
IEEE Workshop on Visual Languages, Seattle WA 1992 pp 81-87

Graphical Constraints in CoDraw

Mark D. Gross
University of Colorado; Boulder, Colorado 80309-0314

mdg@cs.colorado.edu

Abstract

Constraint based draw programs require users to
understand and manage relationships between drawing
elements. By establishing constraint relationships among
elements the user effectively programs the drawing's
behavior. This programming task requires a more
sophisticated visual interface than conventional draw
programs provide. Users must have available — in a
convenient format — information about the structure of
the constraints that determine the drawing's interactive edit
behavior. This format must support editing and
debugging. CoDraw is a constraint based drawing
program that can be interactively extended by its users.
This paper describes the CoDraw program and its
programming interface.

1 Introduction

This paper describes CoDraw, an experimental
constraint-based drawing program, and Co, the constraint
programming environment in which CoDraw is embedded.
With CoDraw a user programs the edit behavior of the
drawing by applying constraints to drawing elements. The
program enforces and maintains these relationships.
Creating, debugging, and editing the constraints that
determine drawing behavior requires a more complex and
sophisticated user interface than a conventional drawing
program. In addition to elements in the drawing, the
program must also make visible the relationships that the
user has specified. For example, the program must
distinguish visually between two objects that have been
constrained so that their top edges align and two objects
that merely happen to have been placed that way.

In Sketchpad [14], one of the first interactive graphical
interfaces, user-defined constraints governed the behavior
of elements in a design drawing. Sketchpad inspired a
generation of constraint-based graphics and programming
environments, including ThingLab [2], Juno [12], and
others [1,16] and research on constraint satisfaction and
management and language design [7,13,10,9,6].

Two approaches are commonly used for constructing
and debugging constraint programs interactively. The first
approach, following ideas in Sketchpad, uses a network
editor to construct, view, and edit constraint programs.
Several systems have employed this approach including
ThingLab and its successors [3]. The second approach

uses a spreadsheet style interface to program the
constraints for objects in the domain. Systems that
follow this approach include FINANZ [5], NoPumpG
[15], and C32 [11].

In many of these environments, constraints are one-way
assignments, pre-defining the dependency structure of the
network. Co’s (and CoDraw’s) constraints are two-way
constraints , in which dependencies (between fixed, or
anchored variables and derived ones) are not
preprogrammed but can be managed by the user. This adds
to the expressive power of the system but it places
additional demands on the interface. CoDraw provides
spreadsheet cards to define objects and program their
constraints and it also provides other editable views of the
data structures that govern behavior.

2 CoDraw

CoDraw is a drawing program that uses constraint
techniques to enforce and maintain simple spatial
relationships. In addition to built-in geometric constraints
(e.g. alignments, offsets, tangency) users can extend
CoDraw's repertoire by defining new constraint types.
These extensions are constructed interactively using
spreadsheet cards without leaving CoDraw. The user may
also define a visual representation for a new constraint,
which can be added to the menus of icons and used to
display instances of the constraint in the graphical work
area.

Fig. 1. CoDraw's worksheet and tool palettes.

CoDraw looks like a typical Macintosh draw
application (figure 1). It provides a drawing work-sheet
with two tool palettes and a color palette. A
documentation line at the bottom of the screen offers brief
commentary, help, and error messages. Graphs and
spreadsheet cards provide additional and more detailed
views of the drawing and its objects. For example, the
Part Graph in figure 1 dynamically displays the assembly
structure of the drawing. These additional views help
users to construct and debug constraint-based drawings and
models.

Using the command palette on the left the user can
enter simple geometric elements: points, line-segments,
lines, rectangles, circles, and ovals. The command palette
also contains commands for operating on graphic
elements. The relations palette on the right contains
spatial constraints that a user can apply to graphic objects
in the work area. With these the user constrains the
behavior of drawing elements. For example, after
selecting two circles the user applies the tangent-circles
constraint (bottom right icon). CoDraw adjusts the circles
to be tangent and keeps them tangent as the user continues
to edit the drawing (figure 1).

