
Grids in Design and CAD
Mark D. Gross
University of Colorado at Boulder

The grid is a useful device for expressing design
rules about the placement of elements in a
layout. By expressing position rules for
elements in relation to a grid, a designer can
organize decisions in a layout design problem
systematically. Grids and placement rules offer
a discipline that can help a designer work
effectively to lay out complex designs, and it can
also facilitate group design work.
Unfortunately, computer supported drawing
systems often cannot support this way of
working because they lack a sufficiently rich
implementation of grids. The Grid Manager
module of the CoDraw program shows
enhancements useful for architectural Computer
Assisted Design. These enhancements would
enable effective ways of using the computer as a
design tool.

1. Grids as Tools for Design.

The grid, one of the oldest architectural design
tools, is a useful device for controlling the
position of building elements. Grids have been
and continue to be used in all manner of layout
tasks from urban design to building
construction (see figure 1) . A grid can help a
designer control the positions of built and space
elements, making the layout task more
systematic. By determining positions of
different building elements in relation to a grid
or to a set of grids, the designer can specify
design rules that describe a typology of physical
forms. Many interesting architectural 'form
families' can be described this way. The grid-
based coordination of layout design can also
support a team of designers where each designer
is responsible for deploying a different
subsystem. In laying out plans for new towns
and cities, the use of grids permits the designers
at the urban scale to make decisions, yet allow
relative freedom at the block and lot scale for
individual developers and house designers.

Figure 1. Historical uses of grids in design
a) Roman town grids; b) Jefferson's drawings
for the University of Virginia

Most Computer-Assisted Drafting (CAD)
programs offer a simple grid capability, where a
designer can overlay a grid on a drawing, and
can snap points and other graphic elements to
the grid. Unfortunately most CAD programs
fail to take full advantage of the grid as a design
tool. Often the designer is limited to square
grids and grid gravity is either "on" or "off" for
all elements.

We have developed the CoDraw Grid Manager
to explore how a drawing program might better
support the use of grids in layout design. In
CoDraw, grids are first class graphics objects
and as many of them may be used in a design as
needed. Grid parameters include two sequence
variables that specify the grid's horizontal and
vertical spacing units. A grid may be limited in
extent, or it may fill the design work area. Grids
may be selected and moved about the work area,
and they may be grouped into aggregate grid
configurations.

The concept of element class is essential for the
applications of grids discussed here. The
CoDraw program uses an object-oriented
scheme to organize its database of elements.
Every element belongs to a class which defines
its generic properties, for example shape, color,
and material. Class definitions are structured in
a hierarchy, each level providing more specific
definition for levels below. This scheme can be
used in various ways. For example, the designer
could define classes by color, e.g. "blue things,"
"red things." Another, perhaps more useful,
application defines each building subsystem

2

(concrete foundation, structural steel, partition
walls) as a class, and within each class defines
different component types as subclasses. Then
we can express generic placement rules for each
class and subclass. For example, structural steel
elements may be programmed to limit placement
to relate to a certain grid, with different particular
relations for I-beams, angle-iron, and C-section
steel. Using this organization of element
classes, CoDraw can be programmed to enforce
design rules expressed in terms of grid
relations.

We begin with examples of how grids can be
used to express layout rules for architectural
design. Then we introduce the CoDraw Grid
Manager, and describes how this program
supports the use of grids to express layout
rules. Finally we discuss this approach to
programming layout rules in a CAD program,
comparing it with other representations for rules
about shape and form in architectural design.
Unlike shape grammars, for example, this
approach is not generative. The drawing
environment can be programmed with layout
rules; within these rules the designer works
freely. The rules are programmed interactively;
should they prove too limiting the designer can
change them.

2. Grids in Layout Design.

To understand the CAD support we want, let's
look at how grids can be used as a layout tool.
Three main concepts will emerge: (1) a variety
of kinds of grids are used, from the simple
square grid, to rectangular and tartan grids. (2)
grids can be grouped and used together, and (3)
rules about element placement can be expressed
in relation to a grid or grids.

In layout design a grid is most often used as an
underlay to a drawing, to organize the positions
of elements. The grid-size is chosen carefully.
It is usually related to the dimensions of the
spaces to be laid out or the components to be
placed. For example, in laying out wood
framing members in a stick-built dwelling, a 16"
or 24" grid is useful because in that system 16"
or 24" is the on-center spacing between studs
and joists, and other components in the
construction system are compatibly sized.

