characteristic staffing pattern of an AHCF contain the following professionals3:

Physicians: A physician is at the center of all medical activities. The core
responsibilities of a physician are to examine a patient, diagnose causes of
patient’s complaints, consult with patients, prescribe treatments and possibly,
administer them.

Nurses: Nurses are located at the second level of health care. A nurse is a staff
member who makes initial examination of complaints. To a certain degree,
nurses also make decisions about diagnosis and treatment of patients’ com-
plaints. They can also be specialized in a certain medical specialty like physi-
cians. For example, nurse practitioners are practicing in obstetrics and
gynecology. Before the examination, nurses take the patients vital signs (blood
pressure, heart beat rate etc.)

Technicians: The operators of equipment and devices used in diagnosis and
treatment are called technicians. While some of the technicians can have direct
contact with patients, some work without any contact. For example, lab techni-
cians usually don’t need to interact with patients, whereas the technicians who
run ultra-sound instrument directly communicate with patients. Nurses or physi-
cians instruct the technicians for the treatment or diagnostic procedures.

Medical assistants: They help nurses and physicians in preparing patients for
examination or treatment. In addition, they take the patients’ file from archive,
call the patients from waiting room and help them to move in the medical facility.
Preliminary examination or screening of the patients’ vital signs also can be their
responsibility.

Office personnel: This is the staff that works in the business office of an AHCF.
They are responsible for managing patient information, and office-insurance,
office-patient, and office-business relationships. They also place purchase-orders
for necessary supply or equipment to be used in the facility. The staffing pattern
for a business office in a medium-volume AHCF includes an office manager, an
insurance clerk, a bookkeeper, and a medical record keeper. Most of the AHCF
hire cleaning companies to clean the medical facility since medical and bio-haz-
ard materials have to be handled by authorized specialists.

The staffing pattern for an AHCF affects the decisions about general spatial requirements
(such as number of spaces or spatial areas). This can be explained by the maxim that an
activity is performed by staff and staff is accommodated in a space Figure 4.2. There are

3. AHCF’s staff and their job descriptions can be found in (Pierce, 1997) in greater detail. We only
included basic types of staff and their characteristics in this section.

Case Studies 57

Effect of a staffing pattern and patients on a program

basic standards or guidelines in deciding these requirements (Malkin, 1989). For example,
the number of physicians determines how many consultation rooms are needed. Each phy-
sician consults with his or her patients and to prevent overloading of one space, each phy-
sician is assigned to one consultation room. This room can also be used as the private
office by the physician. As the example states, the number of consultation rooms and the
number of exam rooms depend on the number of physicians.

FIGURE 4.2.Activity-staff-space interaction

A physician’s patient-examination schedule can be designed efficiently if he or she is
assisted by a certain number of nurses. The number of nurses depends on the medical spe-
cialty and the type of the AHCF (single-specialty or multi-specialty). For example, in gen-
eral medicine, a nurse prepares a patient for examination in one room while a physician is
examining another patient in another room. For an efficient work flow, a physician prac-
ticing in general medicine must be assisted by two nurses. Therefore, two examination
rooms must be assigned per physician. If we generalize this example, we may state that a
type of staff is assisted by a certain number of another type of staff (staff requires staff),
and this is reflected in the staffing pattern; in turn, this relation affects the spatial require-
ments Figure 4.3.

The type and number of assisting-staff change for different specialties. For example, a
psychiatrist does not need an assisting-staff for patient’s examination. However, an office
assistant who keeps records and schedules is needed in an office with two psychiatrists.
An obstetrics gynecologist, on the other hand, requires a nurse in the exam room during
the examination of patients. In an obstetrics gynecology practice, for each physician, there
must be two nurses and one medical assistant in the staff. In the first example, two psychi-
atrist who are practicing in the same office are assisted by an office personnel. In the sec-
ond example, an obstetrics gynecologist requires three more medical personnels; two
nurses and one medical assistant. The number of a specific type of staff (such as physi-
cians) can be an independent variable, which (with other variables) is used to make deci-
sions about other staffing requirements Figure 4.3.

FIGURE 4.3.Staff-requires-staff relation changes staffing pattern and spatial requirements.

Patients are directly or indirectly served by medical office staff. In design requirement
specification of AHCFs, patient-related variables (such as the number of patients, or num-

determines

performs accomadates

assisted bychangeschanges

58 Case Studies

Case Study: Ambulatory Health Care Facilities

bers and types of complaints) affect the decisions about the needed staffing pattern, and
consequently the spatial requirements. The overall volume of a medical office is deter-
mined by considering the number of patients who visit the office in a unit-time. In general,
this type of variable depends on the number of physicians and the medical specialty. For
example, a physician who is specialized in family (general) practice can see four to six
patients per hour, while a psychiatrist can see one to two patients in an hour. In order to
accommodate more patient, the number of physicians must be increased, therefore addi-
tional supporting staff members also will be needed. This relationship can be explained by
the maxim that staffing pattern determines patient-volume Figure 4.4.

FIGURE 4.4.Patient-volume is determined by staffing, and staffing pattern is affected by
patient volume; the interaction affects the spatial requirements.

Depending on the architectural programming approach, the number of patients can be
either a dependent or an independent variable. In other words, we can start programming
with a proposed number of patient to be examined in a unit-time and decide the number of
staff and staffing pattern of an AHCF; or with a pre-determined staffing pattern and con-
clude how many patients can be served in a unit-time (say per hour). Therefore, interac-
tion between patient-volume and staffing pattern can be bidirectional. Programming can
start from either end. For example, if an AHCF is proposed to have a certain number of
physicians with a certain specialty, the patient volume is limited with the staffing pattern
i.e. staffing pattern determines the patient volume and spatial requirements, and spatial
requirements can accommodate a certain patient-volume. If the patient-volume (demand)
is high, the solution would be increasing the number of physicians, nurses, technicians or
office personnel. Consequently these increases affect required number of exam rooms and
other spatial requirements. This can be stated with the maxim that patient-volume deter-
mines staffing pattern and spatial requirements, and staffing pattern determines spatial
requirements.

In most of the cases, a patient is accompanied by another person. Therefore, while calcu-
lating spatial requirements for general-use spaces, this also must be considered. For exam-
ple, in order to calculate the area requirement for a waiting space, the required area for one
patient must be multiplied by two. For other spaces where the patient’s accompany is
admitted, area and furniture requirements must take this factor into consideration.

As a summary, in determining spatial requirements of an AHCF (the number, size and
types of spaces) basically four variables play an important role: medical specialty, activ-
ity-composition, staffing pattern, and patient-volume. Activities are the initial variables
which determine both the required staff who performs the activity, and consequently, spa-
tial requirements. The composition of the activities depends on the specialty of the medi-
cal practice. Staffing pattern is determined after the evaluation of activity composition,
required staff, and the patient-volume. At any point, a change in the patient-volume even-

determines

requires

changeschanges

Case Studies 59

Effects of furniture, and medical instruments, equipment, tools on the program.

tually may effect the decisions about the current and the projected staff requirements.
However, as a managerial decision, a fixed patient-volume can also be targeted.

4.5 Effects of furniture, and medical instruments, equipment, tools on the
program.

Furniture, instruments, devices, equipment or tools which are required for office-use,
diagnostics and treatment purposes in an AHCF are accommodated in three typical situa-
tions. In these situations, they could be:

• being operated
• idle and waiting to be operated or maintained
• stored and not used.

The first situation involves an equipment actively being used during an activity. In the sec-
ond situation, an equipment is ready to be used but the current activity doesn’t require it.
In the third situation, the equipment is stored and it is not ready to be used for an activity.
Each situation is considered in making decisions about the spatial requirements. Each of
these requires three basic types of spatial requirements: storage area, area to operate
devices and equipment, area required when they are not used and not in the storage.

Take, for example, a medium-size X-ray machine; it is mounted on a ceiling, and when it
is operated, an area with a certain radius has to be clear from obstacles. Since it is fixed in
a room, the same room becomes the machine’s storage area. Due to the dangerous effects
of the X-rays, the machine has to be located in a room which is isolated from other spaces
by special treatment of surrounding walls, ceiling, and floor. Other instruments such as
refraction measuring tools require a space to have a specific layout. Operating refraction
measurement devices requires a certain level of lighting and a minimum depth of space.
The spatial requirements depend on two different specifications of equipment and devices:
the use (the area required to operate them) and body-size (the area required to store them).
These can be explained by the maxim that an activity requires equipment, device, tools,
and furniture and these are used by staff; and spatial requirements are affected by these
relations Figure 4.5.

Each equipment, device or furniture can be selected from different sizes. These could be
due to the manufacturers’ specifications or the usage-purpose. In addition, in parallel to
the changes in technology, the size-related specifications of the devices change. An equip-
ment’s changing features can indirectly affect the spatial requirements.

FIGURE 4.5.An activity requires equipment and it is used by staff; this changes spatial
requirements

A mobile equipment is stored in a room. The design requirements due to transferring a
mobile-equipment from one location to another are considered in programming stage.

uses

requires

changes

60 Case Studies

Case Study: Ambulatory Health Care Facilities

These affect the room sizes, opening dimensions, accessibilities, and adjacency relation-
ships of spaces.

In this study, design requirement specifications related to instruments, equipment and
devices are incorporated into activity-related requirements. Therefore, a change in an
activity description and relationships to other activities may cause the inclusion or exclu-
sion of furniture, equipment, devices etc. This indirectly affects the design requirements in
an architectural program.

The effects of activities, specialty, staffing pattern and equipment on the architectural pro-
gram of an AHCF can be brought together in a complete schema as shown in Figure 4.6.
The schema is represented by using Unified Modeling Language (UML) notations (for
details refer to Booch, G., J. Rumbaugh and I. Jacobson., 1999).

FIGURE 4.6.Complete schema for program elements.

In the schema, equipment is divided into two subclasses: mobile and fixed. Each equip-
ment (device, instrument, furniture etc.) is accommodated in a space and is used by staff.
Each activity occurs in a certain space, and each space may consists of many other spaces
(for example, business office consists of insurance office, manager’s office, record keep-
ing etc. spaces). The required activities in an AHCF are composed in an activity composi-
tion. The activity composition is associated with a specialty. The people who occupy an
AHCF can have two different roles: active (doctors, nurses etc.) and passive (patients and
their companions). The combination of staff members makes the AHCF’s staff. People
perform activities, which require equipment in a certain space.

associates

aggregation
generalization

aggregation
A generalizes B

A assiciates with B

One B aggregated to A

Many B aggregated to A

re
qu

ire
s

oc
cu

rs accommodatesaccommodates uses

occupies

performs has a

has many

has many

Case Studies 61

Spatial area requirements calculation methods:

4.6 Spatial area requirements calculation methods:
Each space in an AHCF is known by an activity-related name as listed in the Table 4.1.
The initial decisions about the size of these spaces can be made by using three basic meth-
ods. Generally these methods are based on activity-related performance requirements, but
in decision making process each follows different techniques.

In the first method, which can be called accumulated-area calculation, the required area
for equipment, furniture and devices and their operations (considering ergonomics and
antropometric data) are added up. For instance, as demonstrated in Figure 4.7, the area
that a study desk occupies is, let’s say, 13 sqf., and for a chair it is 4 sqf. The total area for
a study desk setting is going to be 17 sqf. plus a 15 sqf. area required for the operation (a
person sits in front of the desk and uses drawers, moves along side of the desk on a chair
etc.). The total area requirement would be 32 sqf. However, the area required for the chair
overlaps with the area of operation, and the area that the chair occupies must be subtracted
from the 32 sqf. total area. We conclude that the total area requirement for the study desk
is going to be 28 sqf. As the example demonstrates, this method is analytical, and each
variable affecting the spatial requirements is considered individually. By analyzing the
operation and operation-related furniture (equipment), we assign areas for each compo-
nent. The length and width of the required area are also determined during adding each of
these areas to the total. In the process, overlapping areas are removed from the total area.

FIGURE 4.7.Analysis of spatial area requirements of a study desk setting

In the second method, values for different variables, which are related to spatial require-
ments, are picked from well-established sources. In the literature, there are studies
(sources) that aim at standardizing spatial requirements for AHCFs programming. These
studies incorporate occupant, activity, and related equipment and furniture factors into the
data they provide. In addition, general information that can be applied to specific cases is
presented in these studies. Area requirements of different spaces are prescribed in differ-
ent formats. The data provided in these studies are based on personal experiences (Kobus,
1997), surveys (MCMA, 2001), analytical techniques (similar to the first method)
(Malkin, 1989) or well-established standards (BCHS, 1974-1 and 1974 - 2)(Chiara and
Callender, 1990). The second method is generally applied for space planning purposes.

62 Case Studies

Case Study: Ambulatory Health Care Facilities

Even though data provided in these sources can be applied to most of the cases, they have
to be revised and modified as needed.

TABLE 4.2. MGMA (1999) conducted an informal survey of group practices and their
space planning. The averages for square footage and number of exam/patient treatment
rooms are listed in the table

The third method is based on pre-determined and tested formulas. In order to calculate an
area, variables which contribute to the generation of a spatial requirement are incorporated
into a set of formulas. By assigning values to each variable, the required area can be calcu-
lated. For example, in order to calculate area requirements for a waiting space in an
AHCF, first the number of required seats in the waiting room is calculated. Following this,
the number of seats is multiplied by a unit area per person constant (Malkin, 1989, pg.
27). The formula to calculate the number of seats is:

Number of required seats = (3xPxD) - E

where: P represents the average number of patients that a physician sees in an hour; D is
the number of physicians and E is the number of exam rooms, which differs from one spe-
cialty to another. For example, for general medicine there must be three exam rooms for
each physician, and for allergy specialty, this variable is equal to two. Also, the number of
exam rooms can be stated in terms of the number of physicians. However, in some cases
where there are budget limitations or un-expected spatial constraints, the number of exam
rooms could be more independent of the number of physicians. The area required for seats
is calculated by the following formula:

Area = Number of seats x Area per seat.

The area-per-seat coefficient can be determined by using either the first method or the sec-
ond one. If the second method is chosen, the area requirement-per-seat is listed as 15 to 20
sqf per seat in (Malkin, 1989). In order to calculate the area for a waiting space in an
AHCF with one physician, we initially apply the first formula to find required number of
seats;

Number of seats = (3 x 4 x 1) - 3 = 9

and the result (9) is multiplied by the selected value for required area per seat.

Area requirement for waiting room = 9 x 18 = 162 sqf.

Type of practice Square feet
per physician

of exam rooms
per physician

Multi specialty 1497 2.12

Cardiology 1201 1.33

Family practice 1565 3.10

Internal medicine 1500 Not available

OB/Gyn 1653 2.78

Ophthalmology 1527 2.53

Orthopedic surgery 1843 2.32

Case Studies 63

Synthesis of components in a framework

These three methods can be employed individually or combined. This depends on the
needed data for design requirement specification. There are times when these methods
become ineffective, because they may not cover some variables which play an important
role in spatial requirements generation. It also is a trade off between staffing pattern, activ-
ities, budget, and site- and regulation-related limitations which are almost difficult to inte-
grate into these general information sources or formulas. In addition, in determining initial
requirements, rather than accepting one specific value, a range of acceptable values is tar-
geted. When these trade-offs are evaluated, the final selected area can be chosen from this
targeted range.

The described methods in this section exclusively cover area calculation techniques. There
may be some other custom-built information sources by different programmers which are
not mentioned in this study.

4.7 Synthesis of components in a framework
In the previous sections, we demonstrated how a medical specialty affects an activity com-
position; how we derive required spaces and space names from activity descriptions; how
generally a staffing pattern influences an architectural program; and how equipment
(instruments, devices, tools) affect the spatial requirements. In addition, three basic meth-
ods for calculating area requirements are explained. However, the missing part in this pic-
ture is how these different components can be combined into a complete framework. The
framework must delineate the interaction between the components and it must contribute
to representing design requirements for AHCF.

