
design machine group
University of Washington

Seattle WA USA 98195-5720
http://depts.washington.edu/dmachine

Network Tools and Tasks

Kuczun, Kyle and M.D. Gross

Proc. ACM Conference on Designing Interactive Systems
(DIS), Amsterdam. 215-222

1997

http://depts.washington.edu/dmachine

1

Network Design: Tasks & Tools
Kyle S. Kuczun, Mark D. Gross

Sundance Laboratory for Computing in Design and Planning
College of Architecture and Planning

University of Colorado
Boulder CO 80309-0314

+1 303 492 2807
kuczun@spot.colorado.edu, mdg@cs.colorado.edu

ABSTRACT
Designers often draw to produce artifacts for thinking and
communicating about their designs. These artifacts
(drawings) provide the designer with various levels of
abstraction to conceptually frame the design problem.
Because network designers traditionally make drawings
throughout the design process, we propose that the
computational environment should facilitate and capitalize
on this activity. We describe a suite of computer based
network design tools that employ freehand drawing as an
interface.

KEYWORDS
local area networks, domain oriented design environments,
freehand drawing environment, computer human interaction,
levels of abstraction

INTRODUCTION
Recently an experienced network designer on the engineering
faculty at our school (Evi Nemeth) was asked to evaluate
some experimental computer based tools for network design.
Her comment was telling: She said, the tools were
interesting and perhaps valuable but she herself wouldn't be
able to use them. When asked what tools she employed to
design networks, she explained that she used a pen and a pad
of yellow paper, which she carried everywhere. This
anecdote served as the impetus for our work on a paper-like
interface for network design tools.

Computer based tools can help designers in various ways: by
providing relevant case studies, connections to databases,
indexed storage of designs, or links to resources on the
World Wide Web. However, until designers can see how
computational support can actually help them make better
designs, they will not expend the effort to use computational
tools [2]. The premise of this paper is that computational
tools for network design should be as easy to use as the
traditional pad of paper or whiteboard, yet augment these
media by providing back-end design support, in the form of
case bases, simulations, critiquing, and access to the world
wide web for collaboration and communication.

The rest of the paper describes a suite of five
tools—Capture, Find, Advise, Lookup, and PostIt—that use
a freehand drawing environment to support specific tasks of
network designers. We begin in Section 2 with a design
scenario that illustrates some basic tasks in network design.
Section 3 discusses problems with typical commercial
network CAD applications. Section 4 presents our five
prototype tools that use drawing as a front end to support
specific tasks of network designers. Section 5 concludes
with a discussion of related work and future directions.

WHAT DO NETWORK DESIGNERS DO?
We conducted several informal surveys with network
designers and administrators at the University of Colorado,
Boulder campus to learn about the tasks and work practices
of computer network designers. We interviewed designers at
the school's Computing Network Services (CNS) as well as
the campus board of network managers. We also spoke with
system administrators in the departments of architecture and
engineering. The following simple and typical network
design scenario is based on what we learned in these
interviews, and the experience of one of the authors (Kuczun)
as a professional network administrator.

The system administrator at the College of Architecture
has been asked to design an electronic design studio
supporting 20 workstations, a file server, and assorted
peripheral devices. The Architecture building already has
an existing building network that connects to the
campus backbone, with ethernet connecting faculty
offices, a research lab, and instructional labs.

Like many design tasks, this job does not begin from
scratch. Rather it involves adding to and modifying an
existing artifact.

The design process begins with the production of an
augmented floor plan of the new studio. The designer
draws the existing network as a basis to implement a
new network design. The designer would look at
protocol and performance issues, and physical
constraints, as new network elements are sketched in. At
this stage the designer is merely "ball parking" the
design, producing an artifact that can be used for
discussion or consideration.

mailto:kuczun@spot.colorado.edu
mailto:mdg@cs.colorado.edu

2

Next, the designer might compare the new network
layout with similar configurations elsewhere on campus
to check consistency or to explore other options. The
design process continues by refining and redesigning.
Typically, designers first sketch out generic machines,
and later decide on specific platform types and protocols
that would best suit the situation. Designers refer to a
collection of magazines, catalogs, and the World Wide
Web to obtain vendor information for product
specifications. Then the designer might refine the design
further, consulting with network administrators, other
designers, and perhaps vendors. In each of these
consultations, the discussion focuses on the design
represented in the diagram.