2.1 Layout rules govern placement on a
grid.

Figure 2. Different element-grid relations

To use a grid as a design tool, the architect must
determine rules for placing elements relative to
the grid. The simplest and most obvious
placement rule is that elements center on grid
crossings. However, other rules can be
formulated: elements center only on one of their
dimensions; elements center in grid squares; or
their edges align with grid lines. For example,
figure 2 shows different position relations for
elements on a simple square grid.

Figure 3. Various relations between an element
class and a grid.

Figure 3 shows what happens when different
grid positions are assigned to different types or
classes of elements. In this example, wall
centerlines run along grid lines; concrete
columns are offset on grid crossings, and space
boundaries (shown in gray) fall along grid lines.

2.2 Subdivided and superimposed grids.

3

Figure 4. Grids can be subdivided and
superimposed.

Often it is useful to work with one grid at a large
scale, and a subdivision of that grid at a smaller
scale. The two grids are superimposed and
registered (figure 4). For example, in the 2x4
stick building system, in addition to the 16" grid,
a larger 48" (4') grid is useful for positioning
larger elements such as gypsum board and
plywood panels. A smaller 4" grid can also be
used to place light switches, electric outlets, and
other hardware.

2.3 Rectangular grids.

Figure 5. A rectangular grid is a basis for post
and beam construction.

Grids need not be square. More often than not
the landscape, building system, or the
directionality of the design itself suggests a
rectangular grid. A common use of a
rectangular grid is to position members of a
directional structural system, for example the
post and beam construction in figure 5.

2.4 Interface conditions where grids meet.

Figure 6. Grids in different parts of the
building meet.

Complex designs often involve different grids in
different parts of a building (figure 6).
When two or more grids are used, the designer
must consider the interface condition where they
meet. In some cases special interface elements
and rules are used. For example, a special,
round column might be employed to make and
mark the transition between two grids at
different orientations (figure 7).

Figure 7. Special elements and rules may apply
at interface conditions.

2.5 Several related grids.

It is often useful to work with several related
grids when placing different elements in a
layout. We can say that each building
subsystem defines a class of elements, and we
can use a different grid for each different class
of element. For example, (figure 8) we can
restrict placement of concrete columns to the
crossings of one grid, and program partition
walls to take their places on the lines of another,
offset, grid. A similar effect was obtained in
figure 2, where each element class was assigned
a different grid relation. In this case, the offset
relation between these superimposed grids
represents an important design decision.

4

Figure 8. Element classes center on different
grids.

Figure 9. Different grids are used for structural
and partition systems.

In another example, the major structural
columns, beams, and bearing walls are placed on
a large, master grid; interior partitions on a
second grid that subdivides the master (figure
9), and curtain-wall or skin elements on a third,
related, grid. Although the different systems are
manipulated separately in the design process,
perhaps by different designers, the coordination
of the grids allows decisions to be made
relatively independently.

In large projects, the layout design of different
building subsystems and services (structural
steel, partitions, water, electricity, HVAC) may
be assigned to different experts from different
firms or different work groups. It is important
that each expert be able to proceed without
constantly checking with other members of the
team. By setting up an initial set of agreements
or rules that govern the placement of elements of
each subsystem, the designers can proceed
relatively independently. The initial selection of

grids and assignment of subsystem elements to
certain grid relations represents this set of
agreements. Once the team agrees to work
within these rules, interference conflicts will be
limited to a finite and predictable set of locations
and conditions.

The initial steps of choosing grids and setting
rules about the relations of grids and subsystem
elements are crucial to the successful application
of this method. Some testing of the grids and
rules can be valuable at the early stages, to check
that the rules permit certain desired
configurations. Although simple in concept, the
application of grid techniques in large design
projects requires some experience.

2.6 A grid establishes relations between
elements.

Figure 10. The grid is a device for controlling
the joining conditions of elements.

By programming different element classes to
take different positions relative to a grid, the
designer indirectly controls the relationships of
elements with respect to one other. Rather than
specifying assembly rules that describe how
elements are to join, elements are related to a
common grid. In figure 10, square columns are
centered on grid crossings and walls are
centered only along their lengths, giving each
element class a direct relationship to the grid,
which indirectly defines the position relations
between columns and walls.

2.7 Tartan or band grids.

5

Figure 11. A tartan grid can be combined with a
grid marking band centerlines.