4.7.1 Framework components and constructs.

The framework represented in this section is composed of two basic groups: components
and constructs.

By components, we mean the medical specialties, activities, and spaces that are described
in the previous sections. The spaces are spatial-volumes which accommodate activities. A
medical specialty, on the other hand, plays an important role in activity composition, and
the activities are reflected in the architectural program in the form of spaces.

The second group consists of the constructs which are variables, constants, formulas, pro-
cedures, and conditional statements. They are defined in this study as follows:

Variables: These are the pointers to values with different formats, which can be
numerical, logical (true or false) or user-defined types. They are used in formulas
and procedures. Their values are manipulated through formulas and procedures.
An example of a variable is the number of physicians which holds a numerical
value (integer) representing the number of physicians that work at a given time in
an AHCF. In the framework, these variables can be independent from or depen-
dent on a component (space, activity or specialty). For example, the number of
physicians is a variable which doesn’t depend on either spatial requirements or
specialty, whereas number of patient that a physician sees in an hour is a variable
that changes from one specialty to another. Therefore, the second variable
depends on the medical specialty. The user-defined variables are used to classify
or group selected components. For example, medical specialty itself is a user

64 Case Studies

Case Study: Ambulatory Health Care Facilities

defined variable which defines the medical practice. Similarly, user-defined vari-
ables can determine if a space is private, public or semi-public.

Constants and coefficients: These are fixed values (data) that can be substituted
in other constructs mentioned in this study. For example, the area required to
accommodate a specific equipment or the minimum number of required toilet
stalls is a constant. As another example, the exam room coefficient is a value that
is used to decide the number of exam rooms for different specialties.

Formulas: These are statements which connect a set of variables and constants
with each other so that if a change in one of the variables is made, there will be a
consequent change in at least one of the other remaining variables. The formulas
are expressed as equations. For example, number of exam rooms variable is con-
nected to the number of physicians and exam room coefficient for a medical spe-
cialty. The formula for this connection can be represented as:

|# of exam rooms| = # of physicians x # of exam rooms per physician

Number of exam rooms per physician can be taken from Table 2. The value for
this variable is different for each specialty.

Conditional statements: As the name implies, these constructs represent logical
relationships between variables. For example, to state if the number of physicians
(D) is greater than 3 then a detailed business office (Bd) is needed. The first vari-
able (D) is a numerical variable and the second (Bd) is a logical (binary) variable.
The conditional statement can be state as:

if D >= 3 then Bd = true
else Bd = false

Procedures: These constructs are used to encapsulate one or many formulas and
logical statements in a package that manipulates multiple variables at a time. For
example, to calculate the number of toilet stalls we use the following formula:

TS = Fx + (DxTc)

where: TS is the number of toilet stalls; Fx is the minimum number of toilet
stalls; D is the number of physicians and Tc is a specialty-dependent coefficient.
In order to determine the required number of toilet stalls for a urology specialty,
the function can be stated as:

Calculate_number_of_tolilet_stalls_for_urology (D <number_of_physicians>) {

if D = 1 then
Fx = 2; Tc = 0
TS = 2+ (1x0) = 2

else
Fx = 1; Tc=1
TS = 1 + (Dx1)

}

If needed, in one procedure, other procedures also can be invoked.

Case Studies 65

Synthesis of components in a framework

The constructs can be either attached to a component (Figure 4.8) or they can stand alone
affecting other constructs. For example, the number of physicians does not depend on any
component (i.e. specialty, activity, or space) whereas the number of patient that a physi-
cian sees in an hour is a variable that changes from one specialty to another.

FIGURE 4.8.Components and constructs

4.7.2 The number of physicians: The main independent variable for AHCF

We stated that each specialty contains different activity compositions and the activities in
a composition take place in spaces. Some of the activities are added to or removed from
the composition if certain conditions are satisfied. These conditions can be based on many
factors such as budget, schedule, staffing pattern, patient volume etc. However, for AHCF
programming, the general tendency is to take the number of physicians as the main vari-
able. This variable is also used to arrive gradually at spatial requirements. For example,
the number of physicians in an AHCF is used for determining the number of exam rooms
or calculating the area for the waiting room. The number of physicians is taken as an inde-
pendent variable and incorporated into the required conditions by which the entire deci-
sion making process is influenced.

4.7.3 Variables attached to specialty components.

The following variables and constants are common across specialties. Each of these is
assigned to different values for different specialties. In the following section, we will
describe these common variables and constants. The use of each of them is included in
Appendix A.

Exam room coefficient (Ec): The constant (or coefficient) depends on the medi-
cal specialty and determines how many exam rooms an AHCF with a specific
specialty requires, if any. The number of exam rooms is determined by using this
coefficient in a formula in which the value is multiplied by the number of physi-
cians who work in the facility during an average day. In the framework repre-
sented in Appendix C, the formula is attached to the space (component) which
has examination room tag. If the result of the multiplication is not an integer, it is
rounded to the next integer value.

de
te

rm
in

es

take place

at
ta

ch
ed

 to

attached to

consists of

66 Case Studies

Case Study: Ambulatory Health Care Facilities

Consultation room coefficient (Cc): Like the exam-room coefficient, this is
used to determine the number of consultation rooms required for a particular
medical specialty in an AHCF. The number of consultation rooms is determined
by multiplying this coefficient with the number of physicians practicing in an
AHCF. The multiplication formula is attached to the space (component) which
has the consultation room tag.

Business office detail (Bd): This is a binary variable determining if a specialty
requires a business office with insurance, bookkeeping office, manager office and
media record store. The binary value is determined by considering the number of
physicians. For example, if the number of physicians is greater than 2 and the
specialty is general practice, then the variable value is assigned to true, else the
value for this variable, as default, is false. This is encapsulated in a conditional
statement and attached to each individual space listed under business office. If
the value is true for a specific business office component, then the space is added
to the program.

Toilet requirement variables (TL (Fx, Tc)): These are a pair of variables
which are used to calculate the number of toilet stalls. The first one of the pair
(Fx) is the minimum-number of toilet stalls and this is a constant. The second
variable (Tc) determines the variable number of toilet stalls. The number of toilet
stalls is used to calculate area requirement of a rest room. It is also incorporated
into a formula which is used to calculate the number of rest rooms. The formulas
used for a rest room’s area and the number of rest rooms in a facility are attached
to the spaces (components) tagged rest room in the framework.

Laboratory variables (LB (La, Ld)): An AHCF may need a lab if (a) a spe-
cialty requires, and (b) the conditions for lab are satisfied. If a lab is required,
then conditions for adding the supporting spaces (waiting area, blood drive booth
etc.) to the program are checked. Two variables, as a pair, are attached to a com-
ponent tagged laboratory space, and evaluated together. The first variable of the
pair, lab needed, is a binary variable and it represents if the lab is required by a
medical specialty. The second variable, supporting lab spaces required is also a
binary variable and used for deciding if supporting spaces will be needed. The
evaluation continues in the constructs which are attached to lab-supporting
spaces (constructs).

Staff lounge variable (Sl): The decision to add a staff lounge to a program is
incorporated into this variable, and the variable is attached to medical-specialty
components. It is a binary variable and used for deciding if a lounge is needed in
an AHCF. The other variable effecting this decision is the number of physicians.
Together, these variables are contained in a logical statement which is attached to
a space-component named staff lounge.

Minor surgery room variable (Ms): This is a binary variable which depends on
the specialty. It is used for determining whether or not a minor surgery room
must be included in the program. Depending on the number of physicians, adding

Case Studies 67

Synthesis of components in a framework

a minor surgery room to the program is decided if the variable’s value is true. For
each specialty, there is a certain threshold value for the number of physicians in
order to add a minor surgery room to the program.

Nurse station variable (Ns): This is similar to the previous two variables, and it
is used to determine if a nurse station is needed. The variable is encapsulated in
the space-component named nurse station and evaluated in a logical statement.

Number of patients seen in an hour (P): This is an integer variable and deter-
mines how many patients can be seen by a physician in an hour. Due to the nature
of the specialties and the medical procedures, each specialty has a unique value
for this variable. This variable is evaluated in procedures attached to the different
spaces.

4.7.4 Sample specialty with attached constructs

In order to demonstrate attachment of variable-constructs to specialty-components in the
framework, pediatrics specialty can be used as an example (Figure 4.9).

FIGURE 4.9.Pediatrics specialty and attached constructs.

According to this diagram, the attached variable-constructs and their respective values are
as follows:

The number of patients seen by a physician in an hour (P) is equal to 3. The variable can
be modified by the programmer if required. This will affect the area calculation for wait-
ing spaces.

Main Office

Insurance

Bookkeeper

Office Manager

Medical Records

Business Office
IF D > 4 and Bd = TRUE
Then N = 1

IF D > 2 and Bd = TRUE
Then N = 1

Business

N = 1

N

N

N

N

PEDIATRICSP = 3 Ec = 3 Cc = 1 Bd =
TRUE

TL =
(2,1)

LB (La,
Ld)

S =
FALSE

Ms =
TRUE

Ns =
TRUE

IF D > 2 THEN
Bd = TRUE

IF D < 3 THEN
LB (FALSE, FALSE)
ELSE
LB (TRUE, TRUE)

PEDIATRICS
CLINIC

Number of
Physicians

D

P :Number of patients seen by a physician in an hour
Ec :Exam room coefficient
Cc :Consultation room coefficient
Bd :Business office detail
SL :Staff lounge variable required
Ms :Minor surgery room required
Ns :Nurse station required
TL(Fx, Tc) :Toilet variables

(Fx: Fixed) (Tc: Optional)
LB (La, Ld) :Laboratory variables

(La: Lab-required) (Ld:Complete)

68 Case Studies

Case Study: Ambulatory Health Care Facilities

The exam room coefficient (Ec) value is 3. That means, for each physician, 3 exam rooms
must be included in the program.

The consultation room coefficient (Cc) is equal to 1. That is, for each physician one con-
sultation room is required.

The default value for business office detail (Bd) variable is false. However, if the number
of physicians is greater than 3 then the value becomes true. This change is decided through
the function which includes a conditional statement attached to the business office space-
component.

The toilet variables (TL (Fx, Tc)) indicate that there must be at least two toilet stalls
required for this specialty (Fx is equal to 2) and the number of additional toilet stalls (Tc)
is equal to zero. However, the programmer can adjust these values to increase the number
of toilets if preferred.

The laboratory variables (LB (La, Ld)) are determined by a function which is attached to
each specialty component. This function evaluates the value of the number of physicians,
and then assigns values to these pair variables.

The staff lounge variable (Sl) is false. That means a staff lounge is not needed in this spe-
cific case. However it is up to budget and the client to decide if a staff lounge should be
added to the program.

The minor surgery room variable (Ms) indicates that at least one minor surgery room is
required for this specialty.

The nurse station variable (Ns), similar to the minor surgery, is required for this specialty.

A complete variable-construct assignments to each specialty-component is described in a
diagram and it is presented in Appendix C.

4.7.5 The sample space component with attached constructs

We also included space components in the framework. In Figure 4.9, spatial components
and their attributes are included as well. The complete framework is attached as Appendix
C. The figure represents business office space-components and their attached constructs.
However, it should be noted that eventhough the business office is represented as con-
nected to pediatric specialty, it could be attached to any other specialty, and its representa-
tion will not change.

The main variable construct attached to each space component is the number of spaces
(N), which is assigned to an integer. Each of the spaces has one or more attached function
constructs that evaluate the conditions. These function-constructs are also used for assign-
ing values to the variable N. If the conditions are satisfied, the particular supporting space
is aggregated to the business office space-component. For example, to have a main office
in the program, the only condition is to have at least one physician. On the other hand, in
order to add an office manager space-component, the business office detail variable-con-
struct (Bd), which is attached to the specialty-component, must be true and the number of
physicians has to be equal to or greater than 3. If and only if these conditions are satisfied,
the space-component for manager office is attached to the main business office. In other
words, the constituent spaces of the business office are selected after the evaluation of the

Case Studies 69

Activity affinities and their effects on spatial relationships

conditional statements. The programmer can adjust the values and conditions if required
for each specific case.

Other variable-constructs such as area, dimensional sizes, list of equipment can also be
attached to each space-component as required. The procedure or formula constructs can be
modified to accommodate new variables.

A complete diagram showing the spaces, activities and their composition with attached
constructs can be found in Appendix C.

4.8 Activity affinities and their effects on spatial relationships
There is another important issue that we need to investigate: the affinities of activities and
their effects on the spatial relation requirements (such as adjacencies or proximity). We
tackled this issue when we discussed the designation of spaces for each activity and their
spatial configurations in terms of constituencies. For example, some spaces such as busi-
ness office or radiology unit consist of other spaces which are related to these activities.

The affinities between activities and their compositions require respective spaces to relate
to each others in three ways. These relationships may be listed as following:

• access from one space to another (physical or visual)
• allocating one space adjacent to another space
• maintaining a certain physical distances between two or more spaces.

The first relationship is called accessibility. The other two can be described as proximity
relationship. In Figure 4.6, integration of spaces into a schema is represented. The schema
also describes how and what types of components interact with each other. After the eval-
uation of proximity and accessibilities, the space component in this schema can be altered
as shown in Figure 4.10.

FIGURE 4.10.Updating the schema by considering proximity and accessibilities between
spaces.

In an AHCF, these relationships can be determined after analyzing the activity affinities.
The analysis can be based on interaction between occupants and spaces. It also can be
described by different scenarios and represented by different methods such as bubble dia-
grams or affinity matrixes. However, we prefer to use Unified Modeling Language (UML)
interaction diagrams (Booch, G., J. Rumbaugh and I. Jacobson., 1999) as the representa-
tion technique. The main reason for this is that we not only need to represent spaces but
also occupants. Bubble diagrams and affinity matrices can only be used to show static and
space-to-space relationships. By using UML notations, we can incorporate other factors,
such as occupants, equipment etc. into the activity scenarios. In order to illustrate how this

accessibleproximate

70 Case Studies

Case Study: Ambulatory Health Care Facilities

could be achieved, let’s analyze the scenario of a patient entering an AHCF for examina-
tion. The initial activity sequence for this can be described with the following steps:

Pre-conditions: The patient made an appointment earlier. The record staff
removed the patient’s file from the archive and physician reviewed the file. The
receptionist receives the file and places on the daily file stack.

• a patient comes to the AHCF, enters to the waiting area
• the patient signs in the sing-in form placed on the reception counter (desk)
• the patient takes a seat in the waiting area
• the receptionist controls the sign-in page
• the receptionist communicates with the patient and completes the registration
• the patient waits to be called
• the receptionist removes the file from the file stack and places it on the desk for the

nurse
• the nurse picks up the file and goes to waiting area and calls the patient
• the nurse escorts the patient to the nurse station
• the nurse examines the patient’s vital signs.
• the nurse escorts the patient to an exam room and places the file in a rack attached to

or by the door of the exam room.
• the patient waits for the physician.

This interaction graphically can be represented by a UML interaction diagram as shown in
Figure 4.11.

Case Studies 71

Activity affinities and their effects on spatial relationships

FIGURE 4.11.Activity affinity analysis by UML interaction diagram

From the scenario and the diagram, we can infer certain relationships between spaces. A
physical and visual access from the waiting area to reception is required. The degree
(nature) of accessibility is up to the programmer or the designer. There is a close proximity
requirement between the waiting area and the nurse station. However, in between them the
reception area becomes a control point. The nurse and patient access from the nurse sta-
tion to an exam room. This requires a proximity and accessibility requirement from nurse
station to the exam room. The accessibility requirement can depends on the programmer’s
choice; it can be connected via a circulation path or via a direct access (for example a door
if the exam rooms surrounds the nurse station). The relationships can be further detailed as
the programming process continues.

