
Fat Pencil & Cocktail Napkin 1

The Fat Pencil, the Cocktail Napkin, and the Slide Library

Mark D Gross
College of Architecture and Planning

University of Colorado
Boulder, CO 80309-0314

mdg@cs.colorado.edu

Abstract

The paper describes recent explorations in sketch recognition and management to

support architectural design. The exploration and decision-making of early,

conceptual design better suited to freehand drawing, sketching, and diagramming

than to the hard-line drawing and construction kit approaches of traditional CAD.

However, current sketch programs that simulate paper and pencil fail to take

advantage of symbolic manipulation and interactive editing offered by

computational environments. The paper presents a ‘computer as cocktail napkin’

program, which recognizes and interprets hand-drawn diagrams and provides a

graphical search facility, simulated tracing paper, and a multi-user shared drawing

surface. The cocktail napkin is the basis of Stretch-A-Sketch, a constraint based

draw program that maintains spatial relations initially specified by a diagram. The

cocktail napkin program is also the basis for a query-by-diagram scheme to access a

case based design aid as well as to a small collection of images of famous

buildings. The paper briefly reviews these extensions of the cocktail napkin

program.

PUBLICATION REFERENCE
1994 Gross, M.D. “The Cocktail Napkin, the Fat Pencil, and the Slide Library.” Proceedings, Association for Computer Aided Design in Architecture, 1994 National Conference, St Louis.

Fat Pencil & Cocktail Napkin 2

Introduction - The Fat Pencil

Anthony Pellechia, an architect who worked in Louis Kahn's office, tells a story of

Kahn and his fat pencil:

Lou had a tendency to always work with the charcoal; and you had to watch

ou for him, because he cheated a lot. That charcoal line was very thick, and

if you're working at an eighth or a sixteenth, you always had to keep

putting a scale on it, because he was really very capable of camouflaging the

scale of it. He would make everything work and then he'd go away. You

wouldn't see him for maybe the next day, and you were left with these very

thick lines that when reduced to realistic wall thicknesses and spaces

— you couldn't put this functional stuff back in. [1], p 52.

In the early, conceptual, phase of designing, many designers work with soft pencils

or thick markers on cheap yellow tracing paper. These tools - rough and ready -

enable the designer to explore alternatives and variations with great speed and low

commitment. The imprecision of the tools keeps the designer in mind of the

conceptual nature of the exploration, and it helps the designer avoid the temptation

of making decisions at a finer level of detail than appropriate. The interplay of

loose conceptual sketches and more definite schematic drawings is discussed in

recent examinations of the role of architectural drawing in design [2, 3].

Fat Pencil & Cocktail Napkin 3

Regrettably, computer aided architectural design tools do not support this early

conceptual designing. Most CAD programs require commitment to precise shape,

position, dimension, lineweight and color, and impose a highly structured

procedure for making and editing drawings. For example, drawing a circle in

AutoCAD is a four step process. One must (1) choose the "drawing tools" menu,

(2) select one of several ways to draw circle (e.g. center point and radius) from the

menu, (3) identify the center point, (4) identify a point on the radius. By this time,

the designer with an HB pencil has drawn circles around AutoCAD. AutoCAD's

overhead may be worthwhile in later phases of design, when one is certain that it is

a circle one wants, and reasonably sure of its dimension and position. The

advantage of the structured drawing process is that it results in a structured

representation that permits, for example, the application of energy, lighting, and

structural simulations, as well as editing. But in conceptual design, the structured

drawing process of most CAD programs inhibits the flow of thought and demands

more precision than the designer is ready to commit to.

In contrast to AutoCAD and similar structured CAD editors, freehand drawing

programs (such as Fractal Painter), provide users with a simulation of sketching on

paper. Designers who master these programs find the ability to draw freehand

combined with the editing capabilities and "effects" of digital media advantageous.

However, these programs suffer from the reciprocal deficiency: the lack of a

structured representation for the design. It is difficult to move smoothly from

conceptual design sketches to schematic design CAD drawings, because pixel-

based sketching programs do not support any representation of the design's

Fat Pencil & Cocktail Napkin 4

elements. Therefore the designer must re-enter the design that was originally

sketched freehand in the more rigidly constrained environment of a three-

dimensional modeler or CAD program.