Constraints in CoDraw are first class objects just as the
drawing elements they relate and therefore they are also
presented graphically to the user. When a user establishes
a constraint relating two objects, the constraint is
displayed in the Work Sheet. In this example, CoDraw
displays the tangent-circles constraint as a short red line
segment at the point of tangency. Notice also in figure 1
that the Part Graph window displays three objects as parts
of the Work Sheet — the two circles and the tangent-
circles constraint.

As with any other object in the Work Sheet the user
can select a constraint and delete it. This removes the
constraint from the network of relations that governs the
drawing's behavior. For example, deleting the tangent-
circles constraint from the drawing in figure 1 would
permit the user to move or resize the circles so that they
are no longer tangent.

The built-in relations palette contains an assortment of
alignments, adjacencies, and offsets. For example, the
top-align relation establishes a constraint that keeps two
objects' top edges aligned. Other relations on the palette
include parallel-lines, fixed-length-segment, point-on-line,
and point-on-circle. CoDraw grays the icons of relations
that do not apply to the currently selected elements: for
example the tangent-circles constraint cannot be applied to
two rectangles. Icons in the relations palette can also be
used to get documentation about the constraint or to
display a spreadsheet card containing the constraint
definition.

2.1 Dependency and conflict resolution

When the user asserts a new constraint, such as the
tangent-circles constraint above, CoDraw detects a
conflict. The new constraint requires the circles to be

tangent, but they are not. To satisfy the new constraint,
CoDraw selects a constraint or constraints from one or
both circles and relaxes it. It can either relax a constraint
on a circle's center position or on its radius. In the case of
tangent circles, CoDraw resolves a conflict by relaxing the
radius of the second circle selected. This circle will grow
or shrink to satisfy the tangency constraint.

A

B

C

Fig. 2. Rigid and stretchy rectangles.

In the case of rectangles, CoDraw resolves conflicts by
relaxing a constraint on a position in preference to
relaxing a size constraint. Figure 2a shows three
rectangles that have been constrained to be adjacent. (The
vertical lines indicate adjacency constraints.) When the
user drags the rectangle on the right, what should happen?
One obvious behavior (2b) is that the other two rectangles
follow along, attached rigidly. Another possible behavior
(figure 2c) is that either the middle or the left rectangle
stretches, changing its width to maintain the adjacency
constraint. The same simple adjacency constraints can
produce different interactive behavior.

RIGHT

LEFT

WIDTH
+

RIGHT

LEFT

WIDTH
+

A

B

Fig. 3. Rigid and stretchy dependencies.

These different behaviors occur because of different
internal states of the various rectangles. Figure 3a
illustrates the relevant part of the internal state of a rigid
rectangle; figure 3b shows a stretchy one. Arrows show
the dependency relation among variables. The widths of
the rigid rectangles (3a) are determined by direct
constraints. When the user moves the rectangle on the
right, the widths remain fixed and the edge positions of the
other two rectangles are derived. In contrast, direct
constraints fix the stretchy rectangle's edge positions and
its width is derived (3b). A special "make-resizable" tool

on the command palette toggles the state of a rectangle
between rigid and stretchy.

Often a spatial constraint relates two objects of different
classes, for example a line and a rectangle. By default,
CoDraw allows lines to control the positions of rectangle.
When the user constrains a rectangle to center on a line,
the rectangle moves to the line. If the user tries to move
the rectangle it snaps back to the line. But when the user
moves the line the rectangle follows along. Special
"level" variables in the prototype definitions for lines and
rectangles determine this default dependency: the element
with the lower level number controls the relation. (Two
elements at the same level are mutually dependent; when
one moves the other follows.)

Default dependencies can be overridden by the user,
either for individual instances or for object types. The
"make-dominant" tool on the command palette overrides
the defaults by installing local values that shadow the
inherited level variables. To change the dependency for all
instances however, the user must edit the level variables in
the prototypes using the spreadsheet cards.

2.2 Grids and constraints

Grids are a convenient way to express placement
constraints on graphics objects. A grid in CoDraw is
simply another kind of graphics object that can be
selected, colored, moved, resized, and assembled in groups.
CoDraw's Grid Manager provides a special interface for
defining prototype grid objects, and for making and
applying instances to the Work Sheet. The Grid Manager
displays a catalog of existing grids which a user can select,
modify, or use as a basis for a new grid. Grids have two
special variables hseq and vseq: these are lists of integers
that describe the horizontal and vertical spacing of grid
lines.