This scenario illustrates several typical tasks in network
design. First, the designer makes a representation of starting
conditions, the already existing computer network. Second,
the designer augments that representation to provide an
initial, quite abstract, design for consideration and
discussion. Third, the designer may compare the proposed
design with known, already existing, configurations. Fourth,
the designer may refine the abstract design, specifying the
initial representation with details obtained from handbooks
and catalogs. And finally, the designer may consult with
others (key users, system administrators) who have an
interest in the design.

Drawing is an important medium for each of these tasks.
Our interviews with network designers and administrators
revealed that much initial network design is done on paper
and whiteboards. Designers make diagrams and sketches to
record ideas and to convey them to others while they think
about and solve design problems. During the design process
the designer refines and specifies an initially highly abstract
diagram into a detailed plan for implementing the network
design.

Designers use various levels of abstraction in their drawings.
An initial drawing may represent a highly abstract
conceptual design. As the design process continues the
designer draws a more detailed diagram. Figure 1 is an
initial diagram drawn by a network designer. This first
drawing is an abstract overview sketch that provides little
detail about platform, protocols, or hardware. Figure 2
shows a more detailed elaboration of the same network

design. Here the various nodes of the network are specified
along with the type of router and wiring to be used.

WHAT'S WRONG WITH EXISTING NETWORK
DESIGN TOOLS ?
Our survey of professional network administrators and
available commercial network CAD packages seemed to
indicate that the tools are ill-suited to the tasks of network
designers. In our informal campus survey we found that few
network designers actually used the commercial network
CAD packages they owned for designing. Rather, they used
them as utilities to help administrate or debug an existing
network. The consensus was that these tools fell into two
categories: Either they were best suited to administrating
existing networks, or they focused more on presentation
rather than supporting the actual process of design.

We examined four commercial tools for network design and
management: ClickNet (PinPoint Software Corporation),
CANE (ImageNet, Ltd.), NetSuite (NetSuite Development),
and LANSurveyor (Neon Software). The first three are billed
as network design tools; LANSurveyor as a management
utility. ClickNet and NetSuite provide a tool-palette
interface that enables a designer to construct a graphical
representation of a network as a graph of connected icons,
with descriptions of the components stored in a back-end
database accessed by mousing on the icons. LANSurveyor
monitors the state of an existing network, and enables a
network manager to obtain performance and diagnostic
information on specific components and subnetworks.
CANE offers a layout tool similar to ClickNet and NetSuite,
but also provides the ability to simulate various traffic
loadings.

The palette and icon interfaces and back end databases that
these tools provide are at first complex and bewildering
(figure 3). They each require that the designer learn a fairly
idiosyncratic scheme of linking visual representations with
information about components in order to produce a network
diagram. And the payoff is low: the tools do not offer
performance modeling, debugging, or critiquing of designs.
Thus, "design" in ClickNet and NetSuite consists of
selecting icons of network components from a palette and
arranging them nicely in a window. The user can add clip art
and text annotations to these pictorial representations.

Figure 1 shows an initial, quite abstract, design. Figure 2 shows a later, more detailed, design.

3

Fig. 3. Complicated interfaces in commercial network CAD packages . ClickNet (left), LANsurveyor (right).

 The result is a tool geared towards winning the hearts of
management through slick presentation rather than helping
the designer build a working network. Conversely, tools
like LANSurveyor provide valuable performance metering
functions that can inform design, but they do not explicitly
provide facilities for laying out, simulating, and evaluating
designs.

The tools that do support layout of network designs do not
support the varying levels of abstraction that we found in the
whiteboard representations used by professional designers.
For example, to instantiate a network component such as a
file server, the user must select a specific platform and
configure it. By contrast, a network designer would
typically begin with an abstract notation for 'file server', and
only incrementally specify the platform and needed
configuration, based on other parts of the emerging design.
The palette and menu interfaces that drive these programs
may be partly responsible: With a hand drawn diagram a
designer can begin abstractly and specify incrementally,
which we argue is a benefit of the traditional way of working
with diagrams.