As a side-effect of this analysis, other spatial requirements can be discovered. For exam-
ple, up to this point, we have not mentioned circulation or entrance activities, because
these are generic activities for every facility. However, depending on the context, they can
be defined differently. Therefore, their spatial requirements change in each context. From
the sample analysis, we may decide to have a connection space as a corridor from the
waiting room to the nurse station. This also creates a relation (constraint) of proximity.
The minimum width of the corridor is determined by the standards defined in ADA. In
addition we can also decide the furniture or equipment requirements. Such as the desk for
the receptionist or a receptionist counter are mentined in the scenario.

Similar to this decision-making process, other activity affinities (as higher-level design
requirements) can be resolved and can yield lower-level design requirements in the form
of spatial relations. This could be managed by describing scenarios and representing them

72 Case Studies

Case Study: Ambulatory Health Care Facilities

with sequence list and interaction diagrams which not only incorporate spaces but also
other factors into the analysis.

4.9 Summary
In this case study, we have investigated architectural programming and design require-
ment specification of an AHCF. As a contrast to the conventional methods, we tried to
concentrate on gradual transition from higher-level design requirements to lower-level
design requirements. In the process, AHCFs are divided into specialty-related classes.
Each class is described with its unique activity compositions (including common activi-
ties). These activity compositions help us determine required spaces for each activity. Fol-
lowing this, spaces are described and located in a spatial composition for each medical
specialty (Appendix C). In connection with the space descriptions, methods for the com-
putation of area requirements are described. Constructs such as variables, formulas, logi-
cal statements and procedures are used to detail spatial-composition diagrams. Finally, the
effects of activity affinities over design requirements in the form of spatial relations are
discussed.

The case study initially suggests that the process of generating design requirements of
AHCF can be simplified if:

1. For each specialty, there is a pre-existing activity selection mechanism which is based
on independent variables such as the number of physicians.

2. Pre-determined spatial designations and their attached constructs are available and
connected to each activity.

3. There is a mechanism which transfers activity affinities to spatial relationships. Also
this mechanism generates additional spaces if required.

As mentioned earlier, this process (with different methods and techniques) is repeated
each time a new AHCF is needed to be programmed. There is a considerable potential for
employment of a computational tool. This is implicitly demonstrated by the appropriate-
ness of software engineering representation techniques and analysis methods (such as
UML for representing the static schema and interaction diagrams). Each of the variables
of an AHCF program (such as specialty, activities, activity composition, spaces, occu-
pants, constructs and components) can be modeled by using Object Oriented Modeling
methods, and eventually they can be programmed with a software language. This way, the
propagation from higher-level design requirements to lower-level spatial design require-
ments can be managed seamlessly.

Thesis Proposal 73

Bibliography

Akin, Ö., Sen, R., Donia, M. and Zhang, Y., 1995. SEED-Pro: Computer assisted
architectural programming in SEED, in Journal of Architectural Engineering,
ASCE, 1(4): 153-161.

AMGA, 2001. The American Medical Group Association. http://www.amga.org/

AR 140-483. 1994. Army Reserve Land and Facilities Management, Space Guide-
lines for U.S. Army Reserve Facilities, Army Publications and Printing Command.
(also available at http://books.usapa.belvoir.army.mil/cgi-bin/bookmgr/BOOKS/
R140_483/CCONTENTS).

Army 1. 2001. http://www.army.mil/usar/overview.htm.

BCHS. 1974 - 1. Equipment guidelines for ambulatory health centers. United States.
Health Services Administration. Bureau of Community Health Services. DHEW
publication ; no. (PHS) 79-50066.

BCHS. 1974 - 2. Space guidelines for ambulatory health centers. United States.
Health Services Administration. Bureau of Community Health Services. DHEW
publication ; no. (PHS) 79-50066.

Booch, G., J. Rumbaugh and I. Jacobson., 1999. The Unified Modeling Language
User Guide. New York: Addison-Wesley.

Cherry, E. 1998. Programming for design: from theory to practice. NY: John Wiley
and Sons Inc.

Chiara, J.D. and J. H. Callender, (Contributors). 1990. Time-Saver Standards for
Building Types. New York, NY. McGraw Hill Text.

Cross, N. 1996. Analysing Design Activity (N. Cross, H. Christiaans and K. Dorst;
eds.), John Wiley and Sons Ltd., Chichester, UK.

CDC and NCHS. 1998. National Hospital Ambulatory Healthcare Survey.
www.cdc.gov/nchs/about/major/ahcd/outpatientcharts.htm

DG, 1984. Design Guide DG 1110-3-107, U.S. Army Reserve Facilities, Department
of Army, Corps of Engineers.

Duerk, D.P. 1993. Architectural Programming: Information Management for Design.
NY. John Wiley & Sons, Inc.

Farbstein, J. 1977. Assumptions in Environmental Programming. In Suedfeld, P. et.
al. (eds.). The Behavioral Basis of Design, EDRA Proceedings, Stroudsburgh, PA.
Dowden, Hutchinson and Ross.

74 Thesis Proposal

Farbstein, J. 1985. Using the Program, Applications for Design, Occupancy, and
Evaluation. In Preiser, W.F.E. (ed.) 1985. Programming the Built Environment.
New York: Van Nostrand Reinhold.

Flemming, U. et al. 2000. The SEED Experience. Internal Report. Institute for Com-
plex Engineered Systems, Carnegie Mellon University, Pittsburgh, PA.

GSA. 1983. Design Programming. PBS 3430.2. Wahington, D.C.: General Services
Administration

Hershberger, R. G. 1985. A Theoretical Foundation for Architectural Programming,
in Programming the Built Environment edited by Wolfgang F.E. Preiser, New
York: Van Nostrand Reinhold.

Hershberger, R. G. 1999. Architectural programming and predesign manager. NY:
McGraw-Hill Co.

Jackson, M. 1995. Software requirements and specifications: a lexicon of practice,
principles and prejudices. New York, NY. Addison-Wesley Publication Co. and
ACM Press.

Kobus, R., R. L. Skaggs, M. Bobrow, J. Thomas and T.M. Payette. 1997. Building
Type Basics for Healthcare Facilities. New York. NY. John Wiley and Sons Ltd.

Kumlin, R.R. 1995. Architectural programming: creative techniques for design pro-
fessionals. NY: McGraw-Hill Co.

Markus, T. 1972. Building Performance. New York, NY. Halstead Press.

Malkin, J. 1982. The Design of Medical and Dental Facilities. New York, NY. John
Wiley and Sons Ltd.

Malkin, J. 1989. Medical and Dental Space Planning for the 1990s. New York, NY.
John Wiley and Sons Ltd.

Medical Group Managment Association (MGMA). 1999. Medical Office Space
Planning Survey. www.mgma.com./infocenter/faq-web.html#4

Middleton, S. 2001. Training Decision Making in Organizations: Dealing with
Uncertainty, Complexity, and Conflict. Special Report. (http://www.work-
teams.unt.edu/reports/smiddltn.htm).

Palmer, M.A. 1981. The Architect’s Guide to Facility Programming. Washington
D.C. The American Institute of Architects.

PBS-PQ100.1. 1996. Facilties Standards for the Public Buildings Service, US gov-
ernment General Services Adminstration. www.gsa.gov/pbs/pc/tc_files/stds/
pq100.pdf.

Pena, W., W. Caudill and J. Focke. 1977. Problem Seeking: An Architectural Pro-
gramming Primer. Boston, MA. Cahners Books International, Inc.

Pena, W.M., S. Parshall, and K. Kelly 1987. Problem Seeking: An Architectural
Primer. Washington, DC. Amercan Institute of Architects Press.

Thesis Proposal 75

Pena, W.M., and W.W. Caudill, 1959. Architectural Analysis: Prelude to Good
Design. Architectural Record, May 1959. (pg. 178-182).

Pena, W.M. and J. Focke. 1969. Problem Seeking. Houston. Caudill Rowlett Scott.

Perkins, B. 2000. Building Types Basics for Elementary and Secondary Schools.
John Wiley & Sons, Inc. New York, NY.

Pierce, Courtney. 1997. Group Practice Personnel Policies Manual. Medical Group
Management Associations, New York, NY.

Preiser, W.F.E. (ed) 1985. Programming the Built Environment. New York: Van Nos-
trand Reinhold.

Preiser, W. F. E. 1993. Professional Practice in Facility Programming. New York:
Van Nostrand Reinhold.

Preiser, W. F. E. (ed). 1978. Facility Programming: Methods and Applications.
Stroudsburh, Pa.: Dowden, Hutchinson and Ross.

Sims, W. 1978. "Programming Environments for Human Use: A look at some
approaches to generating user oriented design requirements". in Rogers and Ittel-
son, New Directions in Environmental.

Verger, M., N. Kaderland. 1993. Connective Planning. New York, NY. McGraw-Hill

White, E.T. 1972. Introduction to Architectural Programming. Tucson, AZ. Architec-
tural Media.

WGPPF. 1992. Postsecondary Education Facilties Inventory and Classification Man-
ual. Working Group on Postsecondary Physical Facilities. bacweb.the-bac.edu/
~michael.b.williams/

Zimring, C., D.L Craig (2001). Defining Design Between Domains: An Argument
for Design Research a la Carte (penultimate draft), in Design Knowing and Learn-
ing: Cognition in Design Education.

76 Thesis Proposal

Case Studies

Appendix A: AHCFs Space (of Case Studies
Assignments

• AHCFs common spatial requirements analysis
• AHCFs specialization specific spatial requirements analysis

Case Studies

Appendix A: USARCs Space
Assignments (Case Studies)

• USARC activities and spaces.
• USARC activitiy to space transition tree.
• USARC spatial requirements formulations.

Case Studies

Case Studies

1 TRAINING FACILITY AREA CALCULATION

Area Reduction Tolerance = - %10

1.1 Administrative Area

Full time personnel

Officers 120 sqf
Civilians 120 sqf
Enlisted 120 sqf

1.2 Unit Exclusive

General Officers

Major General 400 sqf
Brigadier General 300 sqf

Commanders Exclusive

Colonel 200 sqf
Lieutenant Colonel 150 sqf
Lower Ranks 150 sqf

Battalion And Higher Units

Exclusive Space

Deputy Commander 120 sqf
Executive Officer 120 sqf
Chief of Staff 120 sqf
Staff Section Chiefs 120 sqf
Command Sergeant Major 120 sqf

Company and Lower Units

Exclusive Space

First Sergeant 120 sqf
1.3 Unit Common

if not provided in Unit Exclusive each positions authorized 60 sqf
Used by all units on their respective drill weekend.

Determined for each drill weekend

Intra-funtional circulation = Area x %15

Total Area = Area + Intra-functional Area

Recruiting and retention

250 sqf office space to be used by all units

Case Studies

1.4 Administrative Support

Reproduction

MailArea= 120 + (ROUNDUP(Number of Members/50) x 60)

Message Centerif (Area > 360) then Area = 360

Administrative Storage

Reserve Component Automation System (RCAS)

Condition: Required strength or type of unit identified by unit's approved MTOE
or TDA

System Administrator

Processing Classified Materials

Area = 120 +

(ROUNDUP (Number of Workstation/8) x 60 sqf)

if (Area > 480) then Area = 480 sqf

Lobby

Area = 80 sqf

Assembly Area

Assembly Hall Based on the total authorized drilling strength of the largest drill
weekend.

Area = 3000 + (ROUNDUP (Number of members / 50) x 600)

if (Area > 6200) then Area = 6200 sqf

Chair StorageArea

Area = Area(Assembly Hall) x %10

Kitchen (Standard Design)

Kitchen 730 sqf
Office 81 sqf

1.5 Weapons

Arms vault

Based on the total authorized center strength for units that are authorized to have
weapons.

Area = single-served weapon storage + crew-served weapon storage

Single-served Weapon Area = 220 + (ROUNDUP (Number of members / 100) x
110)

Crew-served Weapon Area = ROUNDUP (Number of Crew-served Weapons / 50) x 110

Armorer

Area = 110

Case Studies

1.6 Education

Classrooms

Area based on the total authorized drilling strength of the largest drill weekend
 Area = ROUNDUP (Number of members / 50) x 300

Library-Reading

Area = ROUNDUP (Number of members / 50) x 75

Library Storage

Area = Area (Classrooms) x %10

Learning Center

Area = ROUNDUP (Number of members / 50) x 50

if (Area < 100) Area = 100 sqf

Training Aid Storage

Area = Area (Classrooms) x %10

Communication Security Traningif (COMSEC account issued)

Area = 100

Communication Security Storage

Area = 100

Instructor Classroom

if (TYPE (USARF))

Area = 300

Publication Storage

if (TYPE (USARF)) then Assign = true

Storage

Unit and Individual Storage

Area based on total authorized station strength
(TYPE (Unit)) => number of standard 96 sqf cages

if (TYPE (Unit) = USARF)

If (TYPE (Unit) = NonSchool - TDA OR Training Division Unit)

Number of Standard Cage = ROUNDUP (Number of Members / 20)

If (TYPE (Unit) = MTOE)

Number of Standard Cage = ROUNDUP (Number of Members / 10)

Area = Intrafunctional Circulation Area + Unit Storage Area

Number of Standard Cage = ROUNDUP (Number of Members / 6)

Unit Storage Area = Number of Cages x 96 sqf

Intrafunctional Circulation Area = Unit Storage Area x %15

Case Studies

Staging Area

Area = Unit Storage Area x %10

Supply office

Adjacent to Unit and individual storage
If (Full-time supply technician assigned)

Area = 120

else

Property Account assigned

Area = 96

Janitorial Storage

if (Two level building)

Area = 25 sqf each floor

elseArea = 50 sqf

Flammable Storage

if (maintenance Shop is not collocated)

Area = 150 sqf

else Area = 0

Controlled Waste Storage

if (maintenance Shop is not collocated)

Area = 96 sqf

Facility Maintenance and Storage for the custodial contractor

Area = 200 + (ROUNDUP (Number of Members / 10) - 1) x 100

if (Area > 800) Area = 800

1.7 Spacial Training Area

Rifle Range

if (Assigned (Rifle-Range))

Area = Number of Fire Range Lane x 375

Photo-Lab

If (Assigned (Photo-Lab))

Area = 250

Band-Room

if (Assigned (Band-Room))

Area = 2850

Medical

if (Assigned (Medical Training))

Area = 400

Case Studies

Physical Exam

if (Assigned (Physical Exam))

Area = 2500

SCIF

if (Assigned (Sensitive Compartmented Information Facility))

Area = 500

Solid Testing Lab

if (Assigned (Solid Testing))

Area = 150

Conference Room

Area = 400

Drafting

if (Assigned (Drafting Equipment))

if (Number of Draftsperson > 4)

Area = 250 + (Number of Draftsperson - 4) x 60

else Area = 250

Physical Rediness Area

Area = 200 + (ROUNDUP (Number of Members / 10) x 100)

if (Area > 1600)

Area = 1600

Worldwide Military Command and Control System Terminals

Area = 200

1.8 Specialized Areas

Required Information: Sketch detailing room dimensions
Location of MTOE or TDA equipment to be installed or used in the area
Proposed individual workspace for people training or working in the area

1.9 Support Areas

Men's Toilets and Showers

Area = 350 + (ROUNDUP ((Number of Members x %90) / 50) -1) x 100

Area would be finilized according to required number of fixtures

Women's Toilets and Showers

Area = 225 + (ROUNDUP ((Number of Members x %30) / 50) -1) x 25

Area would be finilized according to required number of fixtures

Unisex Handicap Toilet

Area = 75

Case Studies

Locker Room

Area = 1100 + (ROUNDUP (Number of Members / 10) - 1) x 100

if (Area > 2100)

Area = 2100

Vending Machine Alcove

Area = 48

Full-time Personnel Break Kitchen

Area = 218

Electrical Distribution

Area = 100 or
Area required by services and electrical equipment

Telephone Distribution

Area = 100 or Area required by services and telephone equipment

Mechanical Room

Area (Area (Support-Areas) x %2)

Circulation

if (Area (Training-Building) > 20000)