Using the Grid Manager the user can specify a
placement rule for a particular object (e.g. circle-12)— or a
class of objects (e.g. circles) relative to a particular grid or
class of grid. By constraining the placement of different
object types to different grids a user can make relative
positioning rules. This is useful, for example, in
architectural design: a rule placing pipes along one grid
and wires along another simplifies costly interference
problems [8].

Fig. 4. CoDraw's Grid Manager.

2.3 Other features of CoDraw

CoDraw contains several other experimental features.
Although CoDraw runs as a single user system, it is a
prototype for a cooperative design program, where different
designers controlling different classes of elements work
together within the framework of constraints. Each
different user can be registered and CoDraw is programmed
to permit or prohibit the selection of certain element
classes by certain users. For example the structural
designer may be permitted to select and move only
structural walls and columns while the electrical designer
is permitted to select and move only wires and
switchboxes.

Another simple and useful feature provides interactive
interference constraints. With interference detection in
beep mode CoDraw warns the user when two graphic
objects coincide. In bump mode CoDraw prevents
interference. In solids mode, only solid elements bump.

3 CoDraw's spreadsheet cards

A suite of spreadsheet cards provides the means to
extend and modify CoDraw's graphical objects and
constraints. These basic programming tools were used to
build the initial set of objects and spatial relations that
form CoDraw's built-in functionality.

3.1 Variables card

The Variables Card displays the variables of an object
or class and their values. The display typeface is coded to
show which variables or values are inherited (italic) and
which are defined locally (bold). A similar scheme is
used in C32 [11]. The typeface also encodes which values
result from a direct constraint (underlined) and which derive
indirectly from other constraints (not underlined).

Fig. 5. Variables cards show values.

The user can assign a new value to a variable by typing
it in. This action asserts a constraint on the variable's
value. The new constraint is passed immediately to the
solver and may be reflected by changes in the Work Sheet
as well as in the values of other displayed variables. The
Variables Card provides buttons for fixing and retracting

values, for making a new subclass or instance and for
viewing the prototype of the object, for displaying other
views of the object, and to inspect values and their
justifications more closely.

3.2 Relations card

Fig. 6. Relations cards show constraints.

The Relations Card displays an object's constraints
using the same typeface code as in the Variables Card.
The constraint's name (R-40 , DR-41) is also displayed.
(R- indicates a constraint that was applied directly; DR-
indicates a derived relation). Users enter new relations in
the type-in area at the bottom of the card in Lisp syntax
(an infix parser was written but proved cumbersome). The
Relations Card provides buttons to add a new constraint or
delete an existing one; the solver is immediately invoked
each time a constraint is added or deleted. The why?
button displays the justification graph for a selected
constraint and can be used to track sources for a derived
relation. The all and derived checkboxes control whether
inherited and derived relations are displayed.

4 Graph windows

Several graph windows provide editable views on
CoDraw's data structures. The Library Graph displays the
inheritance hierarchy of prototypes. The Part Graph
displays the assembly structure of the drawing or of
subassemblies. The Constraint Graph displays a graphical
view of the constraints and variables that define an object's
behavior. The Justification Graph displays the chain of
dependency that supports a particular value or constraint in
the system.

4.1 Library graph

Fig. 7. Library graphs show inheritance structure.

A Library Graph can be displayed on demand for any
subgraph of the library of prototypes. Double-clicking on
a node in the Library Graph produces the Variables Card
for that prototype. The user can also add a new prototype
interactively using the Library Graph to specify where in
the inheritance structure the new object should be located.
The Library Graph can also be used interactively with the
Work Sheet as a palette of graphic objects. After selecting
an object type in the Library Graph the user can drag a
new instance into the Work Sheet.

4.2 Part graph

The Part Graph displays the assembly structure of
graphics objects and constraints. All objects, including
work sheets and scrap are part of a world object. A
‘display-related-objects’ switch shows red lines on the Part
Graph linking objects whose variables are somehow
related. When a user selects an element in the Part Graph
it is selected in the Work Sheet and vice versa. The user
can also cut links and draw new links in the Part Graph,
editing the assembly structure of the drawing. Cutting a
part link deletes a part relation; drawing a new link creates
a new part relation.