Conceptual design demands the best of both worlds. On the one hand, the rapid

and unstructured exploration of line, shape, and configuration; on the other hand,

the representation of elements, attributes, and relations that makes possible editing

and other computation on designs. In short, design tools should support the

freehand sketching and diagram-making that characterize conceptual designing in a

way that enables the designer to move smoothly to the more precise representations

used during schematic design. The "Electronic Cocktail Napkin" program is an

experimental prototype built to explore this idea and advance this goal.

The remainder of this paper is organized as follows. Section 2 describes the

Electronic Cocktail Napkin, a pen-based drawing program that reads, recognizes,

and manages hand drawn diagrams. The recognition algorithm is outlined and the

cocktail napkin's support for graphical search, simulated tracing paper, and multi-

user shared drawing is described. Sections 3 and 4 describe extensions to the basic

cocktail napkin. Section 3 describes Stretch-A-Sketch, a constraint based drawing

program that maintains spatial relations identified in a diagram. Section 4 describes

two efforts to index databases of designs with diagrams. Section 5 concludes with

a summary, a discussion of related work and directions for further research.

Fat Pencil & Cocktail Napkin 5

2. Electronic Cocktail Napkin

2.1 Recognizing hand-drawn glyphs

The Cocktail Napkin program [4] is an interactive, trainable recognizer for hand-

drawn diagrams, written in Macintosh Common Lisp 2.0 . As with a typical pen-

computing environment, the user simply draws on a tablet, making marks in the

drawing window. The program tries to recognize the designer’s marks as letters,

shapes, and lines. The program also has higher-level recognition facilities that can

identify configurations of the simple shapes; for example, a “tree diagram” or a

“floorplan bubble diagram.” In addition, the program affords a simple simulation

of tracing paper, support for two simultaneous users, and search for

configurations. The cocktail napkin interface (figure 1 below) includes a sketching

window, a message and type-in area where the program interacts textually with the

user, command buttons, trace tabs to select sheets of simulated tracing paper, and a

catalog of previously made diagrams and layers of trace.

Figure 1. The cocktail napkin interface.

Fat Pencil & Cocktail Napkin 6

The cocktail napkin program reads x, y, and pressure values from a Wacom SD

series tablet at 1200 baud. The input data is parsed as a series of simple symbols,

or glyphs. A glyph begins when the user touches the pen to the tablet and ends

when the user lifts the pen for more than a certain duration (by default 1/4 second).

A glyph is characterized by the pen path through a 3x3 grid inscribed in the glyph's

bounding box, the number of strokes, the number of corners, and the size and

aspect ratio of the bounding box (figure 2).

GLYPH -- BOX.1676
TYPE BOX
NSTROKES 1
NCORNERS 4
PEN-PATH (7 4 1 2 3 6 9 7)
SIZE LARGE
ASPECT RATIO SQUARE
LOCATION NIL
ROTATION NIL

Figure 2. Identifying characteristics of a simple glyph.

Once these characteristics of a glyph have been identified, the input glyph is

compared with a library of previously trained glyph templates. If a single template

matches the input glyph, then the input glyph is classified; if more than one template

matches, then either the ambiguity is carried or the user is asked to resolve it. The

present version is trained with capital letters, numbers, and simple shapes (circles,

boxes, triangles, and various types of lines). This recognition algorithm suits the

purpose: it is interactively trainable, multi-stroke, simple to implement, and

accurate enough for an experimental prototype. Other, more intricate, algorithms

have been developed [5-7] and could replace the simple version employed here.

Fat Pencil & Cocktail Napkin 7

It is easy to train the cocktail napkin to recognize a new glyph. The user first draws

a collection of examples that serves as a training set for the new glyph template.

The characteristics described above are extracted from each and stored in the new

template. In most cases ten to fifteen samples are sufficient to uniquely identify a

new glyph. The recognition algorithm can work interactively, or it can work in

batch mode, waiting until the user stops drawing before trying to identify glyphs.

Once the program identifies an input glyph, it can display it either in rectified form

(a crude round shape becomes a circle or oval; a rough line becomes straight) or as

drawn by the user. By default the diagram remains in "as drawn" form.