Grids need not be always unitary; an alternating
sequence of dimensional units can be used, fto
form a tartan or band grid (figure 11a,b). A
tartan grid can be superimposed on a simpler
grid that marks the band centerlines (figure
11c). A rule can be expressed that requires or
prohibits the placement of an element class in a
band of the tartan grid, for example "partition
walls must be located only in the 10 cm bands
of a 10-20cm tartan grid."

Figure 12. Tartan grids allow for variation in
size of built elements.

Elements can be restricted to center on the
centerline grid, and limited in dimension to stay
within the tartan bands (figure 12). Specifically,
their edge coordinates would be constrained to
lie within the same band, or range of values. By
expressing a rule about element dimension, the
actual selection of components can be delayed
and alternatives evaluated, so long as the
components eventually chosen fit within the
tartan band.

plumbing

Kitchen

WC
hvac

hvac

Figure 13. Each band can house a different
service.

Similarly, building services such as electricity,
plumbing, and ventilation can be routed in
restricted zones. This is shown in figure 13.
The tartan grid is an important part of a specific
design methodology for dwelling design
(Habraken et al. 1976) (Kroll 1987) and it is
also the basis of description in the Dutch
building code standards.

2.8 Exceptions and field deployment.

Figure 14. The white columns are exceptions to
the class position relation.

When the designer establishes a position
relation between a grid and an element class, it is
understood to mean that this is the way elements
of this class are to be placed. That is, every
occurrence of the element on the grid must take
the specified position relation. However, the
designer can override the grid relationship
defined in the class to make a particular element
an exception. For example, the two white
columns in figure 14 are exceptions to the class

6

relation, which allows columns only on grid
crossings.

Figure 15. a) columns on grid except inside
rectangle; b) columns on grid only inside
rectangle

Normally, a grid-element relation means that if
an element is placed on the grid, it must take its
proper position. Another way to treat an
element-grid placement relation is that for every
occurrence of the grid condition, an instance of
the element should be found. Thus, the rule
"columns at grid crossings" would produce a
field of columns, limited only by the extent of
the grid. This treatment can be useful, combined
with the ability to restrict, or bound, the
deployment of the grid to certain regions. For
example, figure 15 shows two bounding
relations: columns on all grid crossings inside
the rectangle (b) and columns on grid centers
except inside the rectangle (a).

2.9 A simple example.

Let’s look at a simple example of the use of
grids in schematic building design. The first
step is the design of a basic grid for layout. The
decisions to be made are the choice of
dimensions of the grid units. The criteria for
making these decisions are primarily
programmatic —!the use dimensions of spaces
to be made in the building, and technical —!the
dimensions of components in the building
system that is to be employed.

B

A

A + B

2 A + B

A + 2 B

2 A + 2 B

2 A + 3 B

Figure 16. Use dimensions suggested by a
tartan grid.

Figure 16 shows the different dimensions that a
tartan grid provides. Comparing these
dimensions with the use dimensions required
for the functional program can give the designer
a good idea of how well the grid will work. For
example, A is 5’, and B is 2’, then the grid will
suggest room widths of 5’, 7’, 9’, 12’, 14’, ..., a
fairly good match for a housing design project.
Of course, the actual space available between
walls will be diminished by thickness of the
walls. An experienced designer or design firm
may well have a standard grid or set of grids for
basic layout design.

Figure 17. Alternative bearing wall layouts.

Once a basic grid for layout has been designed,
a next step may be to experiment with the
placement of bearing walls. Adopting a rule that
locates bearing walls only on vertical grid lines,
and limiting bearing wall dimensions to grid
modules, the designer can rapidly explore the
range of options that this system permits.
Although at first these restrictions might seem to
overly constrain the design, in fact a reasonable
variation can be achieved. Figure 17 shows
studies for two bearing wall layouts.

Figure 18. Infil wall variations on bearing wall
alternative ‘a’.

The next step in the design might be the location
of infil walls. Each alternative placement of
bearing walls will offer several variations in the
placement of infil walls. Figure 18 shows infil
wall variations.

The role for the grid in designing is to support,
not to make, design decisions. By limiting the
placement of elements to certain places, the grid

7

simplifies decision-making, allowing the
designer to work with and compare a relatively
small number of alternatives. However, the
designer must ensure that the grid and
placement permit a sufficiently rich range of
variation. If it doesn’t, the designer must
redesign the grid, or relax the placement rules.
Also, the designer must ultimately do the
designing, determining where to place each
element to realize a functional program and
other design criteria. The grid is simply a tool
that supports and organizes the decision-
making.