Story (Training Center) = Multi Story

Area = Area (Training Center) x %22

else

Story (Training Center) = Single Story

Area = Area (Training Center) x %15

Structural Allowances

Area = Area (Training Building) x %10

1.10 Special Purpose Facilities

Equipment Concentration Sites

Hardstand area

Area = Number of Items x (50 + 5)

Fuel Storage and Disensing Systems

One system per type of fuel

Military Equipment Loading Ramp

if (Justified)

Wash Platform

Number = ROUNDUP (Number of Equipments / 100)

Warehouse

Case Studies

If (Assigned (Equipment requires Indoor storage))

Arms Vault

If (Assigned (Arm))

2 MILITARY EQUIPMENT PARKING AND TRAINING FACILITIES
2.1 Organizational Maintenance Shop

Area Reduction Tolerance = ± %10 (Area (OMS) - Area (Workbay))

if (Number of Vehicles > 10)

Assign (OMS) = TRUE

Shop Office

Area = (Number of Administrative Person x 60)

+ (Number of Full-time Adm. Officer x 120)

Workbay

Area = Number of Bays x (40 x 20) + (4 ft. x 40 + 4 ft. x 20)

Number of Bays = ROUNDUP (Number of Vehicles) / 4

Number of Vehicles = Wheeled + Tracked + Eng. Equipments

if (Collocatedwith (AMSA))

Additional Bays

else No Additional Bay

Install_in (FOR EACH workbay)

• Compressed Air system
• Hose bibb
• Bench
• Hotwater heater

Tools and Parts

Area = 96

Install_in (FOR EACH tools/parts room)

• Shelving

Toilets

Unisex Toilet
Area = 75

if (REQUIRED (Men's AND Women's)

Storage Room

Area = Number of Workbays x 96

Battrey Room

Area = 50 + ((Number of Workbays - 1) x 25)

Case Studies

if (Area (Battery Room) > 200)

Area = 200

Flammable Storage

Area = 50 + ((Number of Workbays - 1) x 25)

if (Area (Flammable Storage) > 200)

Area = 200

Controlled Waste Storage

Area = 96 + ((Number of Workbays - 1) x 25)

if (Area (CWS) > 596)

Area = 596

Mechanical/Custodial Room

Area = NetArea (OMA Building) x %3

if (Area (Mechanical/Custodial) < 50)

Area = 50

2.2 Area Maintenance Support Activities

Shop Office

Area = (Number of Reserve Administrative Person x 60)

+ (Number of Full-time Adm. Officer x 120)

Men's Toilet

Nominal Area = 200

Women's Toilet

Nominal Area = 150

Locker Room

Area = Number of AMSA Person x 10

if (Area (LockerRoom) < 100)

Area = 100

Class Room / Break Area

Area = Number of AMSA Personnel x 10

if (Area (Class Room) < 200)

Area = 200

Workbay

Area = Number of Bays x (40 x 20) + (4 ft. x 40 + 4 ft. x 20)

Number of Bays = ROUNDUP (Number of Vehicles) / 2

Number of Vehicles = Wheeled + Tracked + Eng. Equipments

Install_in (FOR EACH workbay)

Case Studies

• Compressed Air system
• Hose bibb
• Bench
• Hotwater heater

Tool Room

Area = Number of Bays x 96

Supply Room

Area = Number of Bays x 96

Battery Room

Area = Number of Bays x 50

if (Area (BatteryRoom) > 400)

Area = 400

Electronics Shop

Area = Number or Electronic Technicians x 150

Instrument Repair Shop

Area = Number of Instrument Repair Technician x 100

Small Arms Repair Shop

Area = Number of Small Arms Repair Technician x 100

Small Arms Vault

Area = 100

Flammable Storage

Area = Number of Workbays x 25

if (Area (Flammable Storage) < 50)

Area = 50

Controlled Waste Storage

Area = Number of Workbays x 96

if (Area (Controlled Waste Storage) > 596)

Area = 596

Mechanical/Custodial Room

Area = NetArea (AMSA Building) x %3

if (Area (Mechanical/Custodial) < 50)

Area = 50

Privately Owned Car Parking Area

if (Collocated (AMSA, USARC))

USES (USARC parking)

Case Studies

else

Area = Number of Members x %80 x 315

Service or Access Apron

Area = 36 x WIDTH (Workbays)

Wash Platform

if (Collocated (AMSA , OMA))

USES (OMA wash Platform)

else

One wash Platform

3 Direct Support/General Support Maintenance

Specified by specialized units and support activities

Military Equipment Storage

if (NOT EQUIPMENT.Parked_at OMS)

Area = Number of Equipment x 450

if (NOT EQUIPMENT.Parked_at AMSA)

Area = Number of Equipment x %10 x 450

Case Studies

Appendix B: ESPS Space Assignments
(Case Studies)

• ESPS activities and space.

• ESPS activity-to-space transition tree.

1 Academic Core Spaces
2 Special Education Spaces
3 Administrative Spaces
4 Media Center Spaces
5 Visual Arts Spaces
6 Music Spaces
7 Technology Education Spaces
8 Business Education Spaces
9 Family and Consumer Science Spaces
10 Physical Education Spaces
11 Student Dining Spaces
12 Food Service Spaces
13 Custodial Spaces
14 Building Services

Case Studies

PESS Activities

Educational

Mastery Program
Activities

Creative Program
Activities

General
Classrooms

Special Education
Classrooms

Music Room

Science Labs

Art Room

Computer Lab

Gymnasium

Auditorium

Media/Video
Center Earth Sciences

Biology

Specialized
Spaces

Agriculture
Shop

Homemaking

Drafting Room

Locker's Room

Business
Classroom

Industrial Art

Vocational
Shops

Chemistry

Physics

Storages

Showers

Administrative

Reception Area

Secretarial Area

Principal's Office

Assistant
Principal's Office

Conference Room

Mail/Work/Copy
Room

Administrative
Storage

Vault/Records
Storage

In-school
Suspension

Guidance
Counselor's Office

 Guidance
Records/Storage

Guidance
Conference Room

Parent/Volunteer
Room

Health Clinic

Itinerant Personnel
Office

Career Center

Office Area

Support

Education and
Adm. Support

Facility Support

Media Specialist
Office

Workroom/
Storage

A/V Storage

Conference
Room

Document
Storage

Faculty/Staff
Dining

Student Dining

Table Storage

Preparation
Area

Serving Area

Dry Foot
Storage

Cooler/Freezer

Ware Washing

Restrooms and
Locker

Media Center

Faculty Area

Cafeteria

General
Restrooms

Reading Room/
Circulation
Technology

Control Center

Multimedia
Production Room

Storage

Teacher's Room

Resource Room

Dining

Kitchen

Custodial Closet

Electrical Closet

Technology
Closet

Mechanical/
Electrical Space

Central Storage
Area

Loading/
Receiving Area

PhD Thesis 1/14/04

Appendix B: Program Generation

1. RaBBiT Architectural Program Generation Algorithm

2. Program schema in XML

3. Schema transformation from XML to HTML through XSLT (style sheet)

4. Partial generated program in XML

5. Partial generated program view in HTML after schema transformation

 1/14/04 PhD Thesis

Program Generation Algorithm
FUNCTION generate component order (Rabbit Graph graph) Map

hash map :=Map { ((Component component), (Value (boolean condition, int weight)) }
roots := get all root components (graph)

(Set { roots | root IS Component AND ¬ depend on other components })

FOR ∃ root = { roots }

 visit (root, value (true, 0), hash map)
 END:FOR

RETURN hash map
END:FUNCTION

FUNCTION visit (Component component, Value value, Map hash map)

insert in hash map (component, value)

IF condition of value = TRUE

edges := get all dependency edges sourcing from (component)
(Set { edges | edge IS Dependency Edge AND source of edge IS component

FOR ∃ edge = { edges }

target := get target (edge) (Component target component)

value current := get value clone (edge)
(Value copy of dependency in edge)

value previous := get from hash map (target)
(Value value of target from hash order)

IF value previous ¬ null

IF weight of value previous >weight of value current
visit (target, value previous, hash map)

ELSE IF weight of value previous = weight of value current

 condition of value current :=condition of value previous OR
 (condition of current value AND condition of value)

visit (target, value current, hash map)

ELSE IF weight of value previous < weight of value current
condition of value current :=

condition of value AND condition of value current
visit (target, value current, hash map)

END:IFELSE

ELSE

condition of value current := condition of value AND condition of valu
current
visit (target, value current, hash map)

END:IFELSE

END:FOR
 END:IF
END:FUNCTION

RaBBiT Generated Architectural Program View

Project Details

Project Information
Name: A project name

Location: Project location
ID: AAA-123-1234

Description: Enter project description in this text area

Client Information
Name: Client A

Contact Name: Emre Efe Rabbit
Phone: 555-555-5555
Email: rabbitkus@netscape.com

Adress: Address information form will be redesigned

Version Information
Generation Date: 2003-12-14 00:02:48
Version Number: v0.0.0

Description: Write the version description here

Global Parameters

Parameter: Training
Description: None Available

Parameter Observers: No Observer
Unit: t/f

Value: boolean: true

Parameter: Maintenance Training
Description: None Available

Parameter Observers: No Observer
Unit: t/f

Value: boolean: false

Parameter: Reserves
Description: None Available

Parameter Observers:

Requirement Parameter Value

Full time staff Officers

Expression
Result Expression / Formula Referenced Parameters

integer: 3 roundup(Reserves /
100) Reserves of Global

Officer Room Number
Referenced Value Referenced Parameter
integer: 300 Reserves of Global

Ranking
Officer_TO_Major
General

Ranking
Officer_TO_Major
General

boolean: false

Ranking
Officer_TO_Brigadier
General

Ranking
Officer_TO_Brigadier
General

boolean: false

Ranking
Officer_TO_Colonel

Ranking
Officer_TO_Colonel boolean: true

Ranking Officer Batalion or higher

Expression
Result Expression / Formula Referenced Parameters

double: 0.0 if (Reserves > 500,
true, false) Reserves of Global

Lietenant Colonel Number

Expression
Result Expression / Formula Referenced Parameters

integer: 0 rounddown
(Reserves / 400) Reserves of Global

Expression
Result Expression / Formula Referenced Parameters

Colonel Number integer: 1 rounddown
(Reserves / 300) Reserves of Global

Brigadier General Number

Expression
Result Expression / Formula Referenced

Parameters

double: 0.0
if
(Ranking_Officer_TO_Brigadier_General,
rounddown(Reserves / 600), 0)

Ranking
Officer_TO_Brigadier
General of Ranking
Officer_TO_Brigadier
GeneralReserves of
Global

Staff Section Chief Number

Expression
Result Expression / Formula Referenced Parameters

integer: 1 roundup(Reserves /
300) Reserves of Global

Staff Section Chief Number

Expression
Result Expression / Formula Referenced Parameters

integer: 2 roundup(Reserves /
200) Reserves of Global

Unit: unit

Value: integer: 300

Parameter: Weapon Training
Description: None Available

Parameter Observers: No Observer
Unit: t/f

Value: boolean: true

Requirement Information by Categories

Category: Project Mission
Description: Describes the mission of the project, including the mission of the USAR unit assigned. The design requirements of the

facility have to be determined for the particular missions assigned to the units.
Information Level: 0

Requirements:

Requirement: Mission
Description: Design a USARC for a number of reserves

Depended by Requirements
Requirement Condition

Full time staff
Relative Weight Expression/Formula Is Satisfied?
0 true yes

Maintenance Activities
Relative Weight Expression/Formula Is Satisfied?
0 true yes

Training Activities
Relative Weight Expression/Formula Is Satisfied?
0 true yes

Relationships with Requirements

Category: Activities
Description: The requirement information fall under this group includes the activities that a USAR unit is assigned. Basically, training

and traningin-related maintenance activities.
Information Level: 1

Requirements:
Requirement: Administrative

Description: None available
Depends on Requirements
Requirement Condition

Training Activities
Relative Weight Expression/Formula Is Satisfied?
0 true yes

Depended by Requirements
Requirement Condition

Admininstration Zone
Relative Weight Expression/Formula Is Satisfied?
0 true yes

Unit Exclusive Zone Relative Weight Expression/Formula Is Satisfied?

0 true yes
Relationships with Requirements

Requirement: Training Activities
Description: None available

Depends on Requirements
Requirement Condition

Mission
Relative Weight Expression/Formula Is Satisfied?
0 true yes

Depended by Requirements
Requirement Condition

Administrative
Relative Weight Expression/Formula Is Satisfied?
0 true yes

Relationships with Requirements

Requirement: Maintenance Activities
Description: USARC maintenance activities as described in the design quidelines

Depends on Requirements
Requirement Condition

Mission
Relative Weight Expression/Formula Is Satisfied?
0 true yes

Relationships with Requirements

Category: Staff

Description:

An Army unit structure is hierarchical and composed of smaller to larger groups. Smallest unit is a "reservee", an USAR
personnel who is under training. Each larger group is trained by a ranking officer, which his/her rank changes as the
number of reserves changes in the group. During the drill period, depending on the number of reservees (troops) to be
trained, the rank structure of the ARU changes. The rank structure and number of troops in an USAR unit is reflected in
the design requirements. The maximum number of reserves is defined as total authorized drilling strength (number of
reserves) of the largest drill (training) weekend. The largest drill strength is headed by the highest ranked officer in the
ARU.

Information Level: 2

Requirements:
Requirement: Full time staff

Description: None available
Parameter
Name Unit Value Parameter Observer Note

Officers Expression Expression / Requirement Parameter Value

Result Formula Referenced Parameters

integer: 3
roundup
(Reserves /
100)

Reserves of Global Full time staff Civilians

Expression
Result Expression / Formula Referenced

Parameters

integer: 6
roundup
(Officers_OF_Full_time_staff
* 2)

Officers of
Full time
staff

Full time staff Enlisted

Expression
Result Expression / Formula Referenced

Parameters

integer: 9
roundup
(Officers_OF_Full_time_staff
* 3)

Officers of
Full time
staff

Officer Room Number

Referenced Value Referenced
Parameter

Expression
Result

Expression /
Formula

Referenced
Parameters

integer: 3
roundup
(Reserves /
100)

Reserves of
Global

Officers of
Full time
staff

Civilians Expression
Result Expression / Formula Referenced

Parameters

integer: 6
roundup
(Officers_OF_Full_time_staff
* 2)

Officers of
Full time
staff

Enlisted Expression
Result Expression / Formula Referenced

Parameters

integer: 9
roundup
(Officers_OF_Full_time_staff
* 3)

Officers of
Full time
staff

Requirement Parameter Value

Civilian
Office Number

Referenced Value Referenced
Parameter

Expression
Result Expression / Formula Referenced

Parameters

integer: 9
roundup
(Officers_OF_Full_time_staff
* 3)

Officers of
Full time
staff

Enlisted of
Full time
staff

Enlisted
Office Total Area

Expression
Result Expression / Formula Referenced

Parameters

double: 540.0 Area_per_person_OF_Enlisted_Office
* Enlisted_OF_Full_time_staff

Area per
person of
Enlisted
OfficeEnlisted
of Full time
staff

Depends on Requirements
Requirement Condition

Mission
Relative Weight Expression/Formula Is Satisfied?
0 true yes

Relationships with Requirements

Requirement: Lietenant Colonel
Description: None available

Parameter Name Unit Value Parameter Observer Note
Number Expression

Result
Expression /
Formula Referenced Parameters

integer: 0 rounddown
(Reserves / 400) Reserves of Global

Depends on Requirements
Requirement Condition

Ranking Officer
Relative Weight Expression/Formula Is Satisfied?
0 true yes

Depended by Requirements
Requirement Condition

Chief of Staff
Relative Weight Expression/Formula Is Satisfied?
0 false no

Staff Section Chief
Relative Weight Expression/Formula Is Satisfied?
0 false no

Staff Section Chief
Relative Weight Expression/Formula Is Satisfied?
0 false no

Executive Officer
Relative Weight Expression/Formula Is Satisfied?
0 false no

Deputy Commander
Relative Weight Expression/Formula Is Satisfied?
0 false no

Relationships with Requirements

Requirement: Colonel
Description: None available

Parameter Name Unit Value Parameter Observer Note
Number Expression

Result
Expression /
Formula Referenced Parameters

integer: 1 rounddown
(Reserves / 300) Reserves of Global

Depends on Requirements
Requirement Condition

Ranking Officer
Relative Weight Expression/Formula Is Satisfied?
0 true yes

Relationships with Requirements

Requirement: Ranking Officer
Description: None available

Parameter
Name Unit Value Parameter Observer Note

Batalion or
higher

 Expression
Result

Expression /
Formula

Referenced
Parameters

double: 0.0
if (Reserves
> 500, true,
false)