 In summary, most commercial network CAD packages fail
to support the tasks of a designer because:

(1) they do not support abstraction. The designer must
specify details too early in the design process.

(2) their 'generic' palette and menu interfaces take the
designer away from familiar actions in the design process,
such as drawing.

(3) they are too complex to support basic design. Many
packages attempt to provide the ability to design as well as
manage a network. The software contains a melange of
extraneous features for debugging and administration that
don't support the task of design.

To address the first two failures of current network CAD
software (they don’t support varying levels of abstraction;
they employ generic palette-menu interfaces), we look to the
traditional actions of network designers as a clue about the
type of interface to use. We know through observations and
experience that designers draw. Because designers draw in
many stages of the design process and because drawing does
support varying levels of abstraction, we chose to explore
freehand drawing environment as that familiar interface for
designers. The third failure, that network CAD packages are
too complex, trying to serve both design and management of
networks, is easily addressed by providing tools that
specifically support only design.

FIVE PROTOTYPES: COMPUTATIONAL SUPPORT
FOR NETWORK DESIGN
A useful design environment for network designers (and we
hasten to add, for designers in any domain) must be
integrated and embedded in the tasks at hand. We built a suite
of five prototype tools (LAN-Tools) to support the tasks of
network designers. We used a pen based drawing
environment developed by one of the authors (Gross)—the
Electronic Cocktail Napkin program [4, 5]—as a front end to
our tools. They support the tasks outlined in the scenario in
section 2, and repeated here:

Tool Task
Capture Identify and represent the context (the

existing network).
Draw initial designs or augment existing
network diagrams to use as an artifact for
consideration and discussion.

Find Compare designs with existing network
configurations and find relevant cases to
check consistency and explore alternatives.

Advise Test, simulate, and critique designs based
on knowledge about networks

4

Lookup Refine and specify network abstractions
using details from magazines, catalogs,
discussions, and the World Wide Web.

PostIt Communicate network designs with other
network designers, administrators, and
vendors.

The first of these, Capture, enables a designer to obtain a
basic layout of his or her current network. The second, Find
searches the university campus backbone for existing
networks similar to the current design. The third prototype,
Advise, offers a simple simulation and critique of designs
sketched on the Napkin. Finally, the last two programs,
Lookup and Post-It, use the World Wide Web as a source of
information that can be indexed to drawings or as a place for
storing and displaying designs. We outline each of these
tools below, following a brief explanation of the pen based
drawing interface that we used to implement them.

Drawing as an interface - The Electronic Cocktail
Napkin
The Electronic Cocktail Napkin tries to bridge the gap
between freehand drawing and computational support. It
supports the kind of informal drawing that designers do on
paper or a whiteboard in the early stages of design. By
supporting drawing, the Napkin integrates one of the
primary media that network designers use to carry out their
tasks. Napkin supports not only the initial act of drawing,
but also the use of drawing to aid information retrieval,
simulation, and critiquing of designs.

The Napkin program, implemented in Macintosh Common
Lisp reads, identifies, and interprets marks the designer draws
on a Wacom digitizing tablet. For our network design
tools, we first trained the Napkin to recognize a set of
symbols that represent various network elements. These
included depictions of platform hardware—Macintosh, Intel-
based machines, and UNIX computers as well as other
elements of networking architecture—ethernet cables,
routers, and gateways. Figure 4 shows the Napkin drawing
board with three basic network symbols, a Macintosh,
printer, and server.

Figure 4. Network symbols recognized in the Napkin
drawing environment: A printer is represented by a
configuration of the letter P inside a circle.

Capture: representing initial conditions
In the scenario in section 2, the network design begins with
a representation of initial conditions. Designers often begin
by making a diagram—typically a floor plan annotated with
the locations and connections of network components—that
illustrates the current state of the network. Designers
seldom invent new networks; rather, they add to and modify
an existing network. Thus, most networks evolve from
simple topologies to hybrid systems of varying complexity.
For this reason a way of adapting a design environment to
changing or existing conditions is needed. Our first
prototype, Capture, scans an existing Appletalk network and
produces a diagram of it, which the designer can modify and
augment.