2.10 Summary of grid uses.

We have reviewed some elementary uses of
grids in layout design. For many architects,
these applications will be familiar; however,
most drawing programs cannot support them.
From this brief review, we take a list of features
that we would like to see supported by
architectural drawing software. We would like
to make grids of various proportions and
dimensions: rectangular grids, tartan grids, and
grids with bounded extent (e.g. a grid inside a
room for laying out furniture). We would like
to make grid aggregates, or configurations of
several grids. We would like to define
relationships between grids and classes of
elements, so that different element classes can be
programmed to take different positions relative
to a grid or grids.

3. CoDraw's Grid Manager.

In the previous section we reviewed several ways
that designers use grids to support layout tasks,
in particular, by defining grid-relative rules for
placement of different elements. Traditionally
these methods are carried out by hand, with the
designer remembering and enforcing rules about
element placement. This section describes a
program that supports the use of grids to
express design rules. It aids the layout task by
enforcing placement rules that the designer
makes.

Grid snap behavior, or "grid gravity" is a feature
in almost every drawing and drafting program.
By setting a sufficiently fine grid spacing, a
designer can ensure that elements placed into the

design align their edges and that line segments
latch, or connect. Without grid gravity, it can be
difficult to draw accurately with a mouse or
digitizer pen. The advantage of extending the
support for grids and grid gravity is that
designers can use it to specify position relations,
or rules, among design elements. The drawing
program will retain and enforce these rules as
the designer edits the design.

CoDraw is a constraint-based drawing program,
which manages and maintains spatial relations
between elements that the designer selects
(Gross 1990). For example, CoDraw maintains
alignments, tangencies, and other geometric
relations. Other algebraic relations, such as area
and proportion relations, are also maintained by
CoDraw. Constraints involving grids and grid-
relations are handled specially by CoDraw's
Grid Manager module. CoDraw is a graphic
application that uses the experimental constraint
programming language “Co”, which is written
in Common Lisp on the Macintosh.

3.1 Grids as design elements.

In CoDraw, grids are regular design elements,
no different than other elements in the drawing.
Every individual grid in a design belongs to a
class that defines its spacing units and perhaps
other properties. For example, the class 60-20-
BAND-GRID in Figure 19 defines a tartan grid
with alternating 60 and 20 unit bands. All grid
classes are members of the larger class named
'grid'. Figure 19 shows GRID and its
subclasses as defined when the Grid Manager is
first invoked.

Figure 19. Class GRID and initial subclasses.

8

Catalog of Grid Classes

Sample Display Area

Control Buttons

Spacing Sequences

Bounds Parameters

Figure 20. The Grid Manager window.

The Grid Manager window (figure 20) shows a
catalog of already-defined grid classes.
Clicking on a grid class name in the catalog
causes the grid to be displayed in the sample
display area. The Spacing Sequence parameters
control the number of bands and the horizontal
(HSEQ) and vertical (VSEQ) spacing units of
the grid: in this case (60 20) defines alternating
bands of 60 and 20 units. Values typed in here
change the definition of the grid class. The
Bounds Parameters control the extent of the
grid: if no values are entered, then instances of
the grid will fill any Work Sheet that they are
placed into.

The Control Buttons in the upper left part of the
window are used to manage the grid classes and
to apply specific instances of grids to the
design. The 'new' button defines a new grid
subclass based on the currently selected class in
the catalog; by entering different values for the
Spacing Sequence parameters and the Bounds
parameters, the new grid class can be modified
or specialized. The 'apply' button makes an
instance of the currently selected grid class in
the Work Sheet, and the 'remove' button deletes
instances of the selected grid class in the Work
Sheet. The 'SmartGrids' button produces
another window where the designer can specify
the relation between the grid and an element or
an element class.

A grid entered into the Work Sheet is treated as
any other element. It can be selected, dragged
about, colored, sized, copied, and deleted. (To
avoid selecting grids unintentionally, a modifier

key must be held down while selecting a grid
with the mouse.) The Work Sheet can contain
several grids simultaneously, grids can be
grouped into configurations, and spatial
relations between grids can be established.

3.2 Relations between grids and other
elements.

Using the SmartGrids feature of the CoDraw
Grid Manager, we can program the position
relation between an element class and a grid.
We must specify whether the element is to be
centered, offset, or adjacent, registered along an
edge on the grid, or whether the element is to be
limited to certain grid bands or zones.