Reserves
of Global

Requirement Parameter Value

Ranking
Officer_TO_Deputy
Commander

Ranking
Officer_TO_Deputy
Commander

Expression
Result Expression / Formula Referenced

Parameters

double: 0.0 Batalion_or_higher_OF_Ranking_Officer

Batalion or
higher of
Ranking
Officer

TO
Ranking
Officer_TO_Deputy
Commander

Expression
Result Expression / Formula Referenced

Parameters

double: 0.0 Batalion_or_higher_OF_Ranking_Officer

Batalion or
higher of
Ranking
Officer

TO
Ranking
Officer_TO_Deputy
Commander

Expression
Result Expression / Formula Referenced

Parameters

double: 0.0 Batalion_or_higher_OF_Ranking_Officer

Batalion or
higher of
Ranking
Officer

Lietenant
Colonel_TO_Deputy
Commander

Lietenant
Colonel_TO_Deputy
Commander

boolean: false

Lietenant
Colonel_TO_Executive
Officer

Lietenant
Colonel_TO_Executive
Officer

boolean: false

Lietenant
Colonel_TO_Deputy
Commander

Lietenant
Colonel_TO_Deputy
Commander

Expression
Result Expression / Formula Referenced

Parameters

double: 0.0 Batalion_or_higher_OF_Ranking_Officer

Batalion or
higher of
Ranking
Officer

Lietenant
Colonel_TO_Chief of
Staff

Lietenant
Colonel_TO_Chief of
Staff

boolean: false

Lietenant
Colonel_TO_Staff
Section Chief

Lietenant
Colonel_TO_Staff
Section Chief

boolean: false

Lietenant
Colonel_TO_Staff
Section Chief

Lietenant
Colonel_TO_Staff
Section Chief

boolean: false

Depended by Requirements
Requirement Condition

Lietenant Colonel
Relative Weight Expression/Formula Is Satisfied?
0 true yes

Major General
Relative Weight Expression/Formula Is Satisfied?
0 false no

Colonel
Relative Weight Expression/Formula Is Satisfied?
0 true yes

Brigadier General
Relative Weight Expression/Formula Is Satisfied?
0 false no

Relationships with Requirements

Category: Spatial Allocations
Description: Space area allowances and designations of USARC activities.

Information Level: 3

Requirements:

Requirement: Admininstration Zone
Description: None available

Parameter Name Unit Value Parameter Observer
Total Area sqf Expression

Result Expression / Formula Referenced Parameters

double: 1620.0

Total_Area_OF_Officer_Room
+
Total_Area_OF_Civilian_Office
+
Total_Area_OF_Enlisted_Office

Total Area of Officer
RoomTotal Area of
Civilian OfficeTotal Area
of Enlisted Office

Depends on Requirements
Requirement Condition

Administrative
Relative Weight Expression/Formula Is Satisfied?
0 true yes

Depended by Requirements
Requirement Condition

Civilian Office
Relative Weight Expression/Formula Is Satisfied?
0 true yes

Unit Exclusive Zone
Relative Weight Expression/Formula Is Satisfied?
0 true yes

Enlisted Office
Relative Weight Expression/Formula Is Satisfied?
0 true yes

Officer Room
Relative Weight Expression/Formula Is Satisfied?
0 true yes

Relationships with Requirements

Requirement: Officer Room

Description: None available
Parameter Name Unit Value Parameter Observer
Number roomReferenced Value Referenced

Parameter
Expression
Result

Expression /
Formula

Referenced
Parameters

integer: 3
roundup
(Reserves /
100)

Reserves of
Global

Officers of Full
time staff

Requirement Parameter Value

Officer Room Total Area

Expression
Result Expression / Formula R

Pa

double: 360.0 Number_OF_Officer_Room *
Max_Area_OF_Officer_Room

N
O
R
A
O
R

Max Area sqf double: 120.0 Requirement Parameter Value

Officer Room Min Lenght

Expression
Result Expression / Formula R

Pa

double: 10.0 Max_Area_OF_Officer_Room /
Min_Width_OF_Officer_Room

M
of
R
W
O
R

Officer Room Total Area

Expression
Result Expression / Formula R

Pa

double: 360.0 Number_OF_Officer_Room *
Max_Area_OF_Officer_Room

N
O
R
A
O
R

Min Width ft integer: 12 Requirement Parameter Value

Officer Room Min Lenght

Expression
Result Expression / Formula R

Pa

double: 10.0 Max_Area_OF_Officer_Room /
Min_Width_OF_Officer_Room

M
of
R
W
O
R

Min Lenght ft Expression
Result Expression / Formula Referenced

Parameters

double: 10.0 Max_Area_OF_Officer_Room /
Min_Width_OF_Officer_Room

Max Area
of Officer
RoomMin
Width of
Officer
Room

Total Area sqf Expression
Result Expression / Formula Referenced

Parameters
Number of

Requirement Parameter Value
Expression
Result Expression / Formula R

Pa

double: 360.0 Number_OF_Officer_Room *
Max_Area_OF_Officer_Room

Officer
RoomMax
Area of
Officer
Room Admininstration

Zone Total Area double: 1620.0

Total_Area_OF_Officer_Room
+
Total_Area_OF_Civilian_Office
+
Total_Area_OF_Enlisted_Office

T
of
R
A
C
O
A
E
O

Depends on Requirements
Requirement Condition

Admininstration Zone
Relative Weight Expression/Formula Is Satisfied?
0 true yes

Relationships with Requirements
Requirement Relation Type
Civilian Office adjacent,

Requirement: Civilian Office
Description: None available

Parameter Name Unit Value Parameter Observer
Number roomReferenced Value Referenced

Parameter
Expression
Result Expression / Formula Referenced

Parameters

integer: 9
roundup
(Officers_OF_Full_time_staff
* 3)

Officers of
Full time
staff

Enlisted of
Full time
staff

Requirement Parameter Value

Civilian Office Total Area

Expression
Result Expression / Formula R

Pa

double: 720.0 Number_OF_Civilian_Office
*Max_Area_OF_Civilian_Office

N
C
O
A
C
O

Max Area sqf integer: 80 Requirement Parameter Value

Civilian Office Min Lenght

Expression
Result Expression / Formula R

Pa

double: 8.0 Max_Area_OF_Civilian_Office /
Min_Width_OF_Civilian_Office

M
of
O
W
C
O

Civilian Office Total Area

Expression
Result Expression / Formula R

Pa

double: 720.0 Number_OF_Civilian_Office
*Max_Area_OF_Civilian_Office

N
C
O
A
C

O
Min Width unit double: 10.0 Requirement Parameter Value

Civilian Office Min Lenght

Expression
Result Expression / Formula R

Pa

double: 8.0 Max_Area_OF_Civilian_Office /
Min_Width_OF_Civilian_Office

M
of
O
W
C
O

Min Lenght Expression
Result Expression / Formula Referenced

Parameters

double: 8.0 Max_Area_OF_Civilian_Office /
Min_Width_OF_Civilian_Office

Max Area of
Civilian
OfficeMin Width
of Civilian Office

Total Area Expression
Result Expression / Formula Referenced

Parameters

double: 720.0 Number_OF_Civilian_Office
*Max_Area_OF_Civilian_Office

Number of
Civilian
OfficeMax Area
of Civilian
Office

Requirement Parameter Value

Admininstration
Zone Total Area

Expression
Result Expression / Formula R

Pa

double: 1620.0

Total_Area_OF_Officer_Room
+
Total_Area_OF_Civilian_Office
+
Total_Area_OF_Enlisted_Office

T
of
R
A
C
O
A
E
O

Depends on Requirements
Requirement Condition

Admininstration Zone
Relative Weight Expression/Formula Is Satisfied?
0 true yes

Relationships with Requirements
Requirement Relation Type
Officer Room adjacent,

Requirement: Enlisted Office
Description: None available

Parameter
Name Unit Value Parameter Observer

Area per
person

sqf/person integer: 60 Requirement Parameter Value

Enlisted

Expression
Result Expression / Formula Refe

Para
Area
pers

Office

Total Area double: 540.0 Area_per_person_OF_Enlisted_Office
* Enlisted_OF_Full_time_staff

Enlis
Offic
of F
staff

Total Area sqf Expression
Result Expression / Formula Referenced

Parameters

double: 540.0 Area_per_person_OF_Enlisted_Office
* Enlisted_OF_Full_time_staff

Area per
person of
Enlisted
OfficeEnlisted
of Full time
staff

Requirement Parameter Value

Admininstration
Zone Total Area

Expression
Result Expression / Formula R

Pa

double: 1620.0

Total_Area_OF_Officer_Room
+
Total_Area_OF_Civilian_Office
+
Total_Area_OF_Enlisted_Office

T
of
R
A
C
O
A
E
O

Unit Exclusive
Zone Total Area

Expression
Result Expression / Formula R

Pa

double: 1390.0

Total_Area_OF_Enlisted_Office
+ Area_OF_M_General_Office
+
Area_0_OF_B_General_Office
+ Area_1_OF_Secretary_MG

T
of
O
of
G
O
0
G
O
1
S
M

Depends on Requirements
Requirement Condition

Unit Exclusive Zone
Relative Weight Expression/Formula Is Satisfied?
0 true yes

Admininstration Zone
Relative Weight Expression/Formula Is Satisfied?
0 true yes

Relationships with Requirements

Requirement: Unit Exclusive Zone
Description: None available

Parameter Name Unit Value Parameter Observer
Total Area Expression

Result Expression / Formula Referenced Parameters

Total_Area_OF_Enlisted_Office
+ Area_OF_M_General_Office

Total Area of Enlisted
OfficeArea of M

double: 1390.0 +
Area_0_OF_B_General_Office
+ Area_1_OF_Secretary_MG

General OfficeArea 0 of
B General OfficeArea 1
of Secretary MG

Depends on Requirements
Requirement Condition

Admininstration Zone
Relative Weight Expression/Formula Is Satisfied?
0 true yes

Administrative
Relative Weight Expression/Formula Is Satisfied?
0 true yes

Depended by Requirements
Requirement Condition

Enlisted Office
Relative Weight Expression/Formula Is Satisfied?
0 true yes

B General Office
Relative Weight Expression/Formula Is Satisfied?
0 Ranking_Officer_TO_Brigadier_General no

M General Office
Relative Weight Expression/Formula Is Satisfied?
0 Ranking_Officer_TO_Major_General no

Relationships with Requirements

Category: Equipment Furniture
Description: Description:

Information Level: 4

Requirements:

 <?xml version="1.0" encoding="UTF-8" ?>
 <!-- XML file generated RabbitProgramGenerator -->

- <RabbitProject xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="C:\Documents and
Settings\hie\Desktop\RabbitXMLSchema.xsd">

- <RabbitProjectInformation>
- <project>
 <projectName>A project name</projectName>
 <projectLocation>Project location</projectLocation>
 <projectID>AAA-123-1234</projectID>
 <projectDesc>Enter project description in this text area</projectDesc>

 </project>
- <client>
 <clientName>Client A</clientName>
 <contactName>Emre Efe Rabbit</contactName>
 <contactPhone>555-555-5555</contactPhone>
 <contactEmail>rabbitkus@netscape.com</contactEmail>
 <contactAdress>Address information form will be

redesigned</contactAdress>
 </client>
- <versionInformation>
 <date>2003-12-14 00:02:48</date>
 <versionNumber>v0.0.0</versionNumber>
 <versionDescription>Write the version description

here</versionDescription>
 </versionInformation>

 </RabbitProjectInformation>
- <constructGlobalAs>
 <constructName>Training</constructName>
 <constructDescription />
 <unit>t/f</unit>
- <value>
- <valueSimple>
 <type>boolean</type>
 <boolean>true</boolean>

 </valueSimple>
 </value>

 </constructGlobalAs>
- <constructGlobalAs>
 <constructName>Maintenance Training</constructName>
 <constructDescription />
 <unit>t/f</unit>
- <value>
- <valueSimple>
 <type>boolean</type>
 <boolean>false</boolean>

 </valueSimple>
 </value>

 </constructGlobalAs>
- <constructGlobalAs>
 <constructName>Reserves</constructName>
 <constructDescription />

- <constructObservedBy>
 <componentName>Full time staff</componentName>
 <constructName>Officers</constructName>
- <value>
- <valueComplex>
 <type>Expression</type>
- <valueExpression>
- <value>
- <valueSimple>
 <type>integer</type>
 <integer>3</integer>

 </valueSimple>
 </value>
 <expression>roundup(Reserves / 100)</expression>
- <valueReadFrom>
 <componentName>GLOBAL PARAMETER</componentName>
 <constructName>Reserves</constructName>
- <value>
- <valueSimple>
 <type>integer</type>
 <integer>300</integer>

 </valueSimple>
 </value>

 </valueReadFrom>
 </valueExpression>

 </valueComplex>
 </value>

 </constructObservedBy>
- <constructObservedBy>
 <componentName>Officer Room</componentName>
 <constructName>Number</constructName>
- <value>
- <valueComplex>
 <type>Reference</type>
- <valueReference>
- <value>
- <valueSimple>
 <type>integer</type>
 <integer>300</integer>

 </valueSimple>
 </value>
- <valueReadFrom>
 <componentName>GLOBAL PARAMETER</componentName>
 <constructName>Reserves</constructName>
- <value>
- <valueSimple>
 <type>integer</type>
 <integer>300</integer>

 </valueSimple>
 </value>

 </valueReadFrom>
 </valueReference>

 </valueComplex>
 </value>

 </constructObservedBy>
- <constructObservedBy>
 <componentName>Ranking Officer_TO_Major General</componentName>
 <constructName>Ranking Officer_TO_Major General</constructName>
- <value>
- <valueSimple>
 <type>boolean</type>
 <boolean>false</boolean>

 </valueSimple>
 </value>

 </constructObservedBy>
- <constructObservedBy>
 <componentName>Ranking Officer_TO_Brigadier

General</componentName>
 <constructName>Ranking Officer_TO_Brigadier General</constructName>
- <value>
- <valueSimple>
 <type>boolean</type>
 <boolean>false</boolean>

 </valueSimple>
 </value>

 </constructObservedBy>
- <constructObservedBy>
 <componentName>Ranking Officer_TO_Colonel</componentName>
 <constructName>Ranking Officer_TO_Colonel</constructName>
- <value>
- <valueSimple>
 <type>boolean</type>
 <boolean>true</boolean>

 </valueSimple>
 </value>

 </constructObservedBy>
- <constructObservedBy>
 <componentName>Ranking Officer</componentName>
 <constructName>Batalion or higher</constructName>
- <value>
- <valueComplex>
 <type>Expression</type>
- <valueExpression>
- <value>
- <valueSimple>
 <type>double</type>
 <double>0.0</double>

 </valueSimple>
 </value>
 <expression>if (Reserves > 500, true, false)</expression>
- <valueReadFrom>
 <componentName>GLOBAL PARAMETER</componentName>
 <constructName>Reserves</constructName>
- <value>

- <valueSimple>
 <type>integer</type>
 <integer>300</integer>

 </valueSimple>
 </value>

 </valueReadFrom>
 </valueExpression>

 </valueComplex>
 </value>

 </constructObservedBy>
- <constructObservedBy>
 <componentName>Lietenant Colonel</componentName>
 <constructName>Number</constructName>
- <value>
- <valueComplex>
 <type>Expression</type>
- <valueExpression>
- <value>
- <valueSimple>
 <type>integer</type>
 <integer>0</integer>