The domain of network design has a peculiar characteristic:
A design tool can be used to capture and represent existing
conditions. In most other design domains the designer must
first physically survey existing conditions, a task that must
take place outside the bounds of the design environment. For
example, an architect must obtain physical "as built"
measurements of an existing building before returning to the
drawing board or CAD program to design an addition. In
network design the designer can simply "ping" the different
network devices to obtain a detailed representation of the
network without needing to physically visit the site. Thus
the ability to integrate information capture with the design
environment is fairly unique to the domain of computer
network design.

Figure 5. A current version of the designer's network
transferred to the Napkin using data from the Trawl
program.

Figure 6. If the designer selects a specific node in the
diagram more information appears.

5

We used a commercial utility program called Trawl [6] to
analyze an existing Appletalk network (figure 5) and display
it in the Napkin's drawing window. Trawl inspects packets
transmitted on an Appletalk network and builds a data file of
the network elements it sees. Our Capture program first
invokes Trawl to scan the network and then reads in this file
to the Napkin. The file is parsed by network element type
and displayed in Napkin's drawing window as a string of
icons that depict the current network configuration.

Trawl's scan of the network yields more data than can be
concisely displayed (e.g., it includes the node types of the
network devices). Clicking on an icon in the network
diagram brings up additional information about the element
(figure 6). Once the existing network has been loaded into
the Napkin's design environment, the designer can add new
components and connections. When the designer draws a
trained network symbol, Napkin indicates that it recognizes
the symbol by displaying its name. The designer can
underlay a floor plan to provide additional context to the
design (see figure 7).

Figure 7. An artifact for discussion. Initial network design
with data produced from scanning the existing network,
plus additions from the designer.

Find: Retrieving similar network design cases.
In designing modifications and augmentation of a network,
designers often refer to other networks they know. "Oh
yeah, didn't they do something like that over in the new GIS
lab in Geography?". The designer might want to compare a
proposed network layout with other known configurations to
check consistency or to suggest other options. The set of
networks on campus function like a library of design cases
[1], from which designers adopt and adapt ideas. As with
capturing the current network configuration, this 'case
library' is available by scanning the network using a simple
utility program.

The Find prototype employs the same Trawl utility program
to compare a network design drawn in the Napkin
environment with different network zones on a campus
backbone. Using Find, the designer can find similar
networks elsewhere on campus.

Figure 8 shows the search window for making comparisons.
The 'Current network report' field shows the number of each
kind of element in the current network design, the numbers
of Servers, Routers, Macintoshes, and Printers (S R M P).
The example in figure 8 illustrates the report on a design
containing no servers, one router, three Macintoshes, and a
printer (0 1 3 1). The 'Search for report' field describes the
characteristics of networks that the designer would like to
find; in this example the designer is looking for networks
with the same characteristics as the design: (0 1 3 1).

The designer can set the tolerance of the search using the
'Tolerance' field. The tolerance can be adjusted to allow a
difference of ±1 and ±3 , or * to allow a match with any
number. These tolerances are combined with the search
characteristics (above) to allow inexact matches. In this
instance the designers has set the search tolerances to (1 0 *
0), allowing the search for (0 1 3 1) to retrieve 0 ± 1
servers, exactly 1 router, any number of Macintoshes, and
exactly one printer. The results of the search, a list of
network "zones" that match these characteristics, is listed at
the bottom of the report window.

Figure 8. A report window shows a match between the
current network diagram (not shown) and other networks.