Whenever an element of that class is moved into
a portion of the Work Sheet where the grid is
deployed, it will take its position according to
the programmed relation. Most often a class of
elements is associated with a class of grids.
However, the relation can be programmed to
operate between a specific element and a specific
grid, a class of elements and a specific grid, or a
specific element and a class of grids. For
example, the class of 'round columns' can be
programmed to center on all instances of 'grid-
40', or only on the instance of 'grid-40' in the
upper right hand corner of the Work Sheet.
Likewise, a specific 'round column' can be
programmed to take its place in relation to all
instances of 'grid-40' or to only a specific
instance of that grid.

9

3.3 Implementation.

The Grid Manager is embedded in CoDraw and
takes advantage of CoDraw's prototype
inheritance scheme; it also uses CoDraw's
graphics. The organization of CoDraw's
elements into a graph of prototypes and
individuals that inherit constraints enables the
assignment of grid behavior to different element
classes.

At present, grid relations are implemented
separately from CoDraw's general constraint
management routines, which implement multi-
directional value propagation and simple algebra
on the constraint net. Grid relations could be
expressed as algebraic expressions and
managed along with other algebraic constraints.
However the algebraic constraint manager
cannot handle the discontinuity and the multiple
values that grid constraints require. These grid-
relations should be incorporated into CoDraw’s
general constraint management scheme.

When an element or element class is assigned a
grid-relation, both the grid and the relation are
stored with the element or element class, in
special 'snap-to-grid' variable and a special
relation named 'grid-relation'. When the element
is placed, sized, or moved in the Work Sheet, if
the element is over the grid, then the 'grid-
relation' is used to calculate a rectified position.

The arithmetic for grid-relation behavior is
simple. Think of a grid as of a set of modules,
in both horizontal and vertical dimensions; each
module contains one set of bands. Figure 21
illustrates the concept of module in one
dimension of a simple tartan grid.

module 0 module 1 module 2

20
60

10

x = 84

Figure 21. Horizontal modules of a tartan grid.

The function ‘totals’ converts the sequence of
spacing units (HSeq) to a sequence of running
totals (HCoord) giving coordinate values:

HCoord <- totals (HSeq)
; (20 80 90) <- totals (20 60 10)

The width of the module is the last HCoord
value, the sum of spacings in the module:

X_module_width <- last (HCoord)
; 90 <- last (20 80 90)

Then the function floor (modulo) is used to
calculate the module number of the coordinate:

(module_number, remainder)
<- floor (x, X_module_width)

and the remainder, or offset into the module is
simultaneously computed. In this example, if x
= 84, then module_number will be 0 and
remainder will be 84. Finally, we use the
Nearest function to find the coordinate of the
nearest grid line in the module.

Nearest (remainder, HCoord)
; 80 = Nearest (84, (20 80 90))

4. Discussion.

4.1 Grids and placement rules as
constraints.

Using grids and placement rules, a designer can
program a CAD system to enforce desired
spatial relationships among building
components and spaces. These spatial
relationships are constraints on the design and
they represent decisions that the designer makes
about how to organize the building. The
constraints do not prescribe or generate
particular forms; rather they circumscribe or
bound a space of alternative arrangements
without specifying a solution. The constraints
structure the manipulations that the designer can
make by restricting the placement of pieces.
Within these self-imposed constraints, the
designer explores alternative layout designs.
The constraints provide a means to program
placement rules for elements and spaces, using
grids as a basis for positioning.

10

To use the tool effectively requires a discipline
and an understanding of this design method.
The use of grids as positioning devices for
layout design has been discussed by N. John
Habraken, in a number of publications
(Habraken et al. 1976), (Habraken 1980),
(Habraken and Gross 1988) and through a
series of "thematic design" workshops at MIT.
Once the approach is understood, the tool can be
an effective way to organize spatial decision-
making.

Grids, as a kind of constraint on the placement
of elements in a layout, are a way of embedding
knowledge in the design environment. By
programming the behavior of element classes
into the layout editor, the designer no longer
must check the design against the placement
rules.

Another, rather different, way to represent
knowledge formally about layouts is a shape
grammar. A shape grammar is a generative
system, in which regularities of a family of
shapes are expressed as of a set of production
rules (Flemming 1987). The production rules
generate a constrained set of possible shape
arrangements. The set can be generated by
exercising all legal sequences of the rules,which
may be infinite. Our grid-relationships also
constrain a set of physical arrangements.
However, unlike a grammar, they do not suggest
an order of form-generation.