 </valueSimple>
 </value>
 <expression>rounddown(Reserves / 400)</expression>
- <valueReadFrom>
 <componentName>GLOBAL PARAMETER</componentName>
 <constructName>Reserves</constructName>
- <value>
- <valueSimple>
 <type>integer</type>
 <integer>300</integer>

 </valueSimple>
 </value>

 </valueReadFrom>
 </valueExpression>

 </valueComplex>
 </value>

 </constructObservedBy>
- <constructObservedBy>
 <componentName>Colonel</componentName>
 <constructName>Number</constructName>
- <value>
- <valueComplex>
 <type>Expression</type>
- <valueExpression>
- <value>
- <valueSimple>
 <type>integer</type>
 <integer>1</integer>

 </valueSimple>
 </value>
 <expression>rounddown (Reserves / 300)</expression>

- <valueReadFrom>
 <componentName>GLOBAL PARAMETER</componentName>
 <constructName>Reserves</constructName>
- <value>
- <valueSimple>
 <type>integer</type>
 <integer>300</integer>

 </valueSimple>
 </value>

 </valueReadFrom>
 </valueExpression>

 </valueComplex>
 </value>

 </constructObservedBy>
- <constructObservedBy>
 <componentName>Brigadier General</componentName>
 <constructName>Number</constructName>
- <value>
- <valueComplex>
 <type>Expression</type>
- <valueExpression>
- <value>
- <valueSimple>
 <type>double</type>
 <double>0.0</double>

 </valueSimple>
 </value>
 <expression>if (Ranking_Officer_TO_Brigadier_General,

rounddown(Reserves / 600), 0)</expression>
- <valueReadFrom>
 <componentName>Ranking Officer_TO_Brigadier

General</componentName>
 <constructName>Ranking Officer_TO_Brigadier

General</constructName>
- <value>
- <valueSimple>
 <type>boolean</type>
 <boolean>false</boolean>

 </valueSimple>
 </value>

 </valueReadFrom>
- <valueReadFrom>
 <componentName>GLOBAL PARAMETER</componentName>
 <constructName>Reserves</constructName>
- <value>
- <valueSimple>
 <type>integer</type>
 <integer>300</integer>

 </valueSimple>
 </value>

 </valueReadFrom>
 </valueExpression>

 </valueComplex>
 </value>

 </constructObservedBy>
- <constructObservedBy>
 <componentName>Staff Section Chief</componentName>
 <constructName>Number</constructName>
- <value>
- <valueComplex>
 <type>Expression</type>
- <valueExpression>
- <value>
- <valueSimple>
 <type>integer</type>
 <integer>1</integer>

 </valueSimple>
 </value>
 <expression>roundup(Reserves / 300)</expression>
- <valueReadFrom>
 <componentName>GLOBAL PARAMETER</componentName>
 <constructName>Reserves</constructName>
- <value>
- <valueSimple>
 <type>integer</type>
 <integer>300</integer>

 </valueSimple>
 </value>

 </valueReadFrom>
 </valueExpression>

 </valueComplex>
 </value>

 </constructObservedBy>
- <constructObservedBy>
 <componentName>Staff Section Chief</componentName>
 <constructName>Number</constructName>
- <value>
- <valueComplex>
 <type>Expression</type>
- <valueExpression>
- <value>
- <valueSimple>
 <type>integer</type>
 <integer>2</integer>

 </valueSimple>
 </value>
 <expression>roundup(Reserves / 200)</expression>
- <valueReadFrom>
 <componentName>GLOBAL PARAMETER</componentName>
 <constructName>Reserves</constructName>
- <value>
- <valueSimple>
 <type>integer</type>
 <integer>300</integer>

 </valueSimple>
 </value>

 </valueReadFrom>
 </valueExpression>

 </valueComplex>
 </value>

 </constructObservedBy>
 <unit>unit</unit>
- <value>
- <valueSimple>
 <type>integer</type>
 <integer>300</integer>

 </valueSimple>
 </value>

 </constructGlobalAs>
- <constructGlobalAs>
 <constructName>Weapon Training</constructName>
 <constructDescription />
 <unit>t/f</unit>
- <value>
- <valueSimple>
 <type>boolean</type>
 <boolean>true</boolean>

 </valueSimple>
 </value>

 </constructGlobalAs>
- <categoryList>
- <category>
 <categoryName>Project Mission</categoryName>
 <categoryDescription>Describes the mission of the project, including the

mission of the USAR unit assigned. The design requirements of the
facility have to be determined for the particular missions assigned to
the units.</categoryDescription>

 <categoryLevel>0</categoryLevel>
- <component>
- <componentInformation>
 <componentName>Mission</componentName>
 <componentDescription>Design a USARC for a number of

reserves</componentDescription>
 <categoryName>Project Mission</categoryName>

 </componentInformation>
- <dependedByComponents>
- <componentDependency>
 <componentName>Full time staff</componentName>
- <dependencyCondition>
 <weight>0</weight>
 <expression>true</expression>
 <isSatisfied>true</isSatisfied>

 </dependencyCondition>
 </componentDependency>
- <componentDependency>
 <componentName>Maintenance Activities</componentName>

- <dependencyCondition>
 <weight>0</weight>
 <expression>true</expression>
 <isSatisfied>true</isSatisfied>

 </dependencyCondition>
 </componentDependency>
- <componentDependency>
 <componentName>Training Activities</componentName>
- <dependencyCondition>
 <weight>0</weight>
 <expression>true</expression>
 <isSatisfied>true</isSatisfied>

 </dependencyCondition>
 </componentDependency>

 </dependedByComponents>
 </component>

 </category>
- <category>
 <categoryName>Activities</categoryName>
 <categoryDescription>The requirement information fall under this group

includes the activities that a USAR unit is assigned. Basically, training
and traningin-related maintenance activities.</categoryDescription>

 <categoryLevel>1</categoryLevel>
- <component>
- <componentInformation>
 <componentName>Administrative</componentName>
 <componentDescription />
 <categoryName>Activities</categoryName>

 </componentInformation>
- <dependsOnComponents>
- <componentDependency>
 <componentName>Training Activities</componentName>
- <dependencyCondition>
 <weight>0</weight>
 <expression>true</expression>
 <isSatisfied>true</isSatisfied>

 </dependencyCondition>
 </componentDependency>

 </dependsOnComponents>
- <dependedByComponents>
- <componentDependency>
 <componentName>Admininstration Zone</componentName>
- <dependencyCondition>
 <weight>0</weight>
 <expression>true</expression>
 <isSatisfied>true</isSatisfied>

 </dependencyCondition>
 </componentDependency>
- <componentDependency>
 <componentName>Unit Exclusive Zone</componentName>
- <dependencyCondition>
 <weight>0</weight>

 <expression>true</expression>
 <isSatisfied>true</isSatisfied>

 </dependencyCondition>
 </componentDependency>

 </dependedByComponents>
 </component>
- <component>
- <componentInformation>
 <componentName>Training Activities</componentName>
 <componentDescription />
 <categoryName>Activities</categoryName>

 </componentInformation>
- <dependsOnComponents>
- <componentDependency>
 <componentName>Mission</componentName>
- <dependencyCondition>
 <weight>0</weight>
 <expression>true</expression>
 <isSatisfied>true</isSatisfied>

 </dependencyCondition>
 </componentDependency>

 </dependsOnComponents>
- <dependedByComponents>
- <componentDependency>
 <componentName>Administrative</componentName>
- <dependencyCondition>
 <weight>0</weight>
 <expression>true</expression>
 <isSatisfied>true</isSatisfied>

 </dependencyCondition>
 </componentDependency>

 </dependedByComponents>
 </component>
- <component>
- <componentInformation>
 <componentName>Maintenance Activities</componentName>
 <componentDescription>USARC maintenance activities as

described in the design quidelines</componentDescription>
 <categoryName>Activities</categoryName>

 </componentInformation>
- <dependsOnComponents>
- <componentDependency>
 <componentName>Mission</componentName>
- <dependencyCondition>
 <weight>0</weight>
 <expression>true</expression>
 <isSatisfied>true</isSatisfied>

 </dependencyCondition>
 </componentDependency>

 </dependsOnComponents>
 </component>

 </category>

- <category>
 <categoryName>Staff</categoryName>
 <categoryDescription>An Army unit structure is hierarchical and

composed of smaller to larger groups. Smallest unit is a "reservee",
an USAR personnel who is under training. Each larger group is trained
by a ranking officer, which his/her rank changes as the number of
reserves changes in the group. During the drill period, depending on
the number of reservees (troops) to be trained, the rank structure of
the ARU changes. The rank structure and number of troops in an USAR
unit is reflected in the design requirements. The maximum number of
reserves is defined as total authorized drilling strength (number of
reserves) of the largest drill (training) weekend. The largest drill
strength is headed by the highest ranked officer in the
ARU.</categoryDescription>

 <categoryLevel>2</categoryLevel>
- <component>
- <componentInformation>
 <componentName>Full time staff</componentName>
 <componentDescription />
 <categoryName>Staff</categoryName>
- <constructLocalAs>
 <constructName>Officers</constructName>
 <constructDescription />
- <constructObservedBy>
 <componentName>Full time staff</componentName>
 <constructName>Civilians</constructName>
- <value>
- <valueComplex>
 <type>Expression</type>
- <valueExpression>
- <value>
- <valueSimple>
 <type>integer</type>
 <integer>6</integer>

 </valueSimple>
 </value>
 <expression>roundup

(Officers_OF_Full_time_staff * 2)
</expression>

- <valueReadFrom>
 <componentName>Full time

staff</componentName>
 <constructName>Officers</constructName>
- <value>
- <valueComplex>
 <type>Expression</type>
- <valueExpression>
- <value>
- <valueSimple>
 <type>integer</type>
 <integer>3</integer>

 </valueSimple>
 </value>

 <?xml version="1.0" encoding="UTF-8" ?>
- <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fo="http://www.w3.org/1999/XSL/Format"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

- <xsl:variable name="fo:layout-master-set">
- <fo:layout-master-set>
- <fo:simple-page-master master-name="default-page" page-height="11in"

page-width="8.5in" margin-left="0.6in" margin-right="0.6in">
 <fo:region-body margin-top="0.79in" margin-bottom="0.79in" />

 </fo:simple-page-master>
 </fo:layout-master-set>

 </xsl:variable>
- <xsl:template match="/">
- <fo:root>
 <xsl:copy-of select="$fo:layout-master-set" />
- <fo:page-sequence master-reference="default-page" initial-page-number="1"

format="1">
- <fo:flow flow-name="xsl-region-body">
- <fo:block>
- <xsl:for-each select="RabbitProject">
- <fo:block font-size="18pt" font-weight="bold" space-

before.optimum="1pt" space-after.optimum="2pt">
- <fo:block>
 <fo:inline color="#BE3232">RaBBiT Generated

Architectural Program View</fo:inline>
 </fo:block>

 </fo:block>
 <xsl:apply-templates select="RabbitProjectInformation" />
- <fo:block>
 <fo:leader leader-pattern="space" />

 </fo:block>
- <fo:block break-after="page" color="#BE3232" font-

size="22">
 <fo:leader leader-pattern="space" />

 </fo:block>
 <fo:inline color="#BE3232" font-size="22">Global

Parameters</fo:inline>
 <xsl:apply-templates select="constructGlobalAs" />
- <fo:block break-after="page">
 <fo:leader leader-pattern="space" />

 </fo:block>
 <xsl:apply-templates select="categoryList" />
- <fo:block break-after="page" color="#BE3232" font-

size="22">
 <fo:leader leader-pattern="space" />

 </fo:block>
- <xsl:choose>
- <xsl:when test="component != """>
 <fo:inline color="#BE3232" font-size="22">Global

(Uncategoriezed) Requirement
Information</fo:inline>

- <fo:block>
 <fo:leader leader-pattern="space" />

hie
Inserted Text
XSLT Shema Definition

 </fo:block>
 <xsl:apply-templates select="component" />

 </xsl:when>
 <xsl:otherwise />

 </xsl:choose>
- <fo:block>
 <xsl:text></xsl:text>

 </fo:block>
 </xsl:for-each>

 </fo:block>
 </fo:flow>

 </fo:page-sequence>
 </fo:root>

 </xsl:template>
- <xsl:template match="RabbitProject">
 <xsl:apply-templates />

 </xsl:template>
- <xsl:template match="RabbitProjectInformation">
 <fo:inline color="#BE3232" font-size="22">Project Details</fo:inline>
- <fo:table color="#BE3232" font-size="18" background-color="#3232BE"

width="100%" space-before.optimum="1pt" space-after.optimum="2pt">
 <fo:table-column />
- <fo:table-body>
- <fo:table-row>
- <fo:table-cell background-color="#3232BE" border-after-

color="#3232BE" border-after-width="3pt" border-before-
color="#3232BE" border-before-width="3pt" border-end-
color="#3232BE" border-end-width="3pt" border-start-
color="#3232BE" border-start-width="3pt" padding-start="3pt"
padding-end="3pt" padding-before="3pt" padding-after="3pt"
display-align="center" text-align="start" border-style="solid"
border-width="1pt" border-color="#3232BE">

- <fo:block>
 <fo:inline color="#FFFFE1" font-size="18" font-

weight="bold">Project Information</fo:inline>
 </fo:block>

 </fo:table-cell>
 </fo:table-row>

 </fo:table-body>
 </fo:table>
- <fo:table padding="2" width="100%" space-before.optimum="1pt" space-

after.optimum="2pt">
 <fo:table-column column-width="proportional-column-width(30)" />
- <xsl:for-each select="project">
 <fo:table-column />

 </xsl:for-each>
- <fo:table-body>
- <fo:table-row>
- <fo:table-cell border-after-color="#3232BE" border-before-

color="#3232BE" border-before-style="solid" border-before-
width="3pt" border-end-color="#3232BE" border-start-
color="#3232BE" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"

width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>Name:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="project">
- <fo:table-cell border-after-color="#3232BE" border-before-

color="#3232BE" border-before-style="solid" border-before-
width="3pt" border-end-color="#3232BE" border-start-
color="#3232BE" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="projectName">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"
width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>Location:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="project">
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="projectLocation">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"

width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>ID:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="project">
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="projectID">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-after-style="solid"

border-after-width="3pt" border-before-color="#475874" border-
before-style="solid" border-before-width="1pt" border-end-
color="#475874" border-start-color="#475874" font-size="12"
padding-end="5pt" padding-start="5pt" background-
color="#FFFFE1" text-align="right" width="30%" padding-
before="3pt" padding-after="3pt" display-align="center" border-
style="solid" border-width="1pt" border-color="white">

 <fo:block>Description:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="project">
- <fo:table-cell border-after-color="#475874" border-after-

style="solid" border-after-width="3pt" border-before-
color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
 <xsl:if test="projectDesc = """>None available</xsl:if>
- <xsl:for-each select="projectDesc">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
 </fo:table-body>

 </fo:table>
- <fo:table color="#BE3232" font-size="18" background-color="#3232BE"

width="100%" space-before.optimum="1pt" space-after.optimum="2pt">

 <fo:table-column />
- <fo:table-body>
- <fo:table-row>
- <fo:table-cell background-color="#3232BE" border-after-

color="#3232BE" border-after-width="3pt" border-before-
color="#3232BE" border-before-width="3pt" border-end-
color="#3232BE" border-end-width="3pt" border-start-
color="#3232BE" border-start-width="3pt" padding-start="3pt"
padding-end="3pt" padding-before="3pt" padding-after="3pt"
display-align="center" text-align="start" border-style="solid"
border-width="1pt" border-color="#3232BE">