2.2 Recognizing glyph configurations

In addition to identifying single symbols, or glyphs, the program also recognizes

arrangements of glyphs in certain spatial relations. For example, to work with

bubble diagrams of floorplans, the cocktail napkin can be programmed to identify a

circle or box containing a word as an instance of a room.

The cocktail napkin identifies binary spatial relations among pairs of selected

glyphs, for example 'contains,' 'above,' 'near,' 'connects.' The program's

analysis of spatial relations appears in a "search" dialog that lists glyph types in the

configuration and the spatial relations among them. For example, figure 3 shows

the program's analysis of a simple configuration of an arrow, a circle, and a word.

Fat Pencil & Cocktail Napkin 8

Figure 3. Search dialog.

Descriptions in the search dialog are used to control graphical search for similar

configurations, and to define higher-level recognizers. The buttons in the search

dialog adjust the program's description of the configuration. The 'delete' buttons

enable the user to eliminate an undesired element or a spatial relation from the

description. For example in figure 3, we might delete the relation that states the

arrow is higher-than the word. The 'general' and 'specific' buttons enable the user

to make the description of a glyph type or a spatial relation more general or more

specific. For example, a glyph identified as a 'circle' may be described more

generally as a 'shape'; the 'contains' relation may be described as the more specific

'concentric.'

2.3 Tracing Paper

Recognizing glyphs and configurations of glyphs and spatial relations is the

backbone of the cocktail napkin program. However, the program has provided a

Fat Pencil & Cocktail Napkin 9

starting place for several experimental extensions, which are described in the

remainder of this section and in sections 3 and 4, following.

Tracing paper, (and its CAD surrogate, "layers") plays an important role in design.

Esepcially in conceptual design, designers use layers of tracing paper to copy,

excerpt, reposition and rotate, and combine fragments of design alternatives. (In

structured CAD programs designers can assign elements to different layers, for

example, placing roof elements on one layer and wall elements on another; but this

is a different use of layers.) At the risk of mixing metaphors, the cocktail napkin

program includes a simple simulation of tracing paper. Our implementation of

simulated tracing paper adheres to the constraints of real trace -- one can move any

layer of trace, but draw and erase only on the top sheet; figures on lower sheets

fade away as new trace is placed on top. Layers of trace can be removed from the

stack and set aside.

When the designer places a new sheet of trace on the drawing (either by selecting

the trace command from the menu of icons or by making the 'trace' gesture (three

horizontal lines stacked vertically) the program shades the drawing area, fades the

existing glyphs, and adds a 'trace tab' to the list on the top left of the screen (see

figure 1); '0' is the lowest layer and 'T' the top, active drawing, sheet . The trace

tabs enable the designer to select a trace sheet. The designer can trace glyphs from

lower layers by hand or use the 'copy' command to transfer them selectively to the

top sheet. A trace sheet may be selected and shifted beneath the top layer, or

Fat Pencil & Cocktail Napkin 10

removed and set aside. For want of screen space, sheets of trace set aside appear in

reduced size in a catalog along the top of the screen (see figure 1).

2.4 Sharing the Drawing Surface

Designing is seldom done alone, and often designers share a drawing surface [8].

The cocktail napkin metaphor suggests several designers around the table, each

with pen in hand, taking turns at drawing on a napkin. To support this "shared

drawing space" two different prototypes were built. In the first prototype,

designers share a single drawing pad; in the second, designers work at separate

tablets but share the same drawing space. Currently a great deal of work is being

done on multi-user drawing environments [9-12]; the innovation here is to combine

a multi-user drawing with the recognition features of the cocktail napkin.

In the first prototype where designers share a single tablet (figure 4a), we adjusted

the resonant frequency of two Wacom pens to give each designer's pen a unique

electronic signature. The tablet hardware limits drawing to one pen at a time.

When either pen is detected near the tablet, the program determines which designer

is drawing, adds an 'author' tag to the glyphs, and displays glyphs drawn by each

designer in a different color.

Fat Pencil & Cocktail Napkin 11

Figure 4a. Two designers sharing a single tablet.

Figure 4b. Two designers sharing a drawing space but using their own tablets.