Fig. 8. Part graphs show assembly structure.

In Co, part relations also are represented using
constraints. A variable defined in the superpart object has
the part object as its value and likewise, a variable in the
part object points back to the superpart. The names of
these variables are generated automatically using the prefix
SP- or PART- and the class name of the object, i.e. PART-
DOOR.3 . Finally a part-relation in the superpart (it could
be located anywhere) associates these variables:

(PART [HOUSE.1 SP-HOUSE] [DOOR.3 PT-DOOR])

Thus when the user creates an assembly of parts,
CoDraw asserts a series of part constraints.

4.3 Justifications graph

Justification Graphs display the chain of constraints
that support any derived relation in the system. Each node
can display a relation name (DR-251) or the full
constraint expression. The nodes are color coded to
indicate whether the relation is inherited or local to its
object.

Fig. 9. Justification graphs show dependencies.

In this example a user has requested the justifications
that support RECT-4's AREA variable. The relation,

[RECT-4 AREA] = 5256

is supported ultimately by three constraints: two fixing
RECT-4 's width and height, and the inherited constraint
from the RECT prototype that defines the relation between
height, width, and area.

4.4 Constraint graph

Fig. 10. The constraint graph.

A set of constraints is often represented as a network
diagram that indicates variables and constraints and their
connections. Pressing the “graph” button on an object’s
Variables Card generates a constraint graph of this sort
(figure 10). Graph layout is automatic and can be adjusted
by the user. Constraint operators and fixed values are
shown as boxes and variables are shown as ovals. The
large circle represents an object boundary; the diagram
shows instance variables and constraints for a rectangle
object.

5 Defining a new constraint type

Suppose we wish to define a new relation type, a
constraint that operates on two objects in the Work Sheet
to keep their areas equal. We might begin by choosing
graphic-relation as a prototype for the new object, (the

prototype for other built-in CoDraw spatial relations) and
define a new extension (subclass) which we name equal-
areas. Using the relations card for the new object, we
enter the relation:

(= (A AREA) (B AREA)).

This constraint depends on structured variables to
constrain the area variables of two objects (yet to be
assigned). When both A and B are constrained to objects,
then the equal-area relation will take effect.

We can apply the new constraint to two objects,
CIRC.0 and RECT.1 whose areas we wish to be equal. We
make an instance of the new equal-areas relation, and
display its variables card. It shows only two variables (A
and B), which stand for the two objects to be related. We
enter the names CIRC.0 and RECT.1 for A and B
respectively, assigning these variables to the two objects.
Co’s solver now evaluates the constraint (= (A AREA) (B
AREA)) , replacing variables by their values, and derives
the constraint:

 (= (CIRC.0 AREA) (RECT.1 AREA))

Now the system is overconstrained. Both objects
already had dimensions and their areas were unequal.
CoDraw, detecting a conflict, asks the user to choose a
relation to retract from among the sources of the conflict.
In this case the sources of the conflict are the dimensions
of the two objects.

Fig 11. If no resolution has been programmed,
CoDraw asks the user.

Alternately, we can program a conflict resolution
method for CoDraw to select a relation to retract
automatically. In any case, after a candidate relation is
selected for retraction, CoDraw will keep the two areas
constant through further editing. Because the two objects
are mutually dependent (by default) if the user changes the
size of either object, the other object will change size to
keep the areas equal.

5.1 Icons for new constraints

With CoDraw's spreadsheet cards and graph editors a
user can define new classes and subclasses of constraints.
The user can use CoDraw's icon editor to draw an icon for
a new relation and add it to the relations menu. For
example, we can install a new icon on the relations menu
that makes and applies an instance of the equal-areas
constraint. The new relation and its icon remain in future
work sessions and become part of the user's customized
working environment.

Fig. 12. Users make icons for new constraints.

6 Co: about the language

CoDraw is built using a constraint programming
language called Co. Variables and Constraints are Co's
atomic structures. These are bound together to make
higher-level "relational objects", which model the user's
domain (in CoDraw, graphic objects and spatial relations)
and they are connected together in networks. Co's job is
to support the user in the construction of relational
objects, to maintain consistency in networks of
constraints, and to help the user program and debug
complex sets of constraints.