The Grid Manager program was built as a
module of CoDraw, a constraint-based drawing
program that maintains design relations that the
designer asserts. CoDraw's goal is to
demonstrate a flexible and interactive graphically
oriented constraint-based construction kit, within
which designers can define and work within
their own rules, or constraints. Other constraint
based drawing kits have also been developed
(e.g. Nelson 1985) and constraint-based
programming environments are an active area of
research related to Computer Assisted Design
(see for example, (Sapossnek 1989; Murtagh
and Shimura 1990)). Interactive grid snap has
been proposed as a means to achieve some of
the functionality of a more general constraint-
based design system with less computational
overhead (Bier and Stone 1986) and this "snap-
dragging" approach has also been extended to
three-dimensions (Bier 1990). However

implemented, grid-snap is surely a kind of
spatial constraint that a CAD program can be
programmed to understand, and it is useful in
layout design.

4.2 Grid based design rules can mediate
group work.

The use of grids and placement rules is
particularly suited as a means to mediate group
design work. Layout of different subsystems
can be divided among members of a design team
and each team member can work relatively
independently. Placement rules allow each
designer to know where to put elements, and
where to expect other designers to place
elements of different subsystems. Each
designer on the team can explore alternative
layouts, knowing that when the time comes to
integrate the subsystem designs, the grid-based
positioning rules ensure that interference
problems are limited and controlled. If
plumbing elements are always found in band
"alpha" and HVAC ducting in band "beta," then
plumbing and HVAC can only interfere in an
intersection between the two bands. Knowing
the location, we can define interface conditions
for the limited combinations that occur. The
publications of the S.A.R. (Habraken et al.
1976), the OBOM, and the Dutch housing
design standards (NEN 2883, 1981) outline
these methods in detail. They argue that by
regularizing the positioning of elements of
different subsystems according to a grid, the
designer can render the building quicker to
build, easier to maintain, and more flexible for
remodeling.

4.3 Conclusion.

Grids can help a designer organize the
placement and dimension of building elements
and spaces. By associating different grid
positionings for each class of element, the
designer can control relationships among
elements. Some architects may not favor this
method of designing —!or some may favor it
for some projects but not others. It is a formal
approach, in which the designer makes and
records systematic placement rules. It thus
places a value on explicit formulation of design
rules. Design of the configuration of grids, and

11

specification of placement rules can become an
important preliminary phase of the layout
process. The advantage is that once the designer
makes decisions about placement rules, the
system helps organize the layout.

CoDraw's Grid Manager program supports the
use of grids as a design tool. In CoDraw, grids
are regular elements of the design just as any
other graphical element. The Grid Manager
enables the designer to first define and then
work within simple positioning rules with
respect to grids. Within these self-imposed
constraints on element positions, a designer can
freely design, exploring alternate layouts.

References.

Bier, E. 1990. Snap-dragging in three
dimensions. Computer Graphics 24 (2) : 193-
204.

Bier, E. A., and M. C. Stone. 1986. Snap-
Dragging. Computer Graphics (SIGGRAPH
86) 20 (4) : 233-240.

Flemming, U. 1987. The role of shape
grammars in the analysis and creation of
designs. In The Computability of Design. Edited
by Y. Kalay. New York: Wiley.

Gross, M. 1990. Relational Modeling. In The
Electronic Design Studio. Edited by M.
McCullough, W. Mitchell and P. Purcell.
Cambridge, MA: MIT Press.

Habraken, N. J. 1980. The Grunsfeld
Variations. Cambridge, MA: MIT School of
Architecture and Planning.

Habraken, N.J., J.T. Boekholt, A.P. Thijssen,
and P. Dinjens. 1976. Variations - The
Systematic Design of Supports. Cambridge,
MA: MIT Press.

Habraken, N. John, and M. D. Gross. 1988.
Concept Design Games. Design Studies 9 (3)

Kroll, Lucien. 1987. An Architecture of
Complexity. Cambridge, MA: MIT Press.

Murtagh, N., and M. Shimura. 1990.
Parametric Engineering Design using Constraint

Based Reasoning. AAAI-90. AAAI
Press/Addison Wesley (Boston, MA)

NEN 2883 Project Group Modular
Coordination. 1981. PLANS and DETAILS
according to NEN 2883 - Manuals on the
application of NEN 2883. TH Delft.

Nelson, G. 1985. Juno—A Constraint-based
Graphics System. Computer Graphics 19 (3):235-
243.

Sapossnek, M. 1989. Research on Constraint-
Based Design Systems. Proc. 4th Intl. Conf.
Applications of AI in Engineering. (Cambridge,
England)