In the second prototype, we connected two Wacom tablets to the 'a' and 'b' serial

ports of a single computer, and added a few lines of code to the low-level driver

program to serve both serial ports. The two designers share the virtual drawing

space, but work separately (figure 4b). Again, the program tags each glyph with its

author and displays different colors for each designer.

When two or more designers work together on a drawing, often a spoken

conversation provides essential communication about what is going on. Merely

examining the drawing, after it is done, may have little meaning for anyone other

than the orginal participants. But if others could observe the sequence in which the

drawing was made and hear the conversation, perhaps the drawing could be

understood. To explore this idea we programmed the built in Macintosh sound

recording facilities to eavesdrop on the designers’ conversation. We tag the sound

bytes with identifiers that connect elements of the diagram with the conversation

Fat Pencil & Cocktail Napkin 12

that was going on at the time. A step-by-step replay function redisplays the

evolving drawing along with the relevant conversation fragment.

3. Stretch-A-Sketch - Drawings That Behave

Stretch a Sketch [13], is an experimental prototype that adds interactive constraint

based behavior to the diagrams managed by the cocktail napkin program. Previous

work [14-16] has explored the construction of constraint based drawing programs,

which enforce and maintain spatial relationships (adjacencies, proportions,

minimum and maximum dimensions, connections) among drawing elements. The

computer maintains desired relations as the designer changes the positions and sizes

of drawing elements. In addition to spatial relations, constraints may describe

functional desiderata, such as structural strength and stability, lighting, or energy

performance.

Constraint based drawing programs have suffered from user-interface overhead.

The user must explicitly add constraints to describe desired spatial relations. For

example, in CoDraw, the designer must select elements to be related, then choose a

spatial relation from a ‘constraints’ menu. This step further distances the designer

from the design.

Fat Pencil & Cocktail Napkin 13

Figure 5. Design drawing sequence (with traditional media) increases in specificity.

Stretch-A-Sketch takes advantage of the fact that designers proceed from rough

diagrams made in conceptual design to more precise drawings in schematic design,

carrying along the same basic spatial relations (figure 5). Stretch-A-Sketch

identifies the spatial relations in a hand drawn diagram, and maintains these

relations as the user moves and resizes diagram elements and moves gradually to

more precise CAD-like drawing and editing.

Stretch-A-Sketch breaks the metaphor of the cocktail napkin, by permitting the

designer to edit (move and resize) diagram elements. By holding down a button on

the pen-barrel, the designer puts the pen into ‘command mode.’ Then diagram

elements can be selected, moved, and resized.

Figure 6. Stretch-A-Sketch maintains relations in the diagram. (a) diagram as first

drawn; (b) after resizing a room; (c) partially rectified drawing.

Fat Pencil & Cocktail Napkin 14

When the designer selects an element to be moved or resized, Stretch-A-Sketch first

determines the spatial relations it engages in. For example, a ‘box’ may be to the

right of one element, contain another, and below a third. After the designer has

moved or resized the box, Stretch-A-Sketch reasserts the spatial relations, adjusting

the sizes and positions of related elements to satisfy the relations again.

4. Diagrams as Indices to Design Databases

4.1 Why index with diagrams?

Most sources of information useful to designers are indexed textually, by key

words. For example, visual collections (slide libraries) are indexed by key words

that describe architect, date, location, and name of building. The Getty Art and

Architecture Thesaurus [17] provides an additional range of key words to describe

image content, classifying a building, for example, as a “prairie style wood frame

residence”. Likewise, information sources that document specific buildings or

building types, for example post-occupancy evaluations (POE) are organized by

key words. Given the dominant role that visual thinking plays in architectural

design, we decided to index these information sources visually, using diagrams to

formulate queries into a database. If diagrams could trigger retrieval of relevant

information, we could build critiquing mechanisms that watch a developing design

and provide critiques and precedents relevant to the work at hand.

Fat Pencil & Cocktail Napkin 15

We have built two prototypes to retrieve database items using diagrams as index

keys. In the first prototype [18], diagrams are used to index a collection of images

of famous buildings. In the second prototype [19] diagrams index a case base of

post-occupancy evaluations of courthouse and library designs.