6.1 Constraints

CoDraw’s spatial relations are built from more
primitive algebraic constraints on one or more variables.
Every constraint is treated as an n-way relation in which
any variable can be computed from the others. A table of
operators and their inverses and algebraic properties
informs Co's equation solver how to produce one-way
assignments for each variable in the constraint. Simple
polynomial expressions (such as x2 = a) can be handled
but Co does not (yet) handle multiple solutions.
Inequality relations are also supported; on input Co's
constraint parser converts an inequality to an equation with
interval values. Although this approach has limitations
[4] it allows the system to represent and to begin to reason
with inequality relations.

6.2 Variables

In Co a variable's value is defined by the set of
constraints that reference it. The constraint a = 43 asserts
that a has value 43. If x > 4 and x < 10, then these
constraints define x’s value. Often a set of constraints can
be reduced by solving to a simpler expression of value. In
this case, Co’s solver will derive a new constraint,
assigning x’s value to the interval between 4 and 10, or x
= [4 10].

To capture this extended sense of value in Co the value
of a variable is represented as an ordered list of partial
constraint expressions. The list is called (loosely) a term-
stack and each partial constraint expression is a term.
Each term represents a constraint solved for the variable in
question. For example, the constraint a = 2b places the
terms [= 2b] and [= (1/2)a] on the term-stacks for
variables a and b respectively. For debugging, term stacks
can be viewed in windows that are updated as the solver
works (figure 13).

Fig 13. Term-stack shows constraint expressions.

Each term-stack is kept sorted with most simple
expressions at the top. Simple is defined as a measure of
number of variables, expression depth and length, operator
complexity, and whether the term is from an inherited or a
local constraint. In figure 13 the simplest term for
RECT.0’s area, (= 5600), is found at the top of the term-
stack, while terms (= (* width 56)) or (= (* width height))
which describe less specific expressions for the variable
will be found lower. If a variable has a specific value it
will be found at the top of its term-stack.

6.3 Init-forms

In addition to variables and constraints, every CoDraw
prototype has a collection of "init-forms," Lisp code that
is run when a new instance is made. This code can be
used to assert or retract constraints or to program special
user interactions. Like constraints and variables,
initialization forms can be inherited; a new instance runs
the cumulative set of init-forms of all its prototype
superiors up the inheritance graph. An Init-forms Card
similar to the Variables and Relations Cards provides an
interface for entering init-forms.

Init-forms can determine where a constraint object will
get its arguments. For example, the equal-areas constraint
uses two variables, A and B to refer to the objects whose
areas will be constrained. Suppose we want A and B to
represent two elements selected in the Work Sheet when
the constraint is applied. We can write init-forms in the
equal-areas prototype that assign (constrain) the variable
names A and B to the first and second objects in the
selection list:
(NAME-SELECTED-OBJECT A RECT) (NAME-

SELECTED-OBJECT B RECT)

In this example, we also specified that CoDraw should
type-check the objects and only allow objects of type rect.
This argument can be omitted to accept an object of any
type.

The init-form is also a good place to specify how to
resolve the conflict that is likely to occur when the new
constraint is instantiated. For example, we might add an
init-form that specifies:

(RESOLVE-CONFLICT (RETRACT (B WIDTH)))

If a conflict occurs after installing the new equal-areas
constraint, this init-form retracts the B’s WIDTH variable,
making this object (the second one selected) dependent.

7 Discussion and further work

CoDraw provides a simple point&click interface for
making drawings with behavior programmed by two-way
constraints. Constructing drawings and applying the
constraints is relatively straightforward. Making the
constraints visible in the drawing enables the user to
predict how the drawing will behave. However, with two-
way constraints, the choice of fixed variables or anchors
also determines the interactive behavior. A “show-
witness-lines” tool on the command palette displays the
internal state of a rectangle to help a user see whether the
rectangle is rigid or stretchy. Domain knowledge about
default dependencies among object types (e.g. lines control
rectangles) can also help a user predict CoDraw’s
interactive behavior. A knowledgeable user can also
inspect the state of the network using CoDraw’s
programming tools. However, displaying information
about the internal dependency state of the constraint
network in an easy-to-understand way remains a challenge
for the next version of CoDraw.