- <fo:block>
 <fo:inline color="#FFFFE1" font-size="18" font-

weight="bold">Client Information</fo:inline>
 </fo:block>

 </fo:table-cell>
 </fo:table-row>

 </fo:table-body>
 </fo:table>
- <fo:table padding="2" width="100%" space-before.optimum="1pt" space-

after.optimum="2pt">
 <fo:table-column column-width="proportional-column-width(30)" />
- <xsl:for-each select="client">
 <fo:table-column />

 </xsl:for-each>
- <fo:table-body>
- <fo:table-row>
- <fo:table-cell border-after-color="#3232BE" border-before-

color="#3232BE" border-before-style="solid" border-before-
width="3pt" border-end-color="#3232BE" border-start-
color="#3232BE" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"
width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>Name:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="client">
- <fo:table-cell border-after-color="#3232BE" border-before-

color="#3232BE" border-before-style="solid" border-before-
width="3pt" border-end-color="#3232BE" border-start-
color="#3232BE" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="clientName">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>

- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"
width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>Contact Name:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="client">
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="contactName">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"
width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>Phone:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="client">
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="contactPhone">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>

- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"
width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>Email:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="client">
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="contactEmail">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-after-style="solid"

border-after-width="3pt" border-before-color="#475874" border-
before-style="solid" border-before-width="1pt" border-end-
color="#475874" border-start-color="#475874" font-size="12"
padding-end="5pt" padding-start="5pt" background-
color="#FFFFE1" text-align="right" width="30%" padding-
before="3pt" padding-after="3pt" display-align="center" border-
style="solid" border-width="1pt" border-color="white">

 <fo:block>Adress:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="client">
- <fo:table-cell border-after-color="#475874" border-after-

style="solid" border-after-width="3pt" border-before-
color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="contactAdress">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
 </fo:table-body>

 </fo:table>
- <fo:table color="#BE3232" font-size="18" background-color="#3232BE"

width="100%" space-before.optimum="1pt" space-after.optimum="2pt">
 <fo:table-column />
- <fo:table-body>
- <fo:table-row>
- <fo:table-cell background-color="#3232BE" border-after-

color="#3232BE" border-after-width="3pt" border-before-
color="#3232BE" border-before-width="3pt" border-end-
color="#3232BE" border-end-width="3pt" border-start-
color="#3232BE" border-start-width="3pt" padding-start="3pt"
padding-end="3pt" padding-before="3pt" padding-after="3pt"
display-align="center" text-align="start" border-style="solid"
border-width="1pt" border-color="#3232BE">

- <fo:block>
 <fo:inline color="#FFFFE1" font-size="18" font-

weight="bold">Version Information</fo:inline>
 </fo:block>

 </fo:table-cell>
 </fo:table-row>

 </fo:table-body>
 </fo:table>
- <fo:table padding="2" width="100%" space-before.optimum="1pt" space-

after.optimum="2pt">
 <fo:table-column column-width="proportional-column-width(30)" />
- <xsl:for-each select="versionInformation">
 <fo:table-column />

 </xsl:for-each>
- <fo:table-body>
- <fo:table-row>
- <fo:table-cell border-after-color="#3232BE" border-before-

color="#3232BE" border-before-style="solid" border-before-
width="3pt" border-end-color="#3232BE" border-start-
color="#3232BE" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"
width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>Generation Date:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="versionInformation">
- <fo:table-cell border-after-color="#3232BE" border-before-

color="#3232BE" border-before-style="solid" border-before-
width="3pt" border-end-color="#3232BE" border-start-
color="#3232BE" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="date">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"
width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>Version Number:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="versionInformation">
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="versionNumber">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-after-style="solid"

border-after-width="3pt" border-before-color="#475874" border-
before-style="solid" border-before-width="1pt" border-end-
color="#475874" border-start-color="#475874" font-size="12"
padding-end="5pt" padding-start="5pt" background-
color="#FFFFE1" text-align="right" width="30%" padding-
before="3pt" padding-after="3pt" display-align="center" border-
style="solid" border-width="1pt" border-color="white">

 <fo:block>Description:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="versionInformation">
- <fo:table-cell border-after-color="#475874" border-after-

style="solid" border-after-width="3pt" border-before-
color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="versionDescription">

 <xsl:apply-templates />
 </xsl:for-each>

 </fo:block>
 </fo:table-cell>

 </xsl:for-each>
 </fo:table-row>

 </fo:table-body>
 </fo:table>

 </xsl:template>
- <xsl:template match="category">
- <fo:table color="#BE3232" font-size="18" background-color="#4758A7"

width="100%" space-before.optimum="1pt" space-after.optimum="2pt">
 <fo:table-column />
- <fo:table-body>
- <fo:table-row>
- <fo:table-cell background-color="#3232BE" border-after-

color="#4758A7" border-after-width="3pt" border-before-
color="#4758A7" border-before-width="3pt" border-end-
color="#4758A7" border-end-width="3pt" border-start-
color="#4758A7" border-start-width="3pt" font-size="12" padding-
start="3pt" padding-end="3pt" padding-before="3pt" padding-
after="3pt" display-align="center" text-align="start" border-
style="solid" border-width="1pt" border-color="#4758A7">

- <fo:block>
 <fo:inline color="#FFFFE1" font-

size="18">Category: </fo:inline>
- <xsl:for-each select="categoryName">
- <fo:inline color="#FFFFE1" font-size="18" font-

style="normal" font-weight="bold">
 <xsl:apply-templates />

 </fo:inline>
 </xsl:for-each>

 </fo:block>
 </fo:table-cell>

 </fo:table-row>
 </fo:table-body>

 </fo:table>
- <fo:table background-color="#FFFFE1" padding="2" width="100%" space-

before.optimum="1pt" space-after.optimum="2pt">
 <fo:table-column column-width="proportional-column-width(30)" />
 <fo:table-column column-width="proportional-column-width(70)" />
- <fo:table-body>
- <fo:table-row>
- <fo:table-cell border-after-color="#4758A7" border-after-style="solid"

border-after-width="1pt" border-before-color="#4758A7" border-
end-color="#4758A7" border-start-color="#4758A7" font-size="12"
text-align="right" width="30%" padding-start="3pt" padding-
end="3pt" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="#FFFFE1">

 <fo:block>Description:</fo:block>
 </fo:table-cell>
- <fo:table-cell border-after-color="#4758A7" border-after-style="solid"

 <?xml version="1.0" encoding="UTF-8" ?>
- <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fo="http://www.w3.org/1999/XSL/Format"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

- <xsl:variable name="fo:layout-master-set">
- <fo:layout-master-set>
- <fo:simple-page-master master-name="default-page" page-height="11in"

page-width="8.5in" margin-left="0.6in" margin-right="0.6in">
 <fo:region-body margin-top="0.79in" margin-bottom="0.79in" />

 </fo:simple-page-master>
 </fo:layout-master-set>

 </xsl:variable>
- <xsl:template match="/">
- <fo:root>
 <xsl:copy-of select="$fo:layout-master-set" />
- <fo:page-sequence master-reference="default-page" initial-page-number="1"

format="1">
- <fo:flow flow-name="xsl-region-body">
- <fo:block>
- <xsl:for-each select="RabbitProject">
- <fo:block font-size="18pt" font-weight="bold" space-

before.optimum="1pt" space-after.optimum="2pt">
- <fo:block>
 <fo:inline color="#BE3232">RaBBiT Generated

Architectural Program View</fo:inline>
 </fo:block>

 </fo:block>
 <xsl:apply-templates select="RabbitProjectInformation" />
- <fo:block>
 <fo:leader leader-pattern="space" />

 </fo:block>
- <fo:block break-after="page" color="#BE3232" font-

size="22">
 <fo:leader leader-pattern="space" />

 </fo:block>
 <fo:inline color="#BE3232" font-size="22">Global

Parameters</fo:inline>
 <xsl:apply-templates select="constructGlobalAs" />
- <fo:block break-after="page">
 <fo:leader leader-pattern="space" />

 </fo:block>
 <xsl:apply-templates select="categoryList" />
- <fo:block break-after="page" color="#BE3232" font-

size="22">
 <fo:leader leader-pattern="space" />

 </fo:block>
- <xsl:choose>
- <xsl:when test="component != """>
 <fo:inline color="#BE3232" font-size="22">Global

(Uncategoriezed) Requirement
Information</fo:inline>

- <fo:block>
 <fo:leader leader-pattern="space" />

 </fo:block>
 <xsl:apply-templates select="component" />

 </xsl:when>
 <xsl:otherwise />

 </xsl:choose>
- <fo:block>
 <xsl:text></xsl:text>

 </fo:block>
 </xsl:for-each>

 </fo:block>
 </fo:flow>

 </fo:page-sequence>
 </fo:root>

 </xsl:template>
- <xsl:template match="RabbitProject">
 <xsl:apply-templates />

 </xsl:template>
- <xsl:template match="RabbitProjectInformation">
 <fo:inline color="#BE3232" font-size="22">Project Details</fo:inline>
- <fo:table color="#BE3232" font-size="18" background-color="#3232BE"

width="100%" space-before.optimum="1pt" space-after.optimum="2pt">
 <fo:table-column />
- <fo:table-body>
- <fo:table-row>
- <fo:table-cell background-color="#3232BE" border-after-

color="#3232BE" border-after-width="3pt" border-before-
color="#3232BE" border-before-width="3pt" border-end-
color="#3232BE" border-end-width="3pt" border-start-
color="#3232BE" border-start-width="3pt" padding-start="3pt"
padding-end="3pt" padding-before="3pt" padding-after="3pt"
display-align="center" text-align="start" border-style="solid"
border-width="1pt" border-color="#3232BE">

- <fo:block>
 <fo:inline color="#FFFFE1" font-size="18" font-

weight="bold">Project Information</fo:inline>
 </fo:block>

 </fo:table-cell>
 </fo:table-row>

 </fo:table-body>
 </fo:table>
- <fo:table padding="2" width="100%" space-before.optimum="1pt" space-

after.optimum="2pt">
 <fo:table-column column-width="proportional-column-width(30)" />
- <xsl:for-each select="project">
 <fo:table-column />

 </xsl:for-each>
- <fo:table-body>
- <fo:table-row>
- <fo:table-cell border-after-color="#3232BE" border-before-

color="#3232BE" border-before-style="solid" border-before-
width="3pt" border-end-color="#3232BE" border-start-
color="#3232BE" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"

width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>Name:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="project">
- <fo:table-cell border-after-color="#3232BE" border-before-

color="#3232BE" border-before-style="solid" border-before-
width="3pt" border-end-color="#3232BE" border-start-
color="#3232BE" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="projectName">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"
width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>Location:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="project">
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="projectLocation">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"

width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>ID:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="project">
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="projectID">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-after-style="solid"

border-after-width="3pt" border-before-color="#475874" border-
before-style="solid" border-before-width="1pt" border-end-
color="#475874" border-start-color="#475874" font-size="12"
padding-end="5pt" padding-start="5pt" background-
color="#FFFFE1" text-align="right" width="30%" padding-
before="3pt" padding-after="3pt" display-align="center" border-
style="solid" border-width="1pt" border-color="white">

 <fo:block>Description:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="project">
- <fo:table-cell border-after-color="#475874" border-after-

style="solid" border-after-width="3pt" border-before-
color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
 <xsl:if test="projectDesc = """>None available</xsl:if>
- <xsl:for-each select="projectDesc">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
 </fo:table-body>

 </fo:table>
- <fo:table color="#BE3232" font-size="18" background-color="#3232BE"

width="100%" space-before.optimum="1pt" space-after.optimum="2pt">

 <fo:table-column />
- <fo:table-body>
- <fo:table-row>
- <fo:table-cell background-color="#3232BE" border-after-

color="#3232BE" border-after-width="3pt" border-before-
color="#3232BE" border-before-width="3pt" border-end-
color="#3232BE" border-end-width="3pt" border-start-
color="#3232BE" border-start-width="3pt" padding-start="3pt"
padding-end="3pt" padding-before="3pt" padding-after="3pt"
display-align="center" text-align="start" border-style="solid"
border-width="1pt" border-color="#3232BE">

- <fo:block>
 <fo:inline color="#FFFFE1" font-size="18" font-

weight="bold">Client Information</fo:inline>
 </fo:block>

 </fo:table-cell>
 </fo:table-row>

 </fo:table-body>
 </fo:table>
- <fo:table padding="2" width="100%" space-before.optimum="1pt" space-

after.optimum="2pt">
 <fo:table-column column-width="proportional-column-width(30)" />
- <xsl:for-each select="client">
 <fo:table-column />

 </xsl:for-each>
- <fo:table-body>
- <fo:table-row>
- <fo:table-cell border-after-color="#3232BE" border-before-

color="#3232BE" border-before-style="solid" border-before-
width="3pt" border-end-color="#3232BE" border-start-
color="#3232BE" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"
width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>Name:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="client">
- <fo:table-cell border-after-color="#3232BE" border-before-

color="#3232BE" border-before-style="solid" border-before-
width="3pt" border-end-color="#3232BE" border-start-
color="#3232BE" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="clientName">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>

- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"
width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>Contact Name:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="client">
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="contactName">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"
width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>Phone:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="client">
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="contactPhone">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>

- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"
width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>Email:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="client">
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="contactEmail">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-after-style="solid"

border-after-width="3pt" border-before-color="#475874" border-
before-style="solid" border-before-width="1pt" border-end-
color="#475874" border-start-color="#475874" font-size="12"
padding-end="5pt" padding-start="5pt" background-
color="#FFFFE1" text-align="right" width="30%" padding-
before="3pt" padding-after="3pt" display-align="center" border-
style="solid" border-width="1pt" border-color="white">

 <fo:block>Adress:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="client">
- <fo:table-cell border-after-color="#475874" border-after-

style="solid" border-after-width="3pt" border-before-
color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="contactAdress">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
 </fo:table-body>

 </fo:table>
- <fo:table color="#BE3232" font-size="18" background-color="#3232BE"

width="100%" space-before.optimum="1pt" space-after.optimum="2pt">
 <fo:table-column />
- <fo:table-body>
- <fo:table-row>
- <fo:table-cell background-color="#3232BE" border-after-

color="#3232BE" border-after-width="3pt" border-before-
color="#3232BE" border-before-width="3pt" border-end-
color="#3232BE" border-end-width="3pt" border-start-
color="#3232BE" border-start-width="3pt" padding-start="3pt"
padding-end="3pt" padding-before="3pt" padding-after="3pt"
display-align="center" text-align="start" border-style="solid"
border-width="1pt" border-color="#3232BE">

- <fo:block>
 <fo:inline color="#FFFFE1" font-size="18" font-

weight="bold">Version Information</fo:inline>
 </fo:block>

 </fo:table-cell>
 </fo:table-row>

 </fo:table-body>
 </fo:table>
- <fo:table padding="2" width="100%" space-before.optimum="1pt" space-

after.optimum="2pt">
 <fo:table-column column-width="proportional-column-width(30)" />
- <xsl:for-each select="versionInformation">
 <fo:table-column />

 </xsl:for-each>
- <fo:table-body>
- <fo:table-row>
- <fo:table-cell border-after-color="#3232BE" border-before-

color="#3232BE" border-before-style="solid" border-before-
width="3pt" border-end-color="#3232BE" border-start-
color="#3232BE" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"
width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>Generation Date:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="versionInformation">
- <fo:table-cell border-after-color="#3232BE" border-before-

color="#3232BE" border-before-style="solid" border-before-
width="3pt" border-end-color="#3232BE" border-start-
color="#3232BE" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="date">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"
width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>Version Number:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="versionInformation">
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="versionNumber">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-after-style="solid"

border-after-width="3pt" border-before-color="#475874" border-
before-style="solid" border-before-width="1pt" border-end-
color="#475874" border-start-color="#475874" font-size="12"
padding-end="5pt" padding-start="5pt" background-
color="#FFFFE1" text-align="right" width="30%" padding-
before="3pt" padding-after="3pt" display-align="center" border-
style="solid" border-width="1pt" border-color="white">

 <fo:block>Description:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="versionInformation">
- <fo:table-cell border-after-color="#475874" border-after-

style="solid" border-after-width="3pt" border-before-
color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="versionDescription">