4.2 The Slide Library

We constructed a small visual collection of well-known buildings, built in

FileMaker Pro, a database program. Each record includes a photograph of the

building, textual information describing the building, architect, date and a brief

description of the building (Figure 7).

Figure 7. Filemaker Pro database of architecture’s “greatest hits.”

We indexed each building with one or more simple diagrams, obtained from

architects and architecture students. In two pilot experiments [20], we found that

(a) architecture students make similar diagrams from drawings and photographs,

Fat Pencil & Cocktail Napkin 16

and (b) designers made similar diagrams from memory of well-known buildings.

By 'similar' we mean the diagrams contained many of the same graphical elements

organized in the same ways. For example, figure 8 shows drawings made from

memory of Wright's Guggenheim museum. Most of the diagrams contain either a

set of stacked rectangles or a spiral.

STACKED

BOXES

STACKED

BOXES

(cont’d)

SPIRAL

MISC.

Figure 8. Designers' diagrams of Wright's Guggenheim museum, from memory.

The designer issues a visual query by drawing a diagram. The cocktail napkin

program first parses the query into a symbolic description of glyphs and spatial

relations (figure 9). A simple matcher then compares the query diagram with the

stored diagram keys that index the database. The program identifies the database

Fat Pencil & Cocktail Napkin 17

records whose keys most closely resemble the query, and sends a message (an

AppleEvent) to the FileMaker Pro process to display those records.

recognizer

matcherdiagram-description
query

diagram-description-1
diagram-description-2
diagram-description-3

IMAGE-1

diagram-description-1
diagram-description-2
diagram-description-3

IMAGE-2

diagram-index

diagram-description-1
diagram-description-2
diagram-description-3

IMAGE-3

...
...

QUERY

Figure 9. Functional outline of the query by diagram system.

4. 3 Diagram index to Archie - A Case Based Design Aid

Archie is a case based design aid for architecture developed by colleagues at

Georgia Tech [21]. It contains post-occupancy evaluation (POE) data on libraries

and courthouses. POE data in Archie is organized in the form of problems,

responses, and stories from real world cases. The data is indexed by key words in

a number of categories: systems (e.g. circulation, mechanical), roles (client,

contractor, designer), etc. A generic case based design aid shell (CBDA) provides

a framework for locating this information, and tools for indexing and accessing

relevant problems, stories, and responses.

Fat Pencil & Cocktail Napkin 18

We constructed a diagrammatic index to Archie, similar in structure to the diagram

query scheme for the visual collection [19]. Many items in the case base include

graphics -- photos or plan drawings. We decided to augment these with simpler

diagrams that illustrate the key points. For example, a story about "the courtroom

is connected with the waiting area by a corridor" was diagrammed with a modified

'dumbell' - two circles connected by an arrow and a circle in the middle (figure 10).

Many architectural stories can be usefully annotated by similarly simple diagrams

(see for example the work of Lynch [22]). Why not include the diagrams as

indices? The diagram in the Archie case base serves as a visual reminder of the

index key.

Fig. 10. An illustration from a courthouse story with corresponding diagram.

The scheme for linking Archie with the cocktail napkin program is similar to that

used with the visual collection. An index table pairs diagrams with items in the case

base. The designer draws a visual query, and the program returns a list of items

whose diagrams match the query. The cocktail napkin program then requests

Archie to display those items.

Fat Pencil & Cocktail Napkin 19

5. Discussion

5. 1 Related work

Outside of CAD, three main research communities are interested in the issues

discussed in this paper: the visual languages (VL) community, the computers and

human interface (CHI) community, and the artificial intelligence (AI) community.

Lakin's work on parsing visual languages most vividly describes the requirements

for computational visual languages in design [23, 24]. Other relevant work in the

visual language community includes Futrelle's work on diagram understanding[25]

and work on parsing visual languages [26, 27]. Work in computers and human

interace (CHI) includes the work on recognition cited above, [6, 7], graphical

search [28], shared drawing spaces [8, 9, 11, 12]. In the AI community, interests

center on visual representations and their role in reasoning [29].