Advise: Knowledge based critiquing and
simulation
Our next prototype, Advise, connected the Napkin drawing
environment to a simple network simulation environment
called Pronet [10]. Pronet, built as a doctoral project several
years ago in Repenning's Agentsheets programming
environment [9], simulates various LAN components and
provides feedback about the design. The user constructs a
network design by assembling network elements from a

6

palette onto Pronet's worksheet. When the user runs the
simulation, Pronet tries to identify errors that might occur in
the layout, and offers suggestions. For example, Pronet
might augment a network design by inserting a router or a
gateway between components, based on its built-in
'knowledge' about network behavior.
The Advise prototype enables the designer to sketch a
network diagram rather than construct a design by selecting
components from Pronet's palettes and placing them in the
worksheet. As the designer draws a network diagram on the
Napkin, network elements are recognized and constructed in
the Pronet worksheet. The Pronet simulation provides the
designer immediate feedback about the design. Figure 9
shows a completed interaction between Napkin and Pronet:
The designer's sketch (left) was first translated into Pronet
elements, simulated, and finally Pronet provided a knowledge
based critique, augmenting the design in the worksheet. The
result (right) shows the designer that the initial LAN design
would require an additional router, which Pronet has inserted
(Macintosh, printer and server were connected via ethernet
wiring; the other Macintosh was connected using localtalk.)

Figure 9 shows a completed sketch in the Napkin window
on the left, simulated in Pronet on the right.

Lookup: accessing and indexing catalogs on the
Web
As a network design progresses, representations become
more formal and specific. For example, the indications of
workstations and wires drawn abstractly in network designs
must be specified. Network designers gather product
information about network devices from a variety of sources,
including catalogs, magazines, discussions with peers, and
increasingly, the World Wide Web. Our last two prototypes,
Lookup and PostIt, link the Napkin drawing environment to
the Web for both gathering information and posting designs
for comment.

In Lookup, the designer can link drawings in the Napkin's
sketchbook with specific sites on the web, for example, to
vendor sites. To index a drawing, the Napkin issues an
AppleScript command to ask Netscape for the current URL,
which is recorded as a hidden annotation to the sketchbook
page. The designer can later turn to the sketchbook page,
and the Napkin will send an AppleScript command to ask
Netscape to go to the linked URL. Figure 10 shows a router
symbol linked to Cisco's web site that provides technical
information on their routers.

Figure 10. Bookmarking by drawing? A vendor web page
has been linked to a sketch of a router.

PostIt: sharing design diagrams using the Web
PostIt supports sharing diagrams with colleagues and
vendors for comments, feedback, and discussion. PostIt uses
a common gateway interface (CGI) on the web server to
receive, convert and post network diagrams drawn on the
Napkin. When the designer issues a 'PostIt' command, the
current Napkin diagram is first saved as a local PICT file,
copied via ftp to an 'inbox' directory on the server. The
server's CGI first converts the PICT to a GIF file, then adds
a pointer to the new GIF file to a web page used for sharing
information (see figure 11).

Figure 11. A network design is posted to a web page for
discussion.

7

DISCUSSION

Related Work
Our colleagues in the Useful & Usable group at the Center
for LifeLong Learning and Design (L3D) at the University of
Colorado, Boulder have built several prototypes focusing on
the domain of network design. WebNet
(http://www.cs.colorado.edu/~l3d/u-u/project.html) extends
network computational support to designers by adding group
memory using GIMMe, a WWW collaborative design
environment, and incorporates end-user programmability.
WebNet serves as a domain-oriented design environment that
focuses on specific tasks of the designer. However, WebNet
currently supports only a conventional palette-menu
interface.

Fischer, Nakakoji, and Ostwald [3] argue that systems that
support sketching are more intuitive to a designer because
they support the designer in understanding and solving
problems using a familiar interface. For example, Nakajoji
et al's eMMaC system [8], an environment for multimedia
authoring, also supports freehand sketch queries in a library
of images.

Future Work
Publishing design diagrams on the web should foster
valuable discussion and collaboration. Unfortunately, just
posting the diagram is a one way interaction; the 'audience'
viewing the diagram has no immediate way to respond to the
design. For someone to comment on the design they must
communicate in person, by phone, or by email with the
designer; but all these modes divorce the argument from the
artifact. Better that people reviewing the document could add
text, voice, or graphical annotations to the artifact itself. To
make comments useful to the designer it helps if the viewer
also knows the context and history of the design. More
auxiliary information and context must be conveyed than our
prototypes currently provide. Generally, how might we
improve our tools to be more interactive and promote
meaningful collaboration over the web?