 <xsl:apply-templates />
 </xsl:for-each>

 </fo:block>
 </fo:table-cell>

 </xsl:for-each>
 </fo:table-row>

 </fo:table-body>
 </fo:table>

 </xsl:template>
- <xsl:template match="category">
- <fo:table color="#BE3232" font-size="18" background-color="#4758A7"

width="100%" space-before.optimum="1pt" space-after.optimum="2pt">
 <fo:table-column />
- <fo:table-body>
- <fo:table-row>
- <fo:table-cell background-color="#3232BE" border-after-

color="#4758A7" border-after-width="3pt" border-before-
color="#4758A7" border-before-width="3pt" border-end-
color="#4758A7" border-end-width="3pt" border-start-
color="#4758A7" border-start-width="3pt" font-size="12" padding-
start="3pt" padding-end="3pt" padding-before="3pt" padding-
after="3pt" display-align="center" text-align="start" border-
style="solid" border-width="1pt" border-color="#4758A7">

- <fo:block>
 <fo:inline color="#FFFFE1" font-

size="18">Category: </fo:inline>
- <xsl:for-each select="categoryName">
- <fo:inline color="#FFFFE1" font-size="18" font-

style="normal" font-weight="bold">
 <xsl:apply-templates />

 </fo:inline>
 </xsl:for-each>

 </fo:block>
 </fo:table-cell>

 </fo:table-row>
 </fo:table-body>

 </fo:table>
- <fo:table background-color="#FFFFE1" padding="2" width="100%" space-

before.optimum="1pt" space-after.optimum="2pt">
 <fo:table-column column-width="proportional-column-width(30)" />
 <fo:table-column column-width="proportional-column-width(70)" />
- <fo:table-body>
- <fo:table-row>
- <fo:table-cell border-after-color="#4758A7" border-after-style="solid"

border-after-width="1pt" border-before-color="#4758A7" border-
end-color="#4758A7" border-start-color="#4758A7" font-size="12"
text-align="right" width="30%" padding-start="3pt" padding-
end="3pt" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="#FFFFE1">

 <fo:block>Description:</fo:block>
 </fo:table-cell>
- <fo:table-cell border-after-color="#4758A7" border-after-style="solid"

 <?xml version="1.0" encoding="UTF-8" ?>
- <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fo="http://www.w3.org/1999/XSL/Format"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

- <xsl:variable name="fo:layout-master-set">
- <fo:layout-master-set>
- <fo:simple-page-master master-name="default-page" page-height="11in"

page-width="8.5in" margin-left="0.6in" margin-right="0.6in">
 <fo:region-body margin-top="0.79in" margin-bottom="0.79in" />

 </fo:simple-page-master>
 </fo:layout-master-set>

 </xsl:variable>
- <xsl:template match="/">
- <fo:root>
 <xsl:copy-of select="$fo:layout-master-set" />
- <fo:page-sequence master-reference="default-page" initial-page-number="1"

format="1">
- <fo:flow flow-name="xsl-region-body">
- <fo:block>
- <xsl:for-each select="RabbitProject">
- <fo:block font-size="18pt" font-weight="bold" space-

before.optimum="1pt" space-after.optimum="2pt">
- <fo:block>
 <fo:inline color="#BE3232">RaBBiT Generated

Architectural Program View</fo:inline>
 </fo:block>

 </fo:block>
 <xsl:apply-templates select="RabbitProjectInformation" />
- <fo:block>
 <fo:leader leader-pattern="space" />

 </fo:block>
- <fo:block break-after="page" color="#BE3232" font-

size="22">
 <fo:leader leader-pattern="space" />

 </fo:block>
 <fo:inline color="#BE3232" font-size="22">Global

Parameters</fo:inline>
 <xsl:apply-templates select="constructGlobalAs" />
- <fo:block break-after="page">
 <fo:leader leader-pattern="space" />

 </fo:block>
 <xsl:apply-templates select="categoryList" />
- <fo:block break-after="page" color="#BE3232" font-

size="22">
 <fo:leader leader-pattern="space" />

 </fo:block>
- <xsl:choose>
- <xsl:when test="component != """>
 <fo:inline color="#BE3232" font-size="22">Global

(Uncategoriezed) Requirement
Information</fo:inline>

- <fo:block>
 <fo:leader leader-pattern="space" />

 </fo:block>
 <xsl:apply-templates select="component" />

 </xsl:when>
 <xsl:otherwise />

 </xsl:choose>
- <fo:block>
 <xsl:text></xsl:text>

 </fo:block>
 </xsl:for-each>

 </fo:block>
 </fo:flow>

 </fo:page-sequence>
 </fo:root>

 </xsl:template>
- <xsl:template match="RabbitProject">
 <xsl:apply-templates />

 </xsl:template>
- <xsl:template match="RabbitProjectInformation">
 <fo:inline color="#BE3232" font-size="22">Project Details</fo:inline>
- <fo:table color="#BE3232" font-size="18" background-color="#3232BE"

width="100%" space-before.optimum="1pt" space-after.optimum="2pt">
 <fo:table-column />
- <fo:table-body>
- <fo:table-row>
- <fo:table-cell background-color="#3232BE" border-after-

color="#3232BE" border-after-width="3pt" border-before-
color="#3232BE" border-before-width="3pt" border-end-
color="#3232BE" border-end-width="3pt" border-start-
color="#3232BE" border-start-width="3pt" padding-start="3pt"
padding-end="3pt" padding-before="3pt" padding-after="3pt"
display-align="center" text-align="start" border-style="solid"
border-width="1pt" border-color="#3232BE">

- <fo:block>
 <fo:inline color="#FFFFE1" font-size="18" font-

weight="bold">Project Information</fo:inline>
 </fo:block>

 </fo:table-cell>
 </fo:table-row>

 </fo:table-body>
 </fo:table>
- <fo:table padding="2" width="100%" space-before.optimum="1pt" space-

after.optimum="2pt">
 <fo:table-column column-width="proportional-column-width(30)" />
- <xsl:for-each select="project">
 <fo:table-column />

 </xsl:for-each>
- <fo:table-body>
- <fo:table-row>
- <fo:table-cell border-after-color="#3232BE" border-before-

color="#3232BE" border-before-style="solid" border-before-
width="3pt" border-end-color="#3232BE" border-start-
color="#3232BE" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"

width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>Name:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="project">
- <fo:table-cell border-after-color="#3232BE" border-before-

color="#3232BE" border-before-style="solid" border-before-
width="3pt" border-end-color="#3232BE" border-start-
color="#3232BE" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="projectName">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"
width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>Location:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="project">
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="projectLocation">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"

width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>ID:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="project">
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="projectID">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-after-style="solid"

border-after-width="3pt" border-before-color="#475874" border-
before-style="solid" border-before-width="1pt" border-end-
color="#475874" border-start-color="#475874" font-size="12"
padding-end="5pt" padding-start="5pt" background-
color="#FFFFE1" text-align="right" width="30%" padding-
before="3pt" padding-after="3pt" display-align="center" border-
style="solid" border-width="1pt" border-color="white">

 <fo:block>Description:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="project">
- <fo:table-cell border-after-color="#475874" border-after-

style="solid" border-after-width="3pt" border-before-
color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
 <xsl:if test="projectDesc = """>None available</xsl:if>
- <xsl:for-each select="projectDesc">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
 </fo:table-body>

 </fo:table>
- <fo:table color="#BE3232" font-size="18" background-color="#3232BE"

width="100%" space-before.optimum="1pt" space-after.optimum="2pt">

 <fo:table-column />
- <fo:table-body>
- <fo:table-row>
- <fo:table-cell background-color="#3232BE" border-after-

color="#3232BE" border-after-width="3pt" border-before-
color="#3232BE" border-before-width="3pt" border-end-
color="#3232BE" border-end-width="3pt" border-start-
color="#3232BE" border-start-width="3pt" padding-start="3pt"
padding-end="3pt" padding-before="3pt" padding-after="3pt"
display-align="center" text-align="start" border-style="solid"
border-width="1pt" border-color="#3232BE">

- <fo:block>
 <fo:inline color="#FFFFE1" font-size="18" font-

weight="bold">Client Information</fo:inline>
 </fo:block>

 </fo:table-cell>
 </fo:table-row>

 </fo:table-body>
 </fo:table>
- <fo:table padding="2" width="100%" space-before.optimum="1pt" space-

after.optimum="2pt">
 <fo:table-column column-width="proportional-column-width(30)" />
- <xsl:for-each select="client">
 <fo:table-column />

 </xsl:for-each>
- <fo:table-body>
- <fo:table-row>
- <fo:table-cell border-after-color="#3232BE" border-before-

color="#3232BE" border-before-style="solid" border-before-
width="3pt" border-end-color="#3232BE" border-start-
color="#3232BE" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"
width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>Name:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="client">
- <fo:table-cell border-after-color="#3232BE" border-before-

color="#3232BE" border-before-style="solid" border-before-
width="3pt" border-end-color="#3232BE" border-start-
color="#3232BE" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="clientName">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>

- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"
width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>Contact Name:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="client">
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="contactName">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"
width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>Phone:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="client">
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="contactPhone">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>

- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"
width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>Email:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="client">
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="contactEmail">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-after-style="solid"

border-after-width="3pt" border-before-color="#475874" border-
before-style="solid" border-before-width="1pt" border-end-
color="#475874" border-start-color="#475874" font-size="12"
padding-end="5pt" padding-start="5pt" background-
color="#FFFFE1" text-align="right" width="30%" padding-
before="3pt" padding-after="3pt" display-align="center" border-
style="solid" border-width="1pt" border-color="white">

 <fo:block>Adress:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="client">
- <fo:table-cell border-after-color="#475874" border-after-

style="solid" border-after-width="3pt" border-before-
color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="contactAdress">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
 </fo:table-body>

 </fo:table>
- <fo:table color="#BE3232" font-size="18" background-color="#3232BE"

width="100%" space-before.optimum="1pt" space-after.optimum="2pt">
 <fo:table-column />
- <fo:table-body>
- <fo:table-row>
- <fo:table-cell background-color="#3232BE" border-after-

color="#3232BE" border-after-width="3pt" border-before-
color="#3232BE" border-before-width="3pt" border-end-
color="#3232BE" border-end-width="3pt" border-start-
color="#3232BE" border-start-width="3pt" padding-start="3pt"
padding-end="3pt" padding-before="3pt" padding-after="3pt"
display-align="center" text-align="start" border-style="solid"
border-width="1pt" border-color="#3232BE">

- <fo:block>
 <fo:inline color="#FFFFE1" font-size="18" font-

weight="bold">Version Information</fo:inline>
 </fo:block>

 </fo:table-cell>
 </fo:table-row>

 </fo:table-body>
 </fo:table>
- <fo:table padding="2" width="100%" space-before.optimum="1pt" space-

after.optimum="2pt">
 <fo:table-column column-width="proportional-column-width(30)" />
- <xsl:for-each select="versionInformation">
 <fo:table-column />

 </xsl:for-each>
- <fo:table-body>
- <fo:table-row>
- <fo:table-cell border-after-color="#3232BE" border-before-

color="#3232BE" border-before-style="solid" border-before-
width="3pt" border-end-color="#3232BE" border-start-
color="#3232BE" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"
width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>Generation Date:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="versionInformation">
- <fo:table-cell border-after-color="#3232BE" border-before-

color="#3232BE" border-before-style="solid" border-before-
width="3pt" border-end-color="#3232BE" border-start-
color="#3232BE" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="date">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" background-color="#FFFFE1" text-align="right"
width="30%" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="white">

 <fo:block>Version Number:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="versionInformation">
- <fo:table-cell border-after-color="#475874" border-before-

color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="versionNumber">
 <xsl:apply-templates />

 </xsl:for-each>
 </fo:block>

 </fo:table-cell>
 </xsl:for-each>

 </fo:table-row>
- <fo:table-row>
- <fo:table-cell border-after-color="#475874" border-after-style="solid"

border-after-width="3pt" border-before-color="#475874" border-
before-style="solid" border-before-width="1pt" border-end-
color="#475874" border-start-color="#475874" font-size="12"
padding-end="5pt" padding-start="5pt" background-
color="#FFFFE1" text-align="right" width="30%" padding-
before="3pt" padding-after="3pt" display-align="center" border-
style="solid" border-width="1pt" border-color="white">

 <fo:block>Description:</fo:block>
 </fo:table-cell>
- <xsl:for-each select="versionInformation">
- <fo:table-cell border-after-color="#475874" border-after-

style="solid" border-after-width="3pt" border-before-
color="#475874" border-before-style="solid" border-before-
width="1pt" border-end-color="#475874" border-start-
color="#475874" font-size="12" padding-end="5pt" padding-
start="5pt" padding-before="3pt" padding-after="3pt" display-
align="center" text-align="start" border-style="solid" border-
width="1pt" border-color="white">

- <fo:block>
- <xsl:for-each select="versionDescription">

 <xsl:apply-templates />
 </xsl:for-each>

 </fo:block>
 </fo:table-cell>

 </xsl:for-each>
 </fo:table-row>

 </fo:table-body>
 </fo:table>

 </xsl:template>
- <xsl:template match="category">
- <fo:table color="#BE3232" font-size="18" background-color="#4758A7"

width="100%" space-before.optimum="1pt" space-after.optimum="2pt">
 <fo:table-column />
- <fo:table-body>
- <fo:table-row>
- <fo:table-cell background-color="#3232BE" border-after-

color="#4758A7" border-after-width="3pt" border-before-
color="#4758A7" border-before-width="3pt" border-end-
color="#4758A7" border-end-width="3pt" border-start-
color="#4758A7" border-start-width="3pt" font-size="12" padding-
start="3pt" padding-end="3pt" padding-before="3pt" padding-
after="3pt" display-align="center" text-align="start" border-
style="solid" border-width="1pt" border-color="#4758A7">

- <fo:block>
 <fo:inline color="#FFFFE1" font-

size="18">Category: </fo:inline>
- <xsl:for-each select="categoryName">
- <fo:inline color="#FFFFE1" font-size="18" font-

style="normal" font-weight="bold">
 <xsl:apply-templates />

 </fo:inline>
 </xsl:for-each>

 </fo:block>
 </fo:table-cell>

 </fo:table-row>
 </fo:table-body>

 </fo:table>
- <fo:table background-color="#FFFFE1" padding="2" width="100%" space-

before.optimum="1pt" space-after.optimum="2pt">
 <fo:table-column column-width="proportional-column-width(30)" />
 <fo:table-column column-width="proportional-column-width(70)" />
- <fo:table-body>
- <fo:table-row>
- <fo:table-cell border-after-color="#4758A7" border-after-style="solid"

border-after-width="1pt" border-before-color="#4758A7" border-
end-color="#4758A7" border-start-color="#4758A7" font-size="12"
text-align="right" width="30%" padding-start="3pt" padding-
end="3pt" padding-before="3pt" padding-after="3pt" display-
align="center" border-style="solid" border-width="1pt" border-
color="#FFFFE1">

 <fo:block>Description:</fo:block>
 </fo:table-cell>
- <fo:table-cell border-after-color="#4758A7" border-after-style="solid"

PhD Thesis 1/14/04

Appendix C: OO-Model and RaBBiT

The content of this appendix is included in the attached CD

1. Class structure in UML (RabbitDomainModel.mdl)

2. RaBBiT API Documentation (.<CD>:\JRaBBiT_API Documentation\index-all.html)

3. Program Schema (<CD>:\RaBBiTSchema\RabbitXMLSchemaDoc.html)

4. Program schema file in XML (RabbitXMLSchema.xsd)

5. RaBBiT Executables (jrabbitw.exe, jrabbit.exe, jrabbit.jar)

6. Sample architectural programming knowledge model for USARCs (usarc.rbt)

7. Sample requirement information category model (Demo_Categories.cat)

8. Sample XSL style sheet file (RabbitXSLSample.xsl