Research on sketching and diagramming has also been done in the domain of

architecture and environmental design. More than twenty years ago, MIT’s

Architecture Machine Group was beginning to explore sketch recognition

technologies [30]; however these explorations were supplanted by other topics in

computer graphics and human-machine interaction. More recently, Ervin's work on

the structure and function of diagrams in design develops the relationship between

constraint based programming and spatial relations in diagrams [31]. His CBD

program constructs a diagram from a description of spatial relations (constraints);

Fat Pencil & Cocktail Napkin 20

once constructed, the diagram retains its essential characterstics. Other programs

that construct diagrams from symbolic descriptions have also been constructed [32]

Harrison’s recent article profiling the work at Xerox Palo Alto Research Center

(PARC) emphasizes both the centrality of hand drawing and gesture as well as the

role of collaborative work in design [8].

5.2 Summary and Conclusions

What began as a simple recognizer for hand drawn shapes developed into a

collection of diverse, but related projects in sketch recognition and management.

This paper has given an overview of these explorations. However, with this

diversity of topics, the main points threaten to become lost.

In summary, we have argued that direct hand drawn input in the form of sketches

and diagrams is necessary to support conceptual design, but that sketching must be

coupled with recognition and structured CAD representations in order to facilitate

design development into the schematic phase. If pen input can be coupled with

traditional structured representations of designs, then analyses (e.g. critiquing,

simulation) can be provided earlier in the design process when it can make the most

difference. Recognizing key configurations in a hand drawn drawing can trigger

reminding of relevant examples in a case base or a visual collection that has been

diagrammatically indexed. Finally, diagrams in conceptual design often embody

key elements and relationships that persist through later stages of design. Stretch-

Fat Pencil & Cocktail Napkin 21

A-Sketch pursues this idea, establishing as constraints relationships found in the

hand drawn diagram, which are maintained as the designer later edits the drawing.

Although the explorations describe here are at a tentative stage, and the programs

are but working prototypes, the results so far have been encouraging. Future

stages of the project will include refining the recognition algorithm and enhancing

the basic cocktail napkin features, expanding the size of the databases indexed, and

performing real sketching experiments with the shared-drawing surface. A central

limitation is the tablet hardware, which requires users to look at the display screen

while drawing on the tablet. This is disconcerting for new users and requires

several hours to overcome. We plan to replace the tablet hardware with a touch

sensitive LCD display.

ACKNOWLDGEMENTS

Jim Davis (Cornell Design Research Institute), Aaron Fleisher (MIT), and Kyle

Kuczun (of our group) all provided helpful arguments at various stages of the

prototype development. Ellen Do and Craig Zimring (of Georgia Tech)

collaborated on the development of the Archie index. Kristin Mayfield (an

undergraduate student in our group) collaborated on the slide library index project.

We gratefully acknowledge support from NSF grant #93-13186 which supported

the development of constraint management code used in Stretch-A-Sketch.

Fat Pencil & Cocktail Napkin 22

References

1. MIT, Processes in Architecture. 1979, Cambridge, MA: MIT School of
Architecture and COmmittee on the Visual Arts.

2. Fraser, I. and R. Henmi, Envisioning Architecture - an analysis of drawing.
1994, New York: Van Nostrand Reinhold.

3. Herbert, D., Architectural Study Drawings. 1993, New York: Van
Nostrand Reinhold.

4. Gross, M.D. Recognizing and Interpreting Diagrams in Design. in
Advanced Visual Interfaces. 1994. Bari, Italy:

5. Apte, A., V. Vo, and T.D. Kimura. Recognizing Multistroke Geometric
Shapes: An Experimental Evaluation. in ACM conference on User Interface and
Software Technology (UIST). 1993. Atlanta, GA: ACM.

6. Rubine, D., Specifying Gestures by Example. Computer Graphics, 1991.
25(4): p. 329-337.

7. Zhao, R. Incremental Recognition in Gesture-Based and Syntax-Directed
Diagram Editors. in INTERCHI ‘93. 1993. Amsterdam: ACM / Addison Wesley.

8. Harrison, S., Computing and the Social Nature of Design. ACADIA
Quarterly, 1993. 12(1): p. 10-18.

9. Bly, S., S. Harrison, and S. Irwin, Media Spaces: Bringing People
Together in a Video, Audio, and Computing Environment. Communications of the
ACM, 1993. 36(1): p. 26-45.