CoDraw’s spreadsheet cards interface supports an expert
constraint programmer in constructing and debugging
constraint language programs. Simpler strategies (such as
learning from examples) would support less experienced
programmers in defining new constraint types.

CoDraw’s solving and conflict resolution mechanisms
are also somewhat ad-hoc. CoDraw helped clarify the role
of conflict resolution in programming a drawing interface
(e.g conflicts must be resolved when the user selects an
element for dragging or resizing; default dependencies are
useful especially if the domain supports them). However,
a more formal treatment would help. It would be valuable
to provide CoDraw with a set of solving modules that it
selects and applies according to the kind of constraints it is
called to manage. Similarly, conflict resolution strategies
can be made more modular, and made more accessible to
users.

CoDraw began as an attempt to build a cooperative
design environment for architectural layout where design
team members in charge of different subsystems
(structural, partitions, electrical, etc) can work together,
guided by placement rules that coordinate their work. In

the development of CoDraw, other issues — programming
language and interface design issues — became interesting
and important. Many of these remain to be addressed in
future versions of the software; however, the initial goal
of using constraints to coordinate cooperative design work
also remains an interesting challenge.

References

1 . Barzel, R., and Barr, A. A Modeling System Based
on Dynamic Constraints. Computer Graphics (SIGGRAPH
88), 22,4, (1988) pp. 179-188.

2 . Borning, A. Programming Language Aspects of
ThingLab. ACM Transactions on Programming Languages
and Systems, 3,4, (1981) pp. 353-387.

3 . Borning, A., and Duisberg, R. Constraint-based
tools for building user interfaces. ACM Transactions on
Graphics, 5,4, (1986) pp. 345-374.

4 . Davis, E. Constraint propagation with interval
labels. Artificial Intelligence, (1987) pp. 281-331.

5 . Fischer, G., and Rathke, C. Knowledge-Based
Spreadsheets. In: Proc. AAAI-88. (1988), Morgan Kaufmann.

6 . Freeman-Benson, B., Maloney, J., and Borning, A.
An Incremental Constraint Solver. Communications of the
ACM, 33,1 (1990) pp. 54-63.

7 . Freuder, E. Synthesizing Constraint Expressions.
Communications of the ACM, 21,11 (1978) pp. 958-966.

8 . Gross, M. Knowledge-Based Support for Subsystem
Layout in Architectural Design. In: Artificial Intelligence in
Engineering: Design. J. Gero, Ed. Computational Mechanics
Press, Southampton, UK, 1990.

9 . Leler, W. Constraint Programming Languages.
Addison Wesley, Boston, 1987.

10. Mackworth, A. Constraint Satisfaction. In:
Encyclopedia of Artificial Intelligence. S. Shapiro, Ed.
Wiley, NY, 1987, pp. 205-211.

11. Myers, B. Graphical Techniques in a Spreadsheet for
Specifying User Interfaces. In: Proc. Human Factors in
Computing Systems (SIGCHI '91). (New Orleans, 1991),
ACM Press / Addison Wesley, pp. 243-249.

12. Nelson, G. Juno — A Constraint-based Graphics
System. Computer Graphics, 19,3 (1985) pp. 235-243.

13. Steele, G.L., and Sussman, G.J. CONSTRAINTS - A
Language for Expressing Almost-Hierarchical Descriptions.
Artificial Intelligence, 14 (1979) pp. 1-39.

14. Sutherland, I. Sketchpad - a Graphical Man-Machine
Interface [Ph.D. Dissertation]. M.I.T., 1963.

15. Wilde, N., and Lewis, C. Spreadsheet-based
Interactive Graphics: from Prototype to Tool. In: Proc.
Human Factors in Computing Systems (SIGCHI '90). (Seattle,
WA, 1990), ACM Press/Addison Wesley, pp. 153-159.

16. Witkin, A., Gleicher, M., and Welch, W. Interactive
dynamics. Computer Graphics, 23,2 (1990) pp. 11-21.