One direction of future work would look at providing design
rationale with posted design artifacts. We look to McCall's
issue based information system for design rationale,
PHIDIAS [7]. PHIDIAS provides an asynchronous
collaborative design environment that allows users to record,
access, and comment on design rationale. Another direction
would be to connect two or more designers using the
Electronic Cocktail Napkin engaging in a computationally
supported design conversation. We can already do this
technically, sharing a drawing space over an Appletalk
network. Designers could manipulate a network diagram in
real time on their Napkins or post drawings to the web for
another designer using Napkin to annotate or redesign.

Conclusion
We have argued that the tools that network designers use
should support the tasks they need to complete. Often, the

tasks of network designers are carried out through the
medium of drawing and diagramming. Drawings and
diagrams are essential artifacts for thinking and
communicating, and as a medium, drawing offers several
advantages. One of the most essential is abstraction: Initial
designs are abstract, final designs detailed. The ability to
view and manipulate a design through varying levels of
abstraction is essential. Computational design tools should
support working at various levels of abstraction, and drawing
is a familiar and traditional medium that can do this. In the
excitement over computer based tools, we should not discard
the benefits of traditional media and methods of design.

ACKNOWLEDGMENTS
The work described here was done at the Sundance
Laboratory for Computing in Design and Planning, where
Ellen Do and Adrienne Warmack provided programming
assistance, advice, and valuable feedback on drafts of this
paper. Members of Gerhard Fischer's 'Useful and Usable'
group at the nearby Center for LifeLong Learning and
Design (L3D) provided insightful conversations about tools
for network design, and the CNS interviews were conducted
with L3D's Jon Rieman and Ken Anderson. Material support
was provided in part by a grant from the Colorado Advanced
Software Institute (CASI) and our industrial collaborator
USWest Technologies, and from NSF grant DMII 93-13186.

REFERENCES

1. E.A. Domeshek, J.L. Kolodner, C.M. Zimring,
"The Design of A Tool Kit for Case-based Design Aids",
Artificial Intelligence in Design '94, Edited by J. Gero,
Kluwer Academic Publishers, Dordrecht, 1994.

2. G. Fischer, A. Lemke, A. Morch, R. McCall.,
"Making Argumentation Serve Design," Human Computer
Interaction, Vol. 6, No. 2-4, 1991, pp. 393-419.

3. G. Fischer, K. Nakakoji, J. Ostwald, "Supporting
the Evolution of Design Artifacts with Representations of
Context and Intent", Proceedings of Designing Interactive
Systems (DIS) '95, ACM, Ann Arbor, MI, 1995, pp. 7-15.

4. M.D. Gross., "The Electronic Cocktail Napkin -
working with diagrams" Design Studies, Vol. 17, No. 1,
1996, pp. 53-70.

5. M.D. Gross, E.Y.-L. Do. "Demonstrating the
Electronic Cocktail Napkin", ACM Human Factors in
Computing - CHI '96 Conference Companion,
ACM/Addison Wesley, pp. 5-6.

6. M. Lowe. "Trawl v1.03", 1993. Shareware. 53
Dolly Avenue, Springfield, NSW 2230, Australia.

7. R.J. McCall, P. Bennett, E. Johnson. "An
Overview of the Phidias II HyperCAD System", ACADIA

http://www.cs.colorado.edu/~l3d/u-u/project.html

8

(Association for Computer Aided Design in Architecture),
Edited by A. Harfmann, M. Fraser, ACADIA, pp. 63-74.

8. K. Nakakoji, B. Reeves, A. Aoki, H. Suzuki, K.
Mizushima. "eMMaC: Knowledge-Based Color Critiquing
Support for Novice Multimedia Authors", Proceedings of
ACM Multimedia '95.

9. A. Repenning, K. Schneider, "Deceived by Ease of
Use: Using Paradigmatic Applications to Build Visual
Design", Proceedings, ACM Conference on Designing
Interactive Systems, Ann Arbor, MI, 1995, pp. 177-188.

10. J. Sullivan. A Proactive Computational Approach
for Learning While Working [PhD dissertation]. University
of Colorado, Boulder, 1994.