10. Ishii, H. and N. Miyake, Toward an Open Shared Workspace: Computer
and Video Fusion Approach of Team Workstation. Communications of the ACM,
1991. 34(12): p. 37-50.

11. Tang, J.C. and S.L. Minneman. VideoWhiteboard: Video Shadows to
Support Remote Collaboration. in CHI ‘91. 1991. New Orleans, LA: ACM Press /
Addison Wesley.

12. Wellner, P., Interacting with Paper on the Digitaldesk. CACM, 1993.
36(7): p. 87-96.

13. Gross, M.D., Stretch-A-Sketch, a Dynamic Diagrammer. 1994, College of
Architecture and Planning, University of Colorado, Advanced Computing Projects
Lab:

Fat Pencil & Cocktail Napkin 23

14. Gross, M., Relational Modeling, in The Electronic Design Studio, M.
McCullough, W. Mitchell, andP. Purcell, Editor. 1990, MIT Press: Cambridge,
MA. p. 123-136.

15. Gross, M. Grids in Design and CAD. in ACADIA ‘91. 1991. Los Angeles:

16. Gross, M.D. Graphical Constraints in CoDraw. in IEEE Workshop on
Visual Languages. 1992. Seattle: IEEE Press.

17. Trust, J.P.G., Art & Architecture Thesaurus. 1990, New York: Oxford.

18. Gross, M.D. Indexing visual databases of designs with diagrams. in Design
Decision Support Systems. 1994. Vaals, Netherlands:

19. Gross, M.D., C. Zimring, and E. Do, Using Diagrams to Access a Case
Base of Architectural Designs, in Artificial Intelligence in Design ‘94, J. Gero,
Editor. 1994, Kluwer: Lausanne.

20. Gross, M.D., Visual Query for Visual Databases. 1994, College of
Architecture and Planning, University of Colorado, Advanced Computing Projects
Lab:

21. Domeshek, E. and J. Kolodner, A case-based design aid for architecture, in
Artificial Intelligence in Design, J.S. Gero, Editor. 1992, Kluwer: Netherlands.

22. Lynch, K., Image of the City. 1965, Cambridge, MA: MIT Press.

23. Lakin, F. Visual grammars for visual languages. in National Conference on
Artificial Intelligence (AAAI). 1987.

24. Lakin, F., et al., The electronic notebook: performing medium and
processing medium. Visual Computer, 1989. 5: p. 214-226.

25. Futrelle, R.P. Strategies for Diagram Understanding: Generalized
Equivalence, Spatial / Object Pyramids and Animate Vision. in 10th Intl Conf on
Pattern Recognition. 1990. IEEE Computer Society Press.

26. Wittenburg, K. and L. Weitzman. Visual Grammars and Incremental
Parsing. in IEEE Workshop on Visual Languages. 1990. Skokie, IL:

27. Golin, E., A Method for the Specification and Parsing of Visual Languages.
1991, Brown University:

28. Kurlander, D. and E. Bier. Graphical Search and Replace. in SIGGRAPH.
1988. Atlanta, GA: ACM Press.

29. Chandrasekaran, B., N.H. Narayanan, and Y. Iwasaki, Reasoning with
Diagrammatic Representations. AI Magazine, 1993. 14(2): p. 49-56.

Fat Pencil & Cocktail Napkin 24

30. Negroponte, N. Recent advances in sketch recognition. in AFIPS
(American Federation of Information Processing) National Computer Conference.
1973. Boston, MA:

31. Ervin, S.M., Designing with Diagrams, in The Electronic Design Studio:
Architectural Knowledge and Media in the Computer Age, M. McCullough, W.J.
Mitchell, andP. Purcell, Editor. 1990, MIT Press: Cambridge, MA. p. 107-122.

32. Dave, B., CDT: A Computer Assisted Diagramming Tool, in CAAD
Futures ‘93 - Proceedings of the Fifth International Conference on Computer-Aided
Architectural Design Futures, U. Flemming and S.v. Wyk, Editor. 1993, North-
Holland: Amsterdam. p. 91-109.

